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SEMI-PARAMETRIC BOX-COX POWER TRANSFORMATION MODELS FOR

CENSORED SURVIVAL OBSERVATIONS

Tianxi Cai, Lu Tian and L.J. Wei

Department of Biostatistics, Harvard University

655 Huntington Ave, Boston, MA 02115

SUMMARY

The accelerated failure time model specifies that the logarithm of the failure time is lin-

early related to the covariate vector without assuming a parametric error distribution. In this

article, we consider the semi-parametric Box-Cox transformation model, which includes the

above regression model as a special case, to analyse possibly censored failure time observa-

tions. Inference procedures for the transformation and regression parameters are proposed

via a resampling technique. Prediction of the survival function of future subjects with a spe-

cific covariate vector is also provided via point-wise and simultaneous interval estimates. All

the proposals are illustrated with the data sets from two clinical studies.

Some key words: Accelerated failure time model; Prediction; Resampling method; Simultane-

ous confidence interval.
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1 INTRODUCTION

The most popular semi-parametric regression model, which directly links the failure time

to its covariates, for analysing censored survival data is the accelerated failure time model.

This model simply relates the logarithm of the failure time linearly to its covariates without

specifying a parametric error distribution (Kalbfleisch & Prentice, 2002, Ch.7). Recently, Jin et

al. (2003) proposed an iterative estimating procedure for the regression coefficients of this log-

linear model based on a class of monotone estimating functions, which can be implemented

efficiently via the standard linear programming technique. With this new proposal, such

a log-linear regression model can be a useful, practical alternative to the Cox proportional

hazards model (Cox, 1972) for analysing survival observations.

The accelerated failure time model may not fit the data well due to, for example, the mis-

specification of the log-link function. One possible remedy is to consider a class of flexible

Box-Cox transformations for the response variable. For the case that there are no censored ob-

servations, the parametric Box-Cox power transformation model has been extensively studied

(Box & Cox, 1964, 1982; Bickel & Doksum, 1981; Carroll & Rupert, 1985, 1987; Taylor, 1987).

The transformed response yields a linear regression model with normal error and constant

variance. Without assuming a parametric error distribution, inference procedures for the

semi-parametric Box-Cox transformation model have been proposed, for example, by Han

(1987), Newey (1990), Robinson (1991), Wang and Ruppert (1995) and Foster et al. (2001).

In this article, we study the semi-parametric power transformation models for analysing

possibly censored survival data, where the censoring variable may depend on the covariates.
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This class of models includes the accelerated failure time model as a special case. Inference

procedures for the transformation and regression parameters are proposed via a simple re-

sampling scheme. Although the physical interpretation of the regression coefficients under

a transformation model may not be obvious, this type of model is quite flexible and useful,

for example, for predicting the survival function of future patients with a specific covariate

vector. In this paper, we also show how to construct point-wise and simultaneous confidence

intervals for such a survival function. The new proposals are illustrated extensively with the

data sets from two clinical studies.

2 ESTIMATING TRANSFORMATION AND REGRESSION PARAMETERS

Let
�

be the time to the event of interest and � be the corresponding ����� vector of

bounded covariates. Assume that the support of � is not contained in a ���
	��� dimensional

hyper-plane. A semi-parametric Box-Cox transformation model specifies that

����� � � �������� ������� (2 � 1)

where

� � �! "�#�
$%%& %%')(
�+*-,. if /10�32-�46587 �! "� if /9�32-�

� � is a ����� vector of unknown regression parameters, / � is an unknown transformation

parameter and � has a completely unspecified, continuous density function, which is free of

�;: We assume that < � �>= . �? �A@ is an interior point of a compact set. Note that � � does not include

the intercept term. The failure time
�

may be censored by a variable BC: Let DE�GFIHKJL� � �MBN� and
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� � � , if
�

is observed, 2-� otherwise. The distribution of B may depend on � , but conditional

on �;� � and B are independent of each other. Also, assume that � ��� � � � �MB � �M� � �M��� � �8�+� � �L��� � are

independent copies generated from � � �M�;�MB �M� �M: In Appendix 1, we show that in the presence

of censoring, � � � / � are identifiable and the error distribution function � � ��� is identifiable in

the support of ��� � � D � 	�� � � � . We are interested in making inferences about / � and � � based

on 	 � D � � � � � � � ��
 ��� independent copies of � D � �;� � �":
Suppose that / � is known, the regression parameter � � can be estimated based on the

weighted logrank estimating functions studied by Tsiatis (1990), Ritov (1990) and Wei et al.

(1990). A special rank estimator � . � with the Gehan-type weight function can be obtained

by minimising a simple U-process of � : Numerically this minimisation can be implemented

easily via the standard linear programming technique (Jin et al., 2003). Specifically, for a fixed

/ � � . is obtained by minimising the function

� � < ����� *����� ��� , �� � � , � � 	�� � � < � 	��
�
� < ��
���	�� � � < �! "�

�
� < ��
 � (2 � 2)

with respect to � � where <C� = .? @ , � � � � is the indicator function, and � � � < �#� � � � D � � 	 � � � � . Then

� . � is a consistent estimator for � � and its distribution can be approximated by a normal,

whose covariance matrix can be obtained via a simple resampling method (Jin et al., 2003).

Since (2 � 2) is a U-process (Honore and Powell, 1994), it follows that � . converges to � . ,
uniformly in /�� where � . is the minimiser of the limit of (2 � 2), and � . � ��� � : Therefore, if one

can obtain a “good” estimator  / for / � � �$# . is expected to be a reasonably good estimator for

� � : Now, for a fixed /�� consider the estimated martingale residual 	&%'(� �! �)< . �"�  * 2+
 for the
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counting process 	�� � �! "� ��� �!D ���  "� � � �   G2�
 ��� � �8�+� � � ��� � where

%'(� �! �M< � ��� � �! "� 	 � � �! �"< �M� (2 � 3)

< . �>= .#? � @ , � � �! �"< � ��� (� � �!D �  	� ��
 � � ��� �� � 	 � � � � �M< �"� and

� ��� �M< � � �� ��� , � � � � � � � < � � � �� �� � , �$	��
�
� < �  � � � < ��
 : (2 � 4)

Note that � ���6� < . � � is a consistent estimator for the cumulative hazard function of the error

term � in (2 � 1). When / � / � , the expected value of the process 	 %'(� �! � < . �"�  � 2+
 is ap-

proximately 0. To examine the adequacy of the link function � � for Model (2 � 1), consider

the following process in � and  � which consists of partial sums of the estimated martingale

residuals:

� . ���8�  "�#� � *-, �� � � , � �)���. � ��� �� %' � �! � < . �M:
The above process is expected to be around 0 when /�� / � . A “large deviation” of the ob-

served value 	 � . ���8�  "��
 from 0 suggests that the assumed link function �8� is not correct. This

type of model checking techniques was proposed by Lin et al. (1993, 2002) for examining

the adequacy of the link function for various regression models and for the Cox model in the

presence of censoring.

A reasonable lack-of-fit measure for the assumed link function � � of Model (2 � 1) is

� � /L� �����*
�
���� � �. ���8�  "��
�� �! "��
�� �����"� (2 � 5)

where � ��� � and � ��� � are positive, bounded, differentiable, strictly increasing, possibly data

dependent functions that converge to deterministic functions uniformly. This motivates us
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to estimate / � by a minimiser  / for (2 � 5). Since � � / � is a function of a single parameter /�� its
global minimiser can be readily obtained within a reasonable interval, for example, 	/�� � / � �� 
 (Carroll, 1982). To estimate � � � we let � � � # . : We show in Appendix 2 that  / and � are

strongly consistent for / � and � � � respectively. Let < � = # . #? @ . We also show in Appendix 3 that

���� � <N	G< � � converges in distribution to a zero-mean multivariate normal, whose covariance

matrix, however, depends on the unknown density function of the error term in (2 � 1) and is

difficult to estimate well directly under the nonparametric setting.

Here, we present a relatively simple resampling method to estimate the distribution of

���� � < 	�< � �M: Let ��� � �
	 � �
� � � be the observed value of � D � � � � � � � �M: Also, let 	� � ��� �E�8�+: : :K��� 
 be a

set of independent copies generated from a positive random variable � with a known distri-

bution whose mean and variance are one. Then, for a fixed / � we consider a stochastically

perturbed
� � < � in (2 � 2):

��� � < ����� *�� �� ��� , �� � � , � � 	 � 	��� � � < � 	��� � � < ��
 � ���� � � < �  ��� � � < � �M� (2 � 6)

where ��-� < � is the observed value of � � < � . Let � �. � argmin ? � � � < �M: To obtain a corresponding

perturbed � � / � in (2 � 5), first we perturb the estimated martingale residuals (2 � 3):

' �� �! �M< �#� � ��� ���  "��	 � 	 � (� � ��� �  	�L��
�� � �� � , �$	��� � � < � � �� ���L��	 � � � � 
�	 � � ���� � � � , �$	��� � � < �! � � ���L� 	)� � � � 
� � :
This results in a perturbed � � /L�"� which is

� � � / �#��� �*
�
� ���� � *-, �� ��� , � � � �� � �. � �� '!�� �  �M< �. �"� �
# � 
 � �  "� 
 � ����M� (2 � 7)

where < �. � = .?�$� @ : Let / � be a minimiser of (2 � 7), � � � � �. $ , < � � = . $?$� $ @ : In Appendix 4 we show

that for large � � the unconditional distribution of � ,&% � � < 	 < � � can be approximated by that of
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� ,&% � � < � 	 �< �"� where �< be the observed value of �< : In practice, to obtain the above approximation,

one may generate a large number,
� � of random samples 	� � ���I� �8�+� � �L��� 
 � and for each

realized sample, obtain / � and � �
by minimising (2 � 6) and then (2 � 7). The covariance matrix

of � < � 	 �< � or ���< 	�< � � can then be approximated via the sample covariance matrix based on

those
�

realizations of < � :
Possible choice for � � ��� and � � ��� in (2.5) are the empirical distribution function based on

	 D � ��� � �8�+:+:�:L��� 
 and � *-, � ���� , � ���� �. � � � ��M� respectively. We find via numerical examples in

Section 4 that the resulting point and interval estimates are quite stable with respect to these

two weight functions.

3 PREDICTING CUMULATIVE HAZARD AND SURVIVAL FUNCTIONS FOR

FUTURE SUBJECTS

For a given covariate vector � � , the cumulative hazard function
��� � �! "� is

� �  �� � � , where� ��� � is the cumulative hazard function of � in model (2 � 1) and  �� � �� �  "� 	 � � � � . It fol-

lows that a consistent estimator �	� � �! "� for
�	� � �! "� is � �! �
�8� < � for all  such that  � � is within

the support of � � � � D1� 	 � �� � , where � � �K�+� � is defined in (2 � 4). Now, consider the process �  "��� ������ �	� � �! "� 	 ��� � �  "��� , which can be written as

� �� � � �! �
� � < � 	 � �! � � �M< � ��� � � �� � � �! � � �M< � � 	 � �  � � ��� : (3 � 1)

It follows from the arguments given in Appendix 3 that the first term of (3 � 1) can be approxi-

mated by ������ � �  
�8� < � 	 � �  � � � � � which is asymptotically equivalent to

� �  �M< � � � �� � < 	 < � �"� (3 � 2)
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where
� �! �M< � � is a deterministic matrix. The second term in (3 � 1) is

� * �� �� � � , � ( �
�*
�

 � � � � 	�� � � < � � � � 
;	 ���* � �$	��

� � < � �  ��
 
 � ��� �M< � � �� �� � , � 	��
�
� < � �  	� 
 : (3 � 3)

In Appendix 3, we showed that � �� � <
	�< � � is asymptotically equivalent to a sum of inde-

pendent, identically distributed random vectors. This, coupled with the martingale central

limit theorem, justifies the weak convergence of
 �! "� � � � � � � �3� � � � � to a zero mean Gaussian

process in  :
The covariance function of the process

 �! "�"� however, is prohibitively complex and the

large sample properties of the above limiting Gaussian process are rather difficult, if not im-

possible, to obtain analytically. Here, we use a resampling technique similar to that presented

in Section 2 to approximate the distribution of
 �! "� . To this end, let < � be the random vector

generated by the resampling method in the previous section. Then, it follows from the same

arguments given in Appendix 4 that the distribution of (3.2)+(3.3) can be approximated by

the conditional distribution of

 � �  "� � � �� 	 �� �! �� $ �M< � �M	 �� �  ��� � �< ��
� � �� � ( ��* �
� �� � , � 	 � 
�� 	��� � � �< � � � 
;	 �$	��� � � �< �! � 
 
 �� ����� �< �

�
�&� � 	���� ���� , �$		� � � �< �  	� 
 �

where �� � �6��� � is the observed value of �� � �6��� �M:
By the functional 	 -method, for any given differentiable function 
 � ��� , the distribution of�� �! "� � ���� �
 � �	� � �! "� �
	�
 	 �	� � �! "��


�
and

 �� �! "�;� �
 � �� �  ��� � �< ���  � �! "� converges weakly to the

same Gaussian process, where �
 is the derivative of 
 : To obtain an approximation to the

distribution of the random process
�� � ���M� we generate

�
realizations of < � � and obtain the

corresponding realizations of
 �� ��� �":

8

http://biostats.bepress.com/harvardbiostat/paper6



Now, suppose that we are interested in constructing ��� 	�� � point-wise and simultaneous

confidence intervals for
�	� � �! "�M� where 2������3��: To this end, let 
 �� � � log ��� �M� and let �� � � �! "� be

the observed estimated standard error for log � ���� � �  "� �M� which may be obtained via the above�
realizations of

 �� �! "�M: Then, the � � 	���� interval is

���� � �  "���
	�� 	����� �� � � �! "��
 : (3 � 4)

For the point-wise interval, ��� is the 100 � � 	���� � � th percentile of the standard normal. For the

simultaneous interval for
��� � �! "�"�M2��� ���� � the cutoff point ��� is chosen such that

pr
����� ����

(
� �
����  �� �  "�� ,&% � �� � � �! "� ���� �����! �" � 	#� : (3 � 5)

For estimating the corresponding survival function $ � � �! "�"� since $ � � �  "� �%�
	�����	 ��� � �  "� �M� the

� � 	#��� interval of such a function is

�
	�� � ���� � �! "���
	�� 	'&(��� �� � � �! "��
 � � (3 � 6)

where ��� is either the upper ��� � cutoff point from the standard normal or obtained via (3 � 5).

4 EXAMPLE

We use two examples to illustrate our estimation procedure. The first one is from the

well-known Mayo primary biliary cirrhosis study (Fleming & Harrington, 1991, Appendix

D). The data set in this example consists of information from 418 patients on the survival time

and prognostic factors. Recently, Jin et al. (2003) and Park & Wei (2003) used the accelerated

failure time model to analyse this set of data with five covariates: age, oedema, log(bilirubin),

log(albumin) and log(protime). Based on the semi-parametric Box-Cox model (2 � 1) with the

9
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above set of covariates,  /��E2-: � 2 � and its estimated standard error is 0.097. In Table 1, we

present the point estimates with the corresponding estimated standard errors for these five

covariates, which are practically identical to those reported in Jin et al. (2003). Here, for

�� � / � in (2.5) and
� � � /L� in (2.7), we let � � � � years, � ����I� � *-, � ���� , � � � �. � � � ��� , � �! "�I�� 282 *-, � � � �

� � , � ��� � �  "� , where � � is the ��� � � � th percentile of the empirical distribution function

based on 	 D � ��� � �8�+:�:+: ��� ����
 � � is the unit exponential and
� � � 282�2-: Note that although we

let � ��� � be a crude approximation to the empirical distribution of 	 D � 
 to reduce the amount

of computing, empirically we find that �< and < � are almost identical to their counterparts with

� ��� � being the empirical distribution function of 	 D � 
 . Moreover, we find that these estimators

are not sensitive to the choice of � when the sample size is moderate and the censoring is not

heavy.

For the second example, we consider a recent trial for treating the advanced AIDS patients,

which was sponsored by the AIDS Clinical Trials Group (Henry et al., 1998). This multi-centre

randomised, double-blind, placebo-controlled study was conducted from June 1993 to June

1996. Thirteen hundred and thirteen HIV-infected patients with CD4 counts
�
	 2 cells/mm �

were randomise to one of four treatment groups. One of the major goals of the study is to

examine the effect from the three-drug combination, AZT+ddI+Nevirapine, with respect to

survival. For illustrating our methods, we let the first component of the covariate vector

� be the treatment indicator, which is one if the patient was treated by the triple therapy,

otherwise, is 2 . There were
� � 2 patients assigned to the three-drug group and 983 patients

assigned to either two-drug groups or the alternating drug groups. The censoring rate for the

entire study cohort is about 60%. In Model (2 � 1), we also include the patient’s baseline CD4
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count and age in the covariate vector �;: Here, we let �)� � : � years. Under the same setting

for � �  "� , � ���� , � and
�

as that in the previous example, the point estimates for / � is 2-: � �
with

the estimated standard error of 2 : � 2 . The point estimates for the regression coefficients of the

treatment indicator, age and baseline CD4 count are 2 : � � , 	;2-: 2 � , and 2 : 	 � with the estimated

standard errors of 2-: 2 � , 2-: 2�2 � and 2-: 2 � , respectively. In Figure 1, we present two sets of point

and interval estimates of the survival function for a 37- year old patient with baseline CD4

count of 20. The plots on the left panel predict the survival function for this patient with the

triple therapy, and those on the right panel predict the survival function with the two-drug or

alternating drug therapy. For this type of patients, the three-drug combination treatment is a

much better choice than the two-drug alternatives.

To compare the results based on our model (2 � 1) with those from the standard accelerated

failure time model, that is, by setting / � � 2-� we consider a 25-year old patient with the base-

line CD4 count of 45 and the triple therapy. In Figure 2, we present the estimated survival

curves for this particular patient. The solid curve is based on the Box-Cox model and the dot-

ted curve is from the accelerated failure time model. These two curves appear to be markedly

different, for example, the latter one overly estimates the survival probabilities by more than

10% around Year 2.5.

5. REMARKS

Recently Foster et al. (2001) proposed an estimation procedure for the semi-parametric

Box-Cox transformation model with completely observed data. Unfortunately their method

cannot be generalised to the case when the censoring variable for the failure time may depend

11
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on the covariate vector under a non-parametric setting.

Although the first stage of our estimation procedure is based on a Gehan-type estimator

�� . by minimising a U-process (2.2), one may replace this estimator by that obtained from

any of the monotone estimating functions considered by Jin et al. (2003). Moreover, the new

proposal is still valid even with a general weighted log-rank estimator for � . (Tsiatis, 1990;

Wei et al., 1990), which can be approximated well by the iterative procedure studied by Jin et

al. (2003) within a finite number of iterations.
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APPENDIX 1

Identifiability of Model (2 � 1) in the Presence of Censoring

Let � � �! "� be the distribution function of
�

given �>� � , which is identifiable for  � � � ,
where � � D � � � � � � � ��� 2 . Let � � be the � ��� vector of zeros and � � be the � � � vector

of zeros except for the � th element being 1, �I� �8�+: :K: � � . Without loss of generality, we assume

that � � , � , , ..., ��� are possible values of � . Then, �������  "�C� � � ����� �! "� 	 � �� � � � , � � 2-�+: :K: � � and

		
(
� �� � �! "� � � 		

(
������
 � *-,� � 	���� � �! "��
� . This implies that

/ � � 46587��� (
� *-,� � 	���� � �! "��
4K587  #	 46587 � *-,� � 	���� � �! "��
 �G�8� and ����� �  "� 	 � �� � � � �� ��
 � *-,� � 	���� � �  "��
� � � � � � � :

Therefore, / � and � � are identifiable. Furthermore, � ��� � � � � � � *-,��� �� � � �� � � � . It follows that

� � � � is identifiable in the support of �8��� � D1� 	)� �� � .

APPENDIX 2

Consistency of  / and �
Suppose < � lies in a compact set � . � ��� ? � . To show that  / is a consistent estimate of / � , it

suffices to show that � � / � converges to a deterministic function � � / � , uniformly in / , and � � / �
has a unique minimiser / � (Newey & McFadden, 1994).

First, it follows from the empirical process theory (Pollard, 1990, Chapter 8) that � ��� �M< �
converges to a deterministic function

� �� �M< � almost surely, uniformly in � and < . This, cou-

pled with the uniform convergence of < . , implies that � �� �� < . � converges, uniformly in /��
to
� ��� �M< . �": Next, let � � �  "�)� � �!D �   "� , � � �! �M< �)� � (� � � ���L� 
 � 	 � � ��L� 	 � � � � �"<�
 , � . ���8�  "�1�

� *-, � ���� , � �!� �. � ��� ���	�� � �! "� 	 � � �! �"< . ��
 , � � / � ��� �* � � ��
� �. ��� �  "� 
 � �  "� 
 � ����M� and
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� � / � � � �* � � ������ 	 � . ���8�  "��
�� � 
�� �! "��
�� ����� . Since
� � / � is a U-process in / , it follows from Theo-

rem 1 of Honore and Powell (1994) that
� � / ��� �-� /L� , uniformly in /	� � . � . Furthermore, the

convergence of � ��� �)< . �
� � ��� �M< . � implies that

B � � F��'	, � � � � ��� �.��� � ���
(
� �
��� � � �! � < . � 	 � � �! �M< . � ��� � 2-: (A2 � 1)

With the uniform convergence of � *-, � ���� , � �!� � � ��� � � � � �! �M< . � ,��� � � /L� 	 � � /L� ��� � � *-, �� ��� , 	 � � � � � � � � � � 	)� �. � � �M< . ��
 B � ���� 
 � �! "� � �*
�

 � ����I��� � ��":

It follows from (A2 � 1) and the continuity of � . in / that
� � � .��� ��� ��� � � / � 	 � � /L� ��� � 2 almost

surely. Therefore,
� � /L��� �-� /L� almost surely, uniformly in / .

It remains to show that � � / � has a unique minimiser at / � . Without loss of generality, we

assume that / � � � , �  G2 , � �� �  G2 and ��� ��� � ��2 for any �  G2 , where � ��� ��� denotes the density

function of the random variable � . Assume that there is another minimiser / for �-� /L�": Let � .
be the random variable with cumulative hazard function

� � �K�M< . � and let
� . � � *-,� � � . ��� �. � � .

Since � � / �! �2 and � � / � ����2 , then � � / � �32-: This implies that for any  �� � 2-� ��� and � , we have

2 � � � � (� � �!D  	��� ���. � � �� � 
 � � � � � ���L��	 ���� �;�M< . � � 	 
 � � � � ��L��	 ���. �;�M< . � ��� �
and hence

2 � � � � �!� �. � � �� � (��� � � B  	��� �  	� � � � ��! �#" $ ��L��	 �I� B  	��� � .  	� � � �%��! " $ ���L�'& 
 � � �
where � ! � " $ and � ! " $ are density functions of

� . and
�

given � , respectively. Let

( . ��� �  "��� pr � �   �MB   � � �. �������
�I� � .   � � �. �G���� pr � B  � � � �. ������ : (A2 � 2)
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Then,
( . ���8�  "�#�G ,�* . 		�� pr � ��� � � B   � � �. �G���� �� � �

(
� �#� � � ��� �  "� 	 �� . Note that the right-hand

side of (A2 � 2) is positive and bounded for any � when  � 2 . Moreover, when / �E�8� there

exists � � such that ��� � � �� � 2 �#		� � ��� 2-: Hence, if /�� �8� ( . ��� � �M2 � � � 2-: On the other hand, if

/ � � , ( . ���8�M2 � � � �3� when � approaches to the upper bound of the support of � �. � . This

implies that / � / � � � . The consistency of � follows from the uniform consistency of � . and

the consistency of  / .

APPENDIX 3

Asymptotic Normality of <
To justify asymptotic normality of � �� � < 	�< � � , we need to show that the minimand � � / �

has a “good” quadratic expansion around / � . To this end, let � . ���8�  "� � � *-, � ���� , � � � �. � � �
���	 � � �! �"< � � 	 � � �! �M< . ��
 . We first show that � �� 	 � . ���8�  "� 	 � . ���8�  "��
 is asymptotically equivalent

to a sum of independent and identically distributed (iid) terms and converges weakly to a

mean zero Gaussian process. Note that

� �� � � . ���8�  "� 	 � . ��� �  "� � � � * �� �� ��� , � � ���. � ��� �� '(� �! "� � � � ����
	 � �*

�
� * �� �� ��� ,

�
�$	 � �. � ��� � � ��� � 2 � � � � � �. � ��� �� �! "��
 � � 	 � *-,� ��� � � �. � � ��


	 �$	 � �. � � � � � ��� � 2 � � � � � �. � � � ��� �! "��
 � � 	 � *-,� ��� � � �. � � ��
�� 
 � ��� � < . � (A3 � 1)

	 � �*
�
� *-, �� ��� , �$	 � �. � � � �8� ��� � 2 � � � � � �. � ��� �� �! "��
 � � � � *-,� ��� � � �. � � � & 
�� �� � / �M� (A3 � 2)

where � ��� � /L� � ������ � ��� �  < . � 	 � ��� �M< . � � . Now, the process � ��� � /L� can be written as

� �� 	 � �� �  < . � 	 � ��� �M< . ��
 � � �� 	 � ��� �M< . � 	 � �� �"< . ��
 : (A3 � 3)
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It follows from the standard empirical process theory (Pollard, 1990, Chapter 10) that the first

term of (A3 � 3) "������� � ��� �  < . � 	 � ��� �M< . � � , which is asymptotically equivalent to

� �� �)� . 	 � . � ��� � ��� �M< . �
� � . : (A3 � 4)

Since � . is obtained by minimising a U-process with respect to � � using the argument similar

to that in Jin et al (2003), one can show that

� �� � � . 	 � . � "�� * �� �� ��� , � � � /L�"� (A3 � 5)

where � � � /L� , � � �8��:K: :K��� , are iid terms. By the martingale central limit theorem, the second

term in (A3 � 3) is asymptotically equivalent to a sum of iid terms. This implies that (A3 � 2)

can be approximated by a sum of iid terms. Furthermore, the integrand of (A3.1) can be

approximated by � ,&% � � �� . 	�� . � � multiplying by a deterministic vector, and hence asymptoti-

cally (A3 � 1) is equivalent to a sum of iid elements. As a consequence, � �� 	 � . ���8�  "� 	 � . ��� �  "��

converges weakly to a mean zero Gaussian process. Moreover for

� / 	 / � � � � � �� ,
� �� � � . ���8�  "� 	 � . ���8�  "� � 	 � �� � � . � ���8�  "� 	 � . � ��� �  "� � � � � ����

and ���� � �� . ���8�  "�#	 � . ���8�  "� � converges weakly to a Gaussian process indexed by � /��  � ��M� where

� . ��� �  "� � � � � �!� �. � � � ���	 � � �  �M< � � 	 � � �! �"< . ��
�� . It follows that for
� /I	 / � � � � ����M�

� � / � 	 � � / � � � � /I	 / � � � �*
�
� (� � � . � ���8�  "� �� . � ���8�  "� 
 � �! "� 
 � ����L�

� /I	 / � � � � �*
�
� (� �� . � ���8�  "� � 
 � �  "� 
 � ���� � � � � � *-, � � / 	 / � � � �"� (A3 � 6)

where �� . ���8�  "� � � � . ���8�  "� � � / . Similar to the arguments used for the expansion of � �� 	 � . ���8�  "� 	
� . ��� �  "��
 , one can show that � �� � . � ���8�  "��" � * �� � ���� ,�� � ��� �  "� , where

� � ���8�  "� , � � ���+:K: : ��� , are iid
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random processes. Now, let � � � �* � � (� �� . � ���8�  "� � 
�� �! "��
�� ����� , since � �  /L� � � � / � � , � . � ���8�  "�C�
� � � � * �� � , it follows from (A3 � 6) that � �  / 	 / � � � � � � * �� � � � � � � � � *-, � � � � � �  / 	 / � � � � . This implies

that
�  / 	 / � � � � � � � * �� � and

� �� �  /I	 / � �#��� *-, � �*
�
� (� � �� � . � ���8�  "� �� . � ���8�  "��
 � �! "��
 � ���� ��� � � � �M: (A3 � 7)

It follows from the equicontinuity of � �� � � . 	 � . � that

� �� �)� 	 � � ��"�� �� �)� . � 	)� . � � � � �� � � # . 	)� . � ��"�� �� � � . � 	1� . � � � � �� �  /I	 / � � �� . � � (A3 � 8)

where �� . � 
 � . � 
 / . This, coupled with (A3 � 5), (A3 � 7) and a multivariate central limit theorem,

implies that ���� � < 	 < � � can be expressed as a sum of iid random vectors, which converges in

distribution to a zero-mean multivariate normal.

APPENDIX 4

Justification for the Resampling Method

First, consider the following unconditional version of
� � � < � , and

� � � < � :
� � � < ����� *����� ��� , �� � � , � � � � 	�� � � < � 	�� � � < ��
 � 	�� � � < �! �

�
� < ��
 �

� � � / �#� ���*
�
� ���� � *-, �� ��� , � � � �� � �. � �� %' �� �! � < �. �"� �
# � 
 � �  "� 
 � ����

where � $. � argmin ? �� �� � � � /L� , < �. � � / � � $. � and

%' �� �! �M< � ��� � �! "� 	 � (� � � ���L��
 � �� � , � 	��
�
� < � � � � ��L� 	)� � � � 
 �

� � �� �� � , �$	��
�
� < �  � � ���L� 	 � � � � 
� � :
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Let  / � � argmin . � � � / � . It follows from the arguments in Appendix 3, that  / � and � � � � �# . $
are consistent and asymptotically normal. More specifically,

� �� ���
�  /

� 	 / �
� � 	 � �

����
� � � * �� �� ��� ,

���
� � �� � �
� � � / � �"� � � �� . � � �� � �

����
� � � � $ ����

where

� �� ��� *-, ���*
�
� �� �� . � ���8�  "� � � ���8�  "� 
 � �  "� 
 � ����M�

and � � $ � � � is with respect to the product probability measure generated by � � 	 � D � � � � �M� � �M��� �
�8�+: : :K��� 
 and 	� � ��� � �8�+: :K: ��� 
 . Therefore,

� �� ���
�  /

� 	  /
� � 	 �

� ��
� � � * �� �� ��� ,

���
� � ��
� � � / � � � �� . � � ��

� ��
� �&� � 	��� ��� � $ � �� (A4 � 1)

Conditional on the data, it follows from Lindeberg-Feller Central Limit Theorem that the

conditional distribution of ���� �  / � 	  / ��� � 	��#� converges to a multivariate normal with mean �
and covariance 	�� . This implies that, for any � � 2 , there exists a � � such that when � ��� � ,
the probability, with respect to � , of the event

� � �
 ����� �
�������� pr

���
� � �� ���

�  /
� 	  /
� � 	��

� ��
� ���

�������� �
� ��
� 	 pr

���
� � �� ���

�  /I	�/ �� 	)� �
� ��
� ���

� ��
�
�������� ��� �

is at least � 	�� .
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Table 1: Estimated Covariate Effects on Failure Time with Mayo Biliary Cirrhosis Data.

� Age � Oedema � Bilirubin � Albumin � Protime

Box-Cox Model
	;2-: 2 � � 	 2-:�� � � 	;2-: � ��� �8: � � 2 	 � : �����
( 2 : 282�� )

�
( 2-: � ��� ) ( 2-:K�+2 �

) ( 2-: � ��� ) ( 2-:�� � 2 )
Accelerated Failure 	;2-: 2 � � 	 2-: ��� � 	;2-: 	 ��� �8: 	 �-� 	 � :�� � �

Time Model ( 2-: 282 �
) ( 2 : � ��� ) ( 2-: 2���2 ) ( 2-: 	 � 	 ) ( 2-:��82 � )�

Estimated standard error
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Figure 1: Survival probabilities for a 37-year-old patient with baseline CD4 count of 20 treated

by the triple therapy or two-drug alternatives. (—— : point estimates; 	�	�	 : pointwise 95%

confidence intervals; � � � � � � : simultaneous 95% confidence intervals).
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(a) Triple Therapy
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(b) Two drug alternatives
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Figure 2: Predicted survival probabilities for a 25-year-old patient with baseline CD4 count of

45 on three drug combination based on the Box-Cox model (solid curve) and on the acceler-

ated failure time model (dotted curve).
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