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Abstract

We consider a new approach in quantile regression modeling based on the copula function

that defines the dependence structure between the variables of interest. The key idea of this

approach is to rewrite the characterization of a regression quantile in terms of a copula and marginal

distributions. After the copula and the marginal distributions are estimated, the new estimator is

obtained as the weighted quantile of the response variable in the model. The proposed conditional

estimator has three main advantages: it applies to both iid and time series data, it is automatically

monotonic across quantiles, and, unlike other copula-based methods, it can be directly applied to

the multiple covariates case without introducing any extra complications. We show the asymptotic

properties of our estimator when the copula is estimated by maximizing the pseudo log-likelihood

and the margins are estimated nonparametrically including the case where the copula family is

misspecified. We also present the finite sample performance of the estimator and illustrate the

usefulness of our proposal by an application to the historical volatilities of Google and Yahoo

companies.

Key words: Dependence Modeling; Check function; Markov Process; Pseudo Log-likelihood; Vine

copula.

1



1 Introduction

Appropriate understanding and modeling of the dependence structure between financial assets is

an important task. Especially, the characterization of the conditional dependence between random

variables at a give quantile constitutes an important ingredient in modern risk management. As a

copula has emerged as an effective tool to model dependence between non-elliptic and fat-tailed random

variables, several authors attempted to propose conditional quantile estimation methods which are able

to make use of the advantages of copulas in dependence modeling. Their common starting point is

that since the copula function holds all information on the different forms of dependence between

random variables, the form of the conditional quantile relationship is implied by the copula joining

those random variables.

Some examples of such work include Bouyé and Salmon (2009), Chen and Fan (2006) and Chen

et al. (2009). In an earlier version of Bouyé and Salmon (2009), the authors explicitly showed the

link between the form of the conditional quantile relationship and the copula function for several well-

known copula families such as elliptical copulas and Archimedean copulas. Further, they illustrated

how such link can be used in conditional quantile estimation both when modeling the interdependence

between random variables and when modeling the temporal dependence between them. Focusing

more on the latter case, Chen and Fan (2006) studied a class of univariate copula-based stationary

Markov models. Under the assumption of correct specification of the parametric copula, Chen and

Fan (2006) established asymptotic properties of their quantile regression estimator when the copula is

estimated by maximizing the pseudo log-likelihood and the marginals are estimated nonparametrically.

Additionally, also in the time series context, Chen et al. (2009) employed parametric copula models

to propose several distinct nonlinear quantile autoregression models and investigated the asymptotic

properties of their estimator when both the copulas and the marginals could be globally misspecified

but assuming the correct specification of a conditional quantile function at a particular quantile.

However, all these works consider a conditional quantile given just one covariate such as the

conditional quantile of Y given X or the conditional quantile of Yt given its lagged observation Yt−1.

Nevertheless, often it is necessary to consider multivariate quantile regression conditioning on more

than one covariate. Apart from examples in the iid setup, there are many such examples in the

time series setting where the copula-based quantile estimation methods should be extended. One

example is a copula-based Markov process of higher order, for which Ibragimov (2009) studied how

a copula characterizes the statistical properties of the corresponding Markov process. However, they

2



did not investigate the issue of the conditional quantile estimation there. Another example is copula-

based multivariate time series models, where for instance the dependence between two Markovian

(stationary) time series Xt and Yt is modeled via a copula which characterizes the dependence between

Xt−1, Yt−1, Xt and Yt, in other words, serial dependence and interdependence between two time series.

Rémillard et al. (2012) discussed parameter estimation and goodness-of-fit testing for this model but

did not address the issue of quantile estimation such as the conditional quantile of Yt given Xt−1, Yt−1

and Xt.

Based on this observation, we are motivated to develop an extended version of the previous copula-

based quantile regression methods to handle multiple covariates. The key idea of the previous methods

is to express the conditional distribution function in terms of a certain partial derivative of the copula

function and the marginal distributions, and obtain the conditional quantile through it. Although it

is possible to consider an extension based on this idea, we find it better for convenient computation

and concise theoretical development to estimate the conditional quantile function directly using the

so-called ‘check’ function in Koenker and Bassett (1978) without going through the conditional distri-

bution. The main idea of our new approach is to rewrite the check-function based characterization of

a regression quantile in terms of a copula function and marginal distributions. Actually, our proposal

is an extension of the recent work of Noh et al. (2013) from mean regression to quantile regression.

However, non-differentiability of the check loss function in quantile regression makes the extension

nontrivial, which needs a separate treatment. Additionally, to broaden the area of application, we

derive the asymptotic properties of the estimator under general conditions where both the iid setting

and the time series setting can be considered.

The rest of this paper is organized as follows. In Section 2, we introduce our conditional quantile

estimation method. We present the asymptotic properties of the proposed estimator in Section 3 and

present the finite sample performance of our estimator via some numerical simulations both in the

iid and time series setting in Section 4. Finally, we analyze the daily log returns data of Google and

Yahoo companies in Section 5 to illustrate the usefulness of our proposal. All technical details are

deferred to the Appendix.

2 Copula-based Quantile Regression Estimator

Let X = (X1, . . . , Xd) be a covariate vector of dimension d ≥ 1 and Y be a response variable with

continuous cumulative distribution functions (c.d.f.s) F1, . . . , Fd and F0, respectively. We denote
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the density of Xj and Y by fj and f0, respectively. For a given x = (x1, . . . , xd)
⊤, from the seminal

work of Sklar (1959), the c.d.f. of (Y,X) evaluated at (y,x) can be expressed as C(F0(y),F (x)). Here,

F (x) = (F1(x1), . . . , Fd(xd))
⊤ and C is the copula distribution of (Y,X) defined by C(u0, u1, . . . , ud) =

P (U0 ≤ u0, U1 ≤ u1, . . . , Ud ≤ ud), where U0 = F0(Y ) and Uj = Fj(Xj), j = 1, . . . , d. The copula C

is considered to hold all information on the dependence of (Y,X) since it joins the marginals together

to give the joint distribution. Naturally, it is expected that a given copula function implies a certain

form of the conditional quantile relationship.

More precisely, the following link holds between the copula and the conditional distribution when

the dimension of X is one:

∂C(u0, u1)

∂u1
= FY |X1

(F−1
0 (u0)|F−1

1 (u1)),

where FY |X1
is the conditional distribution of Y given X1. From this link, the conditional quantile

function mτ (x1) of Y given X1 = x1 is derived in terms of the copula function and the marginals:

mτ (x1) = F−1
0 (QU0|U1

(τ |F1(x1))), (1)

where QU0|U1
(τ |u1) is the conditional τ -quantile function of U0 given U1 = u1, which is the inverse

function of ∂C(u0, u1)/∂u1 with respect to u0. The expression (1) is the key idea underlying the

previous works (Chen and Fan, 2006; Bouyé and Salmon, 2009; Chen et al., 2009). Although it is

possible to consider the extension of the relation (1) to multiple covariate case (d ≥ 2), we use another

link between the conditional quantile and the copula via the check function to propose an extension

which has computational convenience and for which concise asymptotic theory can be easily developed.

For that purpose, we note that from the definition of copula function, the conditional density of

Y given X = x is expressed as

f0(y)
c(F0(y),F (x))

cX(F (x))
, (2)

where c(u0,u) ≡ c(u0, u1, . . . , ud) = ∂d+1C(u0, u1, . . . , ud)/∂u0∂u1 . . . ∂ud is the copula density corre-

sponding to C and cX(u) ≡ cX(u1, . . . , ud) = ∂dC(1, u1, . . . , ud)/∂u1 . . . ∂ud is the copula density of

X. Interestingly, thanks to the expression (2), the τ -conditional quantile mτ (x) of Y given X = x
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can be written in terms of the copula and the marginals as follows:

mτ (x) = argmin
a

E [ρ(Y − a)|X = x]

= argmin
a

E [ρ(Y − a) c(F0(Y ),F (x))], (3)

where ρ(y) ≡ ρτ (y) = y(τ − I(y < 0)) is the well known check function. Note that different from (1),

the expression (3) is not affected by the dimension of the covariate vector X.

If ĉ, F̂0 and F̂j are any given estimators for c, F0 and Fj , j = 1, . . . , d, respectively, then mτ (·) can
be estimated by

m̂τ (x) = argmin
a

n∑

i=1

ρ(Yi − a) ĉ(F̂0(Yi), F̂ (x)), (4)

where F̂ (x) = (F̂1(x1), . . . , F̂d(xd))
⊤. Note that the estimator in (4) has the monotonicity across

quantile levels. It can be shown using the argument in the proof of Theorem 2.5 of Koenker (2005).

Following the argument there, one can prove that

(τ2 − τ1)(m̂τ2(x)− m̂τ1(x))

n∑

i=1

ĉ(F̂0(Yi), F̂ (x)) ≥ 0.

Since ĉ ≥ 0, this implies that m̂τ2(x) ≥ m̂τ1(x) whenever τ2 ≥ τ1.

Since there are many different methods available in the literature for estimating a copula and a

c.d.f., m̂(x) can be a nonparametric or a semiparametric or a fully parametric estimator depending

on the method of estimating the components in (4). In this paper, we consider a semiparametric

approach where the copula is parametrized but the marginal distributions are left unspecified as

in Noh et al. (2013). Specifically, we assume a certain parametric family of copula densities, C =

{c(u0,u;θ), θ ∈ Θ}, where Θ is a compact subset of Rp, to which the true copula density belongs or

by which it is well approximated.

3 Asymptotic Properties of the Proposed Estimator

In this section, we first provide general assumptions about the estimator, which will allow us to

investigate its asymptotic properties both in the iid and dependent settings. Then, we will present

the asymptotic representation of the estimator derived from the assumptions.
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3.1 Assumptions

Before stating the assumptions, we introduce some notations, which will be used throughout the

asymptotic analysis of our estimator. As mentioned in the previous section, we consider a certain

family of copula densities, C = {c(u0,u;θ), θ ∈ Θ}, for estimating the true density c(u0,u). Define

θ∗ to be the (unique) pseudo-true copula parameter which lies in the interior of Θ and minimizes

I(θ) =

∫

[0,1]d+1

ln

(
c(u0,u)

c(u0,u;θ)

)
dC(u0,u).

Here, I(θ) is the classical Kullback-Leibler information criterion expressed in terms of copula densities

instead of the traditional densities. It is clear that when the true copula density belongs to the given

family, i.e. c(.) = c(.;θ0) for a certain θ0, then we have θ∗ = θ0. Additionally, we let cX(u;θ) =
∫
c(u0,u;θ)du0. Also define

fθ(y|x) = f0(y)
c(F0(y),F (x);θ)

cX(F (x);θ)
and mτ (x;θ) = argmin

y
E [ρτ (Y − y)c(F0(Y ),F (x);θ)] .

Concerning the partial derivatives of the copula density, we define

Djc =
∂c

∂uj
, j = 0, . . . , d, c′ = (D1c, . . . , Ddc)

⊤ and ċ =

(
∂c

∂θ1
, . . . ,

∂c

∂θp

)⊤
.

Here are the assumptions for our estimator.

(C0) {Yi}i≥1 is a strictly stationary process with β-mixing coefficient β(i) satisfying β(i) = O(i−ν),

as i→ ∞, for some ν > 1.

(C1) F̂ (x) − F (x) = Op(n
−1/2), where F̂ (x) = (F̂1(x1), . . . , F̂d(xd))

⊤ and F̂j(·) is an estimator for

Fj(·).

(C2) θ̂ − θ∗ = Op(n
−1/2), where θ̂ is an estimator of θ∗.

(C3) Let g denote either ċ or Djc, j = 0, . . . , d and x ∈ R
d be a given point of interest such that

F (x) ∈ (0, 1)d.

(i) c(1,F (x);θ∗) <∞, c(0,F (x);θ∗) <∞ and 0 < cX(F (x);θ∗) <∞;

(ii) (u,θ) 7→ g(u0,u;θ) is continuous in (u,θ) at (F (x),θ∗) uniformly in u0 ∈ [0, 1];

(iii) u0 7→ g(u0,F (x);θ∗) is continuous on [0, 1].
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(C4) f0 is continuous at mτ (x;θ
∗).

(C5) y 7→ fθ∗(y|x) is continuous at mτ (x;θ
∗) and fθ∗(mτ (x;θ

∗)|x) > 0.

Assumption (C3) is satisfied for many popular copula families. (C4) and (C5) are typically assumed

in quantile regression. Hence, in the following we will give some examples where (C0), (C1) and (C2)

are satisfied in the iid setting and the time series setting.

3.1.1 IID setting

Suppose that we have (Yi,Xi), i = 1, . . . , n, an independent and identically distributed (iid) sample

of n observations generated from the distribution of (Y,X). In this case, (C0) is trivially satisfied.

Concerning (C1), it is satisfied with the empirical distribution of Xj and its rescaled version which is

popular in copula estimation context and is defined by

F̂ s
j (xj) =

1

n+ 1

n∑

i=1

I(Xj,i ≤ xj).

Additionally, we can also use kernel smoothing method for estimating Fj(·), j = 1, . . . , d. Let k(·)
be a function which is a symmetric probability density function and h ≡ hn → 0 be a bandwidth

parameter. Then, a kernel smoothing estimator F̃j is given by

F̃j(xj) =
1

n

n∑

i=1

K

(
xj −Xj,i

h

)
,

where K(x) =
∫ x
−∞ k(t)dt. If nh4 → 0 holds for the bandwidth h, then for F̂j = F̃j , the following

condition is satisfied:

(C1’) F̂j(xj) = n−1
∑n

i=1 I(Xj,i ≤ xj) + op(n
−1/2),

from which (C1) follows. One advantage of using F̃j is that it results in a smooth estimate m̂τ (x),

whereas the empirical distribution or its rescaled version does not. As for (C2), one example of the

estimator θ̂ that satisfies (C2) in the literature is the maximum pseudo-likelihood (PL) estimator θ̂PL,

which maximizes

L(θ) =
n∑

i=1

log c
(
F̂ s
0 (Yi), F̂

s(Xi);θ
)
, (5)

where F̂ s(Xi) = (F̂ s
1 (X1,i), . . . , F̂

s
d (Xd,i))

⊤. The estimator θ̂PL was studied by several authors in-

cluding Genest et al. (1995), Klaassen and Wellner (1997), Silvapulle et al. (2004), Tsukahara (2005)
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and Kojadinovic and Yan (2011), etc. If the score function of c(u0,u;θ) satisfies the assumptions

(A.1)-(A.5) given in Tsukahara (2005), the PL estimator satisfies (C2) even when the copula family

is misspecified as checked in Noh et al. (2013).

3.1.2 Time series setting

Assumptions under which a copula-based Markov process satisfies α-mixing or β-mixing have been

studied by many authors. For example, if {Yi}i≥1 is a (stationary) univariate first-order Markov

process and the copula of (Yi, Yi−1) ≡ (Yi, Xi,1) satisfies certain conditions (see Proposition 2.1 of

Chen and Fan (2006)), then Assumption (C0) holds and hence (C1) also holds with any estimator

F̂j(·) satisfying (C1’) (see Rio (2000)). Following similar ideas, Rémillard et al. (2012) extended this

result to the case of copula-based multivariate first-order Markov process. As for copula-based Markov

processes of higher order, unfortunately such results are rare. The only related work that we have

found is Ibragimov (2009), who obtained a characterization of higher-order Markov processes in terms

of copulas, but he did not discuss the mixing properties of the resulting process.

Concerning Assumption (C2), if we consider an extension of the maximum pseudo likelihood

estimator studied by Genest et al. (1995) to the Markovian case, the resulting estimator satisfies (C2).

For example, suppose that we have a sample {(Yi, Xi) : i = 1, . . . , n} of a multivariate first-order

Markov process generated from (F0(·), F1(·), c(·, ·, ·, ·;θ∗)), where c(·, ·, ·, ·;θ∗) is the true parametric

copula density associated with (Zi,Zi−1) with Zi = (Yi, Xi)
⊤ up to the unknown value θ∗. If we

consider the following estimator for θ∗,

θ̂
dep
PL = argmax

θ∈Θ

n∑

i=2

log

{
c(Ûi, Ûi−1;θ)

q(Ûi−1;θ)

}
, (6)

where

F̂ s
0 (·) =

1

n+ 1

n∑

i=1

I(Yi ≤ ·), F̂ s
1 (·) =

1

n+ 1

n∑

i=1

I(Xi ≤ ·), Ûi = (F̂ s
0 (Yi), F̂

s
1 (Xi))

⊤,

q(u2, u3;θ) =

∫ 1

0

∫ 1

0
c(u0, u1, u2, u3;θ) du1du0,

then (C2) holds according to Theorem 1 in Rémillard et al. (2012) under the assumptions (A1)-(A4)

that they provided. For univariate copula-based first-order Markov models, a similar result can be

found in Chen and Fan (2006).

8



3.2 Asymptotic representation of the estimator m̂τ (x)

To realize the theoretical analysis of our estimator, we begin by introducing a few more notations:

• F̂0(y) = n−1
∑n

i=1 I(Yi ≤ y).

• ǫi ≡ ǫi(x;θ
∗) = Yi −mτ (x;θ

∗).

• e′(x) = E
[
ψτ (ǫi)c

′(F0(Y ),F (x);θ∗)
]
and ė(x) = E [ψτ (ǫi)ċ(F0(Y ),F (x);θ∗)] ,

where ψτ (y) = τ − I(y ≤ 0).

Now we are ready to present the asymptotic representation of the proposed estimator.

Theorem 3.1 Suppose that Assumptions (C0)-(C5) hold. Then, we have

√
n(m̂τ (x)−mτ (x;θ

∗)) =
1

f0(mτ (x;θ∗))c(F0(mτ (x;θ∗)),F (x);θ∗)
Un + op(1),

where

Un =
√
n(F̂ (x)− F (x))⊤e′(x) +

√
n(θ̂ − θ∗)⊤ė(x)

−
√
n
(
F̂0(mτ (x;θ

∗))− F0(mτ (x;θ
∗))
)
c(F0(mτ (x;θ

∗)),F (x);θ∗).

Theorem 3.1 implies that the estimator m̂τ (x) converges in probability tomτ (x;θ
∗) as n→ ∞. Hence,

when the copula family is misspecified, the estimator m̂τ (x) is no more consistent. In such situation,

since c(·;θ∗) is just the best approximation to the true copula density c(·), we have a bias in the

estimation of the true conditional quantile function m̂τ (x), which is (asymptotically) the difference

between mτ (x) and its best approximation mτ (x;θ
∗) among the function class {m(x;θ) : θ ∈ Θ}.

As an application of Theorem 3.1, we consider the asymptotic normality of the estimator, for which

we have to make a stronger assumption than (C2):

(C2’) θ̂ − θ∗ = n−1
∑n

i=1 ηi + op(n
−1/2), where ηi = η(U0,i,Ui;θ

∗) is a p-dimensional random vector

such that Eη = 0 and Eη⊤η <∞ and Ui = (U1,i, . . . , Ud,i)
⊤.

This stronger assumption also holds for θ̂PL in the iid setting and θ̂
dep
PL in the time series setting with

the same conditions for (C2). For the iid case, the function η is given by

η(U0,U ;θ) = J−1(θ)×K(U0,U ;θ), (7)
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where

J(θ) =

∫

[0,1]d+1

(
− ∂2

∂θ∂θ⊤ log c(u0,u;θ)

)
dC(u0,u)

and K(U0,U ;θ) is a p-dimensional vector whose k-th element is

∂

∂θk
log c(U0,U ;θ) +

d∑

j=0

∫

[0,1]d+1

(I(Uj ≤ uj)− uj)

(
∂2

∂θk∂uj
log c(u0,u;θ)

)
dC(u0,u).

Concerning the time series case, see Chen and Fan (2006) for the univariate case and Rémillard et al.

(2012) for the multivariate case. Replacing (C2) with (C2’) in the previous assumptions, we have

an asymptotic linear representation of the conditional quantile estimator m̂τ (x), which implies the

asymptotic normality of m̂τ (x).

Corollary 3.2 Suppose that Assumptions (C0)-(C1), (C1’), (C2’), (C3)-(C5) hold. Then, we have

√
n(m̂τ (x)−mτ (x;θ

∗))

=
1√
n

n∑

i=1

[ d∑

j=1

{I(Xj,i ≤ xj)− Fj(xj)} ej(x) + η⊤
i ė(x)− {I(Yi ≤ mτ (x;θ

∗))− F0(mτ (x;θ
∗))}

× c(F0(mτ (x;θ
∗)),F (x);θ∗)

]
[f0(mτ (x;θ

∗))c(F0(mτ (x;θ
∗)),F (x);θ∗)]−1 + op(1) (8)

where e′(x) = (e1(x), . . . , ed(x))
⊤.

Specifically, Corollary 3.2 implies that
√
n(m̂τ (x) − mτ (x;θ

∗)) follows asymptotically a normal

distribution with mean 0 and variance σ2 = Var(E1) + 2
∑∞

j=1Cov(Ej+1, E1), where Ei denotes each

summand in the summation of (8) (see Theorem 4.2 in Rio (2000)). Especially, since σ2 = Var(E1)

when the data are iid, we can estimate σ2 by an estimator σ̂2 = n−1
∑n

i=1

{
Êi − n−1

∑n
i=1 Êi

}2
, where

Êi is an estimator of Ei obtained by replacing all the unknown quantities in Ei by their corresponding

estimates, for example, θ∗ by θ̂ and F0 by F̂0. Thanks to this estimator σ̂, we can easily calculate the

confidence interval for mτ (x;θ
∗) using Corollary 3.2.

However, according to our simulation studies (see Section 4), the accuracy of the coverage of this

confidence interval seems to sensitively depend on the accuracy of the estimation of the unknown

quantities involved in Ei. Due to this, we propose to use a bootstrap method to approximate the

asymptotic variance of the estimator m̂τ (x). The bootstrap that we use for the iid data in our

simulations is outlined below:
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Step 0: Obtain the copula parameter estimate θ̂ from (5) and the marginal distribution estimates

F̃0 and F̃j using the kernel smoothing method with appropriate bandwidths h0,n and hj,n, j =

1, . . . , d.

Step 1: Generate n independent random vectors Ui = (U b
0,i, . . . , U

b
d,i)

⊤, i = 1, . . . , n from the

estimated copula c(u0, . . . , ud; θ̂), where Ui = (U0,i, . . . , Ud,i)
⊤.

Step 2: Let Y b
i = F̃−1

0 (U0,i) and X
b
j,i = F̃−1

j (Uj,i), j = 1, . . . , d.

Step 3: Repeating Steps 1 and 2 a large number of times, compute the bootstrap values

m̂b
τ (x), b = 1, . . . , B of the estimator m̂τ (x) and then calculate the estimate of the asymp-

totic variance using them:

σ̂2boot =
1

B

B∑

b=1

(m̂b
τ (x))

2 −
(

1

B

B∑

b=1

m̂b
τ (x)

)2

.

Following similar ideas but modifying Steps 0 and 1 (see Section 4.3 in Chen and Fan (2006)

and Section 2 in Rémillard et al. (2012)), we can estimate the asymptotic variance σ2 in the time

series setting using a bootstrap procedure. In Section 4, we investigate how the proposed bootstrap

procedures perform by checking the coverage probabilities of the confidence interval for m̂τ (x) based

on this procedure. In our simulations, we observe that it is important for satisfactory accuracy of the

coverage of the confidence interval to use the kernel smoothing estimates of the marginal distributions

following the concept of the smoothed bootstrap (Silverman and Young, 1987) in both the iid and

time series setting. If we use the empirical distribution or its rescaled version, the coverage probability

of the confidence interval does not approach the nominal confidence level at all.

4 Numerical Results

In this section, we firstly check whether the asymptotic theory for m̂τ (x) works both in the iid

setting and in the time series setting. Secondly, we compare our semiparametric estimator with some

competitors. For this purpose, we consider the following data generating processes (DGP):

• DGP A (F0(Y ), F1(X1)) ∼ Clayton copula with paramter α
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– The resulting quantile regression function is

mτ (x1) = F−1
0 ((1 + F1(x1)

−α(τ−α/(1+α) − 1))−1/α).

• DGP B (F0(Y ), F1(X1), . . . , Fd(Xd)) ∼ Gaussian copula with correlation matrix Σ =



1 ρ⊤

ρ ΣX




– The resulting quantile regression function is

mτ (x) = F−1
0


Φ




d∑

j=1

ajΦ
−1(Fj(xj)) +

√
1− ρ⊤aΦ−1(τ)






where a = (a1, . . . , ad)
⊤ = Σ−1

X
ρ and Φ(·) is the c.d.f. of a standard normal distribution.

Although we describe each DGP with the focus on the iid setting, it can be also described for the

time series setting. For example, using DGP A with Y = Yi, X1 = Yi−1 and F0 = F1 = F , we can

generate a sample {Yi}ni=1 from a univariate first-order Markov model. Then, the conditional quantile

function of Yi given Yi−1 = y is given by mτ (y) = F−1((1 + F (y)−α(τ−α/(1+α) − 1))−1/α). Table 1

shows the parameters of the copula and the marginal distributions of each DGP subspecialized from

DGPs A and B. All computations are done with R (R Development Core Team, 2011)

4.1 Verifying the asymptotic results about m̂τ (x)

In this section, to verify the established asymptotic results, we compute a confidence interval formτ (x)

either by the asymptotic representation or the bootstrap proposed in Section 3. By verifying whether

the empirical coverage probabilities (ECP) of the (1−α)-confidence interval for mτ (x) are close to the

nominal confidence level (1 − α), we indirectly check whether the estimator m̂τ (x) is asymptotically

normal.

First, concerning the iid setting, we generate 500 random samples of size n = 50, 100 and n = 200

from DGPs A.1, B.1 and B.2 and compute a confidence interval for mτ (x) using σ̂2 and Corollary

3.2. Table 2 shows the ECP of the (1 − α)-confidence interval for mτ (x) with α = 0.05 and 0.1. We

observe that depending on the location of the covariates and the quantile level, sometimes the ECP

has a quite different value from its nominal confidence level. As mentioned before, the main reason

for this is the inaccuracy of the estimation of the unknown quantities involved in the asymptotic
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Table 1: The copula parameters and the marginal distributions for each subspecialized DGP. Φν(·) is the c.d.f. of a random variable
t(ν).

DGP copula parameter marginal distribution mτ

A.1
α = 1 Yi ∼ N(0, 1), X1,i ∼ N(0, 1) Φ−1((1 + Φ(X1,i)

−1(τ−1/2
− 1))−1)

(Yi, X1,i)

A.2
α = 0.5 Yi, Yi−1 ∼ N(0, 1) Φ−1((1 + Φ(Yi−1)

−1/2(τ−1/3
− 1))−2)

(Yi, Yi−1)

B.1
ρ = 0.6 Yi ∼ N(1, 1), X1,i ∼ N(0, 1) 1 + 0.8Φ−1(τ) + 0.6X1,i

(Yi, X1,i)

B.2

Σ =















1 −0.5 0.9

−0.5 1 −0.4

0.9 −0.4 1















Yi ∼ U [0, 1], X1,i ∼ N(0, 1),

Φ(−0.17X1,i + 0.83X2,i + 0.41Φ−1(τ))X2,i ∼ N(0, 1)

(Yi, X1,i, X2,i)

B.3

Σ =





















1 0.3 0.9 0.7

0.3 1 0.5 0.25

0.9 0.5 1 0.5

0.7 0.25 0.5 1





















Yi ∼ U [0, 1], X1,i ∼ N(0, 1),

Φ(−0.20X1,i + 0.83X2,i + 0.33X3,i + 0.27Φ−1(τ))
X2,i ∼ N(0, 1), X3,i ∼ N(0, 1)

(Yi, X1,i, X2,i, X3,i)

B.4

Σ =





















1 0.6 0.3 0.4

0.6 1 0.5 0.2

0.3 0.5 1 0.6

0.4 0.2 0.6 1





















Yi, Yi−1 ∼ N(0, 1),

0.65Φ−1(Φ4(Xi))− 0.30Yi−1 + 0.44Φ−1(Φ4(Xi−1)) + 0.72Φ−1(τ)
Xi, Xi−1 ∼ t(4)

(Yi, Xi, Yi−1, Xi−1)



representation. As is typical in quantile regression, the asymptotic representation for m̂τ (x) involves

the conditional density fY |X(mτ (x)|x), which is equal to f0(mτ (x;θ
∗))c(F0(mτ (x;θ

∗)),F (x);θ∗)

when the copula family is correct. Since it controls the scale of the estimated asymptotic variance of

m̂τ (x), the estimation accuracy of it seems to affect the ECP a lot. To confirm our claim, we evaluate

the asymptotic representation using the true values of all involved quantities and compute the ECP.

As was expected, we observe in Table 3 that the recalculated ECP is close to the nominal confidence

level as the sample size increases. Finally, we compute the confidence interval and its ECP using the

bootstrap (B = 200) proposed in Section 3. Table 3 suggests that the bootstrap method seems to

solve the problem more or less.

To verify the asymptotic behavior of our estimator under misspecification, we generate data from a

Clayton copula according to DGP A.1 but in the estimation procedure we use a Gaussian copula. The

‘pseudo’-true quantile regression function is mτ (x1; ρ
∗) = Φ−1(τ)

√
1− ρ∗2 + ρ∗x1 with ρ∗ = 0.503 for

the Clayton copula with α = 1. Figure 1 shows the boxplots of the estimators m̂τ (x1) obtained from

500 random samples of size 200. We see that the observed values are symmetrically distributed around

the pseudo-true parameter mτ (x1; ρ
∗) instead of the true parameter mτ (x1) as expected according to

Theorem 3.1. The difference between these two quantities corresponds exactly to the asymptotic bias.

As for the time series setting, we generate 500 random samples of size n = 100 and 200 from

DGPs A.2 and B.4. To compute a confidence interval for mτ (x), we estimate σ2 using the bootstrap

described in Section 3 with B = 200. We observe that the bootstrap seems to work reasonably well

in terms of the ECP as shown in Table 4. The ECP when α = 0.1 seems to be somewhat higher than

the nominal confidence level but gets closer to it as the sample size grows.

4.2 Comparison with other methods

In this subsection we compare our semiparametric estimator both with semiparametric and nonpara-

metric competitors. We consider four estimators for comparison.

• m̂tc : our estimator when the true copula family is used.

• m̂uc : our estimator when the copula density family is adaptively selected using the data (see

the explanation below).

• m̂ll : local linear estimator with the bandwidth selected by cross-validation based on the check-

function.
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• m̂si : single index regression estimator based on a two stage estimation method; the single-index

coefficients are first estimated by the method of Zhu et al. (2012), and then the link function is

estimated in the same way as for m̂ll.

In addition to this, we consider the nonlinear quantile regression estimator m̂nl, which exploits the

true link function as a reference case. We use the R package quantreg to calculate m̂nl. Concerning the

estimator m̂uc, we use the simplified pair-copula decomposition of the copula density (R-vine) as in Noh

et al. (2013). The main idea of it is to decompose a multivariate copula to a cascade of bivariate copulas

so that we can take advantage of the relative simplicity of bivariate copula selection and estimation.

For details, we refer to Aas et al. (2009), Brechmann (2010), Noh et al. (2013) and references therein.

Specifically, we choose one decomposition of the copula density (among many R-vine structures) for the

data, and then choose the pair-copulas independently among ten candidate copulas: two are elliptical

(Gaussian and Student t) and eight are Archimedean (Clayton, Gumbel, Frank, Joe, Clayton-Gumbel,

Joe-Gumbel, Joe-Clayton and Joe-Frank) using the R package VineCopula. As a selection criterion

for bivariate copulas, we use the Akaike information criterion (AIC), which is shown to work in this

context (see Dißmann et al. (2013)).

For comparison with other methods, we consider DGPs B.2 and B.3 to generate data. For perfor-

mance evaluation of each method, we consider the empirical integrated mean squared error (IMSE),

which is defined by

IMSE =
1

N

N∑

l=1

ISE(m̂(l)
τ ) =

1

N

N∑

l=1

[
1

I

I∑

i=1

(
m̂(l)

τ (xi)−mτ (xi)
)2
]
,

where {xi, i = 1, . . . , I} is a fixed evaluation set which corresponds to a random sample of size I = 500

generated from the distribution of X, m̂(l)(·) is the estimated regression function from the l-th data

sample. As expected, the estimator m̂nl performs best in both DGPs. Our estimator m̂tc, which uses

the information about the copula family, ranks the second. Additionally, even the estimator m̂uc is

a bit behind m̂tc in performance due to the pair-copula selection step before the estimation, but it is

still advantageous over the other semiparametric estimator m̂si and the nonparametric estimator m̂np.

From this observation, we see that when the true DGP can be described using a certain copula which

belongs to the copula family under consideration, which is the case here, our proposed methods can

be a good choice in quantile regression. However, the performance of our estimators may depend on

whether the true copula density fits into the copula family under our consideration or not. To see the
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impact of it, we consider an additional DGP.

• DGP C Y = m(X1, X2, X3) + σǫ, where ǫ ∼ N(0, 1) independent of X.

– m(X1, X2, X3) = Ψ(−0.3X1+0.9X2+0.3X3) where Ψ is the c.d.f. of the standard Cauchy

distribution and σ = 0.1

– The resulting quantile regression function is Ψ(−0.3X1 + 0.9X2 + 0.3X3) + 0.1Φ−1(τ).

– X = (X1, X2, X3)
⊤ is multivariate normal with mean 0 and cov(Xj1 , Xj2) = 0.5|j1−j2|.

Table 7 shows the performance of each method. Note that since we have no knowledge about the

true copula, the estimator m̂tc is not available. In this case, as before the estimator m̂nl performs best

but the single-index estimator ranks the second in most cases. However, our estimator m̂uc still shows

comparable performance to m̂si and performs better than the nonparametric estimator m̂np. This

suggests that the copula family under consideration is flexible enough to approximate the true copula

density in a certain degree although it does not include the density. Additionally, it also implies that

our method has the advantage over the classical single-index model and that it is more flexible and

adapts better to different settings.

5 Empirical Application

To illustrate the usefulness of our method, we analyze the historical volatilities of Yahoo({Yi}) and

Google({Xi}) companies over a nine-year period (2004-2013, 2160 trading days). Every 5 trading days

we compute the standard deviation of the log returns of each company and consider it as the historical

volatility of the period. The volatilities of both companies over the whole period are plotted in Figure

2 (432 observations for each time series). When the volatility data for both companies in a certain

length of period until a particular time point is given ({(Yi, Xi), i = 1, . . . , n}), we consider a problem

of predicting the volatility of the Yahoo company for the following period consisting of 5 trading days

(Yn+1) using various copula-based estimation models considered in this work. For prediction, we will

use the conditional median estimate from each model. Here is the description of each model (M1-M6):

• (Yi, Yi−1) ∼ C(·, ·; θ) ⇒ Yi|Yi−1

M1 - C: Gaussian copula, M2 - C: Student t copula

• (Yi, Xi) ∼ C(·, ·; θ) ⇒ Yi|Xi

M3 - C: Gaussian copula, M4 - C: Student t copula
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• (Yi, Xi, Yi−1, Xi−1) ∼ C(·, ·, ·, ·;θ) ⇒ Yi|Xi, Yi−1, Xi−1

M5 - C: Gaussian copula, M6 - C: Student t copula

M1 and M2 only consider temporal dependence between the returns of the Yahoo company for pre-

diction, whereas M3 and M4 consider both interdependence between the returns of the two companies

and temporal dependence in each company’s returns. Different from these models, M5 and M6 ignore

temporal dependence and only focus on interdependence for prediction. To evaluate the performance

of each model, we calculate the predicted value of Yn+1 repeatedly as we slide the time window of

size n = 50 (250 trading days = 1 year) by one week (5 trading days), and compare the predicted

values with the observed ones. From Figure 2, since it is clear that there exist both temporal depen-

dence and interdependence, we expect that Models M3 and M4 considering both types of dependence

will be better in prediction than the models considering just one of them. Before fitting the models,

we checked whether the data of each company in each window satisfy at least stationarity using the

Phillips-Perron unit root test (Phillips and Perron, 1988). The tests never reject the stationarity

assumption for both time series.

Table 8 shows the prediction performance of each model measured by the criterion (PRED =
∑382

k=1(Ŷk − Yk)
2, k is an index for denoting evaluation points). As was expected, we observe that

considering both dependence is better for prediction than only considering one kind of dependence

regardless of the kind of copula used. This finding suggests that our extension to the multiple covariates

case seems to be a useful contribution to the implementation of such idea. Additionally, from the fact

that M5 and M6 are comparable with M3 and M4 in performance, we see that for these data the inter-

correlation between two time series is a more important factor for prediction than the auto-correlation

in the time series but this might not be the case in other data. Finally, one might think that since

the current information (Xn+1) of the other company (Google), which might have some link with the

company of interest (Yahoo), is not always available for the prediction (of Yn+1), the model has some

limitation in practice. However, considering stocks of a company which has many branches overseas,

such current information is available due to time difference.

6 Concluding Remarks

We proposed a new semiparametric conditional quantile estimation method using copula-based mul-

tivariate models, especially with the focus on the extension to the case of multiple covariates. We
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established the asymptotic properties of our estimator under general assumptions, which cover both

the iid and the dependent case taking misspecification into account. Although we present some ex-

amples which fit into our theoretical framework, other interesting examples could be included in the

proposed methodology. One example is higher-order Markov β−mixing processes. For such data, the

construction of a consistent copula parameter estimator, which is a key assumption for the validity of

our copula-based method, needs more investigation. It is not only a good future research topic, but

also an important step to broaden the application of our work.
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Appendix

In this appendix, we first prove a technical lemma and then present the proof of Theorem 3.1.

Lemma 6.1 Define An(t) =
∑

i (ρτ (ǫi − t/
√
n)− ρτ (ǫi)) c(F̂0(Yi), F̂ (x); θ̂). If the assumptions (C0)-

(C5) hold, then we have

An(t) = −tUn +
1

2
t2f0(mτ (x;θ

∗))c(F0(mτ (x;θ
∗)),F (x);θ∗) + op(1),

where

Un =
√
n(F̂ (x)− F (x))⊤e′(x) +

√
n(θ̂ − θ∗)⊤ė(x)

−
√
n
(
F̂0(mτ (x;θ

∗))− F0(mτ (x;θ
∗))
)
c(F0(mτ (x;θ

∗)),F (x);θ∗).
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Proof.

Using Knight’s (1998) identity, ρτ (u − v) − ρτ (u) = −vψτ (u) + r(u, v), with r(u, v) =
∫ v
0 (I(u ≤

s)− I(u ≤ 0)) ds, An(t) can be written as An(t) = −tA1,n +A2,n(t), where

A1,n =
1√
n

∑

i

ψτ (ǫi)c(F̂0(Yi), F̂ (x); θ̂) and A2,n(t) =
∑

i

r(ǫi, t/
√
n)c(F̂0(Yi), F̂ (x); θ̂).

Using a first-order Taylor expansion, we have

A1,n = n−1/2
n∑

i=1

ψτ (ǫi)c(F0(Yi),F (x);θ∗) +A11,n +A12,n +A13,n, (9)

where

A11,n = n−1/2
n∑

i=1

ψτ (ǫi)(F̂0(Yi)− F0(Yi))D0c(Ũ0,i, Ũi; θ̃i),

A12,n = n−1/2
n∑

i=1

ψτ (ǫi)(F̂ (x)− F (x))⊤c′(Ũ0,i, Ũi; θ̃i),

A13,n = n−1/2
n∑

i=1

ψτ (ǫi)(θ̂ − θ∗)⊤ ċ(Ũ0,i, Ũi; θ̃i),

with Ũ0,i = F0(Yi) + ti,n(F̂0(Yi)− F0(Yi)), Ũi = F (x) + ti,n(F̂ (x)− F (x)) and θ̃i = θ∗ + ti,n(θ̂ − θ∗)

for some random quantity ti,n ∈ [0, 1]. By adding and subtracting D0c(F0(Yi),F (x);θ∗) in the sum,

decompose further the term A11,n as

A11,n = n−1/2
n∑

i=1

ψτ (ǫi)(F̂0(Yi)− F0(Yi))D0c(F0(Yi),F (x);θ∗) +R1,n,

where

R1,n = n−1/2
n∑

i=1

ψτ (ǫi)(F̂0(Yi)− F0(Yi))
[
D0c(Ũ0,i, Ũi; θ̃i)−D0c(F0(Yi),F (x);θ∗)

]
.

By Assumption (C3), max1≤i≤n

∣∣∣D0c(Ũ0,i, Ũi; θ̃i)−D0c(F0(Yi),F (x);θ∗)
∣∣∣ = op(1). Moreover, by

Assumption (C0) and Donsker’s Theorem, see Theorem 7.2 in Rio (2000), supy |F̂0(y) − F0(y)| =
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Op(n
−1/2). So R1,n = op(1). Thus,

A11,n = n−1/2
n∑

i=1

ψτ (ǫi)(F̂0(Yi)− F0(Yi))D0c(F0(Yi),F (x);θ∗) + op(1). (10)

Now, we turn to the second term A12,n. Following the same arguments as for A11,n, by Assumptions

(C1) and (C3), we have

A12,n = n−1/2
n∑

i=1

ψτ (ǫi)(F̂ (x)− F (x))⊤c′(F0(Yi),F (x);θ∗) + op(1)

=
√
n(F̂ (x)− F (x))⊤e′(x) + op(1), (11)

where, in the last equality, we used the weak law of large numbers and Assumption (C1).

Similarly, by Assumptions (C2) and (C3), the last term A13,n can be expressed as

A13,n =
√
n(θ̂n − θ∗)⊤ė(x) + op(1). (12)

Recollecting the elements (10), (11), (12) and (9) gives

A1,n = n−1/2
n∑

i=1

ψτ (ǫi)c(F0(Yi),F (x);θ∗)+
√
nVn+

√
n(F̂ (x)−F (x))⊤e′(x)+

√
n(θ̂n−θ∗)⊤ė(x)+op(1),

where Vn = n−2
∑

i,j h(Yi, Yj) is a V-statistic, with

h(Yi, Yj) =
1

2
[ψτ (Yi −mτ (x;θ

∗))(I(Yj ≤ Yi)− F0(Yi))D0c(F0(Yi),F (x);θ∗)

+ψτ (Yj −mτ (x;θ
∗))(I(Yi ≤ Yj)− F0(Yj))D0c(F0(Yj),F (x);θ∗)] .

By Assumption (C0), using Hoeffding’s projection method and applying Proposition 2 in Denker and

Keller (1983), we get that

Vn = n−1
n∑

i=1

λ(Yi) + op(n
−1/2), (13)

where

λ(y) = E [ψτ (Y −mτ (x;θ
∗))(I(y ≤ Y )− F0(Y ))D0c(F0(Y ),F (x);θ∗)] .
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Using Assumption (C3)-(i), some easy calculations show that,

λ(y) = −ψτ (y −mτ (x;θ
∗))c(F0(y),F (x);θ∗)

−{I(y ≤ mτ (x;θ
∗))− F0(mτ (x;θ

∗))} c(F0(mτ (x;θ
∗)),F (x);θ∗).

We conclude that A1,n = n−1/2Un + op(1), where Un is defined in the statement of the lemma.

We now turn to A2,n(t) which can be written as,

A2,n(t) =
n∑

i=1

r(ǫi, t/
√
n)c(F0(Yi),F (x);θ∗) +R2,n(t),

where R2,n(t) =
∑

i r(ǫi, t/
√
n)(c(F̂0(Yi), F̂ (x); θ̂)−c(F0(Yi),F (x);θ∗)). First we show that R2,n(t) =

op(1). Since, by Assumption (C3), max1≤i≤n

∣∣∣c(Ũ0,i, Ũi; θ̃i)− c(F0(Yi),F (x);θ∗)
∣∣∣ = op(1), it suffices

to prove that
∑n

i=1 r(ǫi, t/
√
n) = Op(1).

E(r(ǫi, t/
√
n)) =

∫ t/
√
n

0
[F0(s+mτ (x;θ

∗))− F0(mτ (x;θ
∗))]ds

=

∫ t/
√
n

0
sf0(mτ (x;θ

∗) + zs)ds, for some z ∈ [0, 1]

=
t2

2n
f0(mτ (x;θ

∗)) +
∫ t/

√
n

0
s[f0(mτ (x;θ

∗) + zs)− f0(mτ (x;θ
∗))]ds

=
t2

2n
f0(mτ (x;θ

∗)) + o(n−1),

where, in the last equality, we used Assumption (C4). For the variance, observe that,

Var

[
n∑

i=1

r(ǫi, t/
√
n)

]
≤

n∑

i=1

E
[
r2(ǫi, t/

√
n)
]
+ 2n

n−1∑

i=1

|Cov(r(ǫ1, t/
√
n), r(ǫi+1, t/

√
n))|.

Since r2(ǫi, t/
√
n) ≤ |t|√

n
r(ǫi, t/

√
n),
∑n

i=1 E(r
2(ǫi, t/

√
n)) = O(n−1/2). Also, by the Cauchy-Schwarz’s

inequality, we deduce that if n− 1 ≥ kn,

n

kn∑

i=1

|Cov(r(ǫ1, t/
√
n), r(ǫi+1, t/

√
n))| ≤ n

kn∑

i=1

E(r2(ǫi, t/
√
n)) = O(kn/

√
n),
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for any integer kn → ∞. On the other hand, by Assumption (C0), using Billingsley’s inequality, see

e.g. Lemma 3 in Doukhan (1994), we also have that, for sufficiently large n,

n
n−1∑

i=kn+1

|Cov(r(ǫ1, t/
√
n), r(ǫi+1, t/

√
n))| ≤ 16t2

∑

i>kn

β(i) = O(1)
∑

i>kn

i−ν = O(k1−ν
n ) = o(1),

since ν > 1. So, taking kn = ⌊nα⌋, for some 0 < α < 1/2, yields Var(
∑n

i=1 r(ǫi, t/
√
n)) = o(1). We

conclude that,
∑n

i=1 r(ǫi, t/
√
n) = Op(1).

By similar arguments, using Assumption (C0), (C3) and (C5), one can also show that

E

[
n∑

i=1

r(ǫi, t/
√
n)c(F0(Yi),F (x);θ∗)

]
=
t2

2
fθ∗(mτ (x;θ

∗)|x)cX(F (x);θ∗) + o(1), and

Var

[
n∑

i=1

r(ǫi, t/
√
n)c(F0(Yi),F (x);θ∗)

]
= o(1).

This implies that

A2,n(t) =
1

2
t2fθ∗(mτ (x;θ

∗)|x)cX(F (x);θ∗) + op(1)

=
1

2
t2f0(mτ (x;θ

∗))c(F0(mτ (x;θ
∗)),F (x);θ∗) + op(1),

which concludes the proof of Lemma 6.1. �

Proof of Theorem 3.1.

First, observe that, by definition,

argmin
t
An(t) = argmin

t

[
n∑

i=1

ρτ (Yi − (mτ (x;θ
∗) + t/

√
n))c(F̂0(Yi), F̂ (x); θ̂)

]

=
√
n(m̂τ (x)−mτ (x;θ

∗)).

Also, since ρτ is a convex function and c(F̂0(Yi), F̂ (x); θ̂) ≥ 0, An is a convex function of t. Thanks

to Lemma 6.1 and the quadratic approximation lemma (Basic Corollary in Hjort and Pollard (1993))
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with Un = Op(1), we have

√
n(m̂τ (x)−mτ (x;θ

∗)) =
1

f0(mτ (x;θ∗))c(F0(mτ (x;θ∗)),F (x);θ∗)
Un + op(1),

which is the desired result. �
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E. Bouyé and M. Salmon. Dynamic copula quantile regressions and tail area dynamic dependence in

forex markets. The European Journal of Finance, 15:721–750, 2009.

E. C. Brechmann. Truncated and simplified regular vines and their applications. PhD thesis, Technische

Universität München, 2010.

X. Chen and Y. Fan. Estimation of copula-based semiparametric time series models. Journal of

Econometrics, 130:307–335, 2006.

X. Chen, R. Koenker, and Z. Xiao. Copula-based nonlinear quantile autoregression. Econometrics

Journal, 12, 2009.

M. Denker and G. Keller. On U -statistics and v. Mises’ statistics for weakly dependent processes. Z.

Wahrsch. Verw. Gebiete, 64:505–522, 1983.

J. Dißmann, E. C. Brechmann, C. Czado, and D. Kurowicka. Selecting and estimating regular vine

copulae and application to financial returns. Computational Statistics and Data Analysis, 59:52–69,

2013.

P. Doukhan. Mixing. Lecture Notes in Statistics. Springer-Verlag, New York, 1994.

C. Genest, K. Ghoudi, and L. Rivest. A semiparametric estimation procedure of dependence param-

eters in multivariate families of distributions. Biometrika, 82:543–552, 1995.

N. L. Hjort and D. Pollard. Asymptotics for minimisers of convex process. Technical report, Yale

University, 1993.

23



R. Ibragimov. Copula-based characterizations for higher order Markov processes. Econometric Theory,

25:819–846, 2009.

C. A. J. Klaassen and J. A. Wellner. Efficient estimation in the bivariate normal copula model: normal

margins are least favourable. Bernoulli, 3:55–77, 1997.

R. Koenker. Quantile Regression. Cambridge Universitey Press, 2005.

R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46:33–50, 1978.

I. Kojadinovic and J. Yan. A goodness-of-fit test for multivariate multiparameter copulas based on

multiplier central limit theorems. Statistics and Computing, 21:17–30, 2011.

H. Noh, A. El Ghouch, and T. Bouezmarni. Copula-based regression estimation and inference. Journal

of the American Statistical Association, 108:676–688, 2013.

P. Phillips and P. Perron. Testing for a unit root in time series regression. Biometrika, 75:335–346,

1988.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2011. URL http://www.R-project.org/.

B. Rémillard, N. Papageogiou, and F. Soustra. Copula-based semiparametric models for multivariate

time series. Journal of Multivariate Analysis, 110:30–42, 2012.
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DGP x τ
α = 0.05 α = 0.1

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

A.1

0.2 0.946 0.941 0.946 0.905 0.901 0.953

0.00 0.5 0.973 0.964 0.964 0.931 0.926 0.926

0.8 0.946 0.950 0.942 0.907 0.896 0.882

0.2 0.960 0.950 0.953 0.930 0.906 0.911

-1.64 0.5 0.959 0.959 0.960 0.915 0.923 0.918

0.8 0.924 0.938 0.938 0.881 0.894 0.892

B.1

0.2 0.947 0.951 0.948 0.898 0.895 0.901

0.00 0.5 0.956 0.946 0.958 0.913 0.899 0.911

0.8 0.952 0.948 0.962 0.912 0.888 0.918

0.2 0.846 0.879 0.891 0.792 0.825 0.829

-1.64 0.5 0.931 0.957 0.953 0.887 0.903 0.898

0.8 0.961 0.958 0.959 0.932 0.906 0.914

B.2

0.2 0.892 0.904 0.924 0.869 0.837 0.885

(0.00,0.00) 0.5 0.898 0.917 0.922 0.828 0.860 0.865

0.8 0.886 0.918 0.932 0.842 0.868 0.876

0.2 0.928 0.930 0.930 0.909 0.884 0.886

(1.53,1.53) 0.5 0.943 0.940 0.927 0.902 0.887 0.879

0.8 0.945 0.939 0.941 0.915 0.905 0.882

Table 2: ECPs of the confidence interval for mτ (x) in the iid setting based on the asymptotic repre-
sentation in Corollary 3.2.

DGP Method x τ
α = 0.05 α = 0.1

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

B.2

TRUE

0.2 0.947 0.935 0.959 0.902 0.883 0.893

(0.00,0.00) 0.5 0.936 0.925 0.947 0.867 0.891 0.885

0.8 0.933 0.954 0.943 0.885 0.900 0.890

BT

0.2 0.950 0.946 0.948 0.896 0.906 0.906

(0.00,0.00) 0.5 0.950 0.948 0.952 0.884 0.890 0.898

0.8 0.932 0.940 0.960 0.876 0.886 0.878

Table 3: ECPs of the confidence interval for mτ (x) based on the true asymptotic representation and
the bootstrap approach.
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DGP x τ
α = 0.05 α = 0.1

n = 100 n = 200 n = 100 n = 200

A.2

0.2 0.948 0.958 0.926 0.920

0.00 0.5 0.962 0.954 0.934 0.924

0.8 0.948 0.956 0.914 0.906

B.4

0.2 0.952 0.952 0.924 0.902

(0.56,0.00,-0.27) 0.5 0.954 0.952 0.920 0.898

0.8 0.956 0.952 0.920 0.908

Table 4: ECPs of the confidence interval for mτ (x) in the time series setting based on the bootstrap
approach.
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Figure 1: Boxplots of m̂τ (x1) at x1 = F−1
1 (0.2) = −0.8416 for different quantile levels (τ = 0.2, 0.5

and 0.8). The horizontal solid line represents mτ (x1; ρ
∗) and the dotted line represents mτ (x1).
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N τ m̂tc m̂uc m̂np m̂si m̂nl

50 0.2 2.847 3.377 5.987 4.366 1.870

0.5 2.561 2.941 6.265 3.773 1.406

0.8 3.052 3.284 5.517 4.499 1.685

100 0.2 1.280 1.569 3.244 2.252 0.864

0.5 1.136 1.384 2.829 1.701 0.701

0.8 1.356 1.577 3.176 2.259 0.806

200 0.2 0.634 0.796 1.778 1.029 0.370

0.5 0.559 0.709 1.540 1.005 0.307

0.8 0.660 0.795 1.765 1.211 0.428

Table 5: 1000× IMSE for DGP B.2

N τ m̂tc m̂uc m̂np m̂si m̂nl

50 0.2 2.636 4.035 6.565 4.058 1.092

0.5 2.555 3.808 6.329 3.687 0.931

0.8 3.142 4.085 6.448 4.374 1.092

100 0.2 1.281 1.709 3.690 1.724 0.542

0.5 1.239 1.608 3.102 1.483 0.453

0.8 1.451 1.740 4.111 1.789 0.572

200 0.2 0.614 0.800 1.863 1.028 0.259

0.5 0.579 0.725 1.659 0.888 0.207

0.8 0.662 0.784 2.022 0.983 0.268

Table 6: 1000× IMSE for DGP B.3

N τ m̂uc m̂np m̂si m̂nl

50 0.2 4.106 4.167 3.609 0.419

0.5 3.835 3.904 3.046 0.300

0.8 4.449 4.918 4.445 0.427

100 0.2 2.422 3.286 2.393 0.190

0.5 2.037 3.116 2.174 0.146

0.8 2.416 3.800 2.597 0.193

200 0.2 1.562 2.206 1.881 0.093

0.5 1.286 1.975 1.157 0.087

0.8 1.539 2.226 1.409 0.091

Table 7: 1000× IMSE for DGP C
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M1 M2 M3 M4 M5 M6

PRED ×105 24.659 24.610 21.811 21.131 21.634 21.107

Table 8: PRED ×105 for each prediction method
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Figure 2: Plot of the historical volatilities for both companies.
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