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Abstract: When facing multivariate covariates, general semiparametric
regression techniques come at hand to propose flexible models that are
unexposed to the curse of dimensionality. In this work a semiparametric
copula-based estimator for conditional quantiles is investigated for both
complete or right-censored data. In spirit, the methodology is extending the
recent work of Noh, El Ghouch and Bouezmarni [34] and Noh, El Ghouch
and Van Keilegom [35], as the main idea consists in appropriately defin-
ing the quantile regression in terms of a multivariate copula and marginal
distributions. Prior estimation of the latter and simple plug-in lead to an
easily implementable estimator expressed, for both contexts with or with-
out censoring, as a weighted quantile of the observed response variable.
In addition, and contrary to the initial suggestion in the literature, a semi-
parametric estimation scheme for the multivariate copula density is studied,
motivated by the possible shortcomings of a purely parametric approach
and driven by the regression context. The resulting quantile regression es-
timator has the valuable property of being automatically monotonic across
quantile levels. Additionally, the copula-based approach allows the analyst
to spontaneously take account of common regression concerns such as inter-
actions between covariates or possible transformations of the latter. From a
theoretical prospect, asymptotic normality for both complete and censored
data is obtained under classical regularity conditions. Finally, numerical ex-
amples as well as a real data application are used to illustrate the validity
and finite sample performance of the proposed procedure.
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1. Introduction

Quantile regression is a prevailing method when it comes to investigating the
possible relationships between a d-dimensional covariate X and a response
variable T . Since the seminal work of Koenker and Basset [23], quantile re-
gression has received notable interest in the literature on theoretical and ap-
plied statistics as a very attractive alternative to the classical mean regres-
sion model based on quadratic loss. As the latter only captures the central
tendency of the data, there are many cases and nice examples where mean
regression is uninformative with respect to studying the conditional upper or
lower quantiles. For an interesting application, see for example Elsner, Kossin
and Jagger [11]. A comprehensive review of quantile regression as a robust (to
outliers) and flexible (to error distribution) method can be found in Koenker
[22].

The first main concern of this paper is related to the estimation of a quan-
tile regression function where the response variable T is completely observed.
A wide literature on the subject includes fully parametric, semiparametric and
nonparametric methodologies. When several covariates are to be taken into ac-
count, fully parametric methodologies are known to be highly sensitive to model
misspecification and may lack the flexibility needed for an adequate modelling.
On the other hand, in spite of their great flexibility, fully nonparametric methods
such local quantile regression as proposed by Spokoiny, Wang and Härdle [42]
are typically affected by the curse of dimensionality. In light of these restrictions,
semiparametric estimation procedures such as a single-index regression (Wu, Yu
and Yu [46], Zhu, Huang and Li [48]) come at hand when the dimension of the
covariate is high.

In this context, Noh, El Ghouch and Bouezmarni [34] and Noh, El Ghouch
and Van Keilegom [35] suggested to estimate a regression function based on the
copula that defines the dependence structure between the variables of interest.
The central idea of the methodology is to express the conditional quantile func-
tion in terms of a copula density and marginal distributions. Such an approach
allows the analyst to take profit of copula modelling and straightforwardly avoid
common regression issues such as the consideration of transformed covariates
and the possible inclusion of interactions among the latter. In their original
paper, Noh, El Ghouch and Bouezmarni [34] suggested subsequently to leave
the marginal distributions unspecified while assuming a parametric model for
the copula. Overall, their suggested approach results in a semiparametric re-
gression estimator that is not exposed to the curse of dimensionality. However,
Dette, Van Hecke and Volgushev [8] highlighted that this proposed method-
ology may suffer as such from possible shortcomings that are induced by the
misspecification of the parametric copula. The first contribution of this paper
is to circumvent such issues by proposing an alternative semiparametric estima-
tion strategy for the copula itself that is motivated by the regression context.
The resulting regression estimator is flexible for multidimensional data, easy to
implement and does not require any iterative procedure in opposition to existing
semiparametric alternatives.
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The second objective of this paper is to propose a copula-based methodology
in the context of survival analysis, where right censoring of T may arise. In this
situation, instead of fully observing the variable of interest, one only observes
the minimum of it and a censoring variable. For instance, in clinical studies,
censoring may occur because of the withdrawal of patients from the study, the
end of the follow-up period, etc. In this context, quantile regression becomes
attractive as an alternative to popular regression techniques like the Cox pro-
portional hazards model or the accelerated failure time model, as is argued in
Koenker and Bilias [24], Koenker and Geling [25] and Portnoy [37]. Additional
appealing properties of the method include the fact that it allows for modelling
heterogeneity of the variance and it does not necessarily impose a proportional
effect of the covariates on the hazard over the duration time as opposed to the
popular Cox model.

As is the case for the uncensored situation, existing literature on censored
quantile regression includes fully parametric, semiparametric and nonparamet-
ric methodologies such as local linear smoothing proposed by El Ghouch and
Van Keilegom [10]. The introduction of censored quantile regression goes back
to Powell [39] for linear models and fixed censoring, that is, presuming that the
censoring times are known for all observations. For random censoring, a wide
literature may be found, among others, in Ying, Jung and Wei [47], Portnoy
[37], Wang and Wang [45] and Leng and Tong [27]. Still, similarly to regression
models with complete observations, a linear approach may be too restrictive for
real data applications.

For semiparametric models in the context of censored quantile regression, an
interesting approach was proposed by Bücher, El Ghouch and Van Keilegom
[2] where a single-index model for the conditional quantile function is studied
under the assumption of independence between the covariates and the censor-
ing variable. The single-index structure assumes that the objective function
depends linearly on the covariates through an unknown link function, making
the proposed model (i.e. under the aforementioned assumption) insensitive to
the curse of dimensionality since the nonparametric part is of dimension one.
However, besides the latter single-index model, existing literature on flexible
multidimensional methodologies is rather sparse.

Hence, the second main contribution of this paper is to extend this liter-
ature on multivariate quantile regression estimation in the possible presence
of censored data by providing a rich, flexible and robust alternative based on
the copula function. In essence, the proposed methodology mimics the work
of Noh, El Ghouch and Bouezmarni [34] and Noh, El Ghouch and Van Kei-
legom [35], as the central idea is here again to rewrite the conditional quan-
tile function in terms of marginal distributions and an appropriate copula den-
sity. Employing the proposed multivariate copula density estimation strategy,
the resulting regression estimator enjoys the same qualities as for complete
observations. Consequently, by taking advantage of copula modelling
in regression models, the proposed methodology provides a new class of
estimators that allow practitioners to flexibly analyse multidimensional survival
data.
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The rest of this paper is organised as follows. Developing a semiparametric
copula-based estimation procedure for quantile regression with complete obser-
vations is the topic of Section 2. Section 3 develops the methodology for the
copula-based quantile regression estimator when confronted to possible censor-
ing of the responses. The asymptotic properties of the proposed estimators for
both complete and censored data are obtained in Section 4 and the finite sam-
ple performance is illustrated by means of Monte Carlo simulations in Section
5, where both the semiparametric copula estimation strategy and the overall
performance of our estimator for complete and censored data are investigated.
Section 6 provides a brief application to real censored data. Lastly, the proofs
of our asymptotic properties are deferred to the Appendix.

2. Copula-based estimator for complete data

2.1. Background for copula-based quantile regression

Let X = (X1, . . . , Xd)
T be a covariate vector of dimension d ≥ 1 and T be

a (time-to-event) response variable with marginal continuous cumulative dis-
tribution functions (c.d.f.) F1, . . . , Fd and FT , respectively. Throughout this
paper, we denote by fj and fT the density of Xj , j = 1, . . . , d, and T , respec-
tively. From the pioneering work of Sklar [41], for a given x = (x1, . . . , xd)

T,
the c.d.f. of (T,X) evaluated at (t,x) can be expressed as CTX(FT (t),F (x)),
where F (x) = (F1(x1), . . . , Fd(xd))

T and CTX is the unique copula distribution
of (T,X) defined by CTX(u0, u1, . . . , ud) = P(U0 ≤ u0, U1 ≤ u1, . . . , Ud ≤ ud),
with U0 = FT (T ) and Uj = Fj(Xj), j = 1, . . . , d. From Sklar’s theorem, it is
clear that the copula CTX disjoints the marginal behaviors of T and X from
their dependence structure, hence allowing a great modelling flexibility. For a
book length treatment of copulas, see Nelsen [33] and Joe [21].

The object of interest of this paper, the τ -th conditional quantile function of
the dependent variable T given X = x, denoted by mτ (x), is defined for any
τ ∈ (0, 1) as mτ (x) = inf{t : FT |X(t|x) ≥ τ} where FT |X is the conditional
c.d.f. of T given X, or, equivalently,

mτ (x) = argmin
a

E
(
ρτ (T − a)|X = x

)
, (1)

where ρτ (u) = u(τ − 1(u ≤ 0)) is the so-called “check” function, and 1(·) is the
indicator function.

To motivate our approach, we suppose in this section that there is no cen-
soring and that we observe an i.i.d. sample (Ti,Xi), i = 1, . . . , n, from (T,X).
In this context, following the definition of a copula function, Noh, El Ghouch
and Van Keilegom [35] noted that the conditional quantile function of T given
X = x may be expressed as

mτ (x) = argmin
a

E

[
ρτ (T − a) cTX(FT (T ),F (x))

]
, (2)
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where cTX(u0,u) ≡ cTX(u0, u1, . . . , ud) = ∂d+1CTX(u0, u1, . . . , ud)/∂u0∂u1 . . .
∂ud is the copula density corresponding to CTX . Consequently, any given esti-
mators ĉTX , F̂T and F̂j of cTX , FT and Fj , j = 1, . . . , d, respectively, automat-
ically yield an estimator of mτ (x) given by

m̂τ (x) = argmin
a

n∑

i=1

ρτ (Ti − a) ĉTX(F̂T (Ti), F̂ (x)), (3)

with F̂ (x) = (F̂1(x1), . . . , F̂d(xd))
T. As indicated earlier, Noh, El Ghouch and

Van Keilegom [35] suggest to estimate the marginals nonparametrically and to
consider a parametrization of the copula density, that is, assume that the latter
belongs to a certain parametric family of copula densities C = {c(u0,u;θ),θ ∈
Θ ⊂ R

p}.

2.2. A motivational one-dimensional example

In this paper however, we consider an alternative estimation approach for the
copula density, motivated by the issues related to the possible misspecification of
the parametric approach. To highlight this shortcoming and illustrate how one
may circumvent it, we consider in this section the simplistic example reported by
Dette, Van Hecke and Volgushev [8] with a single covariate, where (Ti, X1i), i =
1, . . . , n, are i.i.d. random variables with Ti = (X1i − 0.5)2 + σǫi, X1i ∼ U [0, 1],
σ = 0.025 and ǫi, i = 1, . . . , n, are i.i.d. standard normal random variables. In
this situation, where the true quantile regression function is non-monotonic in
the covariate, it is found that most of the common parametric copula families
still yield a monotone estimation of the regression function, thereby providing a
rather poor fit of the latter. This is illustrated in Figure 1a, where the estimation
is carried out for τ = 0.5, n = 500 and using three common parametric copulas.

As the roots of the above-mentioned limitation are not intrinsic to a copula-
based approach, but rather to be attributed to the limited set of parametric
copula families existing in the literature, a natural alternative for low dimen-
sional covariates would be to consider a fully nonparametric estimation of the
copula density itself. The resulting, and adequate, quantile regression estimation
is depicted in Figure 1b.

For this approach to be appropriate, a suitable nonparametric estimation of
the copula density is required. In the literature, several specific kernel-based
methodologies have been proposed in order to correct for well-known bias is-
sues at the boundaries, as the density of interest is only supported on the unit
square. These include for instance the mirror reflection method (Gijbels and
Mielniczuk [16]) or the boundary kernel method (Chen and Huang [5]). In this
paper however, we will adopt the technique proposed by Charpentier, Ferma-
nian and Scaillet [3] and Geenens, Charpentier and Paindaveine [14] which is
summarized as follows: to estimate for instance the copula density cTX1 in
our motivational example, given a bivariate sample (U0i, U1i), i = 1, . . . , n,
from (FT (T ), F1(X1)), the main idea is to appropriately project the initial
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Fig 1. Copula-based quantile regression estimates of the one-dimensional minimalistic exam-
ple. The Gaussian, Gumbel and Frank copulas are used for parametric copula estimation in
(a), while (b) depicts the regression fit resulting from a nonparametric estimation of the cop-
ula density using the procedure of Geenens, Charpentier and Paindaveine [14] (more details
given below).

data on an unbounded support with the purpose of then estimating the ob-
tained bivariate transformed density by means of standard techniques (standard
kernel (Charpentier, Fermanian and Scaillet) or polynomial local-likelihood
(Geenens, Charpentier and Paindaveine)). Using the invariance property of cop-
ulas to increasing transformations of their margins, the estimation of the copula
density is then obtained by back-transformation on the unit square. That is, us-
ing the example of a probit transformation, one may estimate the copula density
cTX1 at (u0, u1) ∈ [0, 1]2 by

f̂01
(
Φ−1(u0),Φ

−1(u1)
)

φ
(
Φ−1(u0)

)
φ
(
Φ−1(u1)

) ,

where φ and Φ stand for the standard normal density and c.d.f., respectively,
and where f̂01 is a bivariate density estimator of the projected data (Φ−1(U0i),
Φ−1(U1i)), i = 1, . . . , n. This transformation technique, coupled with polyno-
mial local-likelihood estimation for f01 in order to allow for possible unbounded
copula density estimates, is shown to outperform its competitors in most scenar-
ios in a detailed simulation study in Geenens, Charpentier and Paindaveine. An
interested reader may find an exhaustive comparison of existing methodologies
for bivariate copula density estimation may be found in Nagler [31]. Further-
more, fully nonparametric multidimensional copulas are studied in Hobæk Haff
and Segers [19] and Nagler and Czado [32].

2.3. A semiparametric copula estimator for multivariate covariates

Recalling that we intend to handle multivariate covariates in this paper, we
will not adopt a purely nonparametric approach as in the previously-described
motivational example. Instead, we will prefer a copula estimation strategy that
provides sufficient flexibility to the multidimensional estimator while avoiding
dimension related constraints. More specifically, we note that any multivariate
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copula density can be decomposed into two parts as follows:

cTX

(
FT (t),F (x)

)
= cTX1

(
FT (t), F1(x1)

)
× . . .× cTXd

(
FT (t), Fd(xd)

)
(4)

× cX1...Xd|T

(
F1|T (x1|t), . . . , Fd|T (xd|t)|t

)
, (5)

where Fj|T , j = 1, . . . , d, denotes the conditional c.d.f. of Xj given T . The first
part of the decomposition contains the product of d bivariate copula densities
related to the dependence of T with every covariate, whereas the second part
captures the conditional dependence of X given T = t. In the general regression
context, part (4) may then be interpreted as the dependence of actual interest
since it focuses on the relationship between the response variable with every
covariate. On the contrary, part (5) may be viewed in such framework as a ‘noisy’
dependence, or, more precisely, a correction parameter for possible (conditional)
dependence among covariates. Consequently, a natural reasoning suggests to
provide as much flexibility as possible to the modelling of part (4), while keeping
the estimation of part (5) uncomplicated. We therefore advocate to estimate
nonparametrically the d bivariate copulas of interest and, subsequently, exploit
standard parametric techniques for the second part of the multivariate copula
density. The latter involve, among others, nested Archimedean copulas (see e.g.
Hofert and Pham [20] and Joe [21]), factor copulas (see e.g. Oh and Patton
[36]) and, arguably the most popular, vine copulas (see e.g. Czado [7], Joe
[21] and references therein). Note however that, for the estimation of (5) in
practice, one is first advised to adopt the so-called simplifying assumption which
stipulates that the conditioning on T = t is fully captured by the conditional
marginals. In other words, in (5), the conditional copula itself is not affected by
the conditioning on T . This assumption turns out to be the cornerstone of vine
copula models as it keeps them tractable for inference and model selection. For
more details about this and its implications, see Hobæk Haff, Aas and Frigessi
[18] and Stöber, Joe and Czado [43].

Conclusively, in this article we propose to adopt the following detailed pro-
cedure for the modelling and estimation of the multivariate copula density:

(1) Based on original observations (Ti, X1i, . . . , Xdi), i = 1, . . . , n, construct
‘pseudo-observations’, needed for the estimation of (4), using rescaled ver-
sions of empirical distributions:

Û0i =
1

n+ 1

n∑

k=1

1(Tk ≤ Ti) Ûji =
1

n+ 1

n∑

k=1

1(Xjk ≤ Xji),

i = 1, . . . , n, j = 1, . . . , d,

where the factor 1/(n + 1), commonly adopted in the copula literature,
aims at keeping the constructed observations in the interior of [0, 1].

(2) Based on (Û0i, Ûji), i = 1, . . . , n, estimate each bivariate copula den-
sity cTXj

, j = 1, . . . , d, in (4) using a bivariate kernel density estima-
tor. This can be achieved via the local-polynomial probit methodology of
Geenens, Charpentier and Paindaveine, or any other estimator satisfying
assumption (C7) given below.
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(3) Compute the pseudo-observations needed for the estimation of (5) as:

F̂j|T (Xji|Ti) =

∫ Ûji

0

ĉTXj
(Û0i, s) ds.

This relationship is at the origin of the sequential nature of the vine copula
estimation scheme (see e.g. Czado [7]).

(4) Lastly, for the estimation of cX1...Xd|T , adopt the simplifying assumption

and use standard parametric vine techniques on the dataset (F̂1|T (X1i|Ti),

. . . , F̂d|T (Xdi|Ti)), i = 1, . . . , n.

Finally, to graphically illustrate this procedure in a multivariate example, we
consider a simple extension to the previously-described setting with two inde-
pendent covariates, where (Ti, X1i, X2i), i = 1, . . . , n, are i.i.d. random variables
with Ti = (X1i−0.5)2+(X2i−0.5)2+σǫi,X1i ∼ U [0, 1],X2i ∼ U [0, 1], σ = 0.025
and ǫi, i = 1, . . . , n, are i.i.d. standard normal random variables. In this situ-
ation, a fully parametric vine copula estimation again yields an inappropriate
quantile regression estimation, as depicted in Figure 2a for τ = 0.5 and n = 500.
In opposition, the proposed semiparametric copula density estimation allows the
regression estimator to suitably capture the non-monotonic features of both co-
variates. This can be observed in Figure 2b. A more exhaustive analysis of the
performance of the proposed estimator with respect to existing competitors will
be provided in Section 5.

Fig 2. Copula-based quantile regression estimates of the two-dimensional minimalistic exam-
ple. A parametric vine copula estimation is at the basis of the quantile estimation in (a),
while (b) illustrates the semiparametric copula estimation approach proposed in this paper.
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3. Copula-based estimator for censored data

In the presence of censoring, the estimation equation (3) becomes inappropriate
as we do not fully observe the response variables Ti. Instead, we only observe
a sequence of i.i.d. triplets (Yi,Δi,Xi), i = 1, . . . , n, from (Y,Δ,X), where
Y = min(T,C), Δ = 1(T ≤ C) and C denotes the censoring variable, assumed
to be independent of T given X. In order to take censoring into account in the
estimation procedure, the first step is to note that, for any measurable function
ϕ : R → R,

E
(
ϕ(T )|X = x

)
= E

(
ϕ(Y )

Δ

1−GC(Y − |x)
∣∣∣X = x

)
, (6)

where GC(c|x) = P(C ≤ c|X = x) denotes the conditional distribution of C
given X = x. This, along with (1), suggests a natural way to handle censoring
for quantile regression by replacing the function ϕ with the check function.

At this stage, in the objective of proposing a similar methodology to the
one developed in Section 2, we propose to work on the obtained conditional
expectation in (6) before considering the introduction of copulas. The underlying
rationale is that the latter conditional expectation is in fact the joint conditional
expectation of (Y,Δ) given X = x. Adopting an analogous reasoning as the one
presented by Noh, El Ghouch and Van Keilegom for the uncensored case at this
point would therefore result in the insertion of the joint copula of (Y,Δ,X),
hence exposing the estimation procedure to the lack of uniqueness of the copula
given that Δ is a discrete (binary) variable. An interesting opinion on several
pitfalls appearing for copulas with discrete variables can be found in Embrechts
[12]. Additional details may also be found in Genest and Nešlehová [15].

Instead, the idea is to work on the joint conditional expectation so as to
bypass the issues related to the copula of (Y,Δ,X). In short, our intention is to
discard the problem by obtaining the copula of (Y,X) conditionally on Δ = 1,
for which no specific technical difficulties are involved. To that end, using the
notations Hu (resp. hu) as a shorthand for a given distribution (resp. density)
conditionally on Δ = 1, first note that

E

(
ρτ (Y − a)

Δ

1−GC(Y − |x)
∣∣∣X = x

)

=

∫

R+

ρτ (y − a)
1

1−GC(y − |x) dFY,∆|X(y, 1|x), (7)

where FY,∆|X(y, 1|x) = P(Y ≤ y,Δ = 1|X = x) = p(x)
∫ y

−∞
fu
YX

(z,x)/
fu(x) dz, with p(x) = P(Δ = 1|X = x) and where fu

YX
and fu denote the

conditional densities of (Y,X) and X given Δ = 1, respectively. Hence, using
the definition of a copula function in a similar spirit as Noh, El Ghouch and
Bouezmarni [34], one obtains

dFY,∆|X(y, 1|x) = p(x)
cuYX

(
Fu
Y (y),F

u(x)
)

cu
X

(
F u(x)

) fu
Y (y) dy,
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where cuYX
(u0,u) = ∂d+1Cu

YX
(u0, u1, . . . , ud)/∂u0∂u1 . . . ∂ud is the copula den-

sity corresponding to the copula Cu
YX

of (Y,X|Δ = 1), cu
X
(u) = ∂dCu

X
(u1, . . . ,

ud)/∂u1 . . . ∂ud is the copula density of (X|Δ = 1), and F
u(x) = (Fu

1 (x1), . . . ,
Fu
d (xd))

T. Inserting this last expression in (7), we may write

E [ρτ (T − a)|X = x]

= E

[
ρτ (Y − a)

Δ

1−GC(Y − |x)
p(x)

P(Δ = 1)

cuYX

(
Fu
Y (Y ),F u(x)

)

cu
X

(
F u(x)

)
]
.

Applying this equality in the context of quantile regression, interestingly, one
eventually retrieves an expression analogous to (2):

mτ (x) = argmin
a

E
[
ρτ (Y − a)W (x) cuYX

(
Fu
Y (Y ),F u(x)

)]
, (8)

where W (x) ≡ Δ/(1 − GC(Y − |x)). Note that the copula in question in (8)
is determined by strictly fully observed data. Hence, standard literature on
copulas can be manipulated without any censoring related constraints. Given
estimators ĜC(·|x), F̂u

Y and F̂u
j of GC(·|x), Fu

Y and Fu
j , j = 1, . . . , d, satisfying

certain high-level conditions which will be given in Section 4, this suggests to
estimate the quantile regression in the presence of censoring by the empirical
analogue of (8), that is

m̂τ (x) = argmin
a

n∑

i=1

[
ρτ (Yi − a) Ŵi(x) ĉ

u
YX

(
F̂u
Y (Yi), F̂

u(x)
)]

, (9)

where Ŵi(x) = Δi/(1− ĜC(Yi − |x)), and where ĉuYX
denotes an estimator of

cuYX
based on the four-step procedure described in Section 2.3. Explicitly,

ĉuYX

(
F̂u
Y (y), F̂

u(x)
)

= ĉuY X1

(
F̂u
Y (y), F̂

u
1 (x1)

)
× . . .× ĉuY Xd

(
F̂u
Y (y), F̂

u
d (xd)

)

×ĉuX1...Xd|Y

(
F̂u
1|Y (x1|y), . . . , F̂u

d|Y (xd|y)
)
,

where any two-dimensional kernel density estimator may be used for each bi-
variate copula density ĉuY Xj

, j = 1, . . . , d, such that condition (C7) of Section
4 holds, and where ĉuX1...Xd|Y

is estimated by standard parametric vine proce-
dures.

The resulting quantile regression estimator in (9) may then be viewed as a
simple weighted quantile of the observed response variable, and is therefore easy
to implement in practice using the efficient quantile regression code developed
by Portnoy and Koenker [38] and Koenker [22]. Nonetheless, in the context of
multivariate covariates, the estimation of GC(·|x) requires further assumptions
to overcome dimension related issues. Popular choices in the literature include,
among others, independence between C and X, the Cox model or the single-
index model on C|X = x. Illustrations of such assumptions are treated in our
simulation study.

As an interesting property, and similarly to the case without censoring, we
note that the obtained regression function estimator is automatically monotonic
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across quantile levels. Applying analogous arguments to the ones adopted in the
proof of Theorem 2.5 of Koenker [22], one can indeed determine that

(τ2 − τ1)(m̂τ2(x)− m̂τ1(x))

n∑

i=1

Ŵi(x) ĉ
u
YX

(
F̂u
Y (Yi), F̂

u(x)
)
≥ 0. (10)

Given that Ŵi(x) ĉ
u
YX

(
F̂u
Y (Yi), F̂

u(x)
)
≥ 0 for all i = 1, . . . , n, this signifies

that m̂τ2(x) ≥ m̂τ1(x) for τ2 ≥ τ1.

Conclusively, in parallel to what has been stated for the uncensored case,
the resulting estimator m̂τ (x) defines a rich class of estimators built on the
many different existing methods available in the literature for estimating copula
densities and marginal distributions of both complete and censored data.

4. Asymptotic properties

We establish in this section the asymptotic normality of the proposed estimator
m̂τ (x). To that end, we first report the set of regularity conditions as well as
the required high-level conditions on all estimators involved in the expression
of m̂τ (x). We then develop an asymptotic representation of our estimator for
a general d-variate covariate. As the latter will result in a somewhat unpleas-
ant expression for the asymptotic bias and variance for a general multivari-
ate covariate, and given that the analytical reasoning is similar in spirit, we
eventually restrict ourselves to the detailed asymptotic expression for the case
d = 2.

For a fixed but arbitrary point of interest x in the support of X, denoted by
supp(X), let us suppose that there exists a neighborhood VFu(x) of F

u(x) such
that the following regularity conditions hold:

(C1) The conditional distribution FT |X of T given X admits a conditional
density fT |X that is continuous, strictly positive and bounded uniformly
on R× supp(X).

(C2) The point of interest x is such that F u(x) ∈ (0, 1)d and P(Δ = 1|x) > 0.
Furthermore, 0 < cu

X
(F u(x)) < ∞, supt∈R

cuYX
(Fu

Y (t),F
u(x)) < ∞ and

inft∈R cuYX
(Fu

Y (t),F
u(x)) > 0.

(C3) The point mτ (x) ∈ R satisfies GC(mτ (x) + δ|x) < 1, for some δ > 0.
(C4) Denote ǫ ≡ ǫ(x, τ) = Y −mτ (x) and define ψτ (u) = τ − I(u ≤ 0). Then,

(i) E(|ψτ (ǫ)|W (x)) < ∞.

(ii) E
[
ψτ (ǫ)W (x) cuYX

(
Fu
Y (Y ),F u(x)

)]2
< ∞.

Concerning the high-level conditions, it is assumed that the multivariate copula
density cuYX

is estimated using the proposed four-step strategy of Section 2.3,
and that, for simplicity, the d bivariate kernel copula estimators of step (2) are
based on the same bandwidth H = h2

I for a certain h > 0. The following
conditions are then assumed to hold:
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(C5) The marginal c.d.f. estimators are such that:

(i) supt∈R

∣∣∣F̂u
Y (t)− Fu

Y (t)
∣∣∣ = OP(n

−1/2).

(ii) F̂
u(x)−F

u(x) = OP(n
−1/2), where F̂ u(x) = (F̂u

1 (x1), . . . , F̂
u
d (xd))

T

and F̂u
j is an estimator of Fu

j .

(C6) sup
t≤τFY

|ĜC(t|x)−GC(t|x)| = oP((nh
2)−1/2), and τFY

< τGC
, where τFY

=

inf{t : FY (t) = 1} and τGC
= inf{t : GC(t) = 1}.

(C7) The multivariate copula estimator is such that:

(i) sup t∈R

∣∣∣ĉuY Xj

(
Fu
Y (t), F

u
j (xj)

)
− cuY Xj

(
Fu
Y (t), F

u
j (xj)

)∣∣∣ = oP(1), j =

1, . . . , d, where xj is the j-th coordinate of x.

(ii) supu0 ∈ (0,1) supu∈VFu(x)
|∂j ĉuYX

(u0,u)| = OP(1), j = 1, . . . , d + 1,
where ∂j denotes the partial derivative with respect to the j-th ar-
gument.

Assumption (C1) is standard in the context of quantile regression estimation.
As for condition (C2), this is similar to assumption (C3)-(i) in Noh, El Ghouch
and Van Keilegom [35] for the simplified case with no censoring, with an ad-
ditional requirement on the conditional censoring probability that is resulting
from the initial transformation of synthetic observations. Assumption (C3) is
likewise emanating from the handling of censoring through these observations,
and is rather usual in survival analysis. Note that, in the quantile regression
framework, the latter assumption amounts to defining a natural upper bound
for the quantile of interest that can be studied. Assumption (C4) reports a set
of technical conditions to be met.

As regards conditions (C5)-(C7), (C5) is routinely made in the copula frame-
work. For instance, it is readily satisfied for the empirical distributions when
only uncensored observations are taken into account, and their rescaled ver-
sions which are prominent in the copula literature. Assumption (C6) imposes
restrictions on the estimator one may consider for the conditional distribution
of the censoring variable and is, for instance, fulfilled for a simple Kaplan-Meier
estimator for GC (see e.g. Theorem 2.1 in Chen and Lo [6] for sufficient and nec-
essary conditions for (C6)). Lastly, the uniform consistency of the kernel density
estimator required by assumption (C7) is, for instance, alluded to in Geenens,
Charpentier and Paindaveine [14] for the probit-transformed copula estimator.

We now state the main result of this section that holds for a general d-
dimensional covariate vector and for all bivariate kernel copula estimators based
on the same bandwidth h. In practice, however, it may be recommended to adopt
an unconstrained and non-diagonal bandwidth matrix, as is detailed in Section 4
of Geenens, Charpentier and Paindaveine. Nevertheless, when considering this
general situation, the theoretical results become less tractable while equivalent
in nature to the simplified situation considered here.

Theorem 4.1. Let h ≡ hn → 0 be the common bandwidth of the d bivariate
kernel copula density estimators. For h satisfying nh2 → ∞ as n → ∞, and
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under assumptions (C1)-(C7), we have

(
nh2

)1/2
(m̂τ (x)−mτ (x)) =

w(x)

fT |X(mτ (x)|x)

(
nh2

)1/2

n

n∑

i=1

ψτ (ǫi)Wi(x)

×
[
ĉuYX

(
Fu
Y (Yi),F

u(x)
)
− cuYX

(
Fu
Y (Yi),F

u(x)
)]

+ oP(1),

where fT |X is the conditional density of T given X and w(x) = p(x)/
[
P(Δ =

1)cu
X
(F u(x))

]
.

Theorem 4.1 implies, quite naturally, that the asymptotic behavior of m̂τ (x)
will be characterized by the properties of the copula estimator, specifically
through its nonparametric feature, provided that the estimation of ĜC(·|x)
is ‘reasonable’ when confronted to a multidimensional covariate vector (as-
sumption (C6)). In particular, this suggests that the detailed discussion of
Geenens, Charpentier and Paindaveine about the asymptotic bias and variance
of their distinctive bivariate copula estimators may be transcribed in our con-
text.

Additionally, Theorem 4.1 also covers an asymptotic representation of the
copula-based quantile regression estimator when all responses are fully observed.
In this situation, one would indeed obtain a similar result for the proposed
semiparametric procedure, with the removal of all censoring related terms, that
is w(x), Wi(x), i = 1, . . . , n, and the superfluous conditioning on Δ = 1 for the
copula densities and marginal distributions. This results in the following:

(
nh2

)1/2
(m̂τ (x)−mτ (x)) =

1

fT |X(mτ (x)|x)

(
nh2

)1/2

n

n∑

i=1

ψτ (ǫi)

×
[
ĉYX

(
FY (Yi),F (x)

)
− cYX

(
FY (Yi),F (x)

)]

+ oP(1).

We now consider a detailed asymptotic representation of our estimator for
the simplified case where d = 2, and for a general nonparametric estimator
of the bivariate copula densities. For convenience, we use the notation cuk as a
shorthand for cuY Xk

, and similarly for other functions depending on (Y,Δ, Xk),
k = 1, 2.

Corollary 4.2. Suppose that the assumptions of Theorem 4.1 hold for the case
d = 2. Furthermore, suppose that the bivariate nonparametric copula estimators
of cu1 and cu2 are such that

(
nh2

)1/2 (
ĉuk(u0, uk)−cuk(u0, uk)−h2bk(u0, uk)

)
=

1√
n

n∑

j=1

Znj
k (u0, uk)+oP(1),

∀uk ∈ (0, 1), uniformly in u0 ∈ (0, 1), for k = 1, 2,
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for some some deterministic function bk(u0, uk), and for some function
Znj
k (u0, uk) depending on (Yj ,Δj , Xkj) and possibly on n, satisfying

E

(
Znj
k (u0, uk)

)
= 0, for all u0, uk ∈ (0, 1).

Define

Z̃ni(u0,u)=
[
Znj
1 (u0, u1)c

u
2

(
u0, u2

)
+ Znj

2 (u0, u2)c
u
1

(
u0, u1

)]

× cuX1X2|Y
(u1, u2|u0),

bYX(u0,u)=
[
b1(u0, u1)c

u
2

(
u0, u2

)
+ b2(u0, u2)c

u
1

(
u0, u1

)]

× cuX1X2|Y
(u1, u2|u0),

λn (Yi,Δi,Xi,x)=E

[
ψτ (ǫ)W (x)Z̃ni (Fu(Y ),F u(x)) |Yi,Δi,Xi

]
, i = 1, . . . , n.

Suppose furthermore that the following technical conditions hold:

(C8) E [ψτ (ǫ)W (x)bYX (Fu(Y ),F u(x))]
2
< ∞.

(C9) E

[
ψτ (ǫi)Wi(x)Z̃

nj (Fu(Yi),F
u(x))

]2
= o(n) for all i, j = 1, . . . , n, where

the expectation is taken with respect to (Yi,Δi) and (Yj ,Δj ,Xj).

Then, the copula-based quantile regression estimator at any point of interest
x satisfying (C1)-(C9) is such that

(
nh2

)1/2 (
m̂τ (x)−mτ (x)− h2B(x)

)
L−→ N

(
0, σ2(x)

)
,

where

B(x) =
w(x)

fT |X(mτ (x)|x)
E

(
ψτ (ǫ)W (x)bYX

(
Fu(Y ),F u(x)

))

and σ2(x) =
w2(x)

f2
T |X(mτ (x)|x)

lim
n→∞

E (λn(Y,Δ,X,x)2).

Corollary 4.2 reports the asymptotic normality of our estimator at the ex-
pected convergence rate, implied by the nonparametric estimation of the bivari-
ate copula densities. Depending on the choice in step (2) of the kernel density
estimator fulfilling the conditions of Corollary 4.2, simple plug-in of the expres-
sion of Znj

k , k = 1, 2, in all quantities built upon the latter may then lead to the
detailed, although arduous, expressions of the asymptotic bias and variance of
the proposed estimator.

Furthermore, as this had yet to be covered, it is worth stressing out that
Corollary 4.2 also encompasses the asymptotic normality of the suggested esti-
mator based on semiparametric vine copulas with strictly complete data. Sim-
ilarly to what has been stated for Theorem 4.1, one is indeed only required to
withdraw all censoring related elements from Corollary 4.2 to obtain the ex-
pressions of the asymptotic bias and variance of the proposed semiparametric
quantile regression estimator for complete observations.
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5. Simulation study

In this section, we assess the practical finite-sample performance of the proposed
methodology by means of Monte Carlo simulations. For this purpose, we first
present a brief numerical study to further motivate the semiparametric copula
strategy we intend to adopt for multivariate problems for both complete and
censored observations. Secondly, we assess the numerical performance of the
copula-based regression estimator for complete observations using the developed
copula estimation strategy and compare it with established semiparametric and
nonparametric techniques in the literature. Lastly, focusing on survival data,
we illustrate the performance of our estimator in (9) by also showing promising
results with respect to competitors in the domain, including when the generated
scenario is to the advantage of the latter. All the simulations are carried out
using the statistical computing environment R (R Core Team [44]) and its freely
accessible packages.

5.1. Assessing the semiparametric copula estimation

This first section aims at numerically illustrating the choice of our semipara-
metric copula estimation strategy. For this purpose, we will consider here both
complete and censored responses as this will result in an interesting analysis of
our proposed strategy resulting from the fact that the censoring percentage will
have an influence on the number of observations actually entering the copula es-
timation process. Overall, we consider two distinctive data generating processes
(DGP) and compare our methodology with fully parametric and nonparamet-
ric procedures one might consider for the estimation of a multivariate copula
density. For the general simulation settings, we consider B = 500 repetitions of
each DGP; three (average) levels of censoring (0%, 30% and 50%), three sample
sizes (n ∈ {100, 200, 400}) and the quantile level of interest τ = 0.3. As the
object of interest here is the copula modelling, when censoring is introduced, we
only consider the simple case of independence between the censoring variable
and the covariate vector in order to keep the estimation of ĜC needed for (9)
uncomplicated, that is, using the Kaplan-Meier estimator. The detailed DGPs
are as follows:

• DGP A: (FT (T ), F1(X1), F2(X2)) ∼ Gaussian copula with parameters
(ρT1, ρT2, ρ12) = (0.3, 0.9, 0.5). Given standard uniform marginal distri-
butions for all three variables, the resulting true quantile regression may
be calculated as mτ (x) = Φ

(
− 0.2Φ−1(x1) + Φ−1(x2) + 0.4Φ−1(τ)

)
(see

Noh, El Ghouch and Van Keilegom [35]). To include censoring, we intro-
duce the variable C ∼ U [0,M ], where the parameter M is computed in
order to obtain the desired average censoring proportion (M = 5/3 for
30% and M = 1 for 50%).

• DGP B: (FT (T ), F1(X1), F2(X2), F3(X3)) ∼ Gaussian copula with pa-
rameters (ρT1, ρT2, ρT3, ρ12, ρ13, ρ23) = (0.3, 0.9, 0.7, 0.5, 0.25, 0.5). The
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resulting true quantile regression for standard uniform marginal distri-
butions is determined as mτ (x) = Φ

(
− 0.2Φ−1(x1) + 0.83Φ−1(x2) +

0.33Φ−1(x2) + 0.27Φ−1(τ)
)
. The censoring variable is C ∼ U [0,M ] (M =

5/3 for 30% and M = 1 for 50% censoring).

For any general copula-based regression estimator, the marginal distribution
estimations are performed, as suggested in Section 2.3, using rescaled versions
of the empirical distributions:

F̂u
Y (y) =

1

nu + 1

n∑

i=1

Δi1(Yi ≤ y)

F̂u
j (xj) =

1

nu + 1

n∑

i=1

Δi1(Xij ≤ xj), j = 1, . . . , d,

where nu =
∑n

i=1 Δi is the number of uncensored observations.

For the distinctive copula-based estimators, we consider the following proce-
dures:

m̂SP
cop, τ : semiparametric estimation strategy detailed in Section 2.3. That is, we

first estimate the d bivariate copulas of interest employing the probit
transformation technique of Geenens, Charpentier and Paindaveine [14]
coupled with local likelihood estimation based on quadratic polynomi-
als. To that end, we follow their proposed nearest-neighbor bandwidth
selection procedure. Concerning the estimation of the d-dimensional
‘noisy’ copula density (5), as mentioned above, we apply standard vine
techniques using the R package VineCopula. Specifically, we adopt one
automatically selected tree structure for the simplified decomposition
of the copula density among many R-vine candidate structures (see
Dißmann et al. [9]), and subsequently determine the appropriate pair-
copula family to be selected and parametrically estimated. The selec-
tion criterion for bivariate copulas is chosen to be the Akaike infor-
mation criterion (AIC), which revealed to be adequate in the R-vine
context (see Brechmann [1], chap. 5), and ten potential family can-
didates, together with their rotations, are considered: eight of them
are Archimedian (Clayton, Gumbel, Frank, Joe, Clayton-Gumbel, Joe-
Gumbel, Joe-Clayton and Joe-Frank), and the last two are elliptical
(Gaussian and Student t).

m̂NP
cop, τ : fully nonparametric estimation of the d-dimensional copula using vine

techniques. Specifically, while the vine structure is kept identical, here
all bivariate building blocks are estimated using the local likelihood
technique based on probit-projected data with the bandwidth selec-
tion procedure of Geenens, Charpentier and Paindaveine (as is studied
in Nagler and Czado [32]). Given its fully nonparametric nature, it
should be mentioned that this estimator is not covered by the theoret-
ical results of Section 4.
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Table 1

Simulation results expressed in terms of IMSE × 1000 for the estimation of mτ (x) in DGP
A and B. The number of repetitions operated is B = 500 for sample sizes

n ∈ {100, 200, 400}, average censoring proportions pc ∈ {0, 0.3, 0.5} and quantile level
τ = 0.3.

DGP A

n pc m̂P
cop, τ m̂SP

cop, τ m̂NP
cop, τ

100
0 1.442 1.486 2.369
0.3 2.203 2.173 3.167
0.5 3.537 3.548 4.135

200
0 0.689 0.737 1.462
0.3 0.990 1.016 1.905
0.5 1.887 1.664 2.581

400
0 0.337 0.371 0.987
0.3 0.503 0.525 1.243
0.5 0.915 0.863 1.600

DGP B

n pc m̂P
cop, τ m̂SP

cop, τ m̂NP
cop, τ

100
0 1.192 1.416 3.307
0.3 2.036 2.459 3.972
0.5 5.055 6.552 7.038

200
0 0.560 0.658 2.609
0.3 0.850 0.945 2.857
0.5 1.686 2.108 3.647

400
0 0.259 0.354 2.140
0.3 0.403 0.487 2.266
0.5 0.738 0.916 2.497

m̂P
cop, τ : fully parametric estimation of the d-dimensional copula density, where

all bivariate copulas are estimated using the previously mentioned can-
didate families and selection criteria. However, unlike the above-men-
tioned estimators, we do not force here any structure for the vine
decomposition. As a consequence, no explicit distinction is imposed
between dependence of interest and noisy dependence. Instead, one
data-driven selected structure is adopted, regardless of the arguments
of Section 2.3. This will allow us to analyse the impact of such de-
pendence distinction in our regression context, as is discussed below.
Finally, as it is the case for m̂NP

cop, τ , this estimator is not covered by the
asymptotic theory of Section 4.

Both DGPs concentrate on the situation where the dependence structure
between the response variable and the covariate vector is characterized by a
parametric copula. In such circumstances, m̂P

cop, τ will have a critical advantage
and may serve in order to evaluate the impact of the nonparametric part of
the estimation scheme, especially when the dimension of the covariate vector
increases. As a performance criterion, we consider here the empirical integrated
mean squared error (IMSE), defined as

IMSE(m̂τ (x)) =
1

N

N∑

i=1

(
1

B

B∑

b=1

(
m̂(b)

τ (xi)−mτ (xi)
)2
)
,

where {xi, i = 1, . . . , N} is a generated random sample of size N = 10 serving as

an evaluation set spread on the domain of X, and m̂
(b)
τ (·) denotes the regression

estimation for the b-th simulated sample.
The results of our simulation study are summarized in Table 1. Based on

these, we detail our analysis in two parts, as the outcomes of our study offer
relevant information on both the copula decomposition choice and the type of
bivariate estimators one may adopt in the multivariate setting. Note that, for
both DGPs, as the dependence structure is specified by a Gaussian copula, the
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simplifying assumption intrinsic to the vine decomposition is here applicable
(see Theorem 4 in Stöber, Joe and Czado [43]). In our context, this means that
any observed difference between copula strategies is not to be attributed to a
possible violation of the underlying simplifying assumption.

Focusing first on our decomposition strategy, we note as expected that m̂P
cop, τ

globally outperforms m̂SP
cop, τ and m̂NP

cop, τ . However, strikingly enough, this is not

observed for DGP A for different censoring proportions where m̂SP
cop, τ details

better results. This is interpreted here as evidence for the validity of our argu-
ments regarding the decomposition choice: as the censoring proportion grows,
the number of observations actually entering the copula estimation becomes
more moderate, hereby implying two opposite effects in this context. First, the
propagation of estimation approximations tends to be more important, signify-
ing that the further we decompose, the more sensitive becomes the estimation
of the involved bivariate copulas as these are tributary of the quality of pre-
viously estimated bivariate blocks. Using a purely data-driven decomposition
may then result in a poor fit of the (conditional) copula of the response vari-
able with one of the covariates, as it is not required that the latter would be
primarily treated. This is interpreted as the reason why m̂SP

cop, τ is able to out-

perform m̂P
cop, τ , admittedly by a small amount, when censoring increases for a

fixed sample size n ∈ {200, 400}, even though the simulated scenario is issued
from a purely parametric copula. However, on the other hand, when observa-
tions are more scarce, it is well-known that nonparametric estimations become
more sensitive than parametric counterparts. This explains why the estimation
results for m̂SP

cop, τ are not superior to those of m̂P
cop, τ for n = 100 with 50%

censoring, as the former requires the nonparametric estimation of two bivariate
copulas, whose complexity compared to m̂P

cop, τ seems to override the positive
effects of our decomposition choice. Overall, these noteworthy results for DGP
A illustrate the effectiveness of our proposed copula decomposition in the re-
gression context. When augmenting the covariate vector dimension, the price
of estimating now three nonparametric bivariate copulas quite logically exceeds
the potential gain of concentrating efforts on the dependence of interest. This
is identified in DGP B.

Concentrating now on the modelling choice for the noisy dependence, the
comparison between m̂SP

cop, τ and m̂NP
cop, τ offers valuable information, particularly

in DGP A, as the only distinctness here is the estimation of a unique bivariate
copula density cuX1X2|Y

. Visibly, the implication of keeping a nonparametric
approach for this part seems to be rather severe. This finding clearly also applies
when the dimension of the covariate grows.

Conclusively, the recommended copula modelling strategy seems to propose
an adequate trade-off between preventing the serious effects of a purely non-
parametric estimation and providing the flexibility needed to overcome possible
shortcomings associated to a purely parametric alternative.



1678 M. De Backer et al.

5.2. Comparison with other estimation methods for complete

responses

In this section, we briefly assess the global performance of the semiparametric
copula-based regression estimator for complete observations with several estab-
lished methodologies in the literature. To that end, we consider the following
competing methodologies:

m̂LL, τ : Locally polynomial quantile regression estimator studied in Chaudhuri
[4]. In this paper, we consider a local linear estimator which is imple-
mented with Gaussian kernels in the function lpqr of the R package
quantreg. The bandwidth is selected via leave-one-out cross validation
in a set of candidates ranging from 0.05 to 2 by 0.05 increments.

m̂inv, τ : Nonparametric regression estimator studied in Li, Lin and Racine [28]
where the idea is to numerically invert a kernel estimated conditional
distribution function. This procedure is implemented in the R package
np via the function npreg. The bandwidth selection is automatically
implemented in the function npcdistbw of the same library.

m̂si, τ : Single-index regression estimator based on a two stage estimation
method as proposed by Zhu, Huang and Li [48]. The univariate non-
parametric part of the methodology is estimated with a Gaussian kernel
and the bandwidth is selected by leave-one-out cross validation in a set
of candidates ranging from 0.05 to 0.5 by 0.05 increments.

m̂P
cop, τ : Semiparametric copula quantile regression estimator of Noh, El Ghouch

and Van Keilegom [35] where the copula density is estimated with
purely parametric vine techniques as in Section 5.1.

m̂cop, τ : Proposed semiparametric copula quantile regression estimator with the
same implementation as in Section 5.1.

These methodologies are compared in the following two DGPs:

• DGP C: (FT (T ), F1(X1), F2(X2)) ∼ Gaussian copula with parameters
(ρT1, ρT2, ρ12) = (0.9, 0.8,−0.8). The marginal distributions are chosen
to be standard exponential for T and standard normal for the covari-
ates. The resulting quantile regression may be determined as mτ (x) =
F−1
T

[
Φ
(
βT

x+ 0.41Φ−1(τ)
)]
, where β = (−13/18, 2/9)T.

• DGP D: Data simulated from the model T = |2X1 − X2
2 + 0.5|0.5 +

0.1X3
4X5(0.5|X3|+1)+0.1ǫ, where ǫ ∼ N (0, 1) and the five-dimensional co-

variate (X1, . . . , X5) is simulated from a Gaussian distribution with corre-
lations (ρ12, ρ13, . . . , ρ45) = (0.3, 0.4, 0.5, 0.6, 0.7, 0.3, 0.4, 0.5, 0.6, 0.7) and
standard marginals.

The first DGP is a low-dimensional setting where we expect the single-index
and both copula-based estimators to perform well given that the true quantile
regression is in fact a single-index model and that the data is simulated from
a known copula. In opposition, the second DGP explores a higher dimension of
the covariates and considers a setting with non-monotonic dependencies between
the response and the covariates, for which no parametric copula in the literature
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Table 2

Simulation results expressed in terms of IMSE × 10 for the estimation of mτ (x) in DGPs
C and D with respectively two and five covariates. The number of repetitions operated is

B = 500 for sample sizes n ∈ {100, 200, 400} and with quantiles of interest τ ∈ {0.3, 0.5, 0.7}.

DGP n τ m̂LL, τ m̂inv, τ m̂si, τ m̂P
cop, τ m̂cop, τ

C

100
0.3 0.121 0.122 0.104 0.096 0.090
0.5 0.152 0.157 0.126 0.126 0.121
0.7 0.212 0.241 0.193 0.180 0.176

200
0.3 0.070 0.068 0.058 0.041 0.043
0.5 0.090 0.083 0.073 0.053 0.057
0.7 0.128 0.128 0.108 0.074 0.082

D

100
0.3 1.507 1.599 6.227 3.207 1.264
0.5 1.482 1.506 2.587 2.074 0.983
0.7 1.887 1.676 2.624 2.261 1.198

400
0.3 0.822 0.674 2.020 3.110 0.852
0.5 0.726 0.626 1.624 1.890 0.631
0.7 1.187 0.765 2.170 1.986 0.830

is suited as illustrated in Section 2. Hence, in this setting m̂P
cop, τ is expected to

perform poorly and both m̂cop, τ and m̂si, τ are a priori no longer favored above
the other methodologies.

To compare the performance of the different procedures, we consider 500
repetitions of each DGP, quantile levels τ ∈ {0.3, 0.5, 0.7} and sample sizes
n ∈ {100, 200, 400}. Similarly to the previous section, we then consider the
IMSE as a performance criterion calculated on a testing sample of 20 evaluation
points {x1, . . . ,x20}.

The simulation results of this brief comparative study are presented in Ta-
ble 2. As expected, for the two-dimensional setting we observe the copula-based
and the single-index estimators to perform better than the remaining method-
ologies as the latter do not take profit of any underlying model assumption
here. Furthermore, both copula-based estimators tend to outperform in this
setting the single-index estimator for all considered sample sizes and quantile
levels. Similarly to Section 5.1, we also note that m̂cop, τ is here again able to
outperform by a slight margin m̂P

cop, τ for small sample sizes by focusing pri-
marily on the estimation of the dependence of interest. Overall, this suggests
that an appropriate semiparametric estimation of the copula density results in
a performance of the regression estimator relatively similar to the estimator
of Noh, El Ghouch and Van Keilegom when the latter is considered in its most
advantageous situation.

Next, the results of DGP D numerically illustrate the gain in flexibility of
the proposed methodology over m̂P

cop, τ . In this situation, the latter evidently
misspecifies the regression model as can be observed from the fact that the IMSE
does not tend to diminish much with an increasing sample size. In opposition,
m̂cop, τ still performs very competitively with respect to the literature, especially
for smaller samples. This suggests here again that the copula estimation strategy
proposed in this paper offers the required flexibility to a copula-based approach
for quantile regression. To conclude, this results in a very competitive estimation
procedure with respect to the established semiparametric and nonparametric
literature.
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5.3. Comparison with other estimation methods for censored

responses

The objective of this last section is to provide a comparison study between
the proposed copula-based methodology and existing competitors for survival
data. On a general note, given that for multidimensional covariates an appro-
priate estimation of the conditional distribution GC(·|x) for the weights W (x)
in (9) may be of crucial influence, we consider distinctive scenarios contrasting

in the impact on ĜC(·|x) in order to provide a sufficiently broad view on the
performance of our methodology.

We examine three general simulation models, with B = 500 repetitions
of each; two (average) levels of censoring (30% and 50%), two sample sizes
(n = 200 and n = 400) and four values for the quantile level of interest
(τ ∈ {0.1, 0.3, 0.5, 0.7}). Specifically, we consider general data arising from
a Cox regression model. Based on the hazard function (defined as h(t) =
fT (t)/(1 − FT (t))), this prominent model for analysing survival times specifies
that h(t|Xi) = h0(t) exp(β

T
Xi), i = 1, . . . , n, where h0(t) is the so-called base-

line hazard function. In this instance, given a nonnegative time-to-event vari-
able, simple algebraic manipulations show that the general conditional quantile
regression can be written as mτ (x) = H−1

0

(
− log(1 − τ) exp(−βT

x)
)
, where

H0(t) ≡
∫ t

0
h0(s)ds. For every proposed setting, the baseline distribution is set

to be standard exponential and consequently, for a given vector x the τ−th
conditional quantile function is given by

mτ (x) = − log(1− τ) exp(−βT
x).

The distinction between our simulation scenarios is to be found in the three co-
variate vectors and the dimension of the latter that are taken into account. The
first two settings are chosen to be of moderate dimension with d = 5 while the
third setting exhibits an example with d = 8. Focusing first on the case d = 5, we
consider β = (1,−3/4, 1/2, 1/4,−3/5)T and 5 covariates (X1, . . . , X5) simulated
form a Gaussian copula with parameters (ρ12, ρ13, . . . , ρ45) = (0.3, 0.4, 0.5, 0.6,
0.7, 0.3, 0.4, 0.5, 0.6, 0.7). To distinguish our scenarios when d = 5, we con-
sider two covariate vectors given by X

(1) = (X1, X2, . . . , X5) and X
(2) =

(X1, exp(X2), X3, X4, X5), for which the resulting quantile regressions are both
single-index models in X

(1) and X
(2), respectively. This will allow to highlight

the performance of our procedure when its competing estimators are both in an
ideal situation and a slightly altered version of it.

Lastly, for d = 8 we consider again a Gaussian copula for the initial covariate
vector with parameters ρij = (−0.8)|i−j|, i, j = 1, . . . , 8. The parameter vector
of the Cox regression is β = (1,−3/4, 1/2, 1/4,−3/5, 4/5, 3/5,−2/5)T and the
covariate vector is X(3) = (X1, exp(X2), X3, . . . , X7, X

2
8 ). The resulting model

is hence a single-index and a Cox regression with respect to X
(3).

5.3.1. Model 1: Cox model and single-index model with d = 5

We first consider the simple case of data following a Cox regression model is-
sued from covariate vector X(1). The distributions and parameter values of the
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censoring variables define the following scenarios:

• DGP E: C ∼ Exp(λC), with λC independent of X(1). To attain the de-
sired average censoring proportions, we fix λC = 0.464 and λC = 1.083
(corresponding to approximately 30% and 50% censoring in average, re-
spectively). The exact conditional censoring probability given X

(1) = x is
calculated as λC/(λC + exp(βT

x)) and is hence a decreasing function of
βT

x, making us conjecture better results for higher values of βT
x. Note

that in this scenario, GC(·|x) boils down to GC(·), for which the Kaplan-
Meier estimator is suited.

• DGP F: C ∼ Exp(λC(x)), with λC(x) = 3/7 × exp(βT
x) and λC(x) =

exp(βT
x) corresponding to 30% and 50% censoring, respectively. In this

scenario, the conditional censoring probability is independent of x, and an
adequate estimation of GC(·|x) is fulfilled with a Cox model hypothesis
for the relationship between the covariates and the censoring variable.

For comparison purposes, we consider the four following estimators:

m̂cox, τ : parametric estimator exploiting the information related to the para-
metric Cox model setting. This estimator will serve as a reference for
the ideal, yet unknown in practice, situation. Specifically, m̂cox, τ (x) =

− log(1 − τ) exp(−β̂T
x)/λ̂T0 , where β̂ is estimated by maximum par-

tial likelihood, and λ̂T0 is the maximum likelihood estimator of the
exponential baseline distribution.

m̂si, τ : Single-index regression estimator studied in Bücher, El Ghouch and
Van Keilegom [2], where the censoring distribution is supposed to be in-
dependent of x. For the univariate nonparametric part of the estimation
process, 10 different bandwidths are selected (h ∈ {0.05, 0.1, . . . , 0.5}),
and the optimal choice is performed using the described leave-one-out
cross-validation procedure. Note that the quantile regression of inter-
est mτ (x) here is indeed a single-index model in (X1, X2, . . . , X5). This
should provide a critical advantage to the performance of m̂si, τ .

m̂
(⊥⊥)
cop, τ : our copula-based estimator from estimation equation (9), where the

conditional distribution GC(·|x) is supposed to be independent of x
and thereby estimated by the classical (unconditional) Kaplan-Meier
estimator.

m̂
(cox)
cop, τ : our copula-based estimator, where the relationship between the covari-

ates and the censoring variable is supposed to follow a Cox regression

model. Namely, ĜC(c|x) is estimated by 1− exp
(
−c exp(β̂T

C x)/λ̂C0

)
.

Following the arguments of Section 2.3 and the results of the previous sec-
tions, both copula-based procedures are implemented employing a semiparamet-
ric estimation for the d-variate copula built on the aforementioned candidate
families and selection criterions.
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Table 3

Simulation results expressed in terms of IMAE and the dispersion measure in brackets for
the estimation of mτ (x) with 30% of censoring where the true model is a Cox and
single-index model. The number of repetitions operated is B = 500 for sample sizes

n ∈ {200, 400} and with quantiles of interest τ ∈ {0.1, 0.3, 0.5, 0.7}.

Censoring = 30%

DGP n τ m̂cox, τ m̂si, τ m̂
(⊥⊥)
cop, τ m̂

(cox)
cop, τ

E

200

0.1 0.016 (0.019) 0.039 (0.053) 0.043 (0.059) 0.043 (0.057)
0.3 0.054 (0.063) 0.083 (0.103) 0.101 (0.124) 0.102 (0.123)
0.5 0.105 (0.123) 0.149 (0.185) 0.174 (0.199) 0.175 (0.194)
0.7 0.183 (0.213) 0.280 (0.373) 0.273 (0.299) 0.279 (0.305)

400

0.1 0.011 (0.013) 0.030 (0.038) 0.033 (0.044) 0.033 (0.043)
0.3 0.036 (0.043) 0.070 (0.078) 0.079 (0.097) 0.081 (0.098)
0.5 0.069 (0.084) 0.115 (0.140) 0.130 (0.160) 0.133 (0.159)
0.7 0.120 (0.146) 0.221 (0.273) 0.212 (0.251) 0.212 (0.244)

F

200

0.1 0.016 (0.019) 0.037 (0.052) 0.043 (0.059) 0.043 (0.059)
0.3 0.055 (0.064) 0.082 (0.105) 0.102 (0.129) 0.103 (0.124)
0.5 0.108 (0.125) 0.152 (0.190) 0.174 (0.197) 0.174 (0.191)
0.7 0.187 (0.218) 0.301 (0.474) 0.283 (0.310) 0.278 (0.298)

400

0.1 0.011 (0.014) 0.029 (0.037) 0.035 (0.044) 0.034 (0.045)
0.3 0.036 (0.046) 0.066 (0.077) 0.082 (0.102) 0.083 (0.098)
0.5 0.071 (0.089) 0.118 (0.141) 0.138 (0.165) 0.135 (0.159)
0.7 0.123 (0.155) 0.233 (0.287) 0.222 (0.259) 0.218 (0.241)

In order to compare the studied estimators’ performance, we consider in this
section an integrated version of the median absolute estimation error, that is

IMAE(m̂τ (x)) =
1

N

N∑

i=1

med(B)
(
|m̂τ (xi)−mτ (xi)|

)
,

where m̂τ is a generic estimator of mτ , {xi, i = 1, . . . , N} is an evaluation set
corresponding to a generated random sample of size N = 10, spread on the
domain of X(1), and med(B) denotes the median taken over all B = 500 sim-
ulations. The choice for this robust L1-type of measure is motivated by the
fact that the optimization routines involved in the single-index procedure may
yield very unlikely results with a small probability, hereby strongly disadvan-
taging the estimator when considering a L2-type of error measure. The same
reasoning is underlying the determination of a robust dispersion measure on
estimation errors, taken as the averaged interquartile range. More precisely,

we choose N−1
∑N

i=1

(
Q

(B)
3

(
|m̂τ (xi)−mτ (xi)|

)
−Q

(B)
1

(
|m̂τ (xi)−mτ (xi)|

))
,

where Q
(B)
3 and Q

(B)
1 stand, respectively, for the third and first quartiles taken

over all simulations.
The results of our simulation study for this model are reported in Tables 3

and 4 for 30% and 50% of censoring, respectively. As expected, the Cox regres-
sion estimator m̂cox, τ , serving as a reference case here, outperforms the other
estimators for both scenarios and every sample size, quantile level and censoring
percentage. More interestingly, while the single-index estimator m̂si, τ quite logi-
cally displays better overall results than our copula-based estimators, it is worth
noticing that the difference seems to fade away when moving to higher quantile
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Table 4

Simulation results expressed in terms of IMAE and the dispersion measure in brackets for
the estimation of mτ (x) with 50% of censoring where the true model is a Cox and
single-index model. The number of repetitions operated is B = 500 for sample sizes

n ∈ {200, 400} and with quantiles of interest τ ∈ {0.1, 0.3, 0.5, 0.7}.

Censoring = 50%

DGP n τ m̂cox, τ m̂si, τ m̂
(⊥⊥)
cop, τ m̂

(cox)
cop, τ

E

200

0.1 0.019 (0.022) 0.040 (0.056) 0.044 (0.056) 0.044 (0.054)
0.3 0.063 (0.074) 0.089 (0.111) 0.113 (0.127) 0.115 (0.127)
0.5 0.123 (0.144) 0.176 (0.242) 0.201 (0.209) 0.205 (0.213)
0.7 0.213 (0.251) 0.411 (0.402) 0.354 (0.326) 0.362 (0.326)

400

0.1 0.012 (0.015) 0.031 (0.040) 0.035 (0.042) 0.035 (0.042)
0.3 0.042 (0.051) 0.071 (0.082) 0.089 (0.106) 0.089 (0.106)
0.5 0.081 (0.099) 0.136 (0.170) 0.161 (0.179) 0.163 (0.178)
0.7 0.140 (0.171) 0.299 (0.315) 0.284 (0.290) 0.281 (0.279)

F

200

0.1 0.019 (0.022) 0.040 (0.061) 0.046 (0.059) 0.044 (0.053)
0.3 0.064 (0.074) 0.090 (0.106) 0.117 (0.129) 0.115 (0.123)
0.5 0.125 (0.143) 0.202 (0.374) 0.212 (0.218) 0.210 (0.206)
0.7 0.217 (0.249) 0.526 (0.854) 0.380 (0.341) 0.380 (0.324)

400

0.1 0.013 (0.015) 0.029 (0.038) 0.038 (0.048) 0.036 (0.045)
0.3 0.043 (0.052) 0.069 (0.082) 0.099 (0.113) 0.095 (0.105)
0.5 0.084 (0.102) 0.140 (0.173) 0.177 (0.201) 0.172 (0.174)
0.7 0.145 (0.176) 0.346 (0.632) 0.306 (0.322) 0.298 (0.283)

levels, especially for higher levels of censoring percentage. This is considered as a
first encouraging result for the copula-based estimators as the simulated model
is very strongly to the advantage of m̂si, τ . This indicates that our proposed
procedure is flexible enough to compete with m̂si, τ in its ideal setup when the
number of observations actually entering the estimation scheme becomes mod-
erate, that is when censoring percentage is important and the quantile level of
interest is high. Of course, if this is not the case, there is no a priori reason
to believe that the copula-based estimators could outperform m̂si, τ when the
latter is considered in its optimal setting.

Figure 3 serves to illustrate these results for the particular case of DGP E
with n = 400 and for high quantile levels (τ ∈ {0.5, 0.7}). For the sake of
brevity, we only report here a graphical comparison between the copula-based
estimators and the single-index estimator, as m̂cox, τ clearly outperforms the
latter. As can be observed from Figure 3, the difference between m̂si, τ and
both copula-based estimators is graphically modest, especially for the highest
quantile of interest τ = 0.7, hereby reinforcing the previously discussed results
of Tables 3 and 4. Furthermore, note that all estimators tend to present worse
performances for low levels of βT

x. This is expected in this simulation setting
as these levels correspond to the region of βT

x where the exact conditional
censoring probability is the highest.

Focusing again on Tables 3 and 4, we further note that, while there is log-

ically a difference between the performances of m̂
(⊥⊥)
cop, τ and m̂

(cox)
cop, τ depending

on the simulated scenario, the effect of an appropriate modelling of ĜC(·|x)
seems to be rather limited in this simulation setup for our estimators. Ad-

ditionally, while both m̂si, τ and m̂
(⊥⊥)
cop, τ rely here on the assumption of in-
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Fig 3. Boxplots corresponding to the results in Tables 3 and 4 of three estimators considered
for mτ (x) for N = 10 points spread on the domain of βTX(1) in DGP E, and for τ ∈
{0.5, 0.7}. In this setting, the true model is a single-index model and hence favors m̂si, τ over
both copula-based estimators. All pictures are based on 500 repetitions for n = 400 and 30%
censoring. The red lines represent the true value of m0.5(x) and m0.7(x).

dependence between the censoring variable and the covariate vector, the lat-
ter seems to numerically behave better when confronted to the violation of
this hypothesis. This can be observed from the comparison between DGP E
and F of the dispersion measures of both estimators, once again especially
for high levels of quantile values and censoring percentages. Of course, one
could argue that, given the results for the dispersion measure of m̂si, τ for high
quantiles, this can partly be due to a poor smoothing parameter choice. How-
ever, the latter was implemented using the proposed methodology of Bücher,
El Ghouch and Van Keilegom [2], just as a practitioner would have resolved to
act.

5.3.2. Models 2 & 3: Alteration of a Cox model and single-index model with
d = 5 and d = 8

To pursue our simulation study, we now consider in this section the second and
third models where the time-to-event data is simulated using covariate vectors
X

(2) and X
(3), respectively. Consequently, the resulting quantile regressions

are no longer a single-index nor a Cox regression model in (X1, X2, . . . , X5)
for model 2 and (X1, X2, . . . , X8) for model 3. For comparison purposes, we
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Table 5

Simulation results expressed in terms of IMAE and the dispersion measure in brackets for
the estimation of mτ (x) for model 2. The number of repetitions operated is B = 500 for
sample sizes n ∈ {200, 400}, censoring proportion pc ∈ {0.3, 0.5} and with four levels of

quantile of interest τ ∈ {0.1, 0.3, 0.5, 0.7}.

Model 2

n pc τ m̂cox, τ m̂si, τ m̂
(⊥⊥)
cop, τ m̂

(cox)
cop, τ

200

0.3

0.1 0.115 (0.046) 0.105 (0.142) 0.115 (0.160) 0.115 (0.159)
0.3 0.391 (0.156) 0.279 (0.273) 0.249 (0.285) 0.250 (0.286)
0.5 0.760 (0.302) 0.489 (0.538) 0.452 (0.532) 0.454 (0.538)
0.7 1.319 (0.525) 0.988 (1.023) 0.781 (0.828) 0.783 (0.842)

0.5

0.1 0.116 (0.054) 0.107 (0.156) 0.115 (0.139) 0.116 (0.143)
0.3 0.391 (0.182) 0.334 (0.324) 0.303 (0.335) 0.311 (0.338)
0.5 0.760 (0.359) 0.611 (0.742) 0.574 (0.552) 0.583 (0.558)
0.7 1.321 (0.615) 1.441 (1.142) 1.053 (0.845) 1.074 (0.865)

400

0.3

0.1 0.115 (0.029) 0.084 (0.101) 0.092 (0.118) 0.092 (0.120)
0.3 0.388 (0.099) 0.219 (0.222) 0.211 (0.264) 0.212 (0.265)
0.5 0.753 (0.192) 0.372 (0.401) 0.358 (0.427) 0.359 (0.430)
0.7 1.308 (0.333) 0.685 (0.844) 0.598 (0.682) 0.604 (0.683)

0.5

0.1 0.114 (0.035) 0.084 (0.105) 0.096 (0.109) 0.096 (0.112)
0.3 0.387 (0.118) 0.254 (0.231) 0.221 (0.283) 0.226 (0.285)
0.5 0.751 (0.228) 0.479 (0.490) 0.431 (0.486) 0.438 (0.488)
0.7 1.305 (0.397) 0.933 (0.878) 0.850 (0.781) 0.857 (0.793)

consider the four estimation procedures described in model 1, given covariate
vectors (X1, X2, . . . , X5) and (X1, X2, . . . , X5), respectively, hereby implying a
slight model bias for both m̂si, τ and m̂cox, τ as the latter would require transfor-
mations of the covariates. In opposition, both copula-based procedures, which
are here constructed using the same previously-described semiparametric mod-
elling strategy, automatically take account of such concerns.

For brevity, we only consider here the situation where the censoring variable
is independent from the covariate vector, as the impact of a dependent scheme
has been treated in model 1. Specifically, for model 2 we simulate the censoring
variable from an exponential distribution with parameter values 0.208 and 0.486
for approximately 30% and 50% censoring. Concerning model 3, we only report
the results for 30% censoring which are attained by simulating here a censoring
variable following an exponential distribution with parameter 0.903.

The resulting performance of the considered estimators are depicted in Ta-
bles 5 and 6, once again in terms of IMAE. In Table 5 reporting the case d = 5,
we observe that both copula-based estimators tend to outperform their com-
petitors, with the exception of very low quantiles of interest where the effect of
a (‘small’) misspecification of the underlying model seems to be moderate for
both m̂cox, τ and m̂si, τ . As we move away from these low quantile levels, the
consequences of misspecifying the model become more severe for the compet-
ing estimators, notably for a purely parametric approach (m̂cox, τ ). In contrast,
the copula-based approach presents satisfactory results for varying censoring
proportions and sample sizes, especially when keeping in mind that the sim-
ulated scenario is ‘only’ a slightly altered version of the ideal scenario for its
competitors.
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Table 6

Simulation results expressed in terms of IMAE and the dispersion measure in brackets for
the estimation of mτ (x) for model 3. The number of repetitions operated is B = 500 for
sample sizes n ∈ {200, 400}, censoring proportion pc = 0.3 and with four levels of quantile

of interest τ ∈ {0.1, 0.3, 0.5, 0.7}.

Model 3

pc n τ m̂cox, τ m̂si, τ m̂
(⊥⊥)
cop, τ m̂

(cox)
cop, τ

0.3

200

0.1 0.031 (0.054) 0.037 (0.049) 0.029 (0.037) 0.031 (0.044)
0.3 0.084 (0.182) 0.124 (0.174) 0.075 (0.080) 0.078 (0.091)
0.5 0.149 (0.354) 0.241 (0.451) 0.139 (0.139) 0.142 (0.151)
0.7 0.273 (0.616) 0.419 (0.822) 0.240 (0.222) 0.247 (0.236)

400

0.1 0.116 (0.035) 0.028 (0.038) 0.023 (0.028) 0.024 (0.030)
0.3 0.067 (0.118) 0.094 (0.099) 0.062 (0.066) 0.062 (0.069)
0.5 0.104 (0.230) 0.183 (0.344) 0.114 (0.116) 0.115 (0.122)
0.7 0.220 (0.400) 0.317 (0.652) 0.194 (0.190) 0.194 (0.197)

Similar findings apply when analyzing the results of Table 6 for d = 8. In this
situation, both copula-based estimator still globally outperform their competi-
tors, although the margin of improvement is relatively smaller than for d = 5.
This results from the fact that we have here to model a nine-dimensional cop-
ula density with no information on the underlying model, while both m̂si, τ

and m̂si, τ rely on model assumptions that are still relatively close to the sim-
ulated model. Conclusively, this advocates, here again, for the flexibility of our
procedure and its withstanding to misspecification of the underlying model for
multidimensional problems when comparing with other semiparametric or fully
parametric modelling techniques.

6. Real data application

We present in this section a brief application of our procedure for censored data
by analysing the Colorado Plateau uranium miners cohort data (see e.g. Lubin
et al. [29], Langholz and Goldstein [26]). The object of the study, for which
3347 Caucasian male miners having worked at least a month in the uranium
mines of the Colorado Plateau were followed, is to investigate the risk of lung
cancer related to smoking and radon exposure. Hence, the event of interest is
defined as the time till lung cancer death (expressed as the logarithm of number
of years), which affected a total of 258 miners. Besides failure time, the study
also includes information about age at entry to the study, cumulative smoking
(in number of packs) and radon exposure (in working level month (WLM)).

As the original data set is prone to heavy censoring (92.3%), and given the
illustrative nature of this section, we first define a subsample on which the
analysis will be performed. To that end, in order to preserve as best as possible
the nature of the population at risk, we decide to define a threshold on the radon
exposure above which observations will enter the subsample. The value of the
threshold is practically chosen as a trade-off between censoring proportion and
actual number of observations that are to be selected. Specifically, we find that
by defining a threshold of 2831 WLM on radon exposure, a subsample of 176
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Fig 4. Colorado Plateau uranium miners cohort data. Scatter plots of the survival time ver-
sus each covariate. Uncensored data points are given by ×, while censored observations are
represented by △.

observations is constituted, 55 of which were subject to the event of interest.
Scatterplots of the selected data are represented in Figure 4, where X1 is the
age at entry into the study, X2 is the cumulative radon exposure and X3 is the
cumulative smoking.

Regarding the data analysis, endorsing the role of a practitioner, we are
faced with the choice of an appropriate estimator for the application of quan-
tile regression in this context. We therefore consider the following distinctive
candidates:

m̂
(cox)
cop, τ : Copula-based quantile regression estimator, with Cox regression mod-

elling for GC(·|·).
m̂si, τ : Single-Index methodology of Bücher, El Ghouch and Van Keilegom [2].

m̂cox, τ : Semiparametric estimator based on the Cox proportional hazards

model. Specifically, m̂cox,τ (x) = Ĥ−1
0 (− log(1 − τ) exp(−β̂T

x)), where

β̂ is estimated by maximum partial likelihood, and Ĥ0 is the Nelson-
Aalen-type estimator of the cumulative baseline hazard.

As a general evaluation measure to compare models for the present data set,
we consider the median quantile loss from predicting the τ -th conditional quan-
tile of T for the uncensored observations. In other words, we use the following
cross-validated prediction error criterion:

PE (m̂τ ) = med1≤i≤n

∆i=1
ρτ

(
Yi − m̂−i

τ (Xi)
)
,

where m̂−i
τ denotes any estimator of mτ based on all observations except the

i-th one.
For the implementation of the copula-based regression estimator, we adopt

the methodology of Section 2.3 and our simulation study by opting for a semi-
parametric modelling of the four-variate copula density, where the bivariate
copulas of the response variable with each covariate are estimated using the
procedure of Geenens, Charpentier and Paindaveine [14] with quadratic poly-
nomials along with the proposed data-driven bandwidth selection scheme. The
remaining trivariate noisy copula is, afterwards, estimated using vine techniques
with the same candidate families and selection criterion as in Section 5. Addi-
tionally, a general appropriate hypothesis has to be made for the modelling of
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Table 7

Colorado Plateau uranium miners cohort data. Prediction error multiplied by 10 for each
censored quantile regression estimator for quantile levels τ ∈ {0.1, 0.3, 0.5, 0.7}.

τ PE
(
m̂

(cox)
cop, τ

)
PE (m̂si, τ ) PE (m̂cox, τ )

0.1 0.348 0.848 0.946
0.3 0.774 1.471 1.180
0.5 0.785 1.901 1.169
0.7 0.470 2.838 0.967

the conditional distribution GC(·|·). As it is shown in the literature that inde-
pendence is unsuitable for the data of the study (see e.g. Leng and Tong [27]),
we propose to model the conditional distribution through a semiparametric Cox
regression for the censoring time with respect to the covariates. Therefore, as is
common in practice, the parameter of the regression is estimated by maximum
partial likelihood while the Breslow estimator is used for computing the baseline
survivor function.

Concerning m̂si,τ , the bandwidth choice is performed using the proposed
leave-one-out cross-validation procedure on normalized covariates with 15 can-
didates (h ∈ {0.1, 0.2, . . . , 1.5}). Note that, as the latter procedure is computa-
tionally costly, it is here assumed that the selected bandwidth is constant for all
datasets entering the estimation of PE(m̂si,τ ), which is of little impact in this
context given that only one observation at the time is to be removed from each
dataset.

The results of the evaluation measure are reported in Table 7 for four quantile
levels of interest τ ∈ {0.1, 0.3, 0.5, 0.7}. It is observed that, in terms of cross-
validated prediction error, our copula-based approach depicts quite confidently
the best performance for every considered quantile level of interest. By com-
parison, the single-index structure seems to be inappropriate as such for the
studied data set, and should possibly require further work and attention on, for
instance, transformations of covariates. Furthermore, its sensitivity to higher
quantile levels is, here again, highlighted. Lastly, despite being part of every
practitioner’s toolbox for survival analysis, the proportional hazards regression
estimator is also relatively largely outperformed by the increased flexibility of
the copula-based approach. Hence, this example clearly illustrates the ability of
our estimator to adapt to the underlying regression structure of the data.

Conclusively, recalling that, from equation (10), our procedure enjoys the
additional valuable property of being automatically monotonic across quantile
levels, this real data application plainly highlights the relevance of our estimator
for flexible analyses of multivariate censored data.

7. Conclusion

In this work we have proposed a semiparametric copula-based quantile regression
estimator in the context of potentially right-censored responses. On a general
note, for data with or without censoring, and motivated by the regression con-



Semiparametric copula quantile regression 1689

text, a novel semiparametric estimation approach for the implied copula density
was studied. Furthermore, in parallel to the procedure of Noh, El Ghouch and
Van Keilegom [35], the proposed regression estimator in this work is obtained
as a weighted quantile of the observed response variable, hereby opening the
door to the practical use of the quantile regression code developed by Portnoy
and Koenker [38] and Koenker [22]. Asymptotic normality of the resulting es-
timator for both complete and censored data was obtained with convergence
rate determined by the nonparametric estimation of bivariate copula densities.
For inferential purposes however, bootstrap procedures are to be preferred as
the applicability of the obtained asymptotic normality is restrained by numer-
ous unknown quantities to be estimated in practice. This bootstrap procedure
could be inspired by the wild bootstrap procedure proposed by Feng, He and
Hu [13]. Finally, supporting the objective of this work, an extensive simulation
study and a real data application have been carried out to illustrate both the
validity of the semiparametric copula estimation and the increased flexibility
of our procedure in comparison with existing alternatives, especially when no a
priori knowledge about the functional form of the quantile regression is available
in practice.

Appendix

We develop in this appendix the proofs of Theorem 4.1 and Corollary 4.2.

Proof of Theorem 4.1

Define

Ân(s) =

n∑

i=1

[ρτ (ǫi − s/an)− ρτ (ǫi)] Ŵi(x) ĉ
u
YX

(
F̂u
Y (Yi), F̂

u(x)
)
,

with ǫi ≡ ǫi(x, τ) = Yi−mτ (x), and an =
√
nh2. Observe first that, by definition

of m̂τ (x),

an(m̂τ (x)−mτ (x)) = argmin
s

Ân(s).

Furthermore, given that ρτ is a convex function and Ŵi(x) ĉ
u
YX

(
F̂u
Y (Yi),

F̂
u(x)

)
≥ 0 for all i = 1, . . . , n, we have that s �→ Ân(s) is convex. The

idea is then to develop an expression of Ân(s) leading to the application of
the quadratic approximation Lemma of convex functions (Basic Corollary in
Hjort and Pollard [17]). To that end, we have that (Knight’s (1998) identity)

ρτ (u− v)− ρτ (u) = −vψτ (u) +R(u, v),

with ψτ (u) = τ − 1(u ≤ 0),

R(u, v) =

∫ v

0

(1(u ≤ s)− 1(u ≤ 0))ds = (u− v)(1(u ≤ 0)− 1(u ≤ v)),
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and 0 ≤ R(u, v) ≤ |v|. Hence, we may write

Ân(s) = −sÂ1n + Â2n(s),

with

Â1n = a−1
n

n∑

i=1

ψτ (ǫi) Ŵi(x) ĉ
u
YX

(
F̂u
Y (Yi), F̂

u(x)
)
,

and

Â2n(s) =

n∑

i=1

R(ǫi, s/an) Ŵi(x) ĉ
u
YX

(
F̂u
Y (Yi), F̂

u(x)
)
.

Focusing first on Â2n(s), we will show that

Â2n(s) =
s2

2
w−1(x)fT |X(mτ (x)|x)

n

a2n
+ oP

(
n

a2n

)
, (A.11)

where fT |X is the conditional density of T given X and w(x) = p(x)/
[
P(Δ =

1)cu
X
(F u(x))

]
. To that end, we write

Â2n(s) = A2n(s) + Δ1n(s) + Δ2n(s),

where

A2n(s) =

n∑

i=1

R(ǫi, s/an)Wi(x) c
u
YX

(
Fu
Y (Yi),F

u(x)
)

Δ1n(s) =

n∑

i=1

R(ǫi, s/an) (Ŵi(x)−Wi(x)) c
u
YX

(
Fu
Y (Yi),F

u(x)
)

Δ2n(s) =

n∑

i=1

R(ǫi, s/an) Ŵi(x)
[
ĉuYX

(
F̂u
Y (Yi), F̂

u(x)
)
− cuYX

(
Fu
Y (Yi),F

u(x)
)]
.

Concentrating on each term, we will show that

A2n(s) =
s2

2
w−1(x)fT |X(mτ (x)|x)

n

a2n
+ oP

(
n

a2n

)
(A.12)

Δ1n(s) = oP

(
n

a2n

)
(A.13)

Δ2n(s) = oP

(
n

a2n

)
. (A.14)

For the proof of (A.12), we first establish that

E(A2n(s)) = nE
(
R(ǫ1, s/an)W1(x) c

u
YX

(
Fu
Y (Y1),F

u(x)
))

= nw−1(x)

∫ s/an

0

(
FT |X(mτ (x) + t|x)− FT |X(mτ (x)|x)

)
dt,
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where FT |X denotes, as in Section 2, the conditional c.d.f. of T given X, and
where, for the second equality, we used (see Section 3) the fact that, for any
measurable function ϕ : R → R, we have E(Δϕ(Y ) cuYX

(
Fu
Y (Y ),F u(x)

)
) =

w−1(x)E(Δϕ(Y )|X = x). Next, we write

FT |X(mτ (x) + t|x)− FT |X(mτ (x)|x) = t fT |X(mτ (x) + θt|x)
= t fT |X(mτ (x)|x) + tR(t),

for some θ ∈ (0, 1), with R(t) = fT |X(mτ (x) + θt|x) − fT |X(mτ (x)|x). This
yields

E(A2n(s)) =
s2

2
w−1(x)fT |X(mτ (x)|x)

n

a2n
+ nw−1(x)

∫ s/an

0

tR(t)dt.

From the fact that, under the required bandwidth condition and assumption
(C1), ∣∣∣∣∣

∫ s/an

0

tR(t)dt

∣∣∣∣∣ ≤
s2

2 a2n
sup

|t|≤|s|/an

|R(t)| = o(1/a2n),

we get that

E(A2n(s)) =
s2

2
w−1(x)fT |X(mτ (x)|x)

n

a2n
+ o

(
n

a2n

)
,

provided assumption (C2) is satisfied. To conclude the proof of (A.12), it is then
sufficient to show that

Var(A2n(s)) = o

(
n

a2n

)2

.

To that end, observe that, for n sufficiently large, and under assumptions (C1),
(C2) and (C3),

Var(A2n(s))

≤ nE
(
R(ǫ1, s/an)W1(x) c

u
YX

(
Fu
Y (Y1),F

u(x)
))2

≤ nE
(
R(ǫ1, s/an)W1(x) c

u
YX

(
Fu
Y (Y1),F

u(x)
)) |s|

an

×
(
1−GC(mτ (x) + δ)|x

)−1
sup
t∈R

cuYX

(
Fu
Y (t),F

u(x)
)
, for some δ > 0

= O

(
n

a3n

)
= o

(
n

a2n

)2

,

as an/n converges to 0.

Concentrating now on the proof of (A.13), observe that, for n sufficiently
large
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|Δ1n(s)|

=

∣∣∣∣∣
n∑

i=1

R(ǫi, s/an)Wi(x) c
u
YX

(
Fu
Y (Yi),F

u(x)
) ĜC(Yi − |x)−GC(Yi − |x)

1− ĜC(Yi − |x)

∣∣∣∣∣

≤ A2n(s) sup
t≤max1≤i≤n

∆i=1

Yi

|ĜC(t|x)−GC(t|x)|
1− ĜC(t|x)

= oP

(
n

a2n

)
,

provided that ĜC(·|x) satisfies assumption (C6).
Lastly, for the proof of (A.14), note that, for n sufficiently large,

|Δ2n(s)| =
∣∣∣∣

n∑

i=1

R(ǫi, s/an) Ŵi(x) c
u
YX

(
Fu
Y (Yi),F

u(x)
)

× ĉuYX

(
F̂u
Y (Yi), F̂

u(x)
)
− cuYX

(
Fu
Y (Yi),F

u(x)
)

cuYX

(
Fu
Y (Yi),F u(x)

)
∣∣∣∣

≤ (A2n(s) + Δ1n(s)) sup
t∈R

∣∣ĉuYX

(
F̂u
Y (t), F̂

u(x)
)
− cuYX

(
Fu
Y (t),F

u(x)
)∣∣

cuYX

(
Fu
Y (t),F

u(x)
)

= oP

(
n

a2n

)
,

provided that assumption (C7)-(i) is satisfied.
Hence, reassembling (A.12), (A.13) and (A.14) yields

a2n
n
Ân(s) = −s

a2n
n
Â1n +

s2

2
w−1(x)fT |X(mτ (x)|x) + oP(1).

Therefore, by the quadratic approximation Lemma of a convex function, see e.g.

Hjort and Pollard [17], if
a2
n

n Â1n = OP(1), then

an(m̂τ (x)−mτ (x)) = argmin
s

a2n
n
Ân(s) =

w(x)

fT |X(mτ (x)|x)
a2n
n
Â1n + oP(1).

(A.15)

As a consequence, the asymptotic behavior of our estimator will be driven by

the asymptotic expression of
a2
n

n Â1n. Developing the expression of the latter, we
will show that

a2n
n
Â1n =

an
n

n∑

i=1

ψτ (ǫi)Wi(x)
[
ĉuYX

(
Fu
Y (Yi),F

u(x)
)
− cuYX

(
Fu
Y (Yi),F

u(x)
)]

+ oP (1) . (A.16)

To that end, note that
a2
n

n Â1n may be decomposed as
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a2n
n
Â1n =

an
n

n∑

i=1

ψτ (ǫi)Wi(x)
[
ĉuYX

(
Fu
Y (Yi),F

u(x)
)
− cuYX

(
Fu
Y (Yi),F

u(x)
)]

+Δ3n +Δ4n +Δ5n +Δ6n,

where

Δ3n =
an
n

n∑

i=1

ψτ (ǫi)(Ŵi(x)−Wi(x))ĉ
u
YX

(
F̂u
Y (Yi), F̂

u(x)
)

(A.17)

Δ4n =
an
n

n∑

i=1

ψτ (ǫi)Wi(x)
[
ĉuYX

(
F̂u
Y (Yi), F̂

u(x)
)
− ĉuYX

(
Fu
Y (Yi), F̂

u(x)
)]

(A.18)

Δ5n =
an
n

n∑

i=1

ψτ (ǫi)Wi(x)
[
ĉuYX

(
Fu
Y (Yi), F̂

u(x)
)
− ĉuYX

(
Fu
Y (Yi),F

u(x)
)]

(A.19)

Δ6n =
an
n

n∑

i=1

ψτ (ǫi)Wi(x)c
u
YX

(
Fu
Y (Yi),F

u(x)
)
. (A.20)

We will show that all these quantities converge to 0 in probability. Starting with
Δ3n, we have, for a large n,

|Δ3n| =
∣∣∣∣∣
an
n

n∑

i=1

ψτ (ǫi)Wi(x)ĉ
u
YX

(
F̂u
Y (Yi), F̂

u(x)
) ĜC(Yi − |x)−GC(Yi − |x)

1− ĜC(Yi − |x)

∣∣∣∣∣

≤ an sup
t∈R

ĉuYX

(
F̂u
Y (t), F̂

u(x)
)

sup
t≤max1≤i≤n

∆i=1

Yi

∣∣∣ĜC(t|x)−GC(t|x)
∣∣∣

1− ĜC(t|x)

× 1

n

n∑

i=1

|ψτ (ǫi)|Wi(x)

= OP(an) sup
t≤τFY

∣∣∣ĜC(t|x)−GC(t|x)
∣∣∣

1− ĜC(t|x)
= oP(1),

under the condition that assumptions (C2), (C4)-(i), (C6) and (C7)-(i) are met.
The proofs of (A.18) and (A.19) are very similar in spirit. Hence, for the sake

of brevity, we only consider here (A.18). For any i = 1, . . . , n, there exists a
θi ∈ (0, 1) such that,

ĉuYX

(
F̂u
Y (Yi), F̂

u(x)
)
− ĉuYX

(
Fu
Y (Yi), F̂

u(x)
)
=

(
F̂u
Y (Yi)− Fu

Y (Yi)
)
×

∂1ĉ
u
YX

(
Fu
Y (Yi) + θi

(
F̂u
Y (Yi)− Fu

Y (Yi)
)
, F̂ u(x)

)
,

where ∂j denotes the partial derivative with respect to the j-th argument. There-
fore, for a large n and under the bandwidth requirement,

|Δ4n| ≤ an sup
t∈R

|F̂u
Y (t)− Fu

Y (t)| sup
u0 ∈ (0,1)

sup
u∈VFu(x)

|∂1 ĉuYX
(u0,u)|
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× 1

n

n∑

i=1

|ψτ (ǫi)|Wi(x)

= oP(1),

provided assumptions (C4)-(i), (C5), and (C7)-(ii) are satisfied. Similarly, Δ5n =
oP(1).

Lastly, Δ6n = oP(1), since

E(ψτ (ǫ)W (x) cuYX

(
Fu
Y (Y ),F u(x)

)
) = 0,

and, by assumption (C4)-(ii),

1

n

n∑

i=1

ψτ (ǫi)Wi(x) c
u
YX

(
Fu
Y (Yi),F

u(x)
)
= OP(n

−1/2).

Finally, inserting (A.16) in (A.15), we conclude that

an(m̂τ (x)−mτ (x)) =
w(x)

fT |X(mτ (x)|x)
an
n

n∑

i=1

ψτ (ǫi)Wi(x)

×
[
ĉuYX

(
Fu
Y (Yi),F

u(x)
)
− cuYX

(
Fu
Y (Yi),F

u(x)
)]

+ oP(1),

which completes the proof.

Proof of Corollary 4.2

Given that, by the result of Theorem 4.1, the asymptotic behavior of m̂τ (x)
will be dictated by the expression of the multivariate copula estimator, we will
concentrate on the latter. Using the asymptotic expressions of both bivariate
copulas along with the multivariate copula decomposition of Section 2.3, under
the required bandwidth conditions we have that,

an
(
ĉuYX

(
u0,u

)
− cuYX

(
u0,u

)
− h2bYX(u0,u)

)
=

1√
n

n∑

j=1

Z̃nj(u0,u) + oP(1),

∀u ∈ (0, 1)2, uniformly in u0 ∈ (0, 1),

where

Z̃nj(u0,u)=
(
Znj
1 (u0, u1)c

u
2

(
u0, u2

)
+Znj

2 (u0, u2)c
u
1

(
u0, u1

))
cuX1X2|Y

(u1, u2|u0)

bYX(u0,u)=
[
b1(u0, u1)c

u
2

(
u0, u2

)
+ b2(u0, u2)c

u
1

(
u0, u1

)]
cuX1X2|Y

(u1, u2|u0).

Therefore, using the result of Theorem 4.1, we may determine that

an

(
m̂τ (x)−mτ (x)− h2 w(x)

fT |X(mτ (x)|x)
n−1
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×
n∑

i=1

ψτ (ǫi)Wi(x)bYX (Fu(Yi),F
u(x))

)

=
w(x)

fT |X(mτ (x)|x)
√
n
1

n2

n∑

i=1

n∑

j=1

ψτ (ǫi)Wi(x)Z̃
nj (Fu(Yi),F

u(x)) + oP(1).

Let us define

B(x) =
w(x)

fT |X(mτ (x)|x)
E (ψτ (ǫ)W (x)bYX (Fu(Y ),F u(x))) .

Provided that assumption (C8) holds, we have

w(x)

fT |X(mτ (x)|x)
n−1

n∑

i=1

ψτ (ǫi)Wi(x)bYX (Fu(Yi),F
u(x)) = B(x) +OP(n

−1/2),

from which it results that

an
(
m̂τ (x)−mτ (x)− h2B(x)

)

=
w(x)

fT |X(mτ (x)|x)
√
n
1

n2

n∑

i=1

n∑

j=1

ψτ (ǫi)Wi(x)Z̃
nj (Fu(Yi),F

u(x)) + oP(1).

(A.21)

The last step of the proof is then to simplify the obtained expression on the right
hand side of the last equality. To that end, define Vn = n−2

∑n
i=1

∑n
j=1 ψτ (ǫi)×

Wi(x)Z̃
nj (Fu(Yi),F

u(x)), and observe that this is a V-statistic with the sym-
metric kernel

Ψn(Vi, Vj) =
1

2

[
ψτ (ǫi)Wi(x)Z̃

nj (Fu(Yi),F
u(x))

+ ψτ (ǫj)Wj(x)Z̃
ni (Fu(Yj),F

u(x))
]
,

where Vt = (Yt,Xt,Δt), t = i, j. As the statistic’s kernel depends on n, this
suggests to apply Corollary 1 in Martins-Filho and Yao [30] which establishes
the

√
n-equivalence between the V-statistic and the Hájek-projection of its cor-

responding U-statistic (see e.g. Serfling [40], page 189). Therefore, as E
(
Znj
k (u0,

uk)
)
= 0 for all u0, uk, k = 1, 2, and E

(
Ψn(Vi, Vj)

)
= 0, we have

Vn = n−1
n∑

i=1

λn (Yi,Δi,Xi,x) + oP(n
−1/2), (A.22)

where λn (Yi,Δi,Xi,x) = E

[
ψτ (ǫ)W (x)Z̃ni (Fu(Y ),F u(x)) |Yi,Δi,Xi

]
, pro-

vided that assumption (C9) holds. Lastly, the result of Corollary 4.2 follows
readily from the insertion of (A.22) in (A.21) and the application of Lyapunov’s
central limit theorem.
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