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Summary

We analyse data from a study involving 173 pregnant women. The data are observed values of the
β human chorionic gonadotropin hormone measured during the first 80 days of gestational age,
including from one up to six longitudinal responses for each woman. The main objective in this
study is to predict normal versus abnormal pregnancy outcomes from data that are available at the
early stages of pregnancy. We achieve the desired classification with a semiparametric
hierarchical model. Specifically, we consider a Dirichlet process mixture prior for the distribution
of the random effects in each group. The unknown random-effects distributions are allowed to
vary across groups but are made dependent by using a design vector to select different features of
a single underlying random probability measure. The resulting model is an extension of the
dependent Dirichlet process model, with an additional probability model for group classification.
The model is shown to perform better than an alternative model which is based on independent
Dirichlet processes for the groups. Relevant posterior distributions are summarized by using
Markov chain Monte Carlo methods.
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1. Introduction

We develop a semiparametric Bayesian approach for classification based on longitudinal
markers. We define a suitable extension of hierarchical models to allow such classification.
We introduce a new class of models building on the dependent Dirichlet process (DDP)
models that were proposed in MacEachern (1999). In a motivating example we compare the
performance of the proposed model with parametric Bayesian inference and with traditional
maximum-likelihood-based classification.

In many disease areas longitudinal markers allow early detection of a specific disease.
Atypical example is the use of prostate specific antigen profiles over time as a marker for
prostate cancer (Morrell et al., 1995; Inoue et al., 2004). A common feature of inference
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related to such data is the need for classification rules that allow coherent and easy
sequential updating as the data for a new patient accrue over time. In this paper we propose
a model-based semiparametric Bayesian approach to classification that facilitates such
sequential updating. The motivating application concerns the classification of pregnancies
into normal and abnormal. To detect a number of complications during pregnancy, a variety
of quantities are measured at the antenatal examinations. One of these clinical variables is
the beta subunit of human chorionic gonadotropin (β-HCG) which shows dramatic changes
in women during pregnancy. It has been established that values of β-HCG are different in
women who have normal pregnancies with terminal deliveries from those women who have
spontaneous abortions or other types of adverse pregnancy outcomes (France et al., 1996).
This association has made it possible to classify, with some degree of uncertainty, the
outcome of pregnancy. The inference problem is formally described as a discriminant
analysis based on the longitudinal β-HCG outcome.

Classical linear discriminant analysis classifies subjects into one of g groups or populations
by using multivariate observations. Usually, these vector-valued observations are obtained
from cross-sectional studies and represent different subject characteristics such as age,
gender or other relevant factors. In general, a common and unrestricted covariance matrix is
assumed in the g different groups. Modifications of this method have also been used to
classify subjects when the vector of multivariate observations represents repeated measures
collected in a longitudinal study. Azen and Afifi (1972) introduced a two-stage model in
which a discriminant function is obtained at each time point. In the second stage, the
coefficients enter a linear regression versus time to obtain a slope and intercept. These
slopes and intercepts are then used as input for a final linear discriminant function. This
method is limited by the fact that multiple observations per subject are required to allocate a
subject to one of g groups at any point in time.

Albert (1983) extended the classical concepts of discriminant analysis to multivariate
response curves observed over fixed time intervals. Using interpolation or curve fitting
procedures, a time-varying distance measure between the individual curve and group-
specific curves is used to allocate a subject to a group. This methodology requires that the
response curves in the training sample are fully observed over the time interval considered.

Albert and Kshirsagar (1993) proposed an exploratory method based on a growth curve
structure embedded in a canonical variate analysis to achieve dimension reduction in a
discriminant analysis framework. They suggested this approach for classification but did not
apply it in that setting. No longitudinal data structures other than growth curves were
considered.

An important limitation in the use of linear discriminant analysis for longitudinal data is that
the method is applicable only for essentially balanced data, an increasingly exceptional
situation in longitudinal studies. Therefore, an approach is needed that does not rely on
complete observations over time. In recent years some work has been done regarding
discriminant analysis for longitudinal data by using both linear and non-linear random-
effects models. Tomasko et al. (1999) modified linear discriminant analysis by using mixed
model multivariate analysis of variance for the estimation of fixed effects and for a
determination of various structures of covariance matrices, including unstructured,
compound symmetry and autoregressive of order 1. Brown et al. (2001) discussed Bayesian
methods in discriminant analysis using linear random-effects models. Marshall and Barón
(2000) considered non-linear random-effects models to describe profiles in different groups
and stated the optimal allocation rule. Fieuws et al. (2003) used linear as well as non-linear
random-effects models for the description of group-specific profiles. Recently, De la Cruz-
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Mesía and Quintana (2006) have given a Bayesian version to the classification problem for
longitudinal data.

All these approaches consider parametric models for the random effects. Unrelated to the
classification problem, several recent references generalize restrictive parametric models for
longitudinal data by placing a non-parametric prior on the random-effects distribution. The
literature includes, among many others, Bush and MacEachern (1996), Davidian and Gallant
(1993), Ishwaran and Takahara (2002), Kleinman and Ibrahim (1998), Mentré and Mallet
(1994), Müller et al. (2004), Müller and Rosner (1997), Walker and Wakefield (1998) and
Zhang and Davidian (2001). In this paper we develop a variation of these semiparametric
Bayesian longitudinal data models that is suitable for sequential classification as desired for
inference with longitudinal markers. Specifically, we use an analysis-of-variance–DDP
model (De Iorio et al., 2004) to introduce semiparametric random-effects models that
include dependence across the subpopulations of women with normal and abnormal
pregnancies. We complete the model by adding a probability for group indicators. The
augmented model for the repeated measurements and group indicators allows us to
formalize the classification desired.

The paper is organized as follows. We first give a brief description of the data set in Section
2. In Section 3, we extend the framework of traditional classification methods to the
longitudinal hierarchical setting. Section 4 provides a discussion of non-parametric models
based on the Dirichlet process, including methods for introducing dependence across related
random probability measures. In Section 5 we illustrate the proposed longitudinal
classification method by using data on β-HCG measured in women with normal and
abnormal pregnancy outcomes. An appropriate posterior simulation scheme based on the
Gibbs sampling algorithm is described. Lastly, Section 6 concludes with a final discussion.

2. Data

We consider a data set reporting repeated measurements on β-HCG for n = 173 young
women, representing 173 different pregnancies over a period of 2 years in a private
obstetrics clinic in Santiago, Chile. The values of β-HCG were measured during the first 80
days of gestational age. The women were classified as having normal pregnancies if they
had a normal delivery, or as having abnormal pregnancies if they had any complication
resulting in a non-terminal delivery and loss of the foetus. The 173 women altogether
contribute a total of 375 observations. Each woman is measured from one up to six times.
These data were originally presented in Marshall and Barón (2000). Approximately 30% of
the women had one β-HCG measurement, 31% had two, 33% had three and 6% had four or
more measurements.

Fig. 1 presents the subject-specific log(β-HCG) profiles for women with normal and
abnormal pregnancies. The two populations appear clearly distinct when considering the
ensemble of profiles. However, for any one of the profiles the classification into one or the
other subpopulation is far less certain, in particular when considering series of partial
responses. The main inference goal in analysing these data is to provide a rule to classify a
new patient. The rule should allow sequential updating as data accrue for the new patient.
The classification will critically hinge on the implied inference on the distribution of profiles
for each of the two subpopulations. The semiparametric model proposed defines a richer
class of random-effects distributions than other models.

3. Classification using hierarchical models

We use an augmentation scheme of semiparametric longitudinal data models to develop the
desired model-based classification for longitudinal marker data.
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Let yi = (yi1, …, yini)′ represent the observed response vector for the ith patient, recorded at

known times . Here ni is the number of repeated measurements recorded
for patient i. Let xi ∈ {0,1, …, g −1} denote the known class label for the ith patient. In our
application g = 2, with xi = 0 and xi = 1 indicating normal and abnormal pregnancy
respectively. The label xi is known for women with already reported delivery, but unknown
for women with partial data before delivery. Without loss of generality we assume that xi, i
= 1, …, m, is known, and xm+1 is unknown. Also without loss of generality we assume that xi
∈ {0, 1} takes only two possible values. Let ym = (y1, …, ym, x1, …, xm) denote all data,
including the recorded class memberships xi, up to the mth patient. The classification
problem is formalized as reporting p(xm+1|ym, ym+1). Here ym+1 is the currently available
partial response vector for the new patient m+1. We now construct a probability model to
allow evaluation of the classification probabilities desired.

Consider a generic semiparametric hierarchical model of the form

(1)

In words, data yi for the ith experimental unit are sampled from a probability model
parameterized by a random-effects vector θi. The θi are generated from a random-effects
distribution Gx, with x = xi. The random-effects distribution depends on a covariate xi that is
specific to the ith sampling unit and possibly additional hyperparameters φ. In general, the
parameter vector θi might be partitioned into common fixed effects θF and unit-specific

random-effects . Fixed effects are common to all patients and have no patient index i. In
our example we use this partition. The model is completed by assuming a prior model for
the unknown Gx. If Gx were indexed by a finite dimensional vector of hyperparameters, e.g.
normal moments, then the model would reduce to a traditional parametric hierarchical
model. In contrast, in a non-parametric Bayesian approach Gx is assumed to be a random
probability measure with an appropriate prior probability model Fψ for the unknown
distribution. In other words, Fψ is a distribution on distributions. Here ψ indicates
hyperparameters in the definition of Fψ. A popular approach is to assume that each Gx arises
from a Dirichlet process prior, independently across x, conditional on ψ. The random
measures could be linked at the level of the hyper-parameters. We discuss more details of
this construction and the proposed alternative model in the next section.

For the top level sampling model p(yi|θi) in model (1) we assume a non-linear regression

(2)

with a mean function f(θ; ·) parameterized by θ and evaluated at known times tij, j = 1, …, ni.
The residual term εij is assumed to be normally distributed with mean 0 and variance σ2.

Model (1) specifies a joint probability model

after marginalizing with respect to G0, G1 and θi, i = 1, …,m. To facilitate classification we
augment the model with a marginal probability for xi:

(3)
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The augmented model implies the desired classification as a conditional probability p(xm+1|
ym, ym+1), marginalizing with respect to the unknown θi, Gx and other possibly unknown
hyper-parameters.

In maximum likelihood classification theory, the probability that a future unit ym+1 belongs
to group or population x is estimated as

where Θ̂ indicates the maximum likelihood estimate of the fixed effect parameters that
remain after integrating out all the random effects. The unit is then classified in that group
for which the highest probability is attained.

From a Bayesian viewpoint the classification probabilities are obtained by weighting with
the posterior distributions of the parameters. Let Θ = (φ,ψ, θ1, …, θm, θm+1) denote the
vector of all parameters in the model, including those for the new (m+1)th patient. Using
Bayes’s rule we find the probability that a new unit ym+1 belongs to group x as

(4)

To verify expression (4) use

and

The integration is usually analytically intractable. Therefore, we shall construct a set of
Markov chain Monte Carlo (MCMC) samples {Θ(b), b = 1, …, B} from the posterior
distribution and use the Rao–Blackwellization

(5)

to approximate expression (4). If the prevalences πx are unknown hyperparameters as well,

then expression (5) would use the imputed values .

Using a percentage correctly classified loss function (McLachlan, 2004), the Bayes
classification of a future ym+1 is given by
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The unit is classified in that group for which the highest posterior probability is attained.

4. Semiparametric models for longitudinal classification

We now discuss specific choices for the random probability measure Fψ in model (1). We
start with a review of the DP and some extensions.

The DP is a probability measure on the space of distribution functions defined on some
space (equipped with a σ-field ). We use DP(M,G*) to denote the DP, where M>0 is a
scalar (precision parameter) and G* is a specified base-line distribution that is defined on
( , ). A random distribution function G on ( , ) generated from DP(M,G*) is almost
surely discrete and admits the following representation. Letting δa denote a Dirac measure at
a we have

(6)

The weights ωl and locations μl are generated by the following stick breaking scheme: ω1 =
z1,

with zl ~ IID Be(1,M) and μl ~ IIDG*, independently of the ωl (Sethuraman, 1994).

The use of DPs to model random distributions entails some limitations. In particular, the
random probability measure G is almost surely discrete. A commonly used extension to
miti-gate this limitation is the DP mixture (DPM) model (Antoniak, 1974). DPM models
avoid the discreteness by introducing an additional convolution with a continuous kernel.
This model has become popular in applied Bayesian non-parametric work. The typical DPM
model assumes

(7)

i.e. a mixture with a DP prior on the random mixing measure G. We use GM to denote the
random mixture model with mixing measure G. The mixture model (7) can be equivalently
written as a hierarchical model by introducing latent variables μi and breaking the mixture as
θi|μi ~ f(θ|μ) and μi ~ IIDG, i = 1, …,m, and finally G ~ DP(M,G*). One of the attractive
features of DPM models is the straightforward nature of posterior MCMC simulation. The
computational effort is, in principle, independent of the dimensionality of μi. Efficient
MCMC simulation for general DPM models is discussed, among others, in Bush and
MacEachern (1996), Escobar and West (1995), MacEachern and Müller (1998), Neal (2000)
and Jain and Neal (2004).

Several references have considered extensions of DP and DPM models to hierarchical
models over related random distributions, as needed to model the joint prior on (G0,G1) in
model (1). Some of the earliest developments of dependent DP models appeared in Cifarelli
and Regazzini (1978), who defined dependence across related random measures {Gx} by

introducing a regression for the base-line measure  of marginally DP-distributed random
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measures, . The model was used, for example, in Muliere and Petrone

(1993), who defined dependent non-parametric models  by assuming a

regression in the base-line measure . Comparing with the notation in model
(1), the hyperparameters here are ψ = (M, β, τ). Similar models are discussed in Mira and
Petrone (1996) and Giudici et al. (2003).

Linking the related non-parametric models through a regression on the parameters of the
non-parametric models limits the nature of the dependence to the structure of this regression.
MacEachern (1999) proposed the dependent DP (DDP) as an alternative approach to define
a dependent prior model for a set of random measures {Gx}, with Gx ~ DP marginally.
Recall Sethuraman’s stick breaking representation (6) for the DP random measure,

The key idea behind the DDP is to introduce dependence across the measures Gx by
assuming the distribution of the point masses μxh to be dependent across different levels of
x, but still independent across h. In the basic version of the DDP the weights are assumed to
be the same across x, i.e. ωxh = ωh. To introduce dependence of μxh across x MacEachern
(1999) used a Gaussian process. An application to spatial modelling is further developed in
Gelfand et al. (2005) by allowing the locations θ to be drawn from a random field (a
Gaussian process). The same method to induce dependence is used in De Iorio et al. (2004)
to achieve an analysis-of-variance type of structure on μxh across x. Griffin and Steel (2006)
introduced dependence in non-parametric distributions by making the weights in the
Sethuraman representation dependent on the covariates. We chose to fix the weights wxh
across covariates and to introduce the dependence through the point mass locations μxh,
mainly because of computational simplicity.

The construction that was introduced in De Iorio et al. (2004) is a natural approach to

introduce DDP measures to implement model (1). Specifically, let  if xi = 0 and

 if xi = 1. We assume that

(8)

Here ψ indicates hyperparameters in the definition of the base measure. In words, the trick to

construct dependent random measures  is to start with a random measure on the
coefficients α. Depending on xi, a design vector di selects a linear function of the α. Finally,
using an additional convolution with a normal kernel we define continuous and dependent

random measures . Introducing latent variables αi, model (8) can be equivalently
rewritten as a hierarchical model:

(9)

with ηi ~ (0, τ2). Let p denote the dimension of θi. The latent variable αi is a p×2 random
matrix. The first column αi0 is the random-effects vector for a patient from group x = 0. The
second column αi1 is the offset to generate a random effect for a patient from group x = 1.
The modelling strategy proposed implies that the αi0-parameters are estimated from data
coming from both groups. At the same time, we can learn about possible dependences
between αi0 and αi1 that may be group specific. Learning about such features is not possible
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with alternative models involving a priori independent non-parametric models, e.g. two
independent DPs. Under a model with two independent DPs we would learn only about αi0
for patients from the group xi = 0, and about αi0 +αi1 for patients from the group xi = 1.
Inference about the dependence of αi0 and αi1 for future patients would not be possible.
Later, in Section 5.2 and Table 2, we shall show how in the example the increased
borrowing of strength in the dependent model leads to a small improvement in the
misclassification rate, from 21.9% to 19.6%. The model is completed with a sampling model
for yi, yi ~ p(yi|θi), a marginal prior, Pr(xi = 1) = π1, for xi, and hyperpriors on unknown
hyperparameters, including τ2, M, ψ and π1. See Section 5 for an example of specific
choices in an application.

The equivalent hierarchical model (9) highlights the nature of the model as a DPM model,
allowing the use of any of the posterior MCMC simulation methods that are proposed for
such models. Compared with MCMC sampling for DPM models, as summarized, for
example, in MacEachern and Müller (2000), the only additional step is the imputation of the
latent group indicators xi. We briefly summarize key features of the MCMC implementation.
The discrete nature of the DP random measure G implies a positive probability for ties
among the latent quantities αi in model (9). The configuration of ties determines many
details of the MCMC method. Let k denote the number of distinct values among {αi, i = 1,

…,m} and let { , j = 1, …, k} denote such values. Recall from the discussion

after equation (6) that , independent and identically distributed. We define

configuration indicators si with si = j if and only if . The unique values ( )
and configuration indicators s together provide an alternative representation of (α1, …, αm).
The marginal prior for (s1, …, sm|G*,M), marginalizing in particular with respect to the
random probability measure G, can easily be described. It is known as the Polya urn scheme
(Blackwell and MacQueen, 1973). This fact greatly simplifies posterior MCMC simulation
for the DPM models, such as model (9) together with equation (3) and the sampling model
(2). We outline the transition probabilities that are used in the MCMC implementation. We
use the notation [x|y, z] to indicate that the parameter x is updated conditionally on currently
imputed values for y and z. We use Y to denote all data generically, θ to indicate the set of all

θi and s−i = (s1, …, si−1, si+1, …, sm), etc. Also,  and ψ =
(ξ,R,M). Each iteration of the MCMC algorithm consists of the transition probabilities

, [αi|θi,α−i,ψ, φ], [θi|αi, φ, Y], [β|θ, φ, Y], [xm+1|…], and transition probabilities

to change the remaining parameters , τ2, ξ, R and M.

Note that changes in the sampling model (2) would not affect the transition probabilities for
αi and the parameters that are specific to the DP model. Updating θi proceeds like inference
in a fully parametric model with sampling model (2) and normal prior θi ~ N(αidi, τ

2). In
other words, the computational effort that is related to the longitudinal model is the same as
in a fully parametric model.

5. Application

5.1. Model specification

We apply the model proposed to the analysis of the longitudinal β-HCG data. Mean values
of the log(β-HCG) for the 173 women show a non-linear relationship with days of
pregnancy. Fig. 1 shows time profiles for normal and abnormal pregnancies. The analysis in
Marshall and Barón (2000) suggests that woman-to-woman variation is adequately
accounted for by the introduction of random effects to model the asymptotic behaviour of
the log(β-HCG) level (θi below). They proposed the following non-linear random-effects
model. Recall that yi = (yi1, …, yini)′ are the observed log(β-HCG) measurements at
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occasions ti = (ti1, …, tini)′ for woman i = 1, …, m = 173, and x = 0 and x = 1 indicate
respectively normal and abnormal pregnancy groups.

(10)

Here θi is a scalar subject-specific random effect, and βx = (β1x, β2x), x = 0, 1, are bivariate
fixed effects for the abnormal and the normal group respectively. In model (10), the vector
(θi, β1x, β2x) characterizes the profile for the ith woman in group x. Marshall and Barón

(2000) and De la Cruz-Mesía and Quintana (2006) assumed that .

A simple parametric model with a normal random-effects distribution is adequate to
describe subject-specific profiles and to fit smooth profiles to observed data. However,
detailed features of the random-effects model can critically change the predictive
classification probabilities for patients with random effects that are imputed away from the
centre of the estimated random-effects distributions. This leads us to consider the
semiparametric model (8), or its equivalent version (9). We shall later compare the proposed
non-parametric inference with a comparable parametric model and show how the non-
parametric extension changes critical predictions.

In model (9) we assume for the base-line distribution G* a two-dimensional normal
distribution. Specifically, we take G* =  (ξ, R). To complete the model specification, we
assume independent hyperpriors

(11)

Here,  (a, b) denotes the inverse gamma distribution, parameterized to have mean 1/{b(a

−1)}. The Wishart prior on R−1 is parameterized such that . The first
parameter of the Wishart distribution is the scalar parameter; the second is the matrix
parameter.

The implementation of model (9) requires adopting specific values for M, a0x, b0x, c0, d0, q,
β0x, ξ0, B0x, Σξ and R0. The parameter M of the DP prior DP(M,G*) controls how close a
realization of the process is to the base-line distribution G*. Additionally, in the DPM
model, M controls the distribution of the number of distinct elements of the vector (α1, …,
αm) and hence the number of distinct components of the mixture (see Antoniak (1974) and
De Iorio et al. (2004) for more details). Treating M as an unknown hyperparameter and
assuming a gamma prior, M~ (aM, bM), Escobar and West (1995) derived an efficient
posterior sampling scheme for M. We follow this approach, using aM = bM = 1.

The values of the other hyperparameters in distributions (11) were taken as β00 = β01 = ξ0 =
(0,0)′, B00 = B01 = Σξ = 10000I2, q = 3, R0 = I2, a00 = a01 = c0 = 3 and b00 = b01 = d0 = 0.01.

These choices imply a prior mean variance of  and τ2 equal to 2500. Here I2 is the 2×2
identity matrix. Prior probabilities of group membership were assumed to be proportional to
the size of the groups in the training sample. We also performed the analysis with different
hyperparameter values, obtaining very similar results. This suggests robustness to the
choices of hyperparameter.

Updating the latent mixture parameters αi and the hyperparameters βx, , τ2 and M
proceeds with standard posterior simulation methods for DPMs. See, for example,
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MacEachern and Müller (1998) and De Iorio et al. (2004) for a full description of the Gibbs
sampling scheme.

The full conditionals for implementing the Gibbs sampler are not available in closed form
for β1x and β2x. To update β1x and β2x we thus use a Metropolis–Hastings step with a normal
approximation to the full conditional as the candidate distribution. Resampling M is done by
introducing a latent beta-distributed variable, as described by Escobar and West (1995),
based on West (1992).

To perform the Gibbs sampling, we chose starting-points in a neighbourhood of the
maximum likelihood estimates of model parameters. In theory the Markov chain
convergence and ergodic properties are independent of the initial values. In practice,
however, a good choice of starting-points shortens the number of iterations that are required
until practical convergence. We generated 100000 iterations. After 10000 iterations, samples
were collected, at a spacing of 90 iterations, to obtain approximately independent samples,
leaving us with a total of B = 1000 posterior Monte Carlo samples for calculating posterior
quantities of interest.

To diagnose convergence, we used methods that are available in the BOA package (Smith,
2004). Because of the high dimensional parameter vector, we prefer to use diagnostics, such
as those proposed by Geweke (1992), which do not require multiple parallel chains.

5.2. Results

Figs 2(a) and 2(b) show histograms of the subject-specific parameters θi estimated by using
the empirical Bayes methods as implemented in the SAS system. Specifically, they show the
posterior means of θi conditional on all the other hyperparameters being evaluated at their
maximum likelihood estimates for model (10) with normally distributed random effects (see,
for example, Vonesh and Chinchilli (1997)). Figs 2(c) and 2(d) show posterior predictive
draws under the Bayesian semiparametric approach BSP for both abnormal and normal
groups. In Figs 2(c) and 2(d) a smooth curve shows the posterior estimated random-effects

distribution . For comparison, Figs 2(a) and 2(b) show a kernel
density estimate based on the histogram of the corresponding estimates. To evaluate the

posterior mean  we exploit the identity , which follows from

We can, therefore, approximate  by a kernel density estimate of posterior predictive
draws, θm+1 ~ p(θm+1|ym). The maximum likelihood estimates show asymmetry in the
normal group and bimodality in the abnormal group. A non-parametric specification of the
distribution of the random effects allows for the flexibility to estimate such features. See
Figs 2(c) and 2(d).

The parameter M induces a distribution on the number of clusters into which the
observations fall. Recall the definition of configuration indicators si in the discussion
following model (9). We refer to sets of observations with equal configuration indicators,
i.e. a common value αi, as clusters. The DDP model that we use to implement inference in
this paper relies on a single mass parameter M. For this model, clusters of observations
occur both within and across groups. The number of clusters is stochastically increasing
with the number of observations (see De Iorio et al. (2004)). Recall that k was defined as the
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number of clusters. Let kx denote the number of clusters of observations in group x. We find
the posterior mean E(kx|ym) (with standard deviations SD(kx|ym) in parentheses) to be 5.9
(1.8) and 5.2 (1.5) for x = 0 and x = 1 respectively. The posterior mean E(k|ym) (with
standard deviation SD(k|ym) in parentheses) is 6.3 (1.9).

As part of the analysis we estimated individual β-HCG profiles and standard errors. These
profiles can be used to assess the goodness of fit. Fitted profiles with ±2 posterior standard
deviations curves are displayed for six selected patients in Fig. 3: three of them in the
normal group (patients 2, 66 and 75) and the remaining three in the abnormal group (patients
15, 29 and 45). On the basis of these plots we informally assess the goodness of fit of the
model to the data. The posterior inference captures the varying observation error between
subjects.

Next, we consider the problem of evaluating the classification rule. This is naturally carried
out through an estimate of the associated misclassification rates. At this point we could
apply the rule to the observed data and count the (relative) frequencies of misclassified
observations. In doing so, we conclude that the BSP yields the best results (the data are not
shown). However, it can be argued that this yields overly optimistic misclassification error
rates as the same observations are used to determine and to evaluate the classification rule
(McLachlan, 2004). Another traditional approach is cross-validation (Lachenbruch and
Mickey, 1968). It computes the classification rule by leaving out one subject at a time and
records whether this observation is correctly classified or not. Here, we classify an

observation as abnormal if the posterior probability for xi = 0 is greater than . Table 1
presents the results by using cross-validation based on the method that was described in
Section 4, the Bayesian parametric approach developed by De la Cruz-Mesía and Quintana
(2006) and a frequentist method that was developed by Marshall and Barón (2000). We
found interesting differences between the three approaches. The misclassification rate under
the BSP model is 14.5% (25 = 173), which is less than under the Bayesian parametric (BP)
model and the method based on maximum likehood estimation, 17.3% (30/173) and 18.5%
(32/173) respectively. A traditional way to summarize these results is a receiver operating
characteristic curve, which plots the true positive rate against the false positive rate for the
various possible cut points of the classification rule (0.5 was used when calculating the
results that are displayed in Table 1). Fig. 4 shows this curve for both Bayesian models. We
see how the BSP model improves on the BP method (higher area under the curve). To
understand further the corresponding classification, Fig. 5 shows estimated classification
probabilities for all 173 women, arranged by true xi, and within each group sorted in
decreasing order. We see how the BSP model dominates the BP model for most of the
range, in the sense of implying higher and lower probabilities for normal and abnormal
pregnancies respectively. The most noticeable exception is the rightmost part for the
abnormal cases (lowest classification probabilities), where this trend is reversed. But this is
of little concern, as at that range of values for the probabilities almost any rule would
classify these women as abnormal.

The reported receiver operating characteristic curve provides a conservative comparison in
the following sense. It is based on classification of patients with complete data recorded over
the first 80 days of gestational age. More important for an informed clinical treatment
decision are differences in early prediction, based on early responses only. To illustrate this
use, we generate from the posterior predictive distribution data for one future patient for
each group and evaluate expression (4) for up to five possible observations. Fig. 6 shows
how the classification probabilities change as we accrue more data. Fig. 6 compares
inference under the proposed semiparametric model and a corresponding parametric model
fixing the random probability measure G at the base measure G*. For the normal pregnancy
patient, we observe a steady growth of the probabilities. In contrast, for the abnormal
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pregnancy patient this probability first increases and starts to decrease to values that leave
no question about the classification. A possible explanation for this is the rather
heterogeneous patterns that are found for abnormal pregnancy patients. Indeed, many of
these show an initial increase in the log10(β-HCG) responses (just as all the normal
pregnancy patients do) followed by a decrease in some of the patients. Thus the
classification probabilities for abnormal pregnancy patients require a few more observations
than the normal ones to reflect the correct outcome. For the abnormal pregnancy patient the
predictive classification probabilities by using the BSP model decrease more rapidly than
under the BP model. After two observations we find a difference greater than 10% in
predictive probabilities. From a clinical perspective, a 10% difference in predicted
probabilities can be key to making the right treatment decision at this critical early time. The
receiver operating charateristic curve that is shown in Fig. 4 evaluates classification based
on profiles over the entire observation period. As shown in Fig. 6, the improvement for
classification based on the first two or three observations is even larger.

To assess the model fit and to compare different models, we calculate the conditional
predictive ordinate (CPO) (Gelfand et al., 1995) for each observation. Chen et al. (2000)
showed in detail how to obtain Monte Carlo estimates of the CPO statistics. We can
compare different models by using sums of log(CPOs) of the individual observations.

Define  to be the Monte Carlo estimates of the ith subject’s CPO statistic. Greater

values of  indicate a better fit. We found S = −117.2 for the BSP model.
For the BP model we found S = −124.1. The difference suggests that the BSP model
provides a marginally better fit to the log(β-HCG) data than its parametric counterpart.

We next investigate the effect of the dependence that is introduced in the DDP compared
with a model with two independent DPMs. Fig. 7 displays the results of 500 posterior
predictive draws from the bivariate distribution p(αm+1|Y). We can identify two large
clusters, each suggesting negative correlation between main effect and abnormal pregnancy
offset parameters. The resulting covariance structure clearly differs between these
components. Note that such findings would not be possible under a model with two
independent DPs. To compare our model with that defined by two independent DPMs we

changed model (8) by using  and  or xi = 0 and xi = 1 respectively. We
refer to the new model as model iBSP. For a fair comparison we use the same choices of
hyperparameter as before, implying in particular that the marginal probability models for the

random-effects distributions , x = 0, 1, remain unchanged under the BSP model and
model iBSP. We carried out the same inference as described in Fig. 6, focusing on the
classification for a future woman, m+1, after the first nm+1 = 2 observations, assuming that
the unknown truth is xm+1 = 0, i.e. an abnormal pregnancy. Fig. 6 reports the classification
probabilities Pr(xm+1 = 1|ym+1,1, ym+1,2, ym) = 50% for the proposed BSP model, and 63%
for the BP model. For model iBSP we find a probability of 55%, justifying the minor
additional effort to implement the DDP model. However, this depends on a single patient, as
just described. We investigated this issue further, considering the classification of every
patient, on the basis of only the first two observations, and assuming the same proportion of
normal pregnancies as was empirically observed. This is essentially equivalent to a cross-
validation of the inference for all patients. Table 2 summarizes the classification as normal
or abnormal under each of the competing models. The reported misclassification rates show
an improvement under the dependent model compared with the independent model.

Finally, we investigate the effect of choices of hyperparameter on the reported inference.
Again, consider the predicted classification for a future woman (assuming the unknown truth
to be xm+1 = 0) based on one or two observations. Table 3 shows these probabilities for
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various combinations of M, E(τ2) and . The corresponding probabilities do exhibit
some variation, but the implied classifications remain unchanged. In fact, the estimated error
rates are the same as reported in Table 1 in all cases (the data are not shown).

6. Discussion

We have proposed a model-based approach to classification of longitudinal profiles. The
underlying models in each group or population are given by non-linear semiparametric
models. Flexibility for relaxing the distributional assumptions is introduced by using a non-
parametric specification on the random-effects models. Dependence in the growth curves is
introduced through a design vector indicating group membership and selecting appropriate
features of a common underlying random probability measure. The approach is appropriate
for classifying longitudinal profiles of data sets with unbalanced data structure. It uses all
available information for classifying subjects over time, regardless of the number or timing
of the observations. Moreover, the influence on discrimination of both the between-group
and within-group components variability can be readily quantified, and the posterior
simulation scheme is straightforwardly implemented. The approach is particularly
appropriate for decision-making in clinical practice where the number and times of
observations are often arbitrary and depend on the progression of the patient.

A key feature of our approach is the flexibility that is provided by the non-parametric model
for random effects. A straightforward generalization of our approach could accommodate
more information that is available. This can be done by inclusion of more covariates or by
considering other markers, thus extending the framework to a multivariate one.

Limitations of the proposed model are the reliance on posterior simulation and the nature of
the non-parametric generalization. Although posterior simulation is straightforward, it
requires the development of some problem-specific software. The non-parametric modelling
is on the random-effects distribution only, but it still requires the user to choose a parametric
model for p(yi|θi). Alternative models could use the available data from patients i = 1, …,m,
to learn about the nature of the longitudinal dependence, using, for example, methods that
were reviewed in Denison et al. (2002). Another possible extension is the use of problem-
specific decision rules. In the inference reported we classified patients by maximum
posterior predictive probability of group membership. Alternatively, one could imagine an
approach that takes into account the sequential nature of the decision problem. It is
conceivable that even with high probability of abnormal pregnancy a clinician might decide
to wait for one more measurement, trading off the additional information with a possible
loss in treatment options.

Finally model (8) and (9) allows an easy generalization to more general non-parametric
priors on G. In particular, we can easily replace the DP model by a species sampling model
(Pitman, 1996), which allows more general prior distributions on configurations of the α-
parameters. See further discussion of such models in Ishwaran and James (2003) and in
Quintana (2006).
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Fig. 1.
Observed profiles of β-HCG for all 173 women: (a) normal pregnancies; (b) abnormal
pregnancies
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Fig. 2.
Estimated subject-specific (θi) parameters by using (a), (b) maximum likehood estimation
and (c), (d) posterior predictive draws for the BSP model with a smooth curve overlaid on
each plot: (a) normal group; (b) abnormal group; (c) normal group; (d) abnormal group

De la Cruz-Mesía et al. Page 18

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2013 December 22.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 3.
Fitted curves for (a)–(c) three patients in the normal group and (d)–(f) three in the abnormal
group (O, actual observations; –––––, fitted curves; – – –, ±2 posterior standard deviations):
(a) patient 2; (b) patient 15; (c) patient 29; (d) patient 45; (e) patient 66; (f) patient 75
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Fig. 4.
Receiver operating characteristic curves for classification under the BSP model (–––––) and
the BP model (-------)
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Fig. 5.
Estimated probabilities of classification under the BSP model (–––––) and the BP model
(-------) in the normal group for all individuals in decreasing order within the normal and
abnormal groups
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Fig. 6.
Evolution of classification probabilities for one normal (○) and one abnormal (×) future
patient as a function of the number of observations. (–––––, BSP model; -------, BP model);
the difference in inference is critical; for example, consider inference after the second
observation—if the (unknown) truth is an abnormal pregnancy, the probability of a correct
classification under the model proposed is 10% higher under a parametric model
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Fig. 7.
Scatterplot of 500 posterior predictive draws of analysis-of-variance coefficients αm+1 for a
future patient
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