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Summary

Recurrent event data analyses are usually conducted under the assumption that the censoring time
is independent of the recurrent event process. In many applications the censoring time can be
informative about the underlying recurrent event process, especially in situations where a
correlated failure event could potentially terminate the observation of recurrent events. In this
paper, we consider a semiparametric model of recurrent event data that allows correlations
between censoring times and recurrent event process via frailty. This flexible framework
incorporates both time-dependent and time-independent covariates in the formulation, while
leaving the distributions of frailty and censoring times unspecified. We propose a novel
semiparametric inference procedure that depends on neither the frailty nor the censoring time
distribution. Large sample properties of the regression parameter estimates and the estimated
baseline cumulative intensity functions are studied. Numerical studies demonstrate that the
proposed methodology performs well for realistic sample sizes. An analysis of hospitalization data
for patients in an AIDS cohort study is presented to illustrate the proposed method.
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1. Introduction

Recurrent event data arise in a wide variety of settings, including public health, biomedical
research, reliability studies, and social sciences. In these studies each subject is at risk of
experiencing repeated events, and the observation of recurrent events is terminated at or
before the end of the study. For example, an HIV patient may experience multiple
opportunistic infections during follow-up, and a schizophrenic patient may be repeatedly
admitted to a psychiatric hospital. The recording of recurrent events could stop early if the
patient withdraws or dies before the study period ends. In the examples, the analysis of
recurrent event data is more relevant than time to first infection or hospital admission,
because recurrent events are more informative about a patient's underlying health condition
and can be used to assess whether there is evidence for deterioration over the long-term
course of the disease.
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A key feature of the recurrent event data structure is that the event recurrence times within a
subject are stochastically ordered and typically correlated. Hence recurrent event data can be
viewed as clustered “survival” time data. However, methods for clustered survival time data
cannot be applied directly because the cluster size, i.e. the number of events of a subject, is
correlated with the underlying distribution of recurrent events. Various methodologies have
been proposed to study the risk of event occurrence over time. Extending the methodologies
of survival analysis, Prentice, Williams and Peterson (1981), Andersen and Gill (1982), and
Chang and Wang (1999) considered conditional models based on intensity and hazard
functions. Others, such as Pepe and Cai (1993), Lawless and Nadeau (1995), and Lin et al.
(2000), proposed marginal multiplicative rate models based on the number of recurrent
events. Schaubel, Zeng, and Cai (2006) considered semiparametric additive rate models,
where the effect of covariates acts additively on the marginal rate of recurrent event. As a
useful alternative, Ghosh (2004) and Sun and Su (2008) proposed accelerated rate models
where the covariate effect transforms the time scale of the baseline rate function. Finally,
Zeng and Lin (2006) proposed a class of semiparametric transformation models to allow for
more flexible modeling of the recurrent event process.

The analysis of recurrent event data is usually conducted with the assumption of
independent censoring; hence, at any time point, the collection of subjects under observation
is a random sample of the study population defined at the time origin. In many instances,
however, censoring can be informative about the recurrent event process, especially when a
failure event serves as a part of the censoring mechanism and precludes further observation
of recurrent events. The afforementioned problem in dealing with recurrent event data under
informative censoring complicates analyses for the ALIVE (AIDS Link to Intraveneous
Experience) study (Vlahov et al. 1991), where nearly 3000 injection drug users (IDU) from
Baltimore Maryland were recuited through extensive community outreach efforts. During
the study period substantial information was collected including repeated hospitalizations,
HIV test results, race, gender, and death. Hospitalization is an important integrated measure
of an IDU's health status, as it reflects the negative health consequences from a variety of
causes, e.g. violence, opportunistic infections, liver-related complications, or complications
of injection drug use, such as infections of the skin and soft tissue (abscess, cellulitis, and
necrotizing fasciitis), bacteremia, endocarditis, and osteomyelitis. Both time-dependent
covariates, e.g. HIV status, and time-independent covariates, e.g. race and gender, might
influence the rehospitalization risk. The potential informative censoring makes it difficult to
properly assess the effect of these risk factors. The censoring among HIV-negative users is
likely to be caused by informative dropouts from healthier IDUs. Moreover, HIV positive
IDUs tend to be hospitalized more often and also have a higher mortality rate. A naive
analysis of the hospitalization rate is likely to yield a biased estimate of the effect of HIV
status on overall hospitalization.

To account for the dependence of recurrent events and the censoring event, researchers have
proposed two types of approaches, marginal models and frailty models. Ghosh and Lin
(2003) studied a correlated marginal model for the joint distribution of recurrent events and
the failure time. By artificially censoring some observed event times, the authors developed
a semiparametric estimation procedure for estimating the effect of time-independent
covariates without modeling the correlation between the recurrent event process and the
failure time. Lancaster and Intrator (1998) considered a joint fully parametric model of the
recurrent event process and the failure time, where the dependency between the two
outcomes is induced by sharing an unobserved frailty in the intensity of recurrent event
process and the hazard of the failure event. Extending the work of Lancaster and Intrator
(1998), Liu, Wolfe, and Huang (2004), Ye, Kalbfleisch, and Schaubel (2007), Huang and
Liu (2007) and Rondeau et al. (2007) studied joint semiparametric models with a specified
frailty distribution and estimated the model parameters by maximizing the semiparametric
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likelihoods. On the other hand, Wang, Qin, and Chiang (2001), Huang and Wang (2004),
Huang, Wang, and Zhang (2006), Sun, Tong, and He (2007) proposed nonparametric and
semiparametric estimation procedures where, in addition to the baseline intensity function
and the baseline hazard function, the distribution of the unobserved frailty was also left
unspecified. The estimation procedures proposed by these authors, however, cannot deal
with time-dependent covariates.

We consider a semiparametric model for recurrent event data that accounts for both time-
dependent and time-independent covariates in modeling the risk of recurrent events. This
model allows the censoring time to be correlated with the recurrent event process via an
unobserved frailty, relaxing the independent censoring assumption required by the usual risk
set methods. Current methods that deal with time-dependent covariates require either an
independent censoring assumption (Lin et al. 2000) or a parametric specification of the
frailty distribution (Lancaster and Intrator 1998, Liu et al. 2004, and Ye et al. 2007). In
practice, however, these methods may suffer from assumption violations due to informative
censoring or lack of model checking techniques for the distribution of unobserved frailty. In
this paper we present a novel semiparametric estimation procedure that depends on neither
the distributions of frailty variables nor the failure times. We propose to estimate the
regression coeffcients of time-dependent covariates by applying the conditional likelihood
method to comparable pairs of event times, so the the nuisance parameters are eliminated
from the conditional likelihood function. We then construct a weighted truncation product-
limit estimator, adjusting for sampling bias in the risk sets, to estimate the shape function of
the recurrent event process. Finally, we solve estimating equations formulated based on
expected number of observed events to estimate the effects of time-independent covariates.
We apply this approach to the ALIVE study and show that HIV-positive status is associated
with an increased risk in repeated hospitalization.

2. Model Setup

Suppose that [0, τ] is the time period of interest or the study time interval, where the
recurrent events could potentially be observed up to τ. Let subscript i be the index for a
subject, i = 1, 2, …, n. For subject i, let Ni(t) represent the number of events that occur over
the interval [0, t], Xi(·) be a bounded p-dimensional time-dependent covariate process
evolving in the time interval [0, τ], and Wi be a q × 1 vector of time-independent covariates.
Denote by Xi(t) = {Xi(u) : 0 ⩽ u ⩽ t} the covariate history of Xi up to time t, and assume Xi

is a left-continuous covariate process. Let Yi be the censoring time at which the observation
of recurrent events is terminated on [0,τ]. Note that Yi can be the time of a composite

censoring event, , where  represents a noninformative censoring time,

such as the end of the study, that is independent of Ni(·), and  represents an informative
censoring time, such as the time of death, that is correlated with Ni(·).

We introduce a nonnegative valued frailty variable Zi, with E(Z2) < ∞, to account for the
dependence between the underlying recurrent event process Ni(·) and censoring time Yi. For
identifiability reason we assume E[ZiWi,Xi(τ)] = 1 throughout the paper. Conditioning on Zi,
Ni(·) is a nonhomogeneous Poisson process with intensity function given by

(1)

where β and γ are p × 1 and q × 1 vectors of parameters, and the baseline intensity function

λ0(t) is an arbitrary continuous function with . We further assume that,
conditional on (Zi,Xi,Wi), Yi is independent of Ni(·); thus the censoring time can be
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correlated with Ni(·) through the connection with unobserved frailty Zi and covariates
(Xi,Wi).

Note that two different types of informative censoring are often encountered in real
application: informative dropouts and terminal events that could preclude further occurrence
of recurrent events. For the case of informative dropouts the proposed model can be
interpreted straightforwardly. For the latter case, recurrent events after the terminal event
can be considered latent and modelled as if they could have occurred, analogous to latent
failure times in the setting of competing risks (see discussions in Ghosh and Lin 2003). The
validity of the proposed estimation procedure in Section 3 only relies on the population
structure for recurrent events occurring before the terminal event.

Assumption (1) implies that the occurrence of recurrent events follows a proportional
intensity model, where the unobserved frailty Zi inflates/deflates the intensity. Because of
the memoryless property of a Poisson process, conditional on Zi, the rate function equals the
intensity function of the recurrent event process. Under (1) and E[Zi | Wi,Xi(τ)] = 1, the rate
function of event occurrence at time t in a random population is given by

. Thus (1) implies the proportional rate model for recurrent event
data studied by Lin et al. (2000) and many others. The proposed model also reduces to the
semiparametric model studied in Wang et al. (2001) in the absence of time-dependent
covariate Xi(t), and is in line with the model for case series data studied in Farrington and
Whitaker (2006) in the absence of time-independent covariate Wi.

3. Estimation Procedure

3.1 Estimation of β
We denote by mi the number of recurrent events that occurred before time Yi and ti1, …, timi
the observed event times for subject i. For ease of notation, we use mi and tij, i = 1, 2, …, n, j
= 1, 2, …, mi, to denote either random variables or realized values. Let Di denote the
observed data of the ith subject, that is, Di = {(Yi,Wi,Xi(Yi),mi, (ti1, …, timi

)}. Assume that
{(Zi,Xi(·),Wi, Yi,Ni(·)); i = 1, …, n} are independent and identically distributed (iid), so that
the {D1, …, Dn} are also iid.

For estimation of the regression parameter β, an initial attempt might use the conditional
technique used in Wang et al. (2001) to eliminate nuisance parameters from the likelihood.
Under (1) the event times (ti1, …, timi

)of the ith subject conditional on (Zi, Yi,mi,Wi,X(Yi))
are order statistics of a set of iid random variables with the density function

Note that both the unobserved frailty Zi and the time-independent covariates Wi are
eliminated from the conditional density function. The conditional likelihood based on all
subjects is proportional to

(2)
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where dπi(t) is the shape function of the recurrent event process given by

and . Note that πi defines a proper distribution function with πi(τ) = 1.

When the recurrent event model only includes time-independent covariates, the conditional
density function further reduces to λ0(t)/Λ0(Yi), which is in the form of a truncated density
function. It is easy to see that for this special case the conditional likelihood depends only on
λ0 and is computationally equivalent to the nonparametric likelihood of independently right-
truncated data. Hence the reduced conditional likelihood is maximized by the product-limit
estimator for independently right-truncated data (Wang, Jewell, and Tsai 1986). In the
presence of time-varying covariates, however, the conditional likelihood (2) involves both
the parametric component Xi(t)′β and the nonparametric component λ0. Maximizing the
conditional likelihood function is challenge because the integral in the denominator of the
conditional likelihood does not have a closed form with λ0 unspecified. Motivated by Liang
and Qin (2000) and Kalbfleisch (1978), we propose an alternative estimation procedure for β
that does not involve the nonparametric component λ0, and hence has the advantage of
computational convenience.

Because (2) is computationally equivalent to the semiparametric likelihood of a set of
independently right-truncated random variables, we can reformulate the problem as
estimating the regression parameter β using the data {tij, i = 1, …, n, j = 1, …, mi}, where tij
is an observed event time with the distribution function πi and is subject to independent right
truncation Yi. The pairwise pseudolikelihood method considered by Liang and Qin (2000),
however, can not be applied directly to truncated data: event times are not necessary
comparable because they are subject to different truncation times. The observation of tij is
subject to the constraint tij ⩽ Yi, hence any two event times tij and tkl, i ≠ k, are comparable
if tij belongs to the observation interval of tkl and tkl belongs to the observation interval of tij.
These constraints amount to tij ⩽ Yi ˄ Yk and tkl ⩽ Yi ˄ Yk, where ˄ denotes minimum.

For any two event times tij and tkl, let δijkl = 1 if (tij, tkl) is a comparable pair, and 0
otherwise. We condition on having observed the values {tij, tkl} for a given pair, but without
knowing the order. We refer to this as conditioning on the order statistics of (tij, tkl). The
conditional distribution is degenerate at the observed values if (tij, tkl) are not comparable.
By conditioning on the order statistics of (tij, tkl) and δijkl = 1, the pairwise pseudolikelihood
of (tij, tkl), i < k, is given by

(3)

where ρik(t, u) = Xi(u)+Xk(t)−Xi(t)−Xk(u). Interestingly, the pairwise pseudolikelihood
depends on the regression parameter β but not the nonparametric component λ0. Hence β
can be estimated by maximizing the pairwise pseudolikelihood
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The score function derived from the logged pairwise pseudolikelihood can be expressed as

where Yik = Yi ˄ Yk. Recall that Di and Dk denote the observed data of the ith and the kth
subject. Define the function

and denote the score function by

It is easy to see that h is permutation symmetric in its arguments and Sp is a U-statistic with
the kernel h(·, ·). If β is the true parameter value, it can be shown that the score function
Sp(β) = 0. Applying the projection method developed by Hoeffding (1948) and under the

assumption that X(t) is bounded by M, we can show that score function  converges
to a normal distribution with mean 0 and variance-covariance V1 = 4E{h(D1, D2; β) h(D1,
D3; β)′}. We then study the asymptotic properties of β ̂ using delta method. The large sample
properties of β ̂ are stated in Theorem 1, with proofs given in the appendix.

Theorem 1—Assume that X(t) is bounded by M and E[N(τ)] < ∞. Let β ̂ be the solution of

Sp(β) = 0. Then β̂ is a consistent estimator of β. Furthermore, , where

 with V1 = 4E{h(D1, D2; β)h(D1, D3; β)′} and V2 = −E{∂h(D1, D2; β)/∂β}.

Note that the variance covariance matrix V can be estimated by , where

and
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Also note that based on the score function Sp, a test statistic for testing the hypothesis β = 0
can be formulated based on

Interestingly, this test statistic for the effects of time-dependent covariates does not require
information about time-independent covariates, and hence is useful for checking
proportionality assumption in the usual proportional rate model.

3.2 Estimation of Λ0 and γ
By definition πi(t) can be considered as the distribution function of a biased sample from the
distribution F(t) = Λ0(t)/Λ0(τ), where the observations are sampled with a probability
proportional to exp{Xi(t)′β}. It is easy to see that, under the assumption (1), the conditional
likelihood (2) is computationally equivalent to the likelihood of a set of independent random
variables, where the data are a biased sample from distribution function F(t) with sampling
weight proportional to exp{Xi(i)′β} and are right truncated by Yi. Thus event times in the
risk set are observed with different sampling probabilities, where the probabilities are
proportional to exp{Xi(t)′β}. If β is known, the probability structure of the risk set can be
recovered by using the inverse probability weighting technique. Following the spirit of the
Breslow estimator of the cumulative hazard in the Cox model, we modify the truncation
product-limit estimator (Wang et al. 1986) as follows to estimate F by assigning each event
in the risk set a weight that is proportional to the inverse of the sampling weight function:

where  and

. Note that β = 0 implies that the assigned
weight is a unit weight and the proposed estimator reduces to the product-limit estimator
that maximizes the nonparametric likelihood function for truncated data. By replacing β with
β ̂, we estimate F with

The large sample properties of F̂(t) are stated in Lemma 1, with proofs given in Appendix.
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Lemma 1—Assume that (a) Λ0(τ) > 0, (b) Pr(Y > τ, Z > 0) > 0, and (c) G(u) = E{ZI(Y ⩾
u)exp(W′ γ)} is a continuous function for u ∈ [0, τ]. For inf{y : Λ0(y) > 0} < t ⩽ τ,

 converges weakly to a normal distribution with mean 0 and variance

4F(t)2E{κ(D1, D2; t, β)κ(D1, D3; t, β)}, where κ is defined in Appendix.

To estimate the regression parameters of time-independent covariates, we note that,
conditioning on {Zi, Yi, Wi, Xi(Yi)}, the expected value of mi is given by

Thus, following the assumption E[Zi | Wi, Xi(τ)] = 1 and by double expectation, we have

We propose to estimate γ and Λ0(τ) by solving the following estimating equations

(4)

where  and η = (lnΛ0(τ), γ′)′. Let η̂ = (η ̂1 γ̂′)′ be the root of the estimating
equations. Then Λ0(t) can be estimated by Λ̂0(t) = F̂(t) × exp(η ̂1).

Following Theorem 1 and Lemma 1, we can establish the asymptotic properties for γ and
Λ0(t) stated in Theorem 2, with proofs given in the appendix.

Theorem 2—Assume that the conditions specified in Theorem 1 and Lemma 1 hold,

 converges weakly to a multivariate normal distribution with mean 0 and variance-

covariance matrix E(−∂ξ/∂γ)−1Σ{E(−∂ξ/∂γ)′}−1, provided E(−∂ξ/∂γ)−1 exits, where ξ and Σ
are defined in Appendix. Moreover, when n → ∞ and inf{y : Λ0(y) > 0} < t ⩽ τ,

 converges weakly to a normal distribution with mean 0 and variance

where f(Di, Dk) is the first entry of the vector function E(−∂ξ/∂γ)−1ξ(Di, Dk).

4. Simulation Studies

We conduct Monte Carlo simulation studies to evaluate the finite-sample properties of the
proposed estimator. For all simulations, we generate 1,000 simulated datasets, each with n =
100 and n = 400 independent subjects. For subject i, the frailty Zi is generated from a gamma
distribution with unit mean and variance 4, and the time-independent covariate Wi, which
corresponds to treatment assignment, is generated taking values 0 or 1 with probability 0.5.
We assume that the time-dependent covariate Xi(t) takes the form Xi log(t), where Xi has a
uniform [0, 1] distribution. We generate recurrent event times from model (1), where the
subject's underlying recurrent event process is a nonhomogeneous Poisson process with
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intensity function . To examine the performance of proposed
estimators under different choices of (β, γ) and λ0, we consider combinations corresponding

to (β, γ) = (0, 0), (0.3, 0), (0, 0.3) and (0.3, 0.3), and λ0(t) = 1/2 and . Under each

scenario we generate a failure event time  from an exponential distribution with mean 10
for subjects in the treatment arm (Wi = 1), and from exponential distributions with mean 6Zi

+4 and 10Xi + 5 for subjects with Xi > 0.5 and Xi <= 0.5, respectively, in the control arm (Wi

= 0). Let  be the time of end of the study, and  be the censoring time.
Note that the censoring time is conditionally independent of Ni(·) given Zi, Xi(τ), and Wi, but
not unconditionally.

We compare the results from the proposed estimation procedure to that from the Lin et al.
(2000), termed as LWYY, method. The empirical bias, empirical standard error and the
mean square error of the estimates based on 1,000 samples are shown in Table 1. Figures 1
and 2 show the estimates and the pointwise 95% confidence intervals of the baseline
cumulative intensity function. As summarized in the table, the average length of follow-up
period is approximately 5.8, and the average number of observed recurrent events ranges
from 3.3 to 4.7 in these simulation studies. The estimators of β and γ from the proposed
method perform well in that the biases in the estimates of β and γ are small, and the averages
of Λ0(t) are almost indistinguishable from the true curve. On the other hand, using the
LWYY method, which requires independent censoring to draw valid inference, results in
biased estimation as well as greater mean squared errors of the covariate effects. Under the
specified conditions in our simulations, simulated control subjects (Wi = 0) with higher
frailty values tend to have a longer observation period. Thus risk sets are more likely to
consist of sicker subjects at later time points. As a result, the LWYY method that compares
subjects within risk sets underestimates the difference between treatment group and control
group in the intensity of recurrent events. Note that, compared to the LWYY method, the
relative efficiency of the proposed estimator depends on the degree of association between
the censoring mechanism and the recurrent event process. Under the independent censoring
assumption, the proposed method is expected to be less efficient than the LWYY method
since the estimation steps involves procedures to handle the informative censoring which
results in loss of estimation efficiency.

4.1 Analysis of ALIVE Study

We use our method to analyze data from the AIDS Link to Intravenous Experience (ALIVE)
study (Vlahov et al. 1991). During the period February 1988 through March 1989, a total of
2,946 active injection drug users in the city of Baltimore, Maryland were recruited into the
ALIVE study through extensive community outreach efforts. Participants underwent a
screening interview in which data on sociodemographic factors, history of drug use and
sexual practice over the previous 10 years were obtained. Information on HIV testing was
collected at follow-up visits scheduled at 6-month intervals. The date of seroconversion was
estimated as the midpoint between the dates of the first positive HIV test and the date of the
last negative HIV test, if available. We analyze hospital admissions recorded between July
16, 1993 and December 31, 1997 from 1,896 intravenous drug users who had at least one
follow-up visit at the study clinic during the same period of time. Among these participants,
there were 1,412 (74%) males and 1,781 (95%) Africa Americans. The number of hospital
admissions ranges from 0 to 19, averaging 3.5 per subject, whereas 1,026 (54%) subjects
had no hospitalization record. A total of 244 (13%) participants died during the four-and-a-
half study period, among them 200 were male (82%) and 233 (95%) were black.

We apply the proposed method to study patient's risk of hospitalization since time 0 (July
16, 1993). The covariates of interest in our analysis include patient's HIV status (Xi(t) = 1 if
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HIV-positive at time t, 0 if HIV-negative), gender (W1i = 1 if male, 0 if female), and race
(W2i = 1 if African American, 0 if non-African American). Censoring time Yi is defined as
the time of the last visit at the study clinic or date of death recorded by the study before
December 31, 1997, and τ denotes the maximum time of Yi's. Let β be the regression
coefficient for HIV status (Xi(t)), and γ1 and γ2 be the coefficients for gender (Wi1) and race
(Wi2). To estimate the 95% confidence intervals of β ̂, γ ̂1, γ̂2, and Λ̂0(t), we adopt a
nonparametric bootstrap method for clustered data by repeatedly sampling 1,781 subjects
with replacement, using subject as the sampling unit, from the AIDS cohort data. We repeat
the resampling procedure 1,000 times and use the 2.5th and 97.5th percentiles of the
empirical distribution based on these 1,000 estimates as the 95% bootstrap confidence
interval. The nonparametric bootstrap method is adopted because the variance estimates of
the proposed estimation procedure are quite complicated. Also, moment estimators
(asymptotic variance estimator is one of those) are less robust when outliers are present.

For model (1), the estimated β̂ is 0.16 with 95% bootstrap confidence interval (−0.62, 0.99),
and the estimated γ ̂1 and γ ̂2 are −0.26 and −0.06, with corresponding 95% confidence
intervals (−0.45, −0.08) and (−0.06, 0.19). The HIV-positive status is associated with 17%
increase in the risk of hospitalization, but the difference is not statistically significant.
African Americans have a insignificantly lower rate of hospitalization compared to non-
African Americans, while males have a significantly lower risk (23% lower) than females.
Figure 3 shows the estimated Λ̂0(t) and the pointwise 95% bootstrap confidence intervals.
The estimated baseline cumulative rate function is close to a straight line, suggesting that the
risk of hospitalization is approximately constant over time. For comparison, we also apply
the LWYY method to analyze the ALIVE data. The estimated β ̂ is 0.50 with 95% bootstrap
confidence interval (−0.36, 0.67), and the estimated γ ̂1 and γ ̂2 are −0.27 and −0.18, with
corresponding 95% confidence intervals (−0.44, −0.10) and (−0.48, 0.19). The direction of
covariate effects estimated in the LWYY model are consistent with the estimates under the
proposed model.

5. Discussion

In this paper, we develop a flexible estimation procedure that does not require parametric
assumptions about the distributions of the frailty variable and the censoring time. In
particular, we apply the modified pairwise pseudolikelihood method (Liang and Qin 2000)
based on all comparable pairs of event times to estimate β. The proposed pseudolikelihood-
based estimation procedure involves neither frailty nor the time-independent covariates, and
hence is very useful for checking proportionality assumption in the widely used proportional
rate models.

Naturally we can consider applying the pseudolikelihood method to three or more
comparable event times, and expect a potential gain in efficiency. Due to comparability
constraints, however, the number of comparable triples may not be much more than the
number of comparable pairs. Hence the efficiency gain can be very limited, while the
computation time may increase substantially. As an alternative to increase efficiency, we
consider the disjoint time intervals [0, Y(1)], (Y(1), Y(2)], …, (Y(n−1), Y(n)], where (Y(1), …,
Y(n)) are order statistics of the censoring times {Y1, …, Yn}. Note that any event time is
comparable with all other event times within the same time interval. Thus, we can formulate
a pseudolikelihood for each disjoint interval by conditioning on the order statistics of all the
event times within that interval, and the denominator of the pseudolikelihood can be
approximated by drawing a subset of all possible permutations of event times within the
interval. We then estimate β by combining pseudolikelihoods of disjoint time intervals.
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As discussed in Section 3.2, the conditional likelihood (2) is computationally equivalent to
the likelihood of a set of independent observations that are subject to two sources of bias:
right truncation and biased sampling. In the literature, the product-limit estimator is used for
inference under random truncation (Wang et al. 1986), while inverse probability weighting
estimators are often used to correct for sampling bias (Horvitz and Thompson 1952). In our
setting, however, both sources of bias are present simultaneously. To correct the bias in
estimating the shape function of the recurrent event process, we propose an estimator that
properly combines the inverse probability weighting technique with the product limit
estimator by assigning each event time in the risk set a weight proportional to the inverse of
its sampling probability. Interestingly, the estimation of the shape function does not require
information about time-independent covariates and the unobserved frailty, and is reduced to
the usual product limit estimator when β = 0.

Note that the censoring time in our model formulation is treated as a nuisance. In many
applications, especially when a failure event precludes the observation of recurrent events,
study interests are placed on the joint inference of the recurrent event process and the failure
times. Shared frailty models such as the fully parametric approach by Lancaster and Intrator
(1998) and semiparametric approaches by Liu et al. (2004) and Huang and Wang (2004)
have been used to study recurrent events and failure time data jointly. The first two models
require a parametric assumption for the unobserved frailty distribution, and thus suffer from
lack of model checking techniques; moreover, censoring mechanism other than the failure
event of interest is required to be random for validating their inferential results. On the other
hand, the Huang and Wang (2004) model is more robust in that the frailty distribution is left
unspecified and censoring mechanism other than the failure event is allowed to be correlated
with the recurrent event process and the failure times. Their estimation procedure, however,
inherits the properties of the estimator studied by Wang et al. (2001), and hence can not
handle time-dependent covariates. By properly combining the new methodology proposed in
this paper and the “borrow-strength estimation procedure” studied in Huang and Wang
(2004), we can easily extend their joint inference procedure to handel both time-dependent
and time-independent covariates. The properties of the new estimation procedure will be
studied elsewhere.

This article does not intend to develop formal model checking methods. Under informative
censoring, model checking is expected to be a difficult task in general. we simply suggest a
possible approach for validating model assumptions. A rigorous study will be done
elsewhere. To check on the proportional intensity model assumption imposed by (1), we

could replace Zi with  to derive the Schoenfeld
residuals (Schoenfeld 1982). If the assumption of proportional intensity model holds, the
derived residuals are expected to randomly scattered around 0.
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Appendix

Proof of Theorem 1

Because − log[1 + exp{ρik(tij, tkl)′β}] is the log-likelihood of tij and tkl conditional on {Zi,
mi, Yi, Xi(Yi), Wi}, {Zk, mk, Yk, Xk(Yk), Wk} and the order statistics of {tij, tik}, the pairwise
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pseudolikelihood (4) achieves its maximum at the true parameter value. By the conditional
Kullback-Leibler information inequality (Andersen 1970), the maximum pairwise
pseudolikelihood estimator β ̂ is consistent.

For convenience, we denote a2 = aa′ for any vector a. Applying Taylor expansion to Sp(β),
we have β ̂−β = {−∂Sp(β)/∂β}−1 Sp(β)+op(n−1/2). By noting that E {∂h(Di, Dk; β)/∂β}2 ⩽
(4M)4E{Ni(τ)2Nk(τ)2} < ∞, it follows from the strong law of large numbers for U-statistics
that −∂Sp(β)/∂β converges almost surely to E{−∂Sp(β)/∂β} = E{−∂h(D1, D2; β)/∂β} = V2.

Hence . By the central limit theorem for the U-

statistics (Serfling 1980, Chap 5),  converges weakly to the normal distribution

with mean 0 and variance covariance matrix .

Proof of Lemma 2

Define the functions  and R(u) = G(u)Λ0(u). It can be shown that n the

empirical averages  and

 are unbiased estimators of Q(u)and R(u) if β
is the true parameter value. Let Q ̂(u) = Q ̃(u; β ̂) and R̂(u) = R̃(u; β ̂). A Taylor series expansion
of Q ̂(u) = Q ̃(u; β ̂ about β yields Q ̂(u)−Q ̃(u; β) = VQ ̃(u)(β ̂−β)+op(n−1/2), where VQ ̃ (u) =
E{∂Q ̃(u; β)/∂β}′. Similarly, we have R̂(u) − R̃(u; β) = VR̃(u)(β ̂ − β) + op(n−1/2), where VR̃(u)

= E[∂R̃(u; β)/∂β]′. The weak convergence of  and  follows
directly from Slutsky's theorem and Theorem 1.

Further, it is easy to see that . Note that assumptions (a) and (b)
implies that R(τ) > 0. Thus for any constant c* > inf{y : Λ0(y) > 0}, one has R(u) > 0 for c*
⩽ u < τ. As n → ∞, Q ̂(u) and R̂(u) converge almost surely to Q(u) and R(u) uniformly in u ∈
[c*, τ]. By approximation techniques for product-limit estimators and the inequality 0 < −
ln(1 − u−1) − u−1 < u−1(u − 1)−1, for u > 1, we can show that

 almost surely for each t ∈ [c*, τ], with the usual convention
0/0 = 0. Hence,

Because the mapping of  from the two empirical processes, under mild
regularity conditions, is compactly differentiable with respect to the supremum norm and the
two processes converge weakly to their limits (see example 2.11.16 of van der Vaart and

Wellner 1996), we apply the functional delta method to  and establish its
asymptotic representation
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where  and

. Let κ(Di,
Dk; t, β) = ϕ(Di, Dk; t, β) + {ψ(Di; t, β) + ψ(Dk; t, β)}/2. It can be verified that

 is a U-statistic with E{κ(D1, D2; t, β)2} < ∞. Hence, for fixed t,

 converges weakly to a normal distribution with zero
mean and variance 4E{κ(D1, D2; t, β)κ(D1, D3; t, β)} by the central limit theorem for U-

statistics. Further, we have , and, for

fixed t,  converges weakly to a normal distribution with mean 0 and
variance 4F(t)2E{κ(D1, D2; t, β)κ(D1, D3; t, β)}.

Proof of Theorem 2

Let H bet the joint probability measure of (W*, m, X, Y). Arguing as in the proof of Theorem
1 in Wang et al. (2001), we show that the left-hand side of (4) can be expressed as

 where

It can be verified that  is a U-statistic with E{ξ(Di, Dk)} = 0 and
E{ξ(Di, Dk)

2} < ∞. Applying Taylor expansion to the estimating equation (4) gives

. Hence it follows the central limit

theorem for U-statistics that  converges weakly to a multivariate normal
distribution with mean 0 and variance-covariance matrix E(−∂ξ/∂γ)−1Σ{E(−∂ξ/∂γ)′}−1,
where Σ = 4E{ξ(D1, D2)ξ(D1, D3)′}.
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To study the asymptotic normality of , we write

where f(Di, Dk) is the first entry of the vector function E(−∂ξ/∂γ)−1ξ(Di, Dk). Hence
Theorem 2 follows from the central limit theorem for U-statistics.
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Figure 1.

Plots of estimated Λ̂0(t) with pointwise 95% confidence intervals for Scenario I: Λ0(t) = t/2
(—: true curve, - - - : empirical average, ⋯: pointwise 95% confidence interval).
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Figure 2.

Plots of estimated Λ̂0(t) with pointwise 95% confidence intervals for Scenario II: Λ0(t) =
t3/2/6 (—: truecurve, --- : empirical average, ⋯: pointwise 95% confidence interval).
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Figure 3.

Plot of Λ̂0(t) for the ALIVE Cohort Data, With Pointwise 95% Bootstrap Confidence
Intervals (—: proposed estimate, ⋯: pointwise 95% confidence interval).

Huang et al. Page 18

Biometrics. Author manuscript; available in PMC 2010 May 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Huang et al. Page 19

T
a

b
le

 1

S
u
m

m
ar

y
 o

f 
th

e 
si

m
u
la

ti
o
n
 s

tu
d
y

P
ro

p
o
se

d
 M

et
h

o
d

L
W

Y
Y

 M
et

h
o
d

n
(β

, 
γ)

E
[m

i]
B
β

E
S

E
β

M
S

E
β

B
γ

E
S

E
γ

M
S

E
γ

B
β

E
S

E
β

M
S

E
β

B
γ

E
S

E
γ

M
S

E
γ

S
ce

n
ar

io
 I

: 
λ 0

(t
) 

=
 1

/2

1
0
0

(0
, 
0
)

3
.3

−
0.
01
1

0
.2

3
8

0
.0

5
7

−
0.
01
6

0
.4

7
5

0
.2

2
6

0
.2

6
7

0
.4

5
2

0
.2

7
5

−
0.
25
8

0
.4

8
7

0
.3

0
4

(0
.3

, 
0
)

4
.1

0
.0

2
1

0
.2

5
9

0
.0

6
8

−
0.
02
6

0
.5

0
0

0
.2

5
0

0
.2

4
0

0
.4

7
9

0
.2

8
7

−
0.
29
9

0
.5

1
2

0
.3

5
2

(0
, 
0
.3

)
3
.9

0
.0

0
5

0
.2

2
4

0
.0

5
0

0
.0

0
5

0
.4

6
6

0
.2

1
7

0
.2

2
0

0
.4

4
1

0
.2

4
3

−
0.
22
4

0
.4

7
8

0
.2

7
9

(0
.3

, 
0
.3

)
4
.6

0
.0

0
0

0
.2

3
4

0
.0

5
5

−
0.
00
3

0
.4

5
1

0
.2

0
4

0
.2

1
6

0
.4

7
3

0
.2

7
0

−
0.
27
8

0
.4

7
4

0
.3

0
2

4
0
0

(0
, 
0
)

3
.3

0
.0

0
5

0
.1

0
7

0
.0

1
1

0
.0

0
7

0
.2

3
2

0
.0

5
4

0
.2

4
4

0
.2

1
9

0
.1

0
7

−
0.
23
5

0
.2

2
4

0
.1

0
5

(0
.3

, 
0
)

4
.1

0
.0

0
5

0
.1

1
1

0
.0

1
2

0
.0

0
4

0
.2

3
3

0
.0

5
4

0
.2

5
6

0
.2

4
1

0
.1

2
4

−
0.
29
2

0
.2

3
6

0
.1

4
1

(0
, 
0
.3

)
3
.9

−
0.
00
3

0
.0

9
8

0
.0

1
0

0
.0

0
3

0
.2

3
0

0
.0

5
3

0
.1

9
3

0
.2

2
6

0
.0

8
8

−
0.
23
8

0
.2

3
7

0
.1

1
3

(0
.3

, 
0
.3

)
4
.6

0
.0

0
6

0
.1

0
5

0
.0

1
1

0
.0

1
3

0
.2

3
5

0
.0

5
5

0
.2

2
2

0
.2

4
3

0
.1

0
8

−
0.
28

0
.2

4
7

0
.1

3
9

S
ce

n
ar

io
 I

I:
 λ
0(
t)

=
t
∕
4

1
0
0

(0
, 
0
)

3
.1

0
.0

1
8

0
.3

7
8

0
.1

4
3

0
.0

1
6

0
.5

4
6

0
.2

9
8

0
.2

4
3

0
.5

2
7

0
.3

3
7

−
0.
29
4

0
.5

2
8

0
.3

6
5

(0
.3

, 
0
)

3
.8

0
.0

1
7

0
.3

7
0

0
.1

3
7

0
.0

1
4

0
.5

0
6

0
.2

5
6

0
.2

7
0

0
.5

1
8

0
.3

4
1

−
0.
36
6

0
.5

1
0

0
.3

9
4

(0
, 
0
.3

)
3
.7

−
0.
00
4

0
.3

4
4

0
.1

1
8

−
0.
00
5

0
.5

2
7

0
.2

7
8

0
.2

4
1

0
.5

2
5

0
.3

3
3

−
0.
29
1

0
.5

1
6

0
.3

5
1

(0
.3

, 
0
.3

)
4
.7

−
0.
00
2

0
.3

4
8

0
.1

2
1

−
0.
02
8

0
.5

3
4

0
.2

8
6

0
.2

3
3

0
.5

4
1

0
.3

4
7

−
0.
36
6

0
.5

3
7

0
.4

2
3

4
0
0

(0
, 
0
)

3
.1

0
.0

0
8

0
.1

6
1

0
.0

2
6

−
0.
01
3

0
.2

8
5

0
.0

8
1

0
.2

6
8

0
.2

4
5

0
.1

3
2

−
0.
30
6

0
.2

4
8

0
.1

5
5

(0
.3

, 
0
)

3
.8

0
.0

0
8

0
.1

6
4

0
.0

2
7

−
0.
00
9

0
.2

8
7

0
.0

8
2

0
.2

7
1

0
.2

6
1

0
.1

4
2

−
0.
35
4

0
.2

6
3

0
.1

9
5

(0
, 
0
.3

)
3
.7

0
.0

0
2

0
.1

4
9

0
.0

2
2

0
.0

0
2

0
.2

8
2

0
.0

7
9

0
.2

3
0

0
.2

6
4

0
.1

2
2

−
0.
30
2

0
.2

4
8

0
.1

5
2

(0
.3

, 
0
.3

)
4
.7

0
.0

0
5

0
.1

4
5

0
.0

2
1

−
0.
00
2

0
.2

7
0

0
.0

7
3

0
.2

2
4

0
.2

6
0

0
.1

1
8

−
0.
35
9

0
.2

4
6

0
.1

9
0

N
O

T
E

: 
B
β 

an
d
 B
γ a

re
 t

h
e 

em
p
ir

ic
al

 b
ia

se
s 

o
f 
β̂  

an
d
 γ̂ ;

 E
S
E
β 

an
d
 E

S
E
γ a

re
 t

h
e 

em
p
ir

ic
al

 s
ta

n
d
ar

d
 e

rr
o
rs

 o
f 
β̂  

an
d
 γ̂ ;

M
S
E
β 

an
d
 M

S
E
γ a

re
 t

h
e 

m
ea

n
 s

q
u
ar

ed
 e

rr
o
rs

 o
f 
β̂  

an
d
 γ̂ .

Biometrics. Author manuscript; available in PMC 2010 May 25.


