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SUMMARY

We consider generalized linear regression with a covariate left-censored at a lower detection

limit. Complete-case analysis, where observations with values below the limit are eliminated,

yields valid estimates for regression coefficients but loses efficiency, ad hoc substitution meth-

ods are biased, and parametric maximum likelihood estimation relies on parametric models for

the unobservable tail probability distribution and may suffer from model misspecification. To

obtain robust and more efficient results, we propose a semiparametric likelihood-based approach

using an accelerated failure time model for the covariate subject to the detection limit. A two-

stage estimation procedure is developed, where the conditional distribution of this covariate given

other variables is estimated prior to maximizing the likelihood function. The proposed method

outperforms complete-case analysis and substitution methods in simulation studies. Technical

conditions for desirable asymptotic properties are provided.

Some key words: Accelerated failure time model; Censored covariate; Empirical process; Generalized linear model;

Pseudolikelihood estimation.

1. INTRODUCTION

A detection limit is a threshold below which measured values are considered to be not sig-

nificantly different from background noise and hence unreliable. The presence of measurements

below the detection limit is common in applications. For example, in the National Health and

Nutrition Examination Survey, many of the exposure variables have measurements below their

detection limits; one such variable is urine arsenobetaine level, of which 27·8% of measured val-

ues are below the detection limit of 0·4 µg/l (Caldwell et al., 2009). In the Diabetes Prevention

Program, 66 of the 301 eligible participants had testosterone levels below the detection limit of

8·0 ng/dl (Kim et al., 2013). In an analysis for the Michigan Bone Health and Metabolism Study,

up to 66% of the 50 study participants had anti-Mullerian hormone below the detection limit

of 0·05 ng/ml (Sowers et al., 2008). For illustration below we will use the National Health and

Nutrition Examination Survey, which examines the relationship between arsenic exposure and

the prevalence of type 2 diabetes (Navas-Acien et al., 2008).

A variable with detection limit can be either a response or an explanatory variable. We focus

on the latter in this article. Although many ad hoc methods have been implemented, appropriate

c© 2016 Biometrika Trust
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162 S. KONG AND B. NAN

statistical methods for regression models with such a variable are yet to be thoroughly studied

(Schisterman & Little, 2010). Complete-case analysis, where observations with values below the

detection limit are simply eliminated, yields consistent estimates of the regression coefficients

(Little & Rubin, 2002; Nie et al., 2010) but loses efficiency. It is not well-accepted by practi-

tioners, who are usually reluctant to delete data, especially a lot of data, as would be the case

in the aforementioned examples. Substitution methods, where values of the covariate Z that lie

below the detection limit L are replaced by L , L/21/2 or zero, are frequently used in epidemi-

ological studies; see, for example, Moulton et al. (2002). These methods are easy to implement

but can yield large biases (Helsel, 2006; Nie et al., 2010). Richardson & Ciampi (2003) pro-

posed to replace the values below L with E(Z | Z < L), which is obtained from a distribution

of Z that is assumed known; however, the distributional assumption is not verifiable, and even

if E(Z | Z < L) is correctly specified, the method will still lead to biased estimators when Z is

correlated with other covariates.

Another widely used method is maximum likelihood estimation based on a parametric distri-

butional assumption on the unobservable tail of Z . For example, Nie et al. (2010) and Arunajadai

& Rauh (2012) considered linear regression based on normal and generalized gamma distribu-

tions for Z ; Cole et al. (2009), Albert et al. (2010) and Wu et al. (2012) considered parametric

maximum likelihood under generalized linear regression; and D’Angelo & Weissfeld (2008)

applied this approach to Cox regression. In practice, however, the underlying distribution of Z

is unknown, and a test of the parametric assumption is usually unavailable because there is no

information below the detection limit. Lynn (2001) and Nie et al. (2010) noted that a parametric

assumption can yield large bias if misspecified, and they argue that such an approach should

not be attempted. Nie et al. (2010), one of the very few groups of researchers who have recog-

nized the danger of substitution or parametric maximum likelihood estimation, recommended

complete-case analysis despite its drawbacks.

To obtain more efficient yet robust results, we propose a semiparametric likelihood-based

approach to fitting generalized linear models with a covariate subject to a detection limit. The tail

distribution of the covariate is estimated from a semiparametric accelerated failure time model,

conditional on the fully observed covariates. Model checking can be done using martingale resid-

uals for semiparametric accelerated failure time models. The proposed estimator is shown to be

consistent and asymptotically normal, and it outperforms existing methods in simulations. The

proof of the asymptotic properties relies heavily on empirical process theory and is provided in

the Supplementary Material.

2. A SEMIPARAMETRIC APPROACH

For a single observation, denote the response variable by Y , the covariate with a detection

limit by Z , and the p fully observed covariates by X = (X1, . . . , X p)
T. For simplicity, we con-

sider only one covariate that is subject to a detection limit. Consider a generalized linear model

(McCullagh & Nelder, 1989; Agresti, 2002) with

E(Y ) = µ = g−1(DTθ), (1)

where g is a link function and DTθ is a linear predictor with D = (1, X T, Z)T and θ = (βT, γ )T;

here β is a (p + 1)-dimensional vector and γ is a scalar. The variance of Y , typically a function

of the mean, is denoted by var(Y ) = W (µ) = W {g−1(DTθ)}. We have

f̟,φ(Y | Z , X) = exp

{

Y̟ − b(̟)

a(φ)
+ c(Y, φ)

}

, (2)
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Covariate subject to a detection limit 163

where φ is the dispersion parameter and ̟ is the natural parameter. Then µ = E(Y ) = ḃ(̟) and

var(Y ) = b̈(̟)a(φ), where ḃ denotes the first derivative and b̈ the second derivative of b.

The value of Z is unobservable when Z < L , where the constant L is the detection limit; this is

an example of left censoring. In practice Z often measures the concentration of some substance

and hence is nonnegative. Consider a monotone decreasing transformation h such that Z = h(T );

for example, h(T ) = exp(−T ). Write D(T ) = {1, X T, h(T )}T. If T � C = h−1(L), then T is

observed; otherwise T is right censored by C . We denote the observed value by V = min(T, C)

and the censoring indicator by � = I (T � C).

The proposed method works for a broad family of link functions satisfying the regularity con-

ditions given in the Appendix. For notational simplicity, we present the main material using the

canonical link function g = (ḃ)−1. Then, when T is observed, model (2) becomes

fθ,φ(Y | T, X) = exp

[

Y DT(T )θ − b{DT(T )θ}

a(φ)
+ c(Y, φ)

]

. (3)

Let F1(t | X) denote the conditional cumulative distribution function of T given X , and let its

density be f1(t | X). The likelihood function for the observed data (V, �, Y, X) can be factor-

ized as

f (V, �, Y, X) = f2(V, � | Y, X) f3(Y | X) f4(X),

where f is the joint density of (V, �, Y, X), f2 is the conditional density of (V, �) given (Y, X),

f3 is the conditional density of Y given X , and f4 is the marginal density of X . Going through

conditional arguments using Bayes’ rule and dropping f4(X), we obtain the likelihood function

L(V, �, Y, X) = { fθ,φ(Y | T, X) f1(T | X)}�
{

∫ ∞

C

fθ,φ(Y | t, X) dF1(t | X)

}1−�

, (4)

where only fθ,φ contains the parameter of interest θ , and f1 is a nuisance parameter in addition

to φ.

Expression (4) consists of two parts: { fθ,φ(Y | T, X) f1(T | X)}� for fully observed sub-

jects, and {
∫ ∞

C fθ,φ(Y | t, X) dF1(t | X)}1−� for subjects with covariates below the detection

limit. Complete-case analysis is based only on the first part, and although it yields a consis-

tent estimator of θ , it clearly loses efficiency. We see from the second part of (4) that the effi-

ciency gain depends on how well we can recover the right tail of the conditional distribution

F1(t | X) beyond C . Parametric models for F1(t | X) are often considered (Nie et al., 2010)

but could suffer from model misspecification. The nonparametric method degenerates to the

complete-case analysis because there is no observation beyond C . We consider a semiparametric

approach that allows reliable extrapolation beyond C and is robust with respect to parametric

assumptions.

Of all the common semiparametric models for right-censored data, only the accelerated failure

time model allows extrapolation beyond C , and model checking can be done by visualizing the

cumulative sums of the martingale-based residuals (Lin et al., 1993, 1996; Peng & Fine, 2006).

We therefore propose a semiparametric accelerated failure time model for the transformed covari-

ate subject to the detection limit, given by

T = X Tα + ς (5)
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164 S. KONG AND B. NAN

where ς follows some unknown distribution, denoted by η, and is independent of X . We only

consider a fixed transformation h for T in this article, but more flexible transformations, such as

the Box–Cox transformation (Box & Cox, 1964; Foster et al., 2001; Cai et al., 2005), are worthy

of further investigation. Note that X appears in both (1) and (5), but it may refer to different forms

of covariates in these two models. For example, X1 is a covariate in (1) whereas X2
1 is a covariate

in (5). For notational simplicity we use the same X to represent all fully observed covariates. The

loglikelihood function then becomes

log L = � log fθ,φ(Y | T, X) + � log η̇(T − X Tα)

+ (1 − �) log

{
∫ τ

C−XTα

fθ,φ(Y | t + X Tα, X) dη(t)

}

, (6)

where τ is a truncation time at the residual scale defined in Condition A4 in the Appendix.

The existence of a finite constant truncation time τ is a common assumption for censored sur-

vival data mainly for technical convenience, particularly for establishing asymptotic normality.

Since in practice the residuals are finite for any given dataset and X Tα is bounded, the value of

τ need not be specified. We do not specify τ in the numerical examples in § 5.

3. PSEUDOLIKELIHOOD METHOD

The loglikelihood function (6) involves an unknown distribution function η and its derivative,

so semiparametric maximum likelihood estimation can be complicated. We propose a two-stage

pseudolikelihood approach in which the nuisance parameters (φ, α, η) are estimated in stage 1

and then the parameter of interest θ is estimated by maximizing the data version of (6) in stage 2,

with nuisance parameters replaced by their estimators from stage 1. The approach is a direct

extension of the parametric pseudolikelihood method of Gong & Samaniego (1981) to semipara-

metric models. Details are given below.

Stage 1. Nuisance parameter estimation. The dispersion parameter φ is estimated by complete-

case analysis of the generalized linear model (2); the accelerated failure time model regression

coefficient α is estimated either by rank-based methods (Wei et al., 1990; Jin et al., 2003; Nan

et al., 2009) or by sieve maximum likelihood (Ding & Nan, 2011); and the accelerated failure

time model error distribution η is estimated from the censored residuals by the Kaplan–Meier

estimator.

Complete-case analysis can be performed using any standard statistical package for general-

ized linear models. The rank-based estimates for the accelerated failure time model are usually

obtained by linear programming. The R (R Development Core Team, 2016) package rankreg

(Zhou, 2006), now archived by CRAN, can be implemented for small to moderate sample sizes

because it solves a linear programming problem of size greater than n2. A unique solution can be

obtained when Gehan weights are used (Jin et al., 2003). This is the method we have implemented.

An alternative approach is to modify the Newton algorithm for solving the discrete rank-based

estimating equation (Yu & Nan, 2006). A standard Newton–Raphson algorithm can be used to

obtain the sieve maximum likelihood estimates (Ding & Nan, 2011) for the accelerated failure

time model when the sample size is large.

Stage 2. Pseudolikelihood estimation of θ . Replacing (φ, α, η) by their stage 1 estimates

(φ̂n, α̂n, η̂n,α̂n
) in the loglikelihood function yields the following log-pseudolikelihood function
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Covariate subject to a detection limit 165

for a random sample of n observations:

pln(θ) =
1

n

n
∑

i=1

{

�i log f
θ,φ̂n

(Yi | X i , Ti )

+ (1 − �i ) log

∫ τ

C−XT
i α̂n

f
θ,φ̂n

(Yi | X i , t + X T
i α̂n) dη̂n,α̂n

(t)

}

, (7)

where

f
θ,φ̂n

(Yi | Ti , X i ) = exp

[

Yi DT
i (Ti )θ − b{DT

i (Ti )θ}

a(φ̂n)
+ c(Yi , φ̂n)

]

.

The term � log η̇(T ) in (6) is dropped because it does not involve θ . We maximize (7) by setting

its derivative to zero and then solving the equation to obtain the pseudolikelihood estimator θ̂n ,

using a standard Newton–Raphson algorithm with the initial value obtained from the complete-

case analysis in stage 1. Because of the nice properties of the initial value, the Newton–Raphson

algorithm converges quickly in our numerical examples.

Since θ̂n is obtained by solving an estimating equation, its asymptotic properties can be

obtained from Z-estimation theory. It can be shown that all the estimators obtained in stage 1

have desirable statistical properties for stage 2 estimation. In particular, φ̂n obtained from the

complete-case analysis is n1/2-consistent (Little & Rubin, 2002), α̂n is n1/2-consistent (Nan et al.,

2009; Ding & Nan, 2011), and η̂n,α̂n
is also n1/2-consistent in a finite interval, a proof of which

is given in the Supplementary Material.

Clearly the efficiency gain of the proposed two-stage method comes from the contribution of

the term containing integrals in (7), and so depends on the strength of the association between

T and X . If the association is very weak, then this term contributes minimally to the estimation

of θ . The existence of a finite τ rules out the trivial situation of zero integral value when no

association exists, because under Condition A4 in the Appendix all the observations subject to

the detection limit are truncated by some τ < C .

4. ASYMPTOTIC PROPERTIES

Define a random map

�θ,n(φ, α, η) =
1

n

n
∑

i=1

ψθ (Yi , X i , Vi , �i ; φ, α, η), (8)

where ψθ (Y, X, V, �; φ, α, η) equals

�[Y − ḃ{DT(T )θ}]D(T ) + (1 − �)

{
∫ τ

C−XTα

fθ,φ(Y | t + X Tα, X) dη(t)

}−1

×

∫ τ

C−XTα

fθ,φ(Y | t + X Tα, X)
[

Y − ḃ{DT(t + X Tα)θ}
]

D(t + X Tα) dη(t),

which is the derivative of (6) with respect to θ . Then, with (φ, α, η) replaced by (φ̂n, α̂n, η̂n,α̂n
)

in (8), �θ,n(φ̂n, α̂n, η̂n,α̂n
) = 0 becomes the pseudolikelihood estimating equation for θ , and its

solution θ̂n is called the pseudolikelihood estimator.
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166 S. KONG AND B. NAN

A set of regularity conditions is given in the Appendix. Some of the conditions are commonly

assumed for accelerated failure time models, while others are for the generalized linear model

and are easily verifiable for linear, logistic and Poisson regression models. We then have the

following asymptotic results for θ̂n .

THEOREM 1. Consider models (3) and (5), and denote the true value of θ by θ0. Suppose that

the regularity conditions in the Appendix hold. Then the two-stage pseudolikelihood estimator

θ̂n satisfying �
θ̂n,n

(φ̂n, α̂n, η̂n,α̂n
) = 0 converges in outer probability to θ0, and n1/2(θ̂n − θ0)

converges weakly to a zero-mean normal random variable with variance A−1 B A−1, where A

and B are given in the Supplementary Material.

Because the asymptotic variance of θ̂n is complicated, we recommend using the bootstrap

variance estimator.

The proof of Theorem 1 is based on the Z-estimation theory of Nan & Wellner (2013). Define

a deterministic function

�θ (φ, α, η) = E{ψθ (Y, X, V, �; φ, α, η)},

and denote the true values of (φ, α, η) by (φ0, α0, η0). We can show that �θ,n(φ̂n, α̂n, η̂n,α̂n
)

converges uniformly to �θ (φ0, α0, η0) as n → ∞. Then consistency is achieved when θ0 is the

unique solution of �θ (φ0, α0, η0) = 0. Asymptotic normality is derived by finding an asymptotic

linear representation of n1/2(θ̂n − θ0). The detailed proofs rely heavily on empirical process the-

ory and can be found in the Supplementary Material, where we provide the analytical form of

the asymptotic variance only for the Gehan-weighted estimate of α. The analytical forms of the

asymptotic variance for other rank-based estimates and sieve maximum likelihood estimates can

be obtained similarly.

Correct specification of the accelerated failure time model (5) is crucial for the results in

Theorem 1, but this is a much weaker requirement than a parametric model assumption. Another

advantage of the two-stage method over the parametric method is that model-checking tools are

available. We suggest fitting the accelerated failure time model before applying the two-stage

procedure. If the data fit the model reasonably well and there are at least some fully observed

covariates that are significantly associated with the covariate subject to the detection limit, then

the proposed method is recommended. Otherwise, we suggest complete-case analysis.

5. NUMERICAL RESULTS

5·1. Simulations

Simulated datasets are generated from the generalized linear model

g{E(Y )} = β0 + β1 X1 + β2 X2 + γ Z ,

where β0 = −1, β1 = 0·5, β2 = −1, γ = 2, and g is chosen to be the canonical link function for

the normal, Bernoulli or Poisson distribution. The normal error variance is chosen to be 1 for

the linear regression model. The three covariates are X1 ∼ Ber(0·5), X2 normal with mean 1 and

standard deviation 1 truncated at ±3, and Z = exp (−T ) generated from

T = α0 + α1 X1 + α2 X2 + ς,

where α0 = 0·25, α1 = 0·25, α2 = −0·5 and ς ∼ 0·5N (0, 1/82) + 0·5N (0·5, 1/102). The detec-

tion limit L for covariate Z is chosen to yield 30% right censoring for T .
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Covariate subject to a detection limit 167

Table 1. Summary statistics for simulations to compare full data, two-stage and complete-case

analyses in a linear regression setting, with biases for four substitution methods

Sample size β0 = −1 β1 = 0·5 β2 = −1 γ = 2

Full data 200 Bias (×100) −3·0 1·1 −0·6 2·4

var (×100) 41·4 5·1 3·6 37·4

Two-stage Bias (×100) −2·9 1·0 −0·5 2·2

var (×100) 43·8 5·3 3·8 39·5

Bootstrap var (×100) 46·5 5·8 4·3 42·1

90% coverage rate (%) 89·0 90·7 91·2 89·0

95% coverage rate (%) 94·9 94·8 95·6 95·3

Complete-case Bias (×100) −1·8 0·4 0·0 1·0

var (×100) 53·1 8·2 6·6 50·7

L Bias (×100) 39·9 −22·0 22·8 −49·1

L/21/2 Bias (×100) 70·1 −13·6 14·7 −62·0

Zero Bias (×100) 183·7 −41·7 42·7 −168·4

E(Z | Z < L) Bias (×100) 41·5 −13·3 14·3 −41·8

Full data 400 Bias (×100) −1·9 0·7 −0·3 1·4

var (×100) 21·2 2·8 1·9 19·2

Two-stage Bias (×100) −1·9 0·8 −0·3 1·5

var (×100) 22·5 2·9 2·0 20·4

Bootstrap var (×100) 22·6 2·8 2·1 20·5

90% coverage rate (%) 89·4 89·2 90·4 89·9

95% coverage rate (%) 95·0 93·8 95·0 95·0

Complete-case Bias (×100) −1·9 −0·1 0·4 0·8

var (×100) 27·3 4·3 3·3 25·5

L Bias (×100) 40·4 −22·1 23·0 −49·5

L/21/2 Bias (×100) 72·4 −14·4 15·5 −64·2

Zero Bias (×100) 185·0 −42·6 43·6 −170·0

E(Z | Z < L) Bias (×100) 43·3 −13·8 14·8 −43·4

We simulate 1000 replications for each scenario and compare the results obtained from the pro-

posed method, full data analysis, complete-case analysis, and four different substitution methods.

The full data analysis represents the situation of no detection limit, which serves as a benchmark.

We conduct simulations with sample sizes 200 and 400. The four substitution methods for Z < L

are: (i) replacing Z by L; (ii) replacing Z by L/21/2; (iii) replacing Z by zero; and (iv) replacing

Z by E(Z | Z < L). For the proposed two-stage method, we report the 90% and 95% coverage

proportions, for which the variances are obtained from 200 bootstrap samples. Empirical vari-

ances obtained from 1000 independent datasets are reported only for the full data analysis and

the two valid methods for the detection limit problem. The summary statistics are presented in

Tables 1–3.

The results suggest that all the substitution methods yield biased estimates, including the one

that replaces Z by the true E(Z | Z < L). The biases for the proposed two-stage method are mini-

mal, comparable to those of both the full data analysis and the complete-case analysis. Clearly, the

proposed method is much more efficient than complete-case analysis, and the bootstrap method

performs well in estimating the variance, which yields reasonable coverages for both sample

sizes. Additional simulations with censoring rates varying from 10% to 60%, not shown here,

demonstrate that the efficiency gain of the two-stage method relative to complete-case analy-

sis increases, and the biases of all the substitution methods also increase, as the censoring rate

increases.
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168 S. KONG AND B. NAN

Table 2. Summary statistics for simulations to compare full data, two-stage and complete-case

analyses in a logistic regression setting, with biases for four substitution methods

Sample size β0 = −1 β1 = 0·5 β2 = −1 γ = 2

Full data 200 Bias (×100) −3·0 1·3 −3·3 6·0

var (×100) 215·7 26·8 21·6 203·3

Two-stage Bias (×100) −4·1 1·6 −3·7 7·1

var (×100) 231·3 27·8 23·0 219·1

Bootstrap var (×100) 242·4 29·9 23·5 226·0

90% coverage rate (%) 91·4 91·7 90·7 91·0

95% coverage rate (%) 96·2 96·3 95·9 96·2

Complete-case Bias (×100) −7·6 2·1 −4·5 10·6

var (×100) 282·2 41·3 38·1 284·2

L Bias (×100) 30·9 −18·5 17·1 −36·8

L/21/2 Bias (×100) 69·0 −12·2 11·0 −57·0

Zero Bias (×100) 188·0 −45·3 44·1 −171·6

E(Z | Z < L) Bias (×100) 35·0 −10·0 8·7 −31·3

Full data 400 Bias (×100) −3·3 0·7 −1·6 4·1

var (×100) 93·0 12·3 9·6 88·1

Two-stage Bias (×100) −4·3 1·1 −2·0 5·2

var (×100) 101·3 12·9 10·4 96·4

Bootstrap var (×100) 110·1 13·8 10·7 102·2

90% coverage rate (%) 90·8 91·2 90·5 90·6

95% coverage rate (%) 95·8 96·3 95·8 95·2

Complete-case Bias (×100) −3·7 0·5 −1·8 4·8

var (×100) 116·9 19·0 15·9 116·0

L Bias (×100) 31·9 −19·3 19·0 −39·8

L/21/2 Bias (×100) 65·1 −11·9 11·7 −55·3

Zero Bias (×100) 184·1 −44·2 44·0 −169·1

E(Z | Z < L) Bias (×100) 33·2 −10·3 10·1 −31·7

The consistency of the estimators from the two-stage method depends on correctly specify-

ing model (5). Although the model assumption is much less restrictive than for a parametric

model, model checking is needed before one can apply the proposed two-stage method. Addi-

tional simulations given in the Supplementary Material show that, though the problem is less

severe than with ad hoc substitution methods, misspecification of the accelerated failure time

model can yield biased results, and the bias increases as the severity of misspecification of (5)

grows.

5·2. The National Health and Nutrition Examination Survey

We consider the National Health and Nutrition Examination Survey 2003–2004. In particular,

we focus on examining the effect of left-censored urine arsenobetaine levels on the prevalence

of type 2 diabetes (Navas-Acien et al., 2008)

The survey, conducted by the U.S. National Center for Health Statistics, used a complex multi-

stage sampling design to obtain a representative sample of civilian noninstitutionalized individu-

als from the U.S. population. The data include a subsample of 1542 study participants for whom

arsenic measurements are available. For each subject in this subsample, measurements of the

levels of total urine arsenic and various arsenic species, including arsenobetaine, were collected

for analysis. The detection limits for total urine arsenic and urine arsenobetaine were 0·6 and

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

/1
0
3
/1

/1
6
1
/2

3
8
9
8
8
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Covariate subject to a detection limit 169

Table 3. Summary statistics for simulations to compare full data, two-stage and complete-case

analyses in a Poisson regression setting, with biases for four substitution methods

Sample size β0 = −1 β1 = 0·5 β2 = −1 γ = 2

Full data 200 Bias (×100) 2·2 −0·9 0·8 −2·6

var (×100) 22·5 2·4 1·8 19·8

Two-stage Bias (×100) 3·4 −1·1 1·1 −3·7

var (×100) 25·0 2·6 2·0 22·1

Bootstrap var (×100) 24·9 2·7 2·0 21·8

90% coverage rate (%) 90·9 89·9 90·0 90·6

95% coverage rate (%) 94·5 94·8 94·7 94·8

Complete-case Bias (×100) 2·5 −1·1 1·0 −3·1

var (×100) 35·1 5·3 4·1 32·5

L Bias (×100) 58·9 −28·8 28·6 −66·0

L/21/2 Bias (×100) 88·5 −20·0 21·0 −80·1

Zero Bias (×100) 186·7 −38·0 39·6 −169·1

E(Z | Z < L) Bias (×100) 63·7 −21·3 21·7 −62·8

Full data 400 Bias (×100) 1·8 −0·3 0·5 −2·0

var (×100) 10·5 1·2 0·8 9·2

Two-stage Bias (×100) 1·9 −0·3 0·5 −2·1

var (×100) 11·9 1·3 0·9 10·4

Bootstrap var (×100) 12·1 1·3 1·0 10·5

90% coverage rate (%) 90·1 90·7 90·5 90·7

95% coverage rate (%) 95·2 95·3 94·8 95·0

Complete-case Bias (×100) 1·6 −0·4 0·7 −2·2

var (×100) 17·5 2·7 2·2 16·3

L Bias (×100) 57·8 −28·1 28·3 −64·9

L/21/2 Bias (×100) 88·6 −19·6 20·8 −80·0

Zero Bias (×100) 187·0 −37·3 39·1 −168·9

E(Z | Z < L) Bias (×100) 63·3 −20·8 21·5 −62·3

0·4 µg/l, respectively. The percentages of study participants with levels below the detection lim-

its were 1·3% for total urine arsenic and 27·8% for urine arsenobetaine (Caldwell et al., 2009).

Navas-Acien et al. (2008) found that total urine arsenic was associated with increased preva-

lence of type 2 diabetes, so it is included as a covariate in our analysis, and 19 participants with

total urine arsenic below the detection limit were dropped from the analysis. The urine creatinine

level, used to account for urine dilution in spot urine samples, was fully observed and is included

as a covariate in the analysis as well. We excluded 23 participants with missing values in other

variables of interest.

For illustration, we focus on the male participants; of the 730 subjects, 24·1% had urine arseno-

betaine below the detection limit. Age, race/ethnicity, body mass index, and the logarithms of total

urine arsenic and urine creatinine level are used as covariates to fit the accelerated failure time

model for −log(arsenobetaine). All of these have p-values below 0·0001, except for one dummy

variable for race. Figure 1 shows 50 realizations from the distributions of the score processes.

The observed score processes are presented as solid lines, which fluctuate randomly about zero.

The accelerated failure time model for urine arsenobetaine fits the data reasonably well, with

goodness-of-fit p-values of 0·686, 0·104, 0·706, 0·782, 0·68, 0·794, 0·646 and 0·834 for age, log

total urine arsenic, log urine creatinine, body mass index, and race with five ethnic categories,

respectively, obtained from 500 simulated martingale residual score processes. The response vari-

able of interest is the status of type 2 diabetes, so logistic regression is considered with age, body
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Mexican vs. White

(p = 0·68)
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vs. White

(p = 0·794) 
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Black vs. White

(p = 0·646)

−1
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Other vs. White

(p = 0·834) 

−0·3

0·0

0·3

Fig. 1. Goodness of fit of the accelerated failure time model for the data from the National Health and Nutri-
tion Examination Survey 2003–2004. In each panel, the x-axis is the residual of the fitted accelerated failure
time model, and the y-axis is the cumulative martingale residual process for the covariate under consideration;
the solid line is the observed score process, and the dotted lines are 50 realizations from the distribution of the score

processes.

mass index, log total urine arsenic, log urine creatinine and log urine arsenobetaine as covariates.

Table 4 shows that the proposed two-stage method yields similar point estimates with smaller

variances and p-values than the complete-case analysis, indicating the efficiency gain of the pro-

posed method. Substitution methods where values below the detection limit are replaced by L or

L/21/2 yield much smaller point estimates that put the significant results of log(arsenobetaine)

into question. The effect of log(arsenobetaine) is clearly biased when urine arsenobetaine values

below the detection limit are replaced by 10−4, rather than zero, to avoid log 0.

6. DISCUSSION

The proposed two-stage approach may not be fully efficient, so developing a fully efficient

method is of great interest. It may be possible to adopt a semiparametric maximum likelihood

approach by discretizing η or a sieve maximum likelihood approach via smoothing η for bundled

parameters (Ding & Nan, 2011), but one should anticipate much more challenging numerical

implementation and theoretical justification than for the two-stage approach.

The proposed method can be generalized to regression with multiple covariates subject to

detection limits. The critical step is to provide a valid nonparametric estimate for the mul-

tivariate survival function, for which available methods include those of Dabrowska (1988),

Prentice & Cai (1992), van der Laan (1996), Prentice & Moodie (2004) and Prentice (2014); we
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Covariate subject to a detection limit 171

Table 4. Regression analysis results using data from the National Health and Nutrition

Examination Survey 2003–2004 for the prevalence of type 2 diabetes with the covariate urine

arsenobetaine subject to a detection limit

Age log(total arsenic) log(creatinine) BMI log(arsenobetaine)

Two-stage Estimate 0·05 0·50 −0·76 0·10 −0·22

Bootstrap SD 0·01 0·25 0·27 0·02 0·12

p-value < 0·01 0·04 < 0·01 < 0·01 0·07

Complete-case Estimate 0·06 0·41 −0·81 0·13 −0·20

SD 0·01 0·32 0·33 0·03 0·20

p-value < 0·01 0·20 0·01 < 0·01 0·31

L Estimate 0·05 0·57 −0·81 0·10 −0·32

SD 0·01 0·25 0·26 0·02 0·15

p-value < 0·01 0·02 < 0·01 < 0·01 0·03

L/21/2 Estimate 0·05 0·56 −0·80 0·10 −0·30

SD 0·01 0·24 0·26 0·02 0·14

p-value < 0·01 0·02 < 0·01 < 0·01 0·02

Zero Estimate 0·05 0·25 −0·61 0·10 −0·03

SD 0·01 0·16 0·24 0·02 0·02

p-value < 0·01 0·12 < 0·01 < 0·01 0·11

SD, standard deviation; BMI, body mass index.

recommend the last due to its efficiency and simplicity. We consider a constant detection limit in

this article because it is commonly encountered in practice, but this need not constrain the appli-

cation of our method, which can be used with random detection limits under the same regularity

conditions.

When the original laboratory measurements are available, Murphy et al. (2010) and Buck

Louis et al. (2012) directly used the machine-read lab values in their analysis to avoid potential

biases caused by substitution. More appropriate analyses would treat these data as error-prone

(Guo et al., 2010), so methods dealing with measurement errors would apply.

The two-stage method can be generalized to other regression models that have likelihood func-

tions, such as the Cox model for a failure time Y that is also subject to censoring. Extra care will

be needed due to the special features of the Cox model, where the nonparametric baseline hazard

function may either be estimated from the complete data in the first stage and then plugged into

the estimating function for θ in the second stage, or be estimated directly in the second stage after

the usual discretization. An anonymous referee pointed out related work by Lee et al. (2003) that

would be relevant to further exploration along this line.

SUPPLEMENTARY MATERIAL

Supplementary Material available at Biometrika online contains the proof of Theorem 1 and

results of additional simulations.
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172 S. KONG AND B. NAN

APPENDIX

Regularity conditions

Let Y denote the sample space of the response variable Y , X the sample space of the covariate X , �

the parameter space of θ , A the parameter space of α, and H the parameter space of η. In addition to the

assumptions of bounded support for (X, Z) and compactness of the parameter spaces � and A, we state a

set of regularity conditions for Theorem 1:

Condition A1. �θ (φ0, α0, η0,α0
) has a unique root θ0;

Condition A2. for any constant U < ∞, supt∈[C,U ] |h(t)| � c0 < ∞, supt∈[C,U ] |ḣ(t)| � c1 < ∞, and

supt∈[C,U ] |ḧ(t)| � c2 < ∞, where ḣ and ḧ are the first and second derivatives of h, respectively, and c0, c1

and c2 are constants;

Condition A3. ς has bounded density f = η̇0,α0
with bounded derivative ḟ ; in other words, f � c3 <

∞ and | ḟ | � c4 < ∞ for constants c3 and c4, and

∫ ∞

−∞

{ ḟ (t)/ f (t)}2 f (t) dt < ∞;

Condition A4. there is a constant truncation time τ < ∞ such that pr(V − X ′α > τ | X = x) � ξ > 0

for all x ∈X and α ∈A;

Condition A5. a(φ) is a monotone function satisfying |1/a(φ)| � l < ∞ for a constant l, and has

bounded derivatives ȧ(·) and ä(·);

Condition A6. ḃ(·) is a bounded monotone function;

Condition A7. b̈(·) is a bounded Lipschitz function;

Condition A8. there exist constants Ci (i = 1, . . . , 5) such that for any constant U < ∞,

sup
y∈Y,θ∈�,|1/a(φ)|�l,x∈X ,t∈[C,U ]

∣

∣ fθ,φ(y | t, x)[y − ḃ{DT(t)θ}]
∣

∣ � C1 < ∞,

sup
y∈Y,θ∈�,|1/a(φ)|�l,x∈X ,t∈[C,U ]

∣

∣

∣

∣

∂ fθ,φ(y | t, x)

∂φ
[y − ḃ{DT(t)θ}]

∣

∣

∣

∣

� C2 < ∞,

sup
y∈Y,θ∈�,|1/a(φ)|�l,x∈X ,t∈[C,U ]

∣

∣

∣

∣

∂( fθ,φ(y | t, x)[y − ḃ{DT(t)θ}])

∂t

∣

∣

∣

∣

� C3 < ∞,

sup
y∈Y,θ∈�,|1/a(φ)|�l,x∈X ,t∈[C,U ]

∣

∣

∣

∣

∂ fθ,φ(y | t, x)

∂φ

∣

∣

∣

∣

� C4 < ∞,

sup
y∈Y,θ∈�,|1/a(φ)|�l,x∈X ,t∈[C,U ]

∣

∣

∣

∣

∂( fθ,φ(y | t, x)[y − ḃ{DT(t)θ}])

∂θ

∣

∣

∣

∣

� C5 < ∞;

Condition A9. there exist constants δ1 > 0 and δ2 > 0 such that
∫ τ

C−XTα
fθ,φ(Y | t + X Tα, X) dη(t) �

δ1 with probability 1 for any θ ∈ � and |φ − φ0| + |α − α0| + ‖η − η0‖ < δ2;
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Covariate subject to a detection limit 173

Condition A1 may be unnecessarily strong for the proposed two-stage method. Direct calculation shows

that �θ0
(φ0, α0, η0) = 0 under Condition A4, and yields

�̇θ0
=

∂�θ (φ0, α0, η0)

∂θ

∣

∣

∣

∣

θ=θ0

= E

[

−�b̈{DT(T )θ0}D(T )⊗2 − (1 − �)

{
∫ τ

C−XTα0

fθ0,φ0
(Y | t + X Tα0, X) dη0(t)

}−2

×

{
∫ τ

C−XTα0

fθ0,φ0
(Y | t + X Tα0, X)

[

Y − ḃ{DT(t + X Tα0)θ0}
]

D(t + X Tα0) dη0(t)

}⊗2]

,

which is negative definite. Hence �̇θ , a continuous matrix with respect to θ , is also negative defi-

nite in a neighbourhood of θ0, which guarantees that θ0 is the unique solution of �θ (φ0, α0, η0) = 0

in a neighbourhood of θ0. The initial value that we use in the Newton–Raphson algorithm for solving

�θ,n(φ̂n, α̂n, η̂n,α̂n
) = 0 is obtained from the complete-case analysis, which is consistent, so the solution of

the proposed two-stage method should also be consistent.

Condition A2 holds for many commonly-used transformations, such as h(t) = exp(−t) and polynomial

functions. Conditions A3 and A4 are standard for accelerated failure time models (Tsiatis, 1990; Nan et al.,

2009). It would be of interest to allow a data-dependent τ in Condition A4, such as the soft-truncation of Lai

& Ying (1991). However, additional theoretical work is needed to justify such a choice of τ . Conditions A5–

A8 hold automatically for common generalized linear models.

Condition A9 is assumed mainly for technical convenience. One way to obtain it is to truncate the

response variable Y such that |Y | � M < ∞ for a large constant M and to further truncate the residual in

the accelerated failure time model with some constant τ ′ < τ . In our simulations, we do not implement

such truncations but still obtain satisfactory results.
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