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SEMIPARAMETRIC ANALYSIS OF RANDOM EFFECTS 
LINEAR MODELS FROM BINARY PANEL DATA' 

BY CHARLES F. MANSKI 

Andersen (1970) considered the problem of inference on random effects linear models 
from binary response panel data. He showed that inference is possible if the disturbances 
for each panel member are known to be white noise with the logistic distribution and if 
the observed explanatory variables vary over time. A conditional maximum likelihood 
estimator consistently estimates the model parameters up to scale. The present paper shows 
that inference remains possible if the disturbances for each panel member are known only 
to be time-stationary with unbounded support and if the explanatory variables vary enough 
over time. A conditional version of the maximum score estimator (Manski, 1975, 1985) 
consistently estimates the model parameters up to scale. 
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INTRODUCTION 

ANDERSEN (1970) CONSIDERED the problem of inference on random effects linear 
models from binary response panel data. He showed that inference is possible 
if the disturbances for each panel member are known to be white noise with the 
logistic distribution and if the observed explanatory variables vary over time. 
Nothing need be known about the distribution of effects. Andersen proved that 
a conditional maximum likelihood estimator consistently estimates the model 
parameters up to scale. For a review of this and related results, see Chamberlain 
(1984). 

The present paper shows that inference remains possible if the disturbances 
for each panel member are known only to be time-stationary with unbounded 
support and if the explanatory variables vary enough over time. The paper proves 
that a conditional version of the maximum score estimator (Manski, 1975, 1985) 
consistently estimates the model parameters up to scale. 

Section 1 sets out assumptions and notation. Section 2 proves identification 
under the assumptions. Section 3 develops a consistent estimator. 

1. ASSUMPTIONS 

It suffices to consider the case where two observations are available for each 
person. Thus, let [(y,, x,, u,; t = 0, 1), c] be a random vector. Here, y, is the scalar 
response variable in period t, x, is the corresponding K-vector of observed 
explanatory variables, and u, is the unobserved scalar disturbance. The random 
variable c is the unobserved time invariant person-specific effect. The random 
effects linear model has the form 

(1) y,=Xt,+c+U,, t=0, 1, 

' This research was supported under National Science Foundation Grant SES-8319335 and by a 
grant from the University of Wisconsin Graduate School. Jim Powell has provided very useful 
comments. 
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where fi E RK is a parameter. Define the binary indicator z, such that z, 1 if 
y, : 0 and z, = 0 otherwise. The binary response panel data problem is to combine 
observations on (z,, x,; t = 0, 1) with prior information so as to learn about '3. 

To specify the prior information assumed in this paper, let F denote the 
population distribution of [(y,, x,, u,; t = 0, 1), c]. Let u (uo, u,), x (xo, x,), 
z (zo, z1). Let FCl, denote the distribution of c conditional on x and let Fulxc 
denote the distribution of u conditional on (x, c). 

Following the literature, we impose no restrictions on FCIX but do presume 
prior information about Ful,c. In particular, we maintain the following 
assumption. 

ASSUMPTION 1 (Disturbances): (a) Fu,IXC= F,4,Ix, all (x, c). (b) The support of 
Fu01xc is R', all (x, c). 

Part (a) of Assumption 1 says that u, is stationary, conditional on (x, c). 
Equivalently, u, is stationary conditional on the identity of the panel member. 
This restriction is critical to our analysis. Part (b) is a regularity condition. Its 
purpose is to guarantee that for all c, the event z, : zo occurs with positive 
probability. We could accommodate disturbances with bounded support if we 
were to assume that the support of c is bounded. Note that Assumption 1 places 
no restriction on the form of serial dependence between uo and u,, nor does it 
restrict the manner in which Fulxc may vary with (x, c). 

Let 11 11 be a norm on R K and let ,38* = ,/ 11 3 11 denote the normalized parameter 
vector. We shall show in Section 2 that Assumption 1 identifies l3* provided that 
the explanatory variables x, vary sufficiently over time. Let w = x, - xo and let F, 
denote the distribution of w. The following condition on F, will suffice. 

ASSUMPTION 2 (Explanatory Variables): (a) The support of F,, is not contained 
in any proper linear subspace of R K 

(b) There exists at least one k E [1, 2, 3, . . ., K] such that I3k ? 0 and such that, 
for almost every value of w = (w, aW2,. . ., Wk-l, Wk+l, 5. .-. - WK), the scalar random 
variable Wk has everywhere positive Lebesgue density conditional on w. Without loss 
of generality, let k = K. 

Assumption 2 has the same form as Manski (1985), Assumption 2. Part (a) is 
the familiar full-rank condition. It prevents a global failure of identification. If 
Assumption 1 were strengthened to be the white noise logistic assumption of 
Andersen, part (a) would suffice to identify ,B*. In our semiparametric setting, 
part (a) bounds 3* but does not identify it. Part (b) prevents a local failure of 
identification. Part (b) is a substantive restriction. It implies that wb has 
everywhere positive density for all b such that bK # 0. 

Finally, we need to state the sampling assumption. 

AssuMPTION 3 (Sampling): A sample of N independent realizations is drawn 
from F. For each n = 1, . .., N, (Ztn Xtn; t = 0, 1) is observed. 
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Actually, the assumption of random sampling from F is much stronger than 
necessary. Versions of the consistency result of Section 3 can be proved for 
sufficiently regular i.n.i.d. and dependent sampling processes. 

2. IDENTIFICATION 

Let E(zlx) denote the expectation of the observable binary indicators condi- 
tional on the observable explanatory variables. Assume that E(zlx) is known for 
a set of x values having Fr-probability one. Then Assumptions 1 and 2 identify 
f3*. The following Lemma is the key. 

LEMMA 1: Let Assumption 1 hold. Then 

XjP>x0P r E(zjjx)>E(z0jx), 

(2) xlf=x0f X E(zjjx)=E(z0jx), 

x1 < x0f 8 E(zjjx)<E(zojx). 

PROOF: For all (x, c, t), E(z Ix, c) = P(y, 0 x, c). In general, 
00 

P(Yi O ? I x, C) = -cdFulix 

00 

P(yo: 0 ? x, C) = dFuolxc- 

It follows from this and from Assumption 1 that for all c, 

x I Xf3x0f P (yI?O x9 c) P (yO c). 

Equivalently, for all c, 

X1f xof X E(zjIx, c) E(zoIx c). 

The result now follows immediately. Q.E.D. 

Lemma 1 relates the parameter 1 to the observable (z, x). Rewriting (2) as 

w,8>0 <* E(zj-z0jx)>0, 

(2') w3=0 r E(zj-z0jx)=0, 

w,8<0 X E(z,-zo1x)<09 

we see that Assumption 1 implies the same form of relationship as was shown 
in Manski (1985), equation (1) to follow from a linear median regression assump- 
tion on cross-section data. This makes it natural to ask whether the present panel 
data problem has a median regression interpretation. In fact it does. 

Let M(z1 - zo x, z1 $ zo) denote the median of z1 - z0 conditional on x and on 
the event z1 $ z0. I am grateful to Jim Powell for help in showing that Lemma 1 
has the following Corollary. 
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COROLLARY: Let Assumption 1 hold. Then 

(3) M(z1-zoIx, z, z0) = sgn (w,8). 

PROOF: The distribution of z, - z0 conditional on x and on the event z1 0 zo 
is Bernoulli with 

P(Z1-Z =1 X, Z1$ Zo) = P(Z1 = 1, Zo = 0 I x)/ P(z1 z0 O I x), 

P(ZI-z =-1 1 X, Z1 $ ZO) = P(Z1 =0, ZO= 1 x)/ P(z $ zO I x). 

It follows that 

M(z, - z0 I x, z1 $ z0) = sgn [P(z1 = 1, zo0 = x)-P(z1 = 0, z0= 1 x)]. 

But 

P(Z1 = 1, Zo = 0 X) = P(Z1 = 1 X) - P(z= 1, zO = 1 x), 

P(Z1 = 0, zO = 1 x) = P(zO = 1 x) - P(z = 1, ZO = 1 X). 

Hence, 

M(z,- zo I x, z1 ?z0) = sgn [P(z, = 1 I x)-P(z0 = 1 x)]. 

By Lemma 1, 

sgn [ P(z = 1 I x)-P(z0 = 1 x)] = sgn (w,8). Q.E.D. 

Now consider b E R K b ,8. Lemma 1 distinguishes b from 8 if there exists 
a set of w values having positive F,-probability such that (2') does not hold 
when b is substituted for 8. In this case, we say that 8 is identified relative to b. 
Formally, let 

(4) Wb=[wE RK: sgn (wb) ? sgn (w,)]. 

Then 1 is identified relative to b if 

(5) R(b)-| dF> 0. 

Clearly the scale of /3 is not identified. Under Assumption 2, the normalized 
parameter 18* is identified. This was shown in Manski (1985), Lemma 2 and is 
restated below. 

LEMMA2: Let Assumption 2 hold. Then R(b) >0 for all b e RK such that 
b/l 1 b 11 3 *. 

3. CONSISTENT ESTIMATION 

Our development of a consistent estimator for 18* follows closely the approach 
yielding the maximum score estimator. The main idea is to find a function of 
(z, x, b) whose expectation over (z, x) is maximized uniquely at f3*. We then 
propose maximization of the sample analog of this expectation. Lemma 3 provides 
the desired function. 
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LEMMA 3: Let Assumptions 1 and 2 hold. Define 

(6) H(b) -E [sgn (wb)(z1 - zo)] 

Then H(f3*)> H(b) for all be RK such that b/l bl f 3** 

PROOF: For all b E R K 

H(I3*)-H(b) = E[{sgn (wf3)-sgn (wb)}(z1 -zo)] 

= 2 { sgn (wf3)E[(z1 - z0) I w] dFw. 
Wh 

Given Assumption 1, Lemma 1 implies that for all w, 

sgn (wf3)E[(z, - zo) I w] = JE[(z1 - Zo) w]. 

Therefore, 

H(/3*) -H(b) = 2 | E[(z - zo) I w]l dF,,,: 0.O 
Wh 

Under Assumptions 1 and 2, E[(z, - zo) I w] $ 0 for almost all w. It now follows 
from Lemma 2 that H(f3*) H(b) > O whenever b/l 1 b f 3*. Q.E.D. 

Now consider estimating /* by maximizing the sample analog of H(*), namely 
the sample average function 

I N 
(7) HN (b)- i sgn (Wnb)(zl,,- zo,.) 

Observe that the behavior of HN (*) is unaffected by removing observations having 
z= z0. Comparison of (7) with Manski (1985), equation (5) shows that the 
estimator maximizing HN (*) is maximum score applied to the observations having 
z? z0. Thus, we have derived a conditional maximum score estimator. The 
conditioning event z1 $ z0 is the same as that used by Andersen to form his 
conditional maximum likelihood estimator. 

Consistency of the proposed estimator follows from Lemma 3, from the fact 
that HN(*) behaves like H(*) as the sample size increases, and from the fact 
that H(*) is smooth as a function of b. The consistency theorem stated below 
imposes Assumptions 1-3 plus the minor requirement that the parameter space 
B be bounded away from bK =0. Proof of the theorem parallels the proof of 
Manski (1985), Theorem 1, where consistency of the maximum score estimator 
is shown. 

THEOREM: Let Assumptions 1, 2, and 3 hold. Let there exist a known 7 >0 
such that 1/3K I/ 11 11 Define B-b E R K1 b 11 = I r I bK IDLet N oo. Then 
the estimator maximizing the criterion function HN (*) over B is strongly consistent 
for /3*. 
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PROOF: By construction, B is compact and 83* E B. Lemma 3 implies that on 
B, H(*) has its unique maximum at ,8*. Manski (1985, Lemma 4) shows that as 
N-->oo, HN(*) converges to H(*) uniformly on B, almost surely. By Manski 
(1985, Lemma 5), H is continuous on B. These properties imply strong con- 
sistency. Q.E.D. 

Department of Economics, University of Wisconsin-Madison, Madison, WI. 
53706, U.S.A. 
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