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A semiparametric density estimation is proposed under a two-sample density ratio model. This model,

arising naturally from case–control studies and logistic discriminant analyses, can also be regarded as

a biased sampling model. Our proposed density estimate is therefore an extension of the kernel

density estimate suggested by Jones for length-biased data. We show that under the model considered

the new density estimator not only is consistent but also has the ‘smallest’ asymptotic variance among

general nonparametric density estimators. We also show how to use the new estimate to define a

procedure for testing the goodness of fit of the density ratio model. Such a test is consistent under

very general alternatives. Finally, we present some results from simulations and from the analysis of

two real data sets.
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1. Introduction

A basic characteristic describing the behaviour of a random variable X is its probability

density function g(x). Knowledge of the density function helps us in many respects. For

instance, the density tells us when observations cluster and occur more frequently. By

looking at the graph of a density function we may also say ‘the distribution of X is

skewed’ or ‘the distribution is multimodal’. Many more structural elements and features of

X can be seen just by interpreting and analysing the density. The estimation of the

unknown density g thus provides a way of understanding and representing the behaviour of

a random variable. For example, Zhao et al., (1996) considered a case–control study

focusing analyses on the association of colon cancer with energy, alcohol, and fibre intake

among 238 male cases and 223 male controls. In the preliminary analyses, they used the

method described by Silverman (1986, Section 2.4) to show that for total energy, the shapes

of the nonparametric density estimates for cases and controls do not differ substantially.

For alcohol intake, the estimated densities appear to be bimodal, clustering near zero and

19 g/day. Controls were more likely to be non-drinkers, and among drinkers controls

consumed less alcohol than cases. For fibre, the estimated densities among cases and
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controls are similar. Such preliminary results are helpful in studying the relationships

between colon cancer and other potential risk factors.

Let fX1, . . . , X n0
g be a random sample from a population with density function g(t).

Independent of these X j, let fZ1, . . . , Zn1
g be another random sample from a population

with density function h(t). If the densities g and h are not related in any way, then the

ordinary estimated density functions are

ĝg(t) ¼ n�1
0

Xn0

j¼1

Kb(t � X j) and ĥh(t) ¼ n�1
1

Xn1

k¼1

Kb(t � Zk),

where K is a probability density function supported on [�1, 1], b is the smoothing parameter,

and Kb(�) ¼ b�1K(�=b); see Silverman (1986, Section 2.4). Sometimes, however, the two

density functions are related in some way, and hence when estimating the densities g and h,

we can take the ‘information’ contained in both samples fX 1, . . . , X n0
g and fZ1, . . . , Zn1

g
into account. In this paper, we shall consider estimating g(t) and h(t) under the following

two-sample density ratio model in which the two density functions are related by

h(t) ¼ g(t)expfÆþ r(t)�g, (1:1)

where r(t) ¼ fr1(t), . . . , rd(t)g is a known d-dimensional row vector of functions of t,

� ¼ (�1, . . . , �d)T is a d-dimensional column vector of parameters, and Æ is a normalizing

parameter that makes h(t) integrate to 1.

The two-sample density ratio model arises naturally from the logistic regression analysis

of case–control data. For example, let Y be a two-state response taking value Y ¼ 1 for an

individual who becomes a ‘case’, and Y ¼ 0 otherwise (that is, for a ‘control’). Let T be

the explanatory variable such as the potential risk factor for a disease. Then the usual

prospective logistic regression model relating T to Y is given by

Pr(Y ¼ 1jT ¼ t) ¼ exp(Æ# þ �t)

1 þ exp(Æ# þ �t)
:

Suppose h(t) ¼ f (tjY ¼ 1), the conditional density of T given Y ¼ 1, and g(t) ¼ f (tjY ¼ 0),

the conditional density of T given Y ¼ 0; then Bayes’s theorem gives

h(t) ¼ g(t)exp(Æþ t�),

where Æ ¼ Æ# þ logfPr(Y ¼ 0)=Pr(Y ¼ 1)g. Thus we have two-sample density ratio model

(1.1) with r(t) ¼ t. In view of this discussion, suppose we can find better estimates of g(t)

and h(t) based on model (1.1) and the combined sample of fX1, . . . , X n0
g and

fZ1, . . . , Zn1
g; then the conclusions in Zhao et al. (1996) may be improved. Further, since

the improved semiparametric density estimate is derived from model (1.1), the ‘difference’

between this density estimate and the ordinary kernel density estimate can serve as a statistic

to test the validity of model (1.1). Under case–control data, such a statistic can be used to

test the goodness of fit of the logistic regression model.

Note that model (1.1) can also be viewed as a biased sampling model. For example, if

n0 ¼ 0, � ¼ 1 and r(t) ¼ ln(t), then the resulting model (1.1) is the one-sample biased

sampling model studied by Jones (1991). Also, if n0 . 0 and n1 . 0, then model (1.1)
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becomes the two-sample biased sampling model considered by Vardi (1982; 1985) and

Jones (1991). Hence our new density estimate is an extension of the kernel density estimate

proposed by Jones (1991) for length-biased data. Other discussions of the biased sampling

model and related problems can be found in Zhang (2000).

In this paper, we are interested in the problem of density estimation under model (1.1). In

Section 2, a simple motivation and a formal definition of our semiparametric density

estimate are given. Using the Cauchy–Schwarz inequality, our proposed semiparametric

density estimator not only is consistent but also has the ‘smallest’ asymptotic variance

among general nonparametric density estimators. Theoretical properties of the new density

estimator and its relative asymptotic efficiency with respect to the ordinary kernel density

estimator are presented in Section 3. An application for testing the adequacy of model (1.1)

using the L2 norm of the difference between the semiparametric and the nonparametric

density estimators is described in Section 4. Some examples and simulation studies are

presented in Section 5 to show the finite-sample behaviour of the new methods. A

concluding remark and some related topics are given in Section 6. Finally, proofs of the

main theoretical results are given in the Appendix.

Before closing this section, we remark that model (1.1) is also related to the exponential

family of densities considered by Efron and Tibshirani (1996). They used a single sample to

estimate

h(t) ¼ g(t)expfÆþ s(t)�g,

where s(t) is a known d-dimensional row vector of sufficient statistics, Æ and � are as in

(1.1), and g(t) is a carrier density. If r(t) in (1.1) is taken as s(t), then our model (1.1)

becomes Efron and Tibshirani’s model. To estimate h(x), their method is to first use a

nonparametric smoother to estimate g(t) and then fit a parametric family. This is the reverse

of the order of the estimation procedures suggested by Hjort and Glad (1995): first fit a

parametric family to the data and then fit a nonparametric smoother to the residuals from the

parametric estimator. Our approach is more like that of Hjort and Glad: first estimate

parameters (Æ, �) and then calculate the density estimate, except that here we consider a two-

sample model. Efron and Tibshirani’s method has also been extended to investigate density

differences in multisample situations. They used the exponential family model for the

different densities with a shared carrier. While the present paper was under review, Fokianos

(2002) also considered the density estimation of h(t) under the same multisample model

discussed by Efron and Tibshirani. His estimate of h(t) is an extension of ours, which is for

the two-sample situation. However, he only discussed the asymptotic bias and variance

property of the estimator. In the present paper, we give a more insightful motivation to derive

the new estimator, showing that it has the smallest variance among general density estimates.

Moreover, we also consider the problem of testing model (1.1) based on the L2 norm of the

difference between the semiparametric and nonparametric density estimators. Approximate

p-values of the test can be obtained using the normal distribution. The multisample model

has many other applications. Here we only remark that this model has recently been applied

to suggest an approach which generalizes the classical normal-based one-way analysis of

variance; see Fokianos et al. (2001).
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2. Motivation and formal definitions

Let fT1, . . . , Tng denote the combined sample fX1, . . . , X n0
, Z1, . . . , Zn1

g with

n ¼ n0 þ n1. We first consider the estimation of the density function g(t). A similar

definition can be applied for estimating the density function h(t). To fully use the

information contained in the combined sample, we consider a general density estimate

~gg�(t) ¼
Xn

i¼1

ui(Ti)Kb(t � Ti):

Here ui(Ti) is a random weight attached to Ti, for each i ¼ 1, . . . , n. If ui(Ti) ¼ n�1
0 for

i ¼ 1, . . . , n0 and ui(Ti) ¼ 0 for i ¼ n0 þ 1, . . . , n, then clearly ~gg�(t) ¼ ĝg(t), the ordinary

kernel density estimate. On the other hand, if we have ui(Ti) independent of Ti, that is,

ui(Ti) ¼ ui, then we have non-random weights.

Under model (1.1), to determine the optimal random weights ui(Ti), we first derive the

following results by assuming b ¼ bn ! 0 as n ! 1, and Lipschitz continuity of K, g and

ui:

Efui(Ti)Kb(t � Ti)g ¼ ui(t)g(t) þ O(b), for 1 < i < n0,

ui(t)g(t)w(t) þ O(b), for n0 þ 1 < i < n,

�
,

varfui(Ti)Kb(t � Ti)g ¼ ui(t)
2 g(t)b�1kSf1 þ o(1)g, for 1 < i < n0,

ui(t)
2 g(t)w(t)b�1kSf1 þ o(1)g, for n0 þ 1 < i < n,

�

where the function w(t) ¼ expfÆþ r(t)�g and kS ¼
Ð 1

�1
K(u)2 du. As a consequence, if

n ! 1,

Ef~gg�(t)g ¼
Xn0

i¼1

ui(t) þ
Xn

i¼n0þ1

ui(t)w(t)

( )
g(t) þ O(b),

varf~gg�(t)g ¼
Xn0

i¼1

ui(t)
2 þ

Xn

i¼n0þ1

ui(t)
2w(t)

( )
g(t)b�1kSf1 þ o(1)g:

Suppose we wish ~gg�(t) to be asymptotically unbiased for g(t), like the ordinary kernel

density estimate. Then the optimal choice of fui(Ti)g can be obtained by solving

min
Xn0

i¼1

ui(t)
2 þ

Xn

i¼n0þ1

ui(t)
2w(t)

( )
,

subject to

Xn0

i¼1

ui(t) þ
Xn

i¼n0þ1

ui(t)w(t) ¼ 1, ui(t) > 0, for i ¼ 1, . . . , n: (2:1)

A straightforward calculation using the Cauchy–Schwarz inequality gives
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min
fui( t) subject to (2:1)g

Xn0

i¼1

ui(t)
2 þ

Xn

i¼n0þ1

ui(t)
2w(t)

( )
¼ fn0 þ n1w(t)g�1,

and such a minimum value is arrived at by choosing

ui(t) ¼ fn0 þ n1w(t)g�1 � p(t):

Note that these optimal random weights p(Ti) depend on the unknown regression

parameters Æ and �. In practice, we replace (Æ, �) by the semiparametric maximum

likelihood estimate (~ÆÆ, ~��) obtained as the solution of the score equation:

Xn1

k¼1

f1, r(Zk)gT �
Xn

i¼1

n1f1, r(Ti)gT expfÆþ r(Ti)�g
n0 þ n1 expfÆþ r(Ti)�g

¼ 0; (2:2)

see Prentice and Pyke (1979) or Qin (1998). Therefore, the formal definition of the new

semiparametric density estimate is given by

~gg(t) ¼
Xn

i¼1

~pp(Ti)Kb(t � Ti),

where ~pp(t) ¼ [n0 þ n1 expf~ÆÆþ r(t)~��g]�1.

Note also that our semiparametric density estimate ~gg(t) is a direct development of the

kernel density estimates f̂f (t) and f̂f 2(t) in Jones (1991) proposed respectively for the one-

sample and the two-sample biased sampling models. The latter paper considers the density

ratio model (1.1) with � ¼ 1 and r(t) ¼ ln(t). From the above arguments, we can conclude

that each f̂f (t) and f̂f2(t) has the ‘smallest’ asymptotic variance among general non-

parametric density estimators.

Note, further, that our optimal semiparametric density estimate ~gg(t) is related to the

semiparametric maximum likelihood estimate of the cumulative distribution function G(t) of

g(t). According to Qin (1998), the semiparametric maximum likelihood estimate of G(t) is

~GG(t) ¼
Xn

i¼1

~pp(Ti)I(Ti < t):

Thus one can show that

~gg(t) ¼
ð1
�1

Kb(t � u)d ~GG(u):

In contrast, the ordinary kernel density estimate is

ĝg(t) ¼
ð1
�1

Kb(t � u)dĜG(u),

where ĜG(t) ¼ n�1
0

Pn0

j¼1 I(X j < t) is the ordinary nonparametric maximum likelihood

estimate of G(t):
Finally, we remark that the two-sample density ratio model (1.1) can be rewritten as

X 1, . . . , X n0
� i:i:d: g(t) ¼ expf�Æ� r(t)�gh(t),
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and

Z1, . . . , Zn1
� i:i:d: h(t):

Thus the semiparametric maximum likelihood estimate for the cumulative distribution

function H(t) of h(t) is given by

~HH(t) ¼
Xn

i¼1

~pp(Ti)expf~ÆÆþ r(Ti)~��gI[Ti < t]:

As a consequence, the optimal semiparametric density estimator of h(t) is given by

~hh(t) ¼
Xn

i¼1

~pp(Ti)expf~ÆÆþ r(Ti)~��gKb(t � Ti):

3. Asymptotic mean square errors and asymptotic relative
efficiency

In this section, we study the asymptotic bias and variance of the semiparametric density

estimator. For this purpose, the following assumptions are required:

(B1) The probability density function g is positive on R and has two Lipschitz

continuous derivatives.

(B2) The kernel function K is a Lipschitz continuous and symmetric probability density

function with support [�1, 1].

(B3) The value of b is selected from the interval [�n�1þ�, ��1n��], where � is an

arbitrarily small positive constant.

(B4) n0=n ! � 2 (0, 1) as n ! 1, and the value of b satisfies nb4 ! 1 as n ! 1.

Set g(2) as the second derivative of g, and recall kS ¼
Ð 1

�1
K(u)2 du and k j ¼Ð 1

�1
u jK(u)du, for j > 0. The following theorem gives the asymptotic bias and variance

of the semiparametric density estimator ~gg(t). The corresponding results for the

nonparametric density estimator ĝg(t) are also provided for the purpose of comparison.

The proof of Theorem 3.1 will be given in the Appendix.

Theorem 3.1. If model (1.1) and assumptions (B1)–(B4) are satisfied, then we have the

following results for asymptotic bias and variance as n ! 1:

biasf~gg(t)g ¼ 1
2
b2 g(2)(t)k2 þ o(b2), (3:1)

biasf ĝg(t)g ¼ 1
2
b2 g(2)(t)k2 þ o(b2), (3:2)

varf~gg(t)g ¼ n�1b�1f�þ (1 � �)w(t)g�1 g(t)kS þ o(n�1b�1), (3:3)

varf ĝg(t)g ¼ n�1b�1��1 g(t)kS þ o(n�1b�1), (3:4)

for t 2 R.
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Remark 3.1. From Theorem 3.1 we see that, up to first order, the asymptotic bias of ~gg(t) is

the same as that of ĝg(t), independent of the regression parameters (Æ, �), and dependent only

on the unknown factor g(2)(t). However, the dominant term of the asymptotic variance of ~gg(t)

is smaller than that of ĝg(t). The magnitude of the difference between these two asymptotic

variances increases as �, the proportion of the control data, decreases. On the other hand, by

(A.2) and (A.3) in the Appendix, the dominant terms of the asymptotic bias and variance of

~gg(t) using estimated values (~ÆÆ, ~��) are the same as those of ~gg(t) using the true values (Æ, �).

The same remark can be applied to ~gg(t) using other estimated values of (Æ, �) with n1=2

consistency.

Remark 3.2. Suppose we take b ¼ cn�a, where a and c are two positive constants. Then,

from Theorem 3.1, we can derive the ‘optimal’ a� ¼ 1
5

and c� ¼ [f�þ (1 � �)w(t)g�1

g(t)kS g(2)(t)�2k�2
2 ]1=5, in order to minimize the asymptotic mean square error for ~gg(t) over

b. Let ~ggopt(t) be such a semiparametric density estimator with b ¼ c�n�a� . Then the

corresponding asymptotic mean square error for ~ggopt(t) is

AMSEf~ggopt(t)g ¼ 5
4
fg(2)(t)k2f�þ (1 � �)w(t)g�2 g(t)2k2

Sg2=5n�4=5 þ o(n�4=5):

We can define ĝgopt(t) similarly, and the corresponding asymptotic mean square error is

AMSEf ĝgopt(t)g ¼ 5
4
fg(2)(t)k2�

�2 g(t)2k2
Sg2=5n�4=5 þ o(n�4=5):

From this argument, it is seen that the asymptotic relative efficiency of ĝg(t) with respect to

~gg(t) can be naturally defined as

ef ĝg(t), ~gg(t)g ¼ lim
n!1

AMSEf~ggopt(t)g
AMSEf ĝgopt(t)g

¼ �

�þ (1 � �)w(t)

� �4=5

:

Clearly, ef ĝg(t), ~gg(t)g depends on �, regression parameters (Æ, �), and t. However, since w(t)

is a positive function of t, the asymptotic relative efficiency ef ĝg(t), ~gg(t)g is always less than

or equal to one. Figure 1 shows some results for ef ĝg(t), ~gg(t)g when Æ ¼ 0, � ¼ 1 and

r(t) ¼ t. Clearly, the asymptotic relative efficiency of ĝg(t) with respect to ~gg(t) decreases as �
decreases, and, for each fixed � value, ef ĝg(t), ~gg(t)g is a monotonic decreasing function of t.

Therefore, ~gg(t) performs better than ĝg(t), especially for large t values.

Remark 3.3. From Theorem 3.1 and the discussions in Epanechnikov (1969), we can see that,

in order to minimize the asymptotic mean square error, the optimal K for constructing ~gg(t) is

the Epanechnikov kernel K(u) ¼ 3
4
(1 � u2)I [�1,1](u). Further, in practice, one can consider the

idea of least-squares cross-validation (Silverman 1986) to determine b. The practical choice

of b will be ~bbCV , which is the minimizer of

CV (b; ~gg) ¼
ð1
�1

~gg(t)2 dt � 2n�1
0

Xn0

i¼1

~ggi(Ti)

¼ b�1
Xn

i¼1

Xn

j¼1

~pp(Ti)~pp(T j)K � Kf(Ti � T j)=b)g � 2n�1
0

Xn0

i¼1

~ggi(Ti),
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where the symbol � denotes convolution and ~ggi(t) is ~gg(t) with Ti dropped from the combined

data. Specifically, if K is the Epanechnikov kernel, then

K � K(u) ¼ 3
160

f32 � 40juj2 þ 20juj3 � juj5gI [�2,2](u):

Remark 3.4. Under the conditions of Theorem 3.1, we can also derive similar asymptotic

results for ~hh(t) and ĥh(t):

biasf~hh(t)g ¼ 1
2
b2h(2)(t)k2 þ o(b2),

biasfĥh(t)g ¼ 1
2
b2h(2)(t)k2 þ o(b2),

varf~hh(t)g ¼ n�1b�1f�þ (1 � �)w(t)g�1h(t)w(t)kS þ o(n�1b�1),

varfĥh(t)g ¼ n�1b�1(1 � �)�1h(t)kS þ o(n�1b�1),

for t 2 R. Similar conclusions to those given in Remarks 3.1–3.3 for ~gg(t) can also be drawn

for ~hh(t).

4. An application to testing goodness of fit

In this section, we shall discuss how to use the semiparametric density estimator ~gg(t) and

nonparametric density estimator ĝg(t) to define a test statistic for testing the adequacy of

model (1.1). Conceptually speaking, if model (1.1) is valid, then ~gg(t) and ĝg(t) estimate the

same density function g(t). Otherwise, ĝg(t) estimates density function g(t), but ~gg(t), still a

density estimator because of score equation (2.2), may estimate some other density function.

Theorem 4.1 below gives the general asymptotic bias and variance of ~gg(t) in the

ê

1.0

0.5

0.0
�2 0 2

t

e{
g 

(t
),

 g
 (

t)
}

~

� � 0.8

� � 0.6

� � 0.4

� � 0.2

Figure 1. Plot of the asymptotic relative efficiency ef ĝg(t), ~gg(t)g when Æ ¼ 0, � ¼ 1 and r(t) ¼ t.
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situation where model (1.1) is not necessarily valid. Its proof will be given in the Appendix.

We require the following additional assumptions:

(B5) The probability density function h is positive on R and has two Lipschitz

continuous derivatives.

(B6) The function r has two Lipschitz continuous partial derivatives.

(B7) The equation
Ð
f1, r(u)gTfh(u) � g(u)w(u)gf�þ (1 � �)w(u)g�1 du ¼ 0 has unique

solution (Æ�, ��).

Theorem 4.1. If assumptions (B1)–(B7) are satisfied, then we have the following results for

asymptotic bias and variance as n ! 1:

biasf~gg(t)g ¼ fN (t)=D�(t) � g(t)g þ 1
2
b2k2[N (t)=D�(t)](2) þ o(b2),

varf~gg(t)g ¼ n�1b�1kS N (t)=D�(t)2 þ o(n�1b�1),

where

N (t) ¼ �g(t) þ (1 � �)h(t), D�(t) ¼ �þ (1 � �)w�(t), w�(t) ¼ expfÆ� þ r(t)��g:

Note that N (t)=D�(t) is a density function because of (B7). Generally, ~gg(t) estimates

N (t)=D�(t); it will be reduced to g(t) when model (1.1) is satisfied.

We next use the L2 norm as a measure of the ‘distance’ between ĝg(t) and ~gg(t). Define

L2,n ¼
ð
f ĝg(t) � ~gg(t)g2 dt:

In the following we shall develop a general asymptotic theorem for L2,n for the situation

where model (1.1) may not be satisfied. The proof of Theorem 4.2 will be given in the

Appendix. Define

m1 ¼ kS(1 � �)��1

ð
g(t)w(t)=D(t)dt,

m2 ¼
ð
fN (t)=D�(t) � g(t)g2dt,

m3 ¼ k2

ð
fN (t)=D�(t) � g(t)gfN (t)=D�(t) � g(t)g(2) dt,

v1 ¼ 2k�(1 � �)2��2

ð
fg(t)w(t)=D(t)g2 dt,

v2 ¼ 4(1 � �)��1

ð
fN (t)=D�(t) � g(t)g2fg(t)w�(t)=D�(t)gdt þ CA�1BA�1CT

� �
,

where

D(t) ¼ �þ (1 � �)w(t), k� ¼
ð2

�2

K�K(u)2 du,
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A ¼ A0 A1

AT
1 A2

� �
, B ¼ A0(1 � A0) A1(1 � A0)

AT
1 (1 � A0) A2 � AT

1 A1,

� �
,

C ¼
ð
fN (t)=D�(t) � g(t)gN (t)w�(t)D�(t)�2f1, r(t)gdt,

A0 ¼
ð
N (t)w�(t)D�(t)�1 dt, A1 ¼

ð
N (t)w�(t)D�(t)�1 r(t)dt,

A2 ¼
ð
N (t)w�(t)D�(t)�1 r(t)T r(t)dt,

and the symbol � denotes convolution.

Theorem 4.2. Suppose assumptions (B1)–(B7) hold and b satisfies nb6 ! 0 as n ! 1. If

model (1.1) is valid, then the limiting distribution of L2,n can be expressed as

nb1=2(L2,n � n�1b�1m1) ) N (0, v1), as n ! 1: (4:1)

On the other hand, if v2 6¼ 0, then the limiting distribution of L2,n can be expressed as

n1=2(L2,n � m2 � b2m3) ) N (0, v2), as n ! 1: (4:2)

Note that under model (1.1), the quantities m1 and v1 may be estimated by

~mm1 ¼ kS(1 � �n)�
�1
n

Xn

i¼1

~pp(Ti) ~ww(Ti)f�n þ (1 � �n) ~ww(Ti)g�1,

~vv1 ¼ 2k�(1 � �n)2��2
n

Xn

i¼1

~pp(Ti) ~ww(Ti)
2 ~gg(Ti)f�n þ (1 � �n) ~ww(Ti)g�2,

where �n ¼ n0=n and ~ww(t) ¼ expf~ÆÆþ r(t)~��g. Employing the properties of ~ÆÆ and ~��, we can

easily prove that, as n ! 1,

~mm1 � m1 ¼ Op(n
�1=2) and ~vv1 � v1 ¼ o p(1):

Then we can conclude that

nb1=2(L2,n � n�1b�1 ~mm1)~vv
�1=2
1 ) N (0, 1), as n ! 1,

without the need for conditions beyond those stated in Theorem 4.2. Based on this result,

suppose we select Æ� as the significance level and let zÆ� denote the upper 100Æ� percentile

point of N (0, 1). Then the test procedure is to reject model (1.1) if

L2,n > n�1b�1=2(~vv
1=2
1 zÆ� þ b�1=2 ~mm1) � L2,n,Æ� :

Note also that, in general, if model (1.1) is not satisfied, then v2 6¼ 0 and m2 . 0. In this

case, the corresponding limiting power function will be
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lim
n!1

Prfn1=2(L2,n � m2 � b2m3)v
�1=2
2 . n1=2(L2,n,Æ� � m2 � b2m3)v

�1=2
2 g

¼ lim
n!1

[1 ��fn1=2(L2,n,Æ� � m2 � b2m3)v
�1=2
2 g] ¼ 1,

where �(t) is the standard normal distribution function. Hence the test is consistent under

such situation.

Example 4.1. Suppose we let g(t) be the N (0, 1) density and h(t) ¼ g(t)exp(a0 � r0 t
2=3),

where a0 is the normalizing constant determined by the choice of r0. Suppose we further

assume r(t) ¼ t in model (1.1). Then

m2 ¼ (1 � �)2

ð
�(t)2fexp(a0 � r0 t

2=3) � exp(Æ� þ �� t)g2f�þ (1 � �)exp(Æ� þ �� t)g�2 dt,

where � is the standard normal density and (Æ�, ��) is the unique solution ofð
(1, t)T�(t)fexp(a0 � r0 t

2=3) � exp(Æþ �t)gf�þ (1 � �)exp(Æþ �t)g�1 dt ¼ 0:

Figure 2 gives some numerical results for values of m2. It is clear that m2 . 0 for r0 6¼ 0, the

value of m2 increases as � decreases, and, for each fixed � value, m2 is a monotonic

increasing function of jr0j. In this situation, our test for the validity of model (1.1) is

consistent.

Remark 4.1. A Kolmogorov–Smirnov type test statistic based on the semiparametric

maximum likelihood estimate ~GG(t) of the distribution function G(t) has been proposed

by Qin and Zhang (1997) for testing the validity of model (1.1). The formulation of ~GG(t)

was given in Section 2. However, to apply their procedures, one needs to use a bootstrap

method to find critical values of their test. Another method of applying ~GG is a chi-squared

0.08

0.04

0.00
�3 0 3 6

r0

m
2

� � 0.8

� � 0.6

� � 0.4

� � 0.2

Figure 2. Plot of the value of m2 in Example 4.1.
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goodness-of-fit test, suggested by Zhang (1999). His test depends on the partition of the space

of X . But examples exist showing that different partitions may lead to completely different

conclusions; see Cheng and Chen (2003). More recently, Zhang (2001) has suggested an

information matrix test. This test was derived by extending White’s (1982) approach to the

semiparametric profile likelihood setting. The test statistic requires a high-dimensional matrix

inversion and chi-squared approximation for its distribution. Usually, such an approximation

becomes unacceptable when the dimension of X is greater than or equal to 2 (the cor-

responding degrees of freedom of the chi-squared distribution are greater than or equal to 6).

In contrast, our approach for testing model (1.1) is quite different in nature. Our test statistic

is based on the difference between the semiparametric and nonparametric density estimates of

g. Under conditions more general than those given by Zhang (1999; 2001), our test is shown

to be asymptotically consistent.

5. Simulations and examples

To evaluate the performance of the semiparametric and the nonparametric density

estimators, empirical studies were carried out. The kernel function used by each discussed

estimator was the Epanechnikov kernel. Simulation studies are presented in Section 5.1, and

our methods were applied to two real data examples in Section 5.2.

5.1. Simulations

A simulation study was performed to compare the performance of ~gg(t) and ĝg(t). Our

working model is that densities g(t) and h(t) are related by h(t) ¼ g(t)exp(Æþ �1 t).

However, the true densities g(t) and h(t) were taken respectively as the density functions of

N (0, �2) and N (�, � 2). Hence g(t) and h(t) are related by h(t) ¼ g(t)exp(Æþ t�1 þ t2�2),

where Æ ¼ ln(�=� ) � �2=(2� 2), �1 ¼ �=� 2, �2 ¼ 1
2
(��2 � � �2). The values � ¼ 1

2
,

�1 ¼ �1, �1
2
, 0, 1

2
, 1 and �2 ¼ �1, �1

2
, 0, 1

2
, 1 were considered. As a consequence, the

working model is misspecified when �2 6¼ 0. Given the value of �, for each pair (�1, �2),

the values of � 2 and � were determined by � 2 ¼ 1=(��2 � 2�2) and � ¼ � 2�1, and four

sample sizes n0 ¼ n1 ¼ 50, n0 ¼ n1=4 ¼ 50, n0 ¼ n1 ¼ 100, and n0 ¼ n1=4 ¼ 100 were

employed in our study. For each setting, 1000 independent sets of data (X1, . . . , X n0
,

Z1, . . . , Zn1
) were generated.

Given each data set, the value of ~gg(t) and that of the corresponding CV (b; ~gg) were

calculated on an equally spaced logarithmic grid of 101 values of b in [ 1
10

, 1]. Given the

value of b, the value of the mean integrated square error MISE(b; ~gg) for ~gg(t) was

empirically approximated by the sample average of the integrated square error ISE(b; ~gg)

over the 1000 data sets. Here ISE(b; ~gg) ¼
Ð
f~gg(t) � g(t)g2 dt was empirically approximated

by the quantity (1=r)
P4r

i¼0f~gg(ri) � g(ri)g2 with r ¼ 200 and ri ¼ �2 þ i=r. After

evaluation on the grid, ~bbM and ~bbCV for ~gg(t) were taken respectively as global minimizers of

MISE(b; ~gg) and CV (b; ~gg) on the grid of b. See Marron and Wand (1992) on the point that

an equally spaced grid of parameters is typically not a very efficient design for this type of

594 K.F. Cheng and C.K. Chu



grid search. When ~bbM and ~bbCV were obtained, the values of ISE(~bbM ; ~gg) and ISE(~bbCV ; ~gg)

were calculated, and their sample averages over the 1000 data sets were used to measure

respectively the best and the practical performance of ~gg(t):
The same computation procedures were applied to ĝg(t). Let b̂bM , b̂bCV , and ISE(b; ĝg) be

similarly defined. The simulation results are summarized in the following figures and tables.

Given the working model (�1, �2) ¼ (1
2
, 0) with the sample sizes n0 ¼ n1 ¼ 50, the

performance of the two estimators is presented in Figure 3. Figure 3 gives one realization,

and shows that density estimates obtained practically and optimally by our proposed

estimator ~gg(t) perform better than ĝg(t), in the sense of having smaller sample mean square

errors for most t 2 [�2, 2].

Table 1 shows that, for each model setting (�2 ¼ 0), the best performance of ~gg(t) is

better than that of ĝg(t), since the minimum sample MISE over the grid derived by ~gg(t) is

less than that obtained by ĝg(t). Table 2 contains the sample mean and standard deviation of

ISE(~bbCV ; ~gg) for our proposed estimator ~gg(t), and those of ISE(b̂bCV ; ĝg) for the ordinary

kernel density estimator ĝg(t). Considering the values of the sample mean and standard

deviation, for each model setting, the practical performance of ~gg(t) is still better than that

of ĝg(t):
When �2 6¼ 0, we are in the non-model settings. For each fixed n0, n1 and �1, the sample

averages and standard deviations of ISE(~bbM ; ~gg) are increasing in �2. However, except for

�2 ¼ 1
2

and 1, the averages and standard deviations of ISE(~bbM ; ~gg) are smaller than the

corresponding values of ISE(b̂bM ; ĝg). For the �2 ¼ 1
2

case, the differences are not very

significant, particularly when sample sizes n0 and n1 are small. On the other hand, except

for the �2 ¼ 1 case, the averages and standard deviations of ISE(~bbCV ; ~gg) are smaller than

the corresponding values of ISE(b̂bCV ; ĝg). Our unreported simulation results also indicate

that when �2 ¼ 0:1, 0:2 and 0:3, ~gg(t) has better optimal and practical performance than

ĝg(t). Thus, under minor misspecification of the model (such as j�2j < 0:3), the

semiparametric density estimate ~gg(t) still seems to be better than the usual density

estimate ĝg.

5.2. Examples

The estimators discussed were applied to two familiar data sets. Density estimates obtained

by ~gg and ~hh are given so that distributions of data sets under study can be compared when

model (1.1) is satisfied.

Example 5.1. Consider the data set reported by Glovsky and Rigrodsky (1964). The purpose

is to analyse and compare the developmental histories of children with learning disabilities.

Forty-one children were enrolled in a speech therapy program at the training school at

Vineland, New Jersey. Among them, 20 children had been diagnosed as aphasics (cases) and

the remaining 21 children were a random sample of children with learning disabilities

(controls). The social quotient scores of these children on the Vineland Social Maturity Scale

were X i ¼ 56, 43, 30, 97, 67, 24, 76, 49, 46, 29, 46, 83, 93, 38, 25, 44, 66, 71, 54, 20, 25 for
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controls, and Zk ¼ 90, 53, 32, 44, 47, 42, 58, 16, 49, 54, 81, 59, 35, 81, 41, 24, 41, 61, 31,

20 for cases.

Qin and Zhang (1997) and Zhang (1999) argue that the densities g(t) of X i and h(t) of

Zk can be related by model (1.1) with r(t) ¼ t. Using this model, our semiparametric
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Figure 3. An artificial example. (a) One simulated data set and density estimates produced by ĝg(t)

and ~gg(t) using their least-squares cross-validated bandwidths. (b) Sample averages of practical density

estimates generated by discussed estimators employing their least-squares cross-validated bandwidths.

(c) Sample averages of optimal density estimates obtained by discussed estimators using bandwidths

as minimizers of their sample mean integrated square errors. (d) Sample mean square error of

practical density estimates. (e) Sample mean square error of optimal density estimates.
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maximum likelihood estimate of (Æ, �) is (~ÆÆ, ~��) ¼ (0:3961, �0:0080). To compute the

goodness-of-fit test statistic L2,n, we first note that using the control data and the least-

squares cross-validation criterion discussed in Remark 3.3, the minimizer of CV (b; ĝg) is

b̂bCV ¼ 34:5593. The minimization was performed on a grid of 5001 equally spaced

logarithmic values in the interval [1, 100], and the minimizer was taken on the grid. The

same bandwidth value was used for computing both ĝg(t) and ~gg(t). Next, L2,n ¼Ð 132

�19
f ĝg(t) � ~gg(t)g2 dt � L2,n (observed) was empirically approximated by the quantity

(1=r)
P1513r

i¼0 f ĝg(ri) � ~gg(ri)g2 with r ¼ 200 and ri ¼ �19 þ i=r. Here the lower limit of

Table 1. Values of the sample average and standard deviation (in parentheses) of ISE(~bbM ; ~gg) for ~gg,

and of ISE(b̂bM ; ĝg) for ĝg; each value has been multiplied by 103

n0 ¼ n1 ¼ 50 n0 ¼ n1=4 ¼ 50 n0 ¼ n1 ¼ 100 n0 ¼ n1=4 ¼ 100

ĝg 16.8 (13.1) 16.8 (13.1) 10.6 (7.78) 10.6 (7.78)

~gg �1 �2 ¼ �1

�1 9.29 (8.96) 6.54 (8.09) 5.05 (4.44) 3.40 (3.98)

�1
2

8.82 (8.78) 6.31 (8.10) 4.69 (4.28) 3.23 (3.96)

0 8.66 (8.73) 6.25 (8.13) 4.57 (4.24) 3.19 (4.00)
1
2

8.82 (8.80) 6.33 (8.14) 4.71 (4.36) 3.24 (4.04)

1 9.28 (9.00) 6.57 (8.14) 5.09 (4.57) 3.42 (4.13)

�2 ¼ �1
2

�1 10.8 (9.70) 7.55 (8.56) 6.06 (4.93) 4.00 (4.28)

�1
2

10.4 (9.56) 7.27 (8.56) 5.74 (4.80) 3.81 (4.28)

0 10.3 (9.51) 7.21 (8.58) 5.65 (4.79) 3.76 (4.33)
1
2

10.4 (9.53) 7.32 (8.49) 5.78 (4.87) 3.82 (4.34)

1 10.8 (9.65) 7.60 (8.45) 6.12 (5.03) 4.01 (4.38)

�2 ¼ 0

�1 13.3 (10.8) 10.1 (9.14) 7.99 (5.82) 5.90 (4.88)

�1
2

13.1 (10.8) 9.80 (9.08) 7.85 (5.75) 5.66 (4.85)

0 13.0 (10.8) 9.72 (9.12) 7.81 (5.78) 5.57 (4.84)
1
2

13.1 (10.6) 9.87 (9.08) 7.89 (5.83) 5.63 (4.83)

1 13.3 (10.6) 10.2 (9.04) 8.08 (5.92) 5.87 (4.85)

�2 ¼ 1
2

�1 17.5 (12.6) 17.5 (10.6) 11.7 (7.40) 12.6 (6.57)

�1
2

18.0 (12.8) 17.6 (10.4) 12.2 (7.46) 12.9 (6.32)

0 18.3 (12.7) 17.7 (10.3) 12.5 (7.55) 13.0 (6.16)
1
2

18.1 (12.6) 17.7 (10.4) 12.3 (7.59) 12.8 (6.16)

1 17.6 (12.3) 17.6 (10.5) 11.8 (7.61) 12.5 (6.44)

�2 ¼ 1

�1 24.0 (15.3) 34.6 (14.3) 17.9 (9.74) 29.5 (10.1)

�1
2

27.2 (16.0) 38.6 (13.7) 21.2 (10.2) 33.8 (9.56)

0 28.7 (15.9) 39.9 (13.5) 22.6 (10.4) 35.1 (9.20)
1
2

27.4 (15.7) 38.7 (13.9) 21.3 (10.4) 33.6 (9.35)

1 24.2 (15.2) 34.8 (14.4) 18.1 (10.2) 29.5 (10.1)
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the integral is �19 � �b̂bCV þ min1<i<nfTig and the upper limit is 132 �
b̂bCV þ max1<i<nfTig. Working through the computations, one obtains L2,n (observed)

¼ 2:2941 3 10�5. Further, using kS ¼
Ð 1

�1
K(u)2du ¼ 3

5
, k� ¼

Ð 2

�2
K � K(u)2du ¼ 0:4338,

and �n ¼ n0=n ¼ 21=41, one can compute values of ~mm1 and ~vv1. Finally, by (4.1), the

p-value of the goodness-of-fit test can be approximated by 1 �� [nb̂b
1=2
CV fL2,n (observed)

�n�1 b̂b�1
CV ~mm1g~vv�1=2

1 ] ¼ 0:8296. This shows that model (1.1) with r(t) ¼ t cannot be rejected.

In this situation, the densities g(t) and h(t) can be respectively estimated by the semi-

parametric density estimates ~gg(t) and ~hh(t). Here ~bbCV (g) and ~bbCV (h) for ~gg(t) and ~hh(t),

Table 2. Values of the sample average and standard deviation (in parentheses) of ISE(~bbCV ; ~gg) for ~gg,

and of ISE(b̂bCV ; ĝg) for ĝg; each value has been multiplied by 103

n0 ¼ n1 ¼ 50 n0 ¼ n1=4 ¼ 50 n0 ¼ n1 ¼ 100 n0 ¼ n1=4 ¼ 100

ĝg 35.7 (40.5) 35.7 (40.5) 18.9 (17.4) 18.9 (17.4)

~gg �1 �2 ¼ �1

�1 23.2 (25.1) 17.0 (16.7) 11.7 (12.5) 9.05 (9.00)

�1
2

23.0 (25.8) 16.4 (15.9) 11.3 (12.0) 8.81 (8.75)

0 22.4 (25.5) 16.6 (16.9) 11.5 (12.6) 8.76 (8.81)
1
2

21.5 (23.7) 16.1 (15.9) 11.4 (11.3) 8.65 (8.83)

1 21.9 (23.8) 16.6 (16.3) 11.6 (11.5) 8.76 (8.79)

�2 ¼ �1
2

�1 23.7 (24.0) 16.4 (14.6) 12.6 (12.2) 8.82 (7.53)

�1
2

23.8 (25.1) 16.0 (14.7) 11.9 (11.5) 8.25 (7.20)

0 23.0 (23.7) 16.0 (14.7) 12.1 (11.9) 8.41 (7.32)
1
2

22.3 (22.6) 15.5 (13.7) 11.9 (10.4) 8.51 (7.37)

1 22.2 (21.8) 16.0 (14.4) 12.2 (10.9) 8.54 (7.59)

�2 ¼ 0

�1 25.6 (24.1) 17.7 (13.5) 13.9 (11.4) 9.58 (6.77)

�1
2

25.7 (24.6) 16.9 (13.5) 13.5 (11.0) 9.01 (6.42)

0 25.4 (22.8) 16.5 (12.8) 13.7 (11.4) 9.10 (6.51)
1
2

24.2 (21.8) 16.8 (12.7) 13.5 (10.3) 9.08 (6.54)

1 24.7 (22.3) 17.4 (13.5) 13.8 (11.0) 9.35 (7.02)

�2 ¼ 1
2

�1 29.8 (25.7) 23.8 (13.8) 17.5 (12.2) 15.5 (7.57)

�1
2

29.3 (23.4) 22.9 (13.0) 17.4 (11.2) 15.3 (7.11)

0 29.5 (22.2) 23.2 (12.7) 17.8 (11.5) 15.5 (6.95)
1
2

28.2 (21.0) 23.1 (12.7) 17.2 (10.7) 15.3 (6.96)

1 28.7 (23.9) 23.5 (14.0) 17.4 (11.9) 15.4 (7.63)

�2 ¼ 1

�1 36.2 (26.6) 40.6 (17.1) 23.6 (13.7) 32.1 (10.9)

�1
2

37.7 (24.5) 43.4 (15.3) 26.0 (12.5) 35.9 (9.99)

0 38.7 (23.0) 44.3 (14.7) 27.4 (12.6) 37.1 (9.55)
1
2

36.8 (21.9) 43.4 (15.2) 26.3 (13.1) 35.7 (9.68)

1 35.9 (25.6) 40.6 (16.6) 23.7 (13.4) 32.1 (10.7)
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respectively, were determined similarly to b̂bCV on the same grid. Thus one obtains
~bbCV (g) ¼ 32:5862 and ~bbCV (h) ¼ 20:5133. The curves of ~gg(t) and ~hh(t) are plotted in Figure

4. The result shows that the social quotient scores of ordinary children with learning

disabilities cluster around 39, while those of children with aphasia cluster around 45. Both

~gg(t) and ~hh(t) appear to be unimodal and symmetric. Further, their spreads seem not to

differ substantially.

Example 5.2. Consider the data set given by Hosmer and Lemeshow (1989, p. 3). The

purpose is to analyse the relationship between age and coronary heart disease. One hundred

subjects participated in the study. Qin and Zhang (1997) concluded that model (1.1) with

r(t) ¼ (t, t2) was strongly supported by the data. Given this model, our semiparametric

maximum likelihood estimate of (Æ, �1, �2) is (~ÆÆ, ~��1, ~��2) ¼ (�3:9589, 0:0613, 0:00055).

Using the same computation steps as in Example 5.1, one has b̂bCV ¼ 11:5085, L2,n

(observed) ¼
Ð 80

8
f ĝg(t) � ~gg(t)g2 dt ¼ 3:3449 3 10�6, and the approximate p-value is 0.8731.

Thus model (1.1) with r(t) ¼ (t, t2) cannot be rejected. Further, ~bbCV (g) ¼ 11:4706 and
~bbCV (h) ¼ 6:4759 can be applied to compute ~gg(t) and ~hh(t). The curves of ~gg(t) and ~hh(t) are

plotted in Figure 5. For the coronary heart disease population, the estimated density ~hh(t)

appears to be bimodal, clustering around ages 49 and 58. On the other hand, the estimated

density ~gg(t) for the non-diseased population appears to be unimodal and symmetric,

clustering around age 36. This shows the tendency for individuals with no evidence of

coronary heart disease to be younger than those with evidence of coronary heart disease.

6. Final remarks

In this paper we have proposed a new semiparametric density estimate ~gg(t) {or ~hh(t)} based

on a two-sample density ratio model. Our estimate is motivated by consideration of a class
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Figure 4. Child speech therapy example.
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of general density estimators. The proposed estimator is shown to be asymptotically

unbiased for g(t), like the ordinary kernel density estimator, but has the smallest asymptotic

variance. From our formulation, it is seen that to define ~gg(t) we have used weights

~pp(Ti) ¼ fn0 þ n1 ~ww(Ti)g�1, with ~ww(Ti) ¼ expf~ÆÆþ r(t)~��g, for all i ¼ 1, . . . , n. A referee

suggests using a natural alternative estimate g�(t) with weights p�(Ti) ¼ 1, for i ¼
1, . . . , n0, and weights p�(Ti) ¼ ~ww(Ti)

�1, for i ¼ n0 þ 1, . . . , n0 þ n1. Tedious computa-

tions show that under model (1.1) both ~gg(t) and g�(t) have the same asymptotic bias, but

the asymptotic variance of g�(t) is n�1b�1f�þ (1 � �)=w(t)gg(t)kS þ o(n�1b�1). By the

Cauchy–Schwarz inequality, this asymptotic variance is larger than that of ~gg(t) unless

w(t) ¼ 1 or � ¼ 1. However, our unreported simulation results show that under minor

misspecification of the model (j�2j < 0:3), as discussed in Section 5.1, the differences

between the averages and standard deviations of ISE(~bbM ; ~gg) and ISE(b�M ; g�) are not

significant. The same conclusion also holds for ISE(~bbCV ; ~gg) and ISE(b�CV ; g�). The

definitions of b�M and b�CV are the same as those given in Section 5.1.
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Appendix

Proof of Theorem 3.1. The proofs of (3.2) and (3.4) can be found in Silverman (1986,

Section 3.3), and hence are omitted. To verify (3.1) and (3.3), using the consistency of (~ÆÆ, ~��)

with (Æ, �) and applying the second-order Taylor expansion theorem to ~ww(Ti), we have

~pp(Ti) ¼ p(Ti) � cif~ÆÆ� Æþ r(Ti)( ~��� �)g þ O[p(Ti)f~ÆÆ� Æþ r(Ti)( ~��� �)g2],

where ci ¼ p(Ti)
2n1w(Ti) and the coefficient corresponding to the O term is asymptotically

uniformly bounded over the subindex i. Using this result, ~gg(t) can be decomposed into

~gg(t) ¼ S1(t) þ �2(t)(~ÆÆ� Æ) þ �3(t)( ~��� �) þ S#(t), (A:1)

where

S1(t) ¼
Xn

i¼1

p(Ti)Kb(t � Ti),

S#(t) ¼ fS2(t) � �2(t)g(~ÆÆ� Æ) þ fS3(t) � �3(t)g( ~��� �) þ S4(t),

S2(t) ¼
Xn

i¼1

ciKb(t � Ti), �2(t) ¼ EfS2(t)g,

S3(t) ¼
Xn

i¼1

ciKb(t � Ti)r(Ti), �3(t) ¼ EfS3(t)g,

S4(t) ¼ O
Xn

i¼1

p(Ti)Kb(t � Ti)f~ÆÆ� Æþ r(Ti)( ~��� �)g2

" #
:

Using (B1)–(B4), a straightforward calculation gives the following asymptotic results:

EfS1(t)g ¼ g(t) þ 1
2
b2k2 g

(2)(t) þ O(b3), (A:2)

varfS1(t)g ¼ n�1b�1D(t)�1 g(t)kS þ o(n�1b�1), (A:3)

EfS2(t)g ¼ (1 � �)g(t)w(t)D(t)�1 þ O(b2), (A:4)

varfS2(t)g ¼ n�1b�1kS g(t)f(1 � �)w(t)g2D(t)�3 þ o(n�1b�1), (A:5)

EfS3(t)g ¼ (1 � �)g(t)w(t)D(t)�1 r(t) þ O(b2), (A:6)

varfS3(t)g ¼ n�1b�1kS g(t)f(1 � �)w(t)g2D(t)�3 r(t)T r(t) þ o(n�1b�1), (A:7)

EfS4(t)g ¼ O(n�1), EfS4(t)2g ¼ O(n�2), (A:8)

for t 2 R. Using (A.1)–(A.8), E(~ÆÆ� Æ) ¼ o(n�1=2), var(~ÆÆ) ¼ O(n�1), E( ~��� �) ¼ o(n�1=2),

var( ~��) ¼ O(n�1), the Cauchy–Schwarz inequality, and (B.4), equations (3.1) and (3.3) follow.

The proof of Theorem 3.1 is complete. h

Proof of Theorem 4.1. Following essentially the same proof of Theorem 3.1 and replacing
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(Æ, �) with (Æ�, ��), by means of a straightforward calculation, the asymptotic bias and

variance of ~gg(t) in Theorem 4.1 follow. The proof of Theorem 4.1 is complete. h

Proof of Theorem 4.2. We begin by proving (4.1). Using (A.1), L2,n can be decomposed into

L2,n ¼
ð
f�0(t) � �1(t) þ ł0(t) � ł1(t) � S�(t)g2 dt ¼ I1 þ I2 þ I3 þ I4 þ I5 þ I6:

Here

�0(t) ¼ Ef ĝg(t)g, �1(t) ¼ EfS1(t)g,

S�(t) ¼ �2(t)(~ÆÆ� Æ) þ �3(t)( ~��� �) þ S#(t),

ł0(t) ¼
Xn0

j¼1

K0 j(t), ł1(t) ¼
Xn1

k¼1

K1k(t),

K0 j(t) ¼ fn�1
0 � p(X j)gKb(t � X j) � E[fn�1

0 � p(X j)gKb(t � X j)],

K1k(t) ¼ p(Zk)Kb(t � Zk) � Efp(Zk)Kb(t � Zk)g,

I1 ¼
ð
f�0(t) � �1(t)g2 dt, I2 ¼

ð
fł0(t) � ł1(t)g2 dt,

I3 ¼ 2

ð
f�0(t) � �1(t)gfł0(t) � ł1(t)g dt, I4 ¼

ð
S�(t)2 dt,

I5 ¼ �2

ð
f�0(t) � �1(t)gS�(t) dt, I6 ¼ �2

ð
fł0(t) � ł1(t)gS�(t) dt:

Using (B1)–(B7), (A.2)–(A.8), n�1b�6 ¼ o(1), and the central limit theorem for

quadratic forms in de Jong (1987), by means of a straightforward calculation, (4.1)

follows by showing the following asymptotic results:

I1 ¼ O(b6), nb1=2(I2 � n�1b�1m1) ) N (0, v1),

E(I3) ¼ 0, E(I4) ¼ O(n�1), E(I5) ¼ o(n�1=2b3), E(I6) ¼ O(n�1),

E(I2
3) ¼ O(n�1b6), E(I2

4) ¼ O(n�2), E(I2
5) ¼ O(n�1b6), E(I2

6) ¼ O(n�2):

We now give the proof of (4.2). Using (A.1), L2,n can be decomposed into

L2,n ¼
ð
f�0(t) � �1(t) þ S&(t) � S#(t)g2 dt ¼ J1 þ J2 þ J3 þ J4 þ J5 þ J6:

Here

S&(t) ¼ ł0(t) � ł1(t) � �2(t)(~ÆÆ� Æ) � �3(t)(~��� �),

J1 ¼
ð
f�0(t) � �1(t)g2 dt, J2 ¼

ð
S&(t)2 dt,

J3 ¼ 2

ð
f�0(t) � �1(t)gS&(t) dt, J4 ¼

ð
S#(t)2 dt,
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J5 ¼ �2

ð
f�0(t) � �1(t)gS#(t) dt, J6 ¼ �2

ð
S&(t)S#(t) dt:

Following essentially the proof of (4.1), replacing (Æ, �) with (Æ�, ��), and using (B1)–

(B7), n�1b�6 ¼ o(1), the central limit theorem, and Lemma 1 of Qin and Zhang (1997), by

means of a straightforward calculation, (4.2) follows by showing the following asymptotic

results:

J1 ¼ m2 þ b2m3 þ O(b3), n1=2J3 ) N (0, v2),

E(J2) ¼ O(n�1b�1), E(J4) ¼ O(n�1), E(J5) ¼ O(n�1b�1), E(J6) ¼ O(n�1),

E(J2
2) ¼ O(n�2b�2), E(J2

4) ¼ O(n�2), E(J2
5) ¼ O(n�2b�2), E(J2

6) ¼ O(n�2):

The proof of Theorem 4.2 is complete. h
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