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S

A unified estimation procedure is proposed for the analysis of censored data using linear
transformation models, which include the proportional hazards model and the pro-
portional odds model as special cases. This procedure is easily implemented numerically
and its validity does not rely on the assumption of independence between the covariates
and the censoring variable. The estimator is the same as the Cox partial likelihood esti-
mator in the case of the proportional hazards model. Moreover, the asymptotic variance
of the proposed estimator has a closed form and its variance estimator is easily obtained
by plug-in rules. The method is illustrated by simulation and is applied to the Veterans’
Administration lung cancer data.

Some key words: Estimating equation; Linear transformation model; Proportional hazards model; Proportional
odds model.

1. I

Since it was first introduced in Cox (1972), the proportional hazards model has been
fully explored in theory and extensively used in practice (Cox, 1975; Tsiatis, 1981; Andersen
& Gill, 1982). Another commonly-used model in survival analysis is the proportional
odds model which has recently attracted considerable attention (Pettitt 1982, 1984;
Bennett, 1983; Dabrowska & Doksum, 1988; Murphy et al., 1997). The two models are
special cases of linear transformation models, which provide many useful alternatives. It
is thus desirable to seek a unified estimation and inference procedure for linear trans-
formation models. However, despite recent research progress, the problem has not been
completely solved. The aim of the paper is to develop an estimation method, in line with
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Cox’s partial likelihood approach, that is easily implemented and has a reliable inference
procedure for linear transformation models.
Let T be the failure time and Z the p-dimensional covariate. Without loss of generality,
we assume throughout this paper that T is a positive continuous random variable. Linear
transformation models assume that

H(T )=−b∞Z+e, (1)

where H is an unknown monotone transformation function, e is a random variable with
a known distribution and is independent of Z, and b is an unknown p-dimensional
regression parameter of interest. The proportional hazards model and the proportional
odds model are special cases of (1) with e following the extreme-value distribution and
the standard logistic distribution, respectively. In the presence of censoring, we assume
conditional independence of T and the censoring variable C given Z. Let TB =min (T , C)
be the event time and d=I(T∏C) be the failure/censoring index. The observations are
then independent copies of (TB , d, Z).
Cheng et al. (1995) proposed and justified a general estimation method for linear trans-

formation models with censored data. The method was further developed in Cheng et al.
(1997), Fine et al. (1998) and Cai et al. (2000). A key step in their approach is the
estimation of the survival function for the censoring variable by the Kaplan–Meier esti-
mator. Its validity relies on the assumption that the censoring variable is independent of
the covariates. Thus, unlike Cox’s partial likelihood approach, this method of estimation
fails when this assumption is violated. In practice, however, such an assumption is often
too restrictive, even for randomised clinical trials.
The estimation procedure proposed in this paper is valid without the aforementioned

independence assumption. In fact, our estimator reduces to the Cox partial likelihood
estimator in the special case of the Cox model. It is easy to compute the estimator through
an estimating function that resembles the Cox partial likelihood score. Furthermore, its
asymptotic variance has a closed-form expression, so that variance estimation is simple
and reliable through plug-in rules.
The next section derives the estimator of the regression parameter and establishes its

consistency and asymptotic normality. Some algorithms and numerical studies are pre-
sented in § 3. Section 4 contains a brief discussion. Proofs are presented in the Appendix.

2. E    

Let (T
i
, C
i
, TB
i
, d
i
, Z
i
), for i=1, . . . , n, be independent copies of (T , C, TB , d, Z). The obser-

vations are (TB
i
, d
i
, Z
i
), for i=1, . . . , n. Throughout this paper, 0<t1< . . .<t

K
<2

denote the observed K failure times among the n observations. Let l( . ) and L( . ) be the
known hazard and cumulative hazard functions of e, respectively. Following the usual
counting process notation, let

Y (t)=I(TB �t), N(t)=dI(TB ∏t), M(t)=N(t)− P t
0

Y (s) dL{b∞
0
Z+H

0
(s)},

where (b0 , H0 ) are the true values of (b, H). Let {Y
i
(t), N

i
(t), M

i
(t)} be the sample ana-

logues of {Y (t), N(t), M(t)}. Motivated by the fact that M(t) is a martingale process, we
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consider estimating equations

U(b, H)¬ ∑
n

i=1
P2
0

Z
i
[dN
i
(t)−Y

i
(t) dL{b∞Z

i
+H(t)}]=0, (2)

∑
n

i=1
[dN
i
(t)−Y

i
(t) dL{b∞Z

i
+H(t)}]=0 (t�0), (3)

where H is a nondecreasing function satisfying H(0)=−2. The last requirement ensures
that L{a+H(0)}=0 for any finite a. Let H be the collection of all nondecreasing step
functions on [0,2 ) with H(0)=−2 and with jumps only at the observed failure times
t1 , . . . , tK . We denote by (b@ , HC ) the solution of (2)–(3). It is then clear that HCµH.
Consider the special case of the Cox model, in which l(t)=L(t)=exp (t). It then follows
from (3) that d[exp{H(t)}]=Wn

i=1
dN
i
(t)/Wn

i=1
{Y
i
(t) exp (b∞Z

i
)}. If we plug this into (2),

we obtain

∑
n

i=1
P2
0
qZi−Wnj=1ZjYj (t) exp (b∞Zj )Wn

j=1
Y
j
(t) exp (b∞Z

j
) r dN

i
(t)=0,

which is precisely the Cox partial likelihood score equation.
There are some alternative versions of (3) that are simple for computational purposes.

Note that (3) can be rewritten as

A 1−Wni=1 Yi (t1 )[L{b∞Zi+H(t
1
)}−L{b∞Z

i
+H(t

1
−)}]

e
1−Wn

i=1
Y
i
(t
K
)[L{b∞Z

i
+H(t

K
)}−L{b∞Z

i
+H(t

K
−)}]B=A0e0B (4)

with HµH, implying H(t1−)=−2. Slightly differently from (4), one might also consider
the following computationally simpler estimating equations:

A 1−Wn
i=1

Y
i
(t
1
)L{b∞Z

i
+H(t

1
)}

1−Wn
i=1

Y
i
(t
2
)l{b∞Z

i
+H(t

2
−)}DH(t

2
)

e
1−Wn

i=1
Y
i
(t
K
)l{b∞Z

i
+H(t

K
−)}DH(t

K
)B=A00e0B , (5)

whereHµH and DH(t)=H(t)−H(t−).Algorithms based on (4) and (5) will be discussed
in the next section. In the following proposition, we show the consistency and asymptotic
normality of b@ . It is not difficult to show that the solution of (2) with (5) and that of (2)
with (4) are asymptotically equivalent.
Some notation and regularity conditions are needed. Let t= inf{t : pr (TB >t)=0}, and

let y(t)= (∂/∂t) log l(t)=l< (t)/l(t). The superscript dot always denotes derivatives. We
assume the positivity of l( . ), the continuity of y( . ) and that lim

s�−2
l(s)=0=

lim
s�−2

y(s). Furthermore, we assume that pr( |Z |<m)=1 for some constant m>0 and
that H0 has continuous and positive derivatives. For any t, sµ(0, t], define

B(t, s)=exp AP t
s

E[l<{b∞
0
Z+H

0
(x)}Y (x)]

E[l{b∞
0
Z+H

0
(x)}Y (x)]

dH
0
(x)B ,

m
Z
(t)=

E[Zl{b∞
0
Z+H

0
(TB )}Y (t)B(t, TB )]

E[l{b∞
0
Z+H

0
(t)}Y (t)]

,

S*= P t
0

E[{Z−m
Z
(t)}E2l{b∞

0
Z+H

0
(t)}Y (t)] dH

0
(t), (6)
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S
*
= P t
0

E[{Z−m
Z
(t)}Z∞l<{b∞

0
Z+H

0
(t)}Y (t)] dH

0
(t), (7)

where bE2=bb∞ for any vector b. Assume that S* and S* are finite and nondegenerate.
Some additional technical conditions are presented in the Appendix.

P. Under suitable regularity conditions, we have that

nD(b@−b
0
)�N{0, S−1

*
S*(S−1

*
)∞} (8)

in distribution, as n�2. Moreover, S* and S* can be consistently estimated by

SC *=
1

n
∑
n

i=1
P t
0

{Z
i
−Z9 (t)}E2l{b@ ∞Zi+HC (t)}Y

i
(t) dHC (t),

SC
*
=

1

n
∑
n

i=1
P t
0

{Z
i
−Z9 (t)}Z∞il

<{b@ ∞Z
i
+HC (t)}Y

i
(t) dHC (t),

respectively, where

Z9 (t)=
Wn
i=1

Z
i
l{b@ ∞Z

i
+HC (Y

i
)}Y
i
(t)BC (t, TB

i
)

Wn
i=1
l{b@ ∞Z

i
+HC (t)}Y

i
(t)

,

BC (t, s)=exp AP t
s

Wn
i=1
l<{b@ ∞Z

i
+HC (x)}Y

i
(x)

Wn
i=1
l{b@ ∞Z

i
+HC (x)}Y

i
(x)

dHC (x)B ,
for t, sµ[0, t].

In the special case of the proportional hazards model, it is easily verified that

B(t, s)=exp{H
0
(t)−H

0
(s)}, m

Z
(t)=E(Z |TB =t, d=1),

S*=S
*
=var CP2

0
{Z−m

Z
(t)} dM(t)D ,

which is the Fisher information matrix based on the Cox partial likelihood score.
It is proved in Step A5 of the Appendix that consistency of HC holds in the sense that

sup( |exp{HC (t)}−exp{H
0
(t)}| : tµ[0, t])�0

in probability as n�2. This convergence is equivalent to

sup ( |HC (t)−H
0
(t) | : tµ[a, t])�0

in probability as n�2 for any fixed aµ(0, t].

3. C    

It is easy to show that, for every fixed value of b, the solution of (3), (4) or (5) is unique
in H. Equations (2) and (4) naturally suggest the following iterative algorithms for
computing (b@ , HC ).

Step 0. Choose an initial value of b, denoted by b(0).

Step 1. Obtain H(0) as follows. First obtain H(0) (t1 ) by solving

∑
n

i=1
Y
i
(t
1
)L{b∞Z

i
+H(t

1
)}=1,
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663T ransformation models with censored data

with b=b(0). Then, obtain H(0) (t
k
), for k=2, . . . , K, one-by-one by solving the equation

∑
n

i=1
Y
i
(t
k
)L{b∞Z

i
+H(t

k
)}=1+ ∑

n

i=1
Y
i
(t
k
)L{b∞Z

j
+H(t

k
−)} (9)

with b=b(0).

Step 2. Obtain new estimate of b by solving (2) with H=H(0).

Step 3. Set b(0) to be the estimate obtained in Step 2 and repeat Steps 1 and 2 until
prescribed convergence criteria are met.

The above procedure is based on estimating equations (2) and (4); a similar procedure
can be derived based on estimating equations (2) and (5), the only difference being that,
instead of solving (9), one calculates

H(t
k
)=H(t

k
−)+

1

Wn
i=1

Y
i
(t
k
)l{b∞Z

i
+H(t

k
−)}

.

Since this involves only direct calculation, it is much easier than solving (9).
We present two simulation examples. In both examples, we choose H0 (t)= log (t) and

let the hazard function of e be of the form l(t)=exp (t)/{1+r exp (t)}, with r=0, 0·5, 1,
1·5 and 2 (Dabrowska & Doksum, 1988). Note that the proportional hazards and pro-
portional odds models correspond to r=0 and r=1, respectively. Two covariates z1 and
z2 are chosen to be independent of each other with z1 following the standard normal
distribution and z2 taking values 0 or 1 with equal probability 0·5. We also set b0= (0, 1).
Two different censoring schemes are considered. In Example 1, the censoring variable is
independent of the covariates and follows the Un(0, c) distribution. In Example 2, the
censoring variable depends on the covariates and is set to be−z1−z2+Un (0, c). In both
examples, the constant c takes various values according to theoretically prespecified cen-
soring proportions. The sample size n is set to be 100 and all simulations are based on
1000 replications. Table 1 lists the coverage probabilities for b0 , showing that the empirical
coverage probabilities are very close to the nominal levels in nearly all cases.
We apply our estimation procedure to data from the Veterans’ Administration lung

cancer trial, which was also analysed in Prentice (1973), Bennett (1983), Pettitt (1984),
Cheng et al. (1995) and Murphy et al. (1997). In our analysis, the subgroup of 97 patients
with no prior therapy is used. The response is the survival time of each patient and the
covariates are his/her tumour type, namely large, adeno, small or squamous, and perform-
ance status. As in the simulation examples, the hazard function of e is of the form l(t)=
exp (t)/{1+r exp (t)}with r=0, 1, 1·5 and 2. Table 2 presents the estimates of the regression
parameters and their estimated standard deviations. We find that the results for the pro-
portional odds model, r=1, are very similar to those reported in the literature, except
for those corresponding to the covariate ‘squamous versus large’, which is regarded as
relatively insignificant.

4. R

In principle, a general efficient estimation procedure may be obtained through
estimating equations that are similar to those of (2) and (3). However, such an
improvement is at the cost of increasing computational complexity. Furthermore, the
asymptotic variance of the efficient estimator does not in general have a closed form,
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Table 1. Empirical coverage probabilities of confidence intervals for regression coeYcients

(a) Example 1: Covariate-independent censoring

Censoring Nominal
proportion (%) level r=0 r=0·5 r=1 r=1·5 r=2

0 0·95 0·96 0·93 0·96 0·96 0·95 0·95 0·96 0·95 0·96 0·95
0·90 0·92 0·88 0·91 0·90 0·89 0·90 0·91 0·90 0·91 0·89
0·85 0·85 0·82 0·86 0·86 0·85 0·85 0·87 0·85 0·86 0·84

10 0·95 0·96 0·93 0·96 0·95 0·95 0·95 0·96 0·96 0·96 0·95
0·90 0·91 0·88 0·91 0·91 0·90 0·90 0·90 0·89 0·90 0·88
0·85 0·86 0·82 0·86 0·86 0·84 0·85 0·86 0·84 0·86 0·84

20 0·95 0·96 0·94 0·96 0·95 0·95 0·94 0·96 0·96 0·96 0·96
0·90 0·91 0·88 0·92 0·91 0·90 0·90 0·91 0·90 0·90 0·89
0·85 0·87 0·82 0·87 0·86 0·85 0·86 0·86 0·84 0·86 0·83

30 0·95 0·95 0·95 0·96 0·95 0·96 0·94 0·95 0·95 0·96 0·95
0·90 0·90 0·88 0·91 0·90 0·91 0·90 0·90 0·90 0·90 0·89
0·85 0·85 0·83 0·86 0·85 0·85 0·86 0·85 0·84 0·85 0·84

(b) Example 2: Covariate-dependent censoring

Censoring Nominal
proportion (%) level r=0 r=0·5 r=1 r=1·5 r=2

10 0·95 0·96 0·94 0·96 0·95 0·96 0·95 0·97 0·95 0·96 0·95
0·90 0·92 0·88 0·91 0·90 0·91 0·90 0·92 0·90 0·92 0·89
0·85 0·88 0·83 0·87 0·85 0·86 0·85 0·87 0·85 0·86 0·84

20 0·95 0·96 0·94 0·96 0·96 0·96 0·95 0·96 0·96 0·95 0·95
0·90 0·92 0·88 0·91 0·90 0·92 0·90 0·91 0·89 0·91 0·89
0·85 0·88 0·83 0·87 0·86 0·86 0·85 0·87 0·85 0·86 0·85

30 0·95 0·96 0·95 0·96 0·95 0·96 0·95 0·95 0·95 0·96 0·95
0·90 0·90 0·89 0·92 0·92 0·90 0·91 0·91 0·90 0·90 0·90
0·85 0·86 0·84 0·86 0·88 0·86 0·86 0·86 0·84 0·86 0·85

In each row, first entry is empirical coverage for the first component of b, second entry is empirical coverage
for the second component of b.

Table 2. Estimates of regression coeYcients and, in brackets, their estimated
standard deviations for the Veterans’ Administration lung cancer data

r=0 r=1 r=1·5 r=2

Performance status −0·024 (0·007) −0·044 (0·011) −0·055 (0·014) −0·065 (0·016)
Adeno versus large 0·851 (0·350) 1·503 (0·528) 1·829 (0·632) 2·164 (0·742)
Small versus large 0·548 (0·333) 1·230 (0·479) 1·531 (0·550) 1·828 (0·622)
Squamous versus large −0·214 (0·361) −0·469 (0·614) −0·595 (0·760) −0·716 (0·910)

so that a simple inference procedure is not available. A study of efficient estimation
will be reported elsewhere.
Linear transformation models in (1) are equivalent to multiplicative transformation
models with a log transformation. The estimation and inference procedure proposed
in this paper can also be generalised in a straightforward fashion to slightly more
general models with H(t)=g(b∞Z, e), where g is a known smooth function.
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A

Proof of the Proposition

Regularity conditions for ensuring the central limit theorem for counting process martingales
such as those assumed in Fleming & Harrington (1991) are also assumed here without specific
statement. In particular, we assume that t is finite, pr (T>t)>0 (Fleming & Harrington, 1991,
pp. 289–90) and pr (C=t)>0 (Murphy et al., 1997). This is to avoid a lengthy technical discussion
about the tail behaviour. Some nonessential technical details in the proof are omitted for brevity
of presentation. The proofs are divided into six steps.

Step A1. Here we show that d{HB ( . , b0 )−H0 ( . )}�0 almost surely, where HC ( . , b)µH is the func-
tion implicitly defined as the unique solution of (3) for fixed b and d(. , .) is a distance defined as
follows. For any two nondecreasing functions H1 and H2 on [0, t] such that H1 (0)=H2 (0)=−2,
define

d(H1 , H2 )=sup( |exp{H1 (t)}−exp{H2 (t)}| : tµ[0, t]).

Let A be a mapping on H defined by

A(H)(t)=
1

n
∑
n

i=1
P t
0

[dN
i
(s)−Y

i
(s) dL{H(s)+b∞

0
Z
i
}].

For an arbitrary but fixed e*>0, consider H1µH and H2µH such that d(H1 , H2 )�e* . There
exists a t*µ[0, t] such that |exp{H1 (t* )}−exp{H2 (t* )}|�e*/2. Then

sup
tµ[0,t]

|A(H
1
) (t)−A(H

2
) (t) |

=
1

n
sup
tµ[0,t] K ∑ni=1 [L{H1 (tmTB

i
)+b∞
0
Z
i
}−L{H

2
(tmTB

i
)+b
0
Z
i
}]K

�
1

n K ∑n
i=1
P H1(t*mTBi)
H
2
(t
*
mTB
i
)
l(s+b∞

0
Z
i
) dsK

�
1

n K ∑n
i=1

I(TB
i
=t) P H1(t*)

H
2
(t
*
)
l(s+b∞

0
Z
i
) dsK

�
1

n
∑
n

i=1
I(TB
i
=t) inf qP logb

loga
l(s+c) ds : 0<a<b<m, b−a<e

*
/2, c<mr ,

where m is a large but fixed constant. Since l is a positive function, the above infimum is a positive
number which does not depend on the choice of H1 and H2 . The law of large numbers implies
that

sup ( |A(H1 ) (t)−A(H2 ) (t) | : tµ[0, t])>eA

for some fixed constant eA>0, all H1µH and H2µH such that d(H1 , H2 )�e* and all large n.
Choose H*

0
µH such that H*

0
(t
i
)=H

0
(t
i
) (i=1, . . . , K ). The law of large numbers and the

continuity of H0 imply that sup ( |A(H*
0
) (t) | : tµ[0, t])�0 almost surely. It follows that

sup ( |A(H*
0
)(t)−A{HC ( . , b

0
)}(t) | : tµ[0, t])�0
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almost surely because, by definition of HC ( . , b0 ), A{HC ( . , b0 )}(t)=0 for all tµ[0, t]. Then, with
probability 1, HC ( . , b0 ) is in the neighbourhood of H*0 of radius e* under the metric d(. , . ). Therefore,
d{HC ( . , b0 ), Ho}�0 almost surely, since e*>0 can be arbitrarily small and HC ( . , b0 ) and H0 are
monotone.

Step A2. Here we construct a representative of L*{HC ( . , b0 )}. Let a>0 and b be fixed finite
numbers and define

l*{H0 (t)}=B(t, a), B
1
(t)= P t

a
E[l<{b∞

0
Z+H

0
(s)}Y (s)] dH

0
(s),

B
2
(t)=E[l{b∞

0
Z+H

0
(t)}Y (t)], L*(x)= P x

b
l*(s) ds,

for t>0 and xµ(−2,2). We choose finite a>0 and b as the lower limits of the integration to
ensure that the integrals are finite. It is easy to see that B(t, s)=l*{H0 (t)}/l*{H0 (s)}. Observe that
dl*{H0 (t)}=[l*{H0 (t)}/B2 (t)] dB1 (t) and write

−n−1 ∑
n

i=1
M
i
(t)=−n−1 ∑

n

i=1
P t
0

Y
i
(s)[dL{b∞

0
Z
i
+HC (s, b

0
)}−dL{b∞

0
Z
i
+H
0
(s)}]

=−n−1 ∑
n

i=1
P t
0

Y
i
(s)d Al{b∞0Zi+H

0
(s)}

l*{H
0
(s)}

[L*{HC (s, b
0
)}−L*{H

0
(s)}]B+o

p
(n−1/2 )

=− P t
0

1

n
∑
n

i=1

Y
i
(s)l{b∞

0
Z
i
+H
0
(s)}

l*{H
0
(s)}

[dL*{HC (s, b
0
)}−dL*{H

0
(s)}]

− P t
0
[L*{HC (s, b

0
)}−L*{H

0
(s)}]

1

n
∑
n

i=1
Y
i
(s)d Cl{b∞0Zi+H

0
(s)}

l*{H
0
(s)} D+o

p
(n−1/2 )

=− P t
0

B
2
(s)

l*{H
0
(s)}

[dL*{HC (s, b
0
)}−dL*{H

0
(s)}]

+ P t
0
[L*{HC (s, b

0
)}−L*{H

0
(s)}]

l*{H
0
(s)} dB

1
(s)−B

2
(s) dl*{H

0
(s)}

[l*{H
0
(s)}]2

+o
p
(n−1/2 )

=− P t
0

B
2
(s)

l*{H
0
(s)}

[dL*{HC (s, b
0
)}−dL*{H

0
(s)}]+o

p
(n−1/2 ).

Therefore, for tµ[0, t],

L*{HC (t, b
0
)}−L*{H

0
(t)}=

1

n
∑
n

i=1
P t
0

l*{H
0
(s)}

B
2
(s)

dM
i
(s)+o

p
(n−1/2 ).

Step A3. Here we show that (1/n)(∂/∂b)U{b, HC ( . , b)} at b=b0 converges to−S* in probability.
Differentiating (3) with respect to b, we have that

∑
n

i=1
P t
0

Y
i
(s)d Cl{b∞Zi+HC (s, b)}qZi+ ∂∂b HC (s, b)rD=0

for every tµ[0, t]. Similarly to Step A2, one can show that

∂
∂b

HC (t, b) |
b=b
0

=−
1

l*{H
0
(t)} P t

0
l*{H

0
(s)}

E[Zl<{b∞
0
Z+H

0
(s)}Y (s)]

B
2
(s)

dH
0
(s)+o

p
(1).
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It follows from the law of large numbers that

1

n

∂
∂b

U{b, HC ( . , b)}|
b=b
0

=−
1

n
∑
n

i=1
Z
i
l{b∞
0
Z
i
+HC (TB

i
, b
0
)}qZi+ ∂∂b HC (TB

i
, b) |
b=b
0r∞

=−
1

n
∑
n

i=1
Z
i
l{b∞
0
Z
i
+HC (TB

i
, b
0
)}

×AZ∞i− P TBi
0

l*
0
{H
0
(s)}E[Z∞l<{b∞

0
Z+H

0
(s)}Y (s)]

l*{H
0
(TB
i
)}B
2
(s)

dH
0
(s)B+o

p
(1)

=− P t
0

E qAZ−E[Zl{b∞
0
Z+H

0
(TB )}Y (s)/l*{H

0
(TB )}]

B
2
(s)/l*{H

0
(s)} B

×[Z∞l<{b∞
0
Z+H

0
(s)}Y (s)]r dH

0
(s)+o

p
(1)

=S*+o
p
(1),

where S* is defined in (7).

Step A4. Here we show the asymptotic normality of U{b0 , HC ( . , b0 )}. Using the results of Steps
A1 and A2 and some empirical process approximation techniques, we can write

U{b
0
, HC ( . , b

0
)}

= ∑
n

i=1
P t
0

Z
i
[dN
i
(t)−Y

i
(t) dL{b∞

0
Z
i
+HC (t, b

0
)}]

= ∑
n

i=1
P t
0

Z
i
dM
i
(t)− ∑

n

i=1
Z
i
[L{b∞

0
Z
i
+HC (TB

i
, b
0
)−L{b∞

0
Z
i
+H
0
(TB
i
)}]

= ∑
n

i=1
P t
0

Z
i
dM
i
(t)− ∑

n

i=1

Z
i
l{b∞
0
Z
i
+H
0
(TB
i
)}

l*{H
0
(TB
i
)}

[L*{HC (TB
i
, b
0
)}−L*{H

0
(TB
i
)}]+o

p
(n1/2 )

= ∑
n

i=1
P t
0

Z
i
dM
i
(t)− ∑

n

i=1

Z
i
l{b∞
0
Z
i
+H
0
(TB
i
)}

l*{H
0
(TB
i
)}

1

n
∑
n

j=1
P TBi
0

l*{H
0
(t)}

B
2
(t)

dM
j
(t)+o

p
(n1/2 )

= ∑
n

i=1
P t
0

Z
i
dM
i
(t)− ∑

n

j=1
P t
0

E CZl{b∞0Z+H
0
(TB )}Y (t)

l*{H
0
(TB )} D l*{H0 (t)}B

2
(t)

dM
j
(t)+o

p
(n1/2 )

= ∑
n

i=1
P t
0
AZi−E CZl{b∞0Z+H

0
(TB )}Y (t)

l*{H
0
(TB )} D l*{H0 (t)}B

2
(t) B dM

i
(t)+o

p
(n1/2 )

= ∑
n

i=1
P t
0

{Z
i
−m
Z
(t)} dM

i
(t)+o

p
(n1/2 ).

It then follows that N−1/2U{b0 , HC ( . , b0 )}�N(0, S*), where S* is defined in (6).

Step A5. Here we show consistency. Consider (1/n)U{b, HC ( . , b)} as a mapping from an arbitrarily
small but fixed ball in Rp centred at b0 to another open connected set in Rp, where p is the
dimension of b. Observe that S* is assumed to be a nondegenerate matrix. The proof of Step A3
can be slightly strengthened to show that convergence similar to the result of Step A3 also holds
over this ball. Consequently, the probability that the mapping of this ball is homeomorphic tends
to 1 as n�2. The fact that (1/n)U{b0 , HC ( . , b0 )}�0 in probability then implies that the probability
that b@ is inside the ball tends to 1. This proves that b@ is consistent since this ball is centred at b0
and can be arbitrarily small. With the consistency of b@ , one can mimic the proof in Step A1 to
show that HC is also consistent under the metric d(. , . ) defined in Step A1.
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Step A6. It follows from the Taylor expansion and the results of Steps A3 and A5 that (8) holds.
Consistency of the variance estimators can be shown in a straightforward fashion and is omitted
here. The proof is complete.
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