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New York University and Duke University

We study semiparametric efficiency bounds and efficient estima-
tion of parameters defined through general moment restrictions with
missing data. Identification relies on auxiliary data containing infor-
mation about the distribution of the missing variables conditional on
proxy variables that are observed in both the primary and the aux-
iliary database, when such distribution is common to the two data
sets. The auxiliary sample can be independent of the primary sam-
ple, or can be a subset of it. For both cases, we derive bounds when
the probability of missing data given the proxy variables is unknown,
or known, or belongs to a correctly specified parametric family. We
find that the conditional probability is not ancillary when the two
samples are independent. For all cases, we discuss efficient semipara-
metric estimators. An estimator based on a conditional expectation
projection is shown to require milder regularity conditions than one
based on inverse probability weighting.

1. Introduction. Many empirical studies are complicated by the presence of miss-
ing data. In such circumstances, identifying assumptions become necessary to overcome
the lack of identification that results from the missing information. One solution to this
identification problem is based on the assumption that information on the true value of
the variables in the data set of interest (the primary data set) can be recovered using
auxiliary data sources under a conditional independence assumption. The key element
of this identification strategy is that the distribution of the variables of interest is as-
sumed to be independent of whether they belong to the primary or the auxiliary sample,
conditional on a set of proxy variables, which are observed in both samples.

The first goal of this paper is to study semiparametric efficiency bounds of parame-
ters defined through general nonlinear and over-identified moment conditions for missing
data models under a conditional independence assumption. We provide semiparamet-
ric efficiency bounds for the cases when the propensity score is unknown, or is known,
or belongs to a correctly specified parametric family. In our context, the propensity
score is defined as the probability that one observation belongs to the subsample where
only the proxy variables are observed. The auxiliary sample can be either a subset of
the primary sample (“verify-in-sample” case) or independent of the primary sample
(“verify-out-of-sample”). The former case is a special case of the MAR or CAR missing
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data structure where the missing variables are common to all subjects. Semiparametric
efficiency bounds for this case are closely related to the results in [26] when there is a sin-
gle hierarchy in the case of monotone missing data patterns for a fixed set of instrument
functions. (See also [25] and [7].) We provide new results on semiparametric efficiency
bounds for the “verify-out-of-sample” case. We find that while more information on the
propensity score will not affect the asymptotic efficiency bounds for parameters defined
in the verify-in-sample case (as shown in, e.g. [26], [7] and [16]), it will improve the
asymptotic efficiency for parameters defined in the verify-out-of-sample case. Our new
efficiency bound results for the case when the parametric propensity is correctly speci-
fied should be useful in applied work because such an assumption is frequently adopted
by empirical researchers.

The second goal of paper is to develop two classes of sieve-based, Generalized Method
of Moments (GMM) estimators that achieve the efficiency bounds for parameters defined
under either the “verify-out-of-sample” or the “verify-in-sample” framework. Each esti-
mator relies only on one nonparametric estimate; a conditional expectation projection
based GMM (hereafter CEP-GMM) estimator only requires the nonparametric estima-
tion of a conditional expectation, while an inverse probability weighting based GMM
(hereafter IPW-GMM) estimator only needs a nonparametric estimate of the propensity
score. We establish asymptotic normality and efficiency properties of both estimators
under weaker regularity conditions than the existing ones in the literature. In partic-
ular, we allow for nonlinear and non-smooth moment restrictions and for unbounded
support of conditioning (or proxy) variables. The CEP-GMM estimator presents some
advantages over the IPW-GMM estimator. First, its root-n asymptotic normality and
efficiency can be derived without the strong assumption that the unknown propensity
score is uniformly bounded away from zero and one. Second, the CEP-GMM estima-
tor is characterized by a simple common format that achieves the relevant efficiency
bound for all the cases we consider, regardless of whether the propensity score is un-
known, or known or parametrically specified. Instead, the IPW-GMM estimator will be
generally inefficient when the propensity score is known, or is parametrically estimated
using a correctly specified parametric model; in such instances, different combinations of
nonparametric and parametric estimates of the propensity score have to be specifically
derived to achieve the efficiency bounds.

Our results can also be applied to the estimation of parametric nonlinear models with
nonclassical measurement errors with validation data, a topic that has been studied in
[6], [29], [5], [20], [8] among others.

Section 2 describes the model and presents the semiparametric efficiency bounds.
Semiparametrically efficient CEP-GMM and IPW-GMM estimators are developed in
sections 3 and 4 respectively. In Section 5 we illustrate empirically the performance of
the different estimators in the estimation of the distribution of private consumption in
rural India in the presence of missing data. Section 6 concludes. All proofs are given in
the appendices.
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2. Semiparametric Efficiency Bounds. Let (X;,Y;, D;)? ; be an i.i.d. sample
from (X,Y, D), and denote Z; = (Y;, X;) where Y; is only observed when D; = 0. We are
interested in the estimation of parameters 3 € R% defined implicitly in terms of general
nonlinear moment conditions. In the first (verify-out-of-sample) case such conditions are

described by

(1) Em(Z;68)| D=1=0 ifand onlyif /= (o,
while in the second (verify-in-sample) case the condition is

(2) E[m(Z;3)] =0 if and only if £ = fy,

where Z = (Y, X) and m(-; 8) is a set of functions with dimension d,, > dg.

In other words, under case (1) Y is always missing in the primary data set (D =
1), which is a random sample from the population of interest, while an independent
auxiliary sample (where D = 0) will serve the purpose of ensuring the identification of
parameters that would not be identified by the primary data set alone. Under case (2),
the auxiliary sample is instead a subset of the entire primary sample.

In this section we present the semiparametric efficiency bound for the estimation of 3
implicitly defined by either moment conditions (1) or (2). To state the efficiency bounds
we introduce some notations. Let p = Pr(D = 1) and p(X) = Pr(D = 1|X). In this
paper (3 is typically used to denote an arbitrary value in the parameter space, but to
save notation in this section 3 is also used as the true parameter value y. Define

E(X;B) = Em(Z; B)|X]
to be the conditional expectation of the moment conditions given X, and define
V(m(Z;8)|X) = E [m(Z; B)ym(Z; B)'|X] — £(X; B)E(X; B)
to be the conditional variance of the moment conditions given X. In addition, define

m(Z:0) | D=1) and T} = 3 Elm(Z:0).

ASSUMPTION 1. (i) Both jﬂl and jg have full column rank equal to dg; (ii) The
data (X;,Y;, D)y is an i.i.d. sample from (X,Y,D); (i) p= Pr(D =1) € (0,1).

o
ﬁ:%E

Notice that in both case (1) and (2) the moment conditions are assumed to hold
in the primary sample in which some information is missing. Identification is possible
because of the access to an auxiliary data set (D = 0) which contains both Yand a set
of proxy variables X that are also potentially of interest, if the following fundamental
conditional independence assumption holds:

AssumpPTION 2. Y 1L D | X.
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Conditional independence assumptions have been used extensively in econometrics
and statistics to achieve identification with missing data. Examples include inference in
models with attrition or nonresponse (e.g. [21], [25], [27], [34], [35]), the estimation of
treatment effects (see e.g. the references surveyed in [17]), the recovery of comparability
over time of statistics calculated using data collected with different methodology (e.g.
Clogg et al. (1991)[11], [28], [32]).

Under case (2), Assumption 1 would be satisfied if, for instance, the probability of
validating a given observation only depends on X. In case (1), Assumption 2 requires
that the sampling scheme used to create the auxiliary sample depends only on X. If
a simple random subset of the primary data is validated, p(X) is a constant and the
auxiliary data set is characterized by the same distribution of (Y, X) as the primary
data set, and Assumption 2 is easily seen satisfied. In this case, which is common in
the statistics literature, the auxiliary data set is usually called a wvalidation data set. A
stratified sample satisfying Assumption 2 in model (2) can also be produced through a
two-stage sampling design using a finite number of strata (see e.g. [4] and [3]), in which
case the only variable X that is observed for all sampled observations is a discrete
stratum indicator.

THEOREM 1. Under Assumptions 1 and 2, the asymptotic variance lower bound for
Vn(B — B) for any regular estimator (3 is given by

(752" Ts) ™"
When the moment condition case (1) holds, Jg = jﬂl and Qg = Qé where

2
Q- & l“*’”wm(z;g) X)+ pg)e(xw)s(X;ﬁ)’] -

p*(1-p(X))
When the moment condition case (2) holds, Js = jg and Qg = Q% where

1
02 =F
B |:1

ooV Iz )| X+ E (X £y .

2.1. Information content of the propensity score. It is interesting to analyze whether
the knowledge of the propensity score p(X) decreases the semiparametric efficiency
bounds for the parameters .

THEOREM 2. Under Assumptions 1 and 2, if p(X) is known, then the semipara-
metric efficiency variance bound for estimating 3 is (jﬁ’ﬂ/gljﬁ)_l. When the moment

condition case (1) holds, Jg = jﬁl and Qg = Qé where

p(X)?
p*(1-p(X))

When the moment condition (2) holds, Jg = jg and Qﬂ = Q% given in Theorem 1.

2
ST v m(z:9) | %)+ 25 ex p)e x|
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In other words, knowledge of p(X) reduces the semiparametric efficient variance
bound for § under the “verify-out-of-sample” case, but it does not under the “verify-
in-sample” case. The following argument provides an intuition for this result. When (2)
holds, 3 is defined through the relation

[ [ m:0)8 1 2)dys @iz =o.

The propensity score p(X) does not enter the definition of 3, therefore its knowledge
should not affect the variance bound for 5. However, the relation that identifies § when
(1) holds clearly depends on p(X):

[ [ my.:8)p@)1y | 2)dys @)z =o.

Remark 1: A special case of Theorem 2 is when p(X) is a constant p. In this case,
the auxiliary sample is also called a validation sample and is drawn randomly from the
same population as the primary sample, e.g. Y, X L D ([6], [29], [20]). In such case it is
then easy to see that the two efficiency bounds given in Theorem 2 become identical.

Another interesting question is what is the efficiency bound for the estimation of
[ defined by moment condition (1) if the propensity score is unknown but is as-
sumed to belong to a correctly specified parametric family, so that p(X) = p(X;~).
Let py(X) = Op(X;~v)/0v, and define the score function for v as S, = Sy(D,X) =
B (X).
p(X;57)(1=p(X57) £

THEOREM 3.  Under Assumptions 1 and 2, if p(X) = p(X;~) and E[S4(D, X)S(D, X)']
1s positive definite, then the efficiency variance bound for estimating B defined by mo-
ment condition (1) is given by (jéﬁgljg)*l where Jg = jﬁl and

Eg(X;ﬁ)pw(X)’) [ESVSQ}A (Epv(X)S(X;ﬁ)’

Qp =0+
5=+ ( P P

).

This variance bound is clearly larger than Q% stated in Theorem 2, but it is smaller
than the bound in Theorem 1. This latter result can be verified noting first that the
bound in Theorem 3 corresponds to the variance of the following influence function:

E(X; ) er(X)g(X;ﬁ)
P p ’

(1 - D)p(X)
p(1 —p(X))

where we use Proj(Z1|Z2) to denote the population least squares projection of a random
variable Z; onto the linear space spanned by Zs. The conclusion follows noting that the
variance bound stated in Theorem 1 for moment condition (1) is instead the variance
of the following influence function

(1 - D)p(X)
p(1—p(X))

(m(Z; B) — £(X; B)) + Proj( (D —p(X))|54(D, X))

;Dax;m T m(Z: ) — £(X; B)]
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whose corresponding variance is larger.

Our results for GMM models complement and extend the finding in the program
evaluation literature that knowing the propensity score decreases the efficient variance
bound for the estimation of the average effect of treatment on the treated, while the
propensity score is ancillary for the average treatment effect parameter ([16]).

3. CEP-GMM Estimation. In this section, we consider a first class of semi-
parametrically efficient estimators based on a conditional expectation projection (CEP)
method. If Assumption 2 holds, identification follows by noting that, under case (1)

Em(Z:8) | D=1 = [ Em(Z:8) |#,D =01 (+| D = 1) dx.
while under case (2),
Em(Z8) = [ Em(Z:6)|2,D =011 (@) dr.

Therefore, E [m(Z; )|z, D = 0] can be recovered using observations where D = 0, and
it can then be integrated against either f(z | D = 1) or f(x) to recover the parameters
of interest. In other words, the projection method first estimates

E(X;8) = E[m(Z;8)|X] = Em(Z;8)|X,D = 0]

nonparametrically from the auxiliary sample, and then averages this nonparametric
estimator over the primary sample.

3.1. Efficient estimation with unknown propensity score. In the following, we use
subscripts p and a to refer to observations belonging to the primary sample and to
the auxiliary sample respectively. Let n, be the size of the primary sample and n,
be the size of the auxiliary sample. Observations in the primary sample are indexed
by ¢ = 1,...,n,. Observations in the auxiliary sample are indexed by j = 1,...,n4.
Under moment condition (1) (verify-out-of-sample case), n = n, + n,. Under moment
condition (2) (verify-in-sample case), n = n,. Let £(X;3) denote a nonparametric
estimate of £(X;3) using the auxiliary sample. [8] (hereafter CHT) used a sieve based
method for this nonparametric estimation. Let {¢; (X),l =1,2,...} denote a sequence
of known basis functions that can approximate any square-measurable function of X
arbitrarily well. Also let
/

/
) (X) = (@0 (X)) (X)) and Qu = (¢7) (K1) s, €0 (Xen, )

for some integer k(n,), with k(n,) — oo and k(ng)/n — 0 when n — oco. Then for each
given (3, the first step nonparametric estimation can be defined as,

Na

é (X§ ﬂ) = Z m (Zaﬁ B) qk(na) (Xaj) (Q:;Qa)_l qk(na) (X) .

J=1
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A generalized method of moment estimator for Gy can then be defined as
(3) 3 = arg min < E(X i ) ( (X i ) .
peB \ My zz; Tp ;

The +/n-consistency and asymptotic normality of this CEP-GMM estimator have
been established in CHT. Following the proof of their claim (A.2), we have the following
asymptotic representation:

YN TE (X o) = Zg X,i; o)
" =1 p =1
\/ﬁ Na pr(Xaj) )
+ Ng = m [m(ZapﬁO) - ( aj’ ﬁ(])] + Op( )

where we use fy,(X) to denote the density of X in the primary data set, and o,(1)
represents a term that converges to 0 in probability.
When moment condition (1) holds, n = n, + nq, fx,(X) = f(X | D =1) and

fx,(X) (A =pp(X)
fX|D=0) p(l-pX))

In this case we can also write the influence function for *7{—? S & (Xpi; Bo) as

p(X;)
p(1 —p(X3))

The proof of Theorem 1 shows that the two terms in the influence function correspond
to the two components of the efficient influence function that contain information about
f(X|D =1) and f(Y | X) respectively. These two terms are orthogonal to each other,
so that

4%2{ DE(Xei o) + (1 — D) (25 o) — E(CXis o) | + (1),

Avar(~— 25 pis 3 Qﬁa
Mp 5

where Qé is given in Theorem 1.
When moment condition (2) holds, fx,(X) = f(X), n, =n and

fx,(X) _ 1-p
f(X|D=0) 1-pX)

The influence function for \T{—f S & (Xpi; Bo) can then be written as

1
vn

; 1
;{ (Xi; Bo) + (1 Di)T(Xi) m(Z;; Bo) — E(Xi;ﬁo)] } + 0p(1).
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The two terms in the influence function correspond to the two components of the pro-
jected efficiency influence function that contain information about f(X) and f(Y | X)
in the proof of Theorem 1. The orthogonality between these two terms implies that

Avar(f Zé (Xpis Bo)) = 9%7

P =1

where Q% is given in Theorem 1. The semiparametric efficiency bounds given in Theorem

1 are then achieved by an optimally weighted GMM estimator 3 for §y that uses a
weighting matrix W = le +0p(1).

Before we formally present the semiparametric efficiency property of the CEP-GMM
estimator, we need to introduce some notations and assumptions. Let the support of
X be X = R%. We could use more complicated notations and let X = X, x Xy, with
X, being the support of the continuous variables and X;. the support of the finitely
many discrete variables. Further we could decompose X, = X,y x X0 with X, = R
and X, being a compact and connected subset of R%2. Then, under simple and usual
modifications of the assumptions, the large sample results stated below would remain
valid. To avoid tedious notation yet to allow for some unbounded support elements of
X, we assume X = X, = R%. For any 1 x d, vector a = (a1,...,aq,) of non-negative
integers, we write |a| = Z‘,ﬁgl ag, and for any x = (21, ...,24,) € X, we denote the |a|-th
derivative of a function h: X — R as:

Vah(z) o,
= e oam )
For some v > 0, let v be the largest integer smaller than v, and let A7(X) denote a
Hoélder space with smoothness +, i.e., a space of functions h : X — R which have up to
v continuous derivatives, and the highest (v-th) derivatives are Holder continuous with
the Holder exponent v — v € (0,1]. The Holder space becomes a Banach space when
endowed with the Holder norm:

a a e
||h||a» = sup |h(x)| + max sup [Van(z) =V h(x)J

@ lal=1 22z \/(z —2) (x —7) 2
Let A7(X,w;) denote a weighted Holder space of functions h : X — R such that
()1 + |- [?]7“/? is in AY(X). We call AV (X, wr1) = {h € A (X,wi1) : ||h()[L+ |-
12]7“1/2||p+ < ¢ < oo} a weighted Holder ball (with radius c).

The sieve estimator £(X; §) needs to converge to £(X;3) in some metric. We allow
supports of the proxy variables to be unbounded, and use a weighted sup-norm metric
defined as

9lloc = sup g, B)[1 + |22 7/?|
zeX,BEB

for some w > 0. Also we let Il,,g denote the projection of g onto the closed linear span

of ¢*)(x) = (q1(2), -, Gi(n,) ()" under the norm || - [|sow- Let fx,(z) = fx|p=o(z)

and fx,(z) = fx|p=1(®).
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The following assumption is sufficient to ensure that g (; B) converges to E(+; #) under
the supremum norm || - |[so -

ASSUMPTION 3. Let W — W = op(1) for a positive semidefinite matrix W, and the
following hold: (1) for all 5 € B, E(-;3) belongs to a weighted Hélder ball AY (X, w)
Jor some v >0 and wy > 0; (2) [(1+ |z*)“ fx, (x)dx < oo, [(1+ |z|*)“ fx,(z)dz < o
for some w > wy > 0; (8) For each fized x, E(x;3) is continuous at (B for all B € B;
(4) Varim(Z;;8) | Xi = x,D; = 0] s bounded uniformly over x and (3; (5) For
any E(+;0) € AY(X, wl) there is a sequence Iloon€ in the sieve space G, = {g(-;5) €
AY(X,w1) = g(x; B) = ") (x)w(B)} such that ||E(+; 8) — MoonE (5 8)]|sow = 0(1). Also
E,[¢Fme) (X) gk (a) (X)) is non-singular.

THEOREM 4. Let (3 be the CEP-GMM estimator given in (3). Under Assumptions
1, 2 and 3, if k(ng) — o0, ’C(L:) — 0, then B— 3y = op(1).

n

Additional regularity conditions are required for stating the asymptotic normal-
ity results Let E,() = E(|D = 1) and E.(-) = E(:|D = 0). Denote [[h|l5, =
[ h(z)%fx,(v)dr = E,{h(X)?} and Ily,h be the projection of h onto the closed lin-
ear span of ¢*(")(z) = (q(z), ..., Qs(ny) ()" under the norm || -

2,a-

ASSUMPTION 4. Let 3y € int(B), EplE(X;00)E(X;Po)] be positive definite, and
the following hold: (1) Assumption 3.1 is satisfied with vy > d, /2 and Assumption 3.2 is
satisfied with w > wi +7; (2) For each fized x, and for some § > 0 Bg(ﬁ;ﬁ) is continuous
. . 9E(X p; .
in € B with |B— o] <6, Ep {Supﬂilﬁﬂoﬁi (8),(61'7 5)” < o0; (8) There exist a
constant € € (0,1], a 6 > 0 and a measurable function b(-) with E,[b(X,)] < oo such

that |3fdg,ﬂ> KL < b(@)[||€ — Elloow] for all B € B with |B— | <& and all € €

2
AY(X,w1) with ||E — Ellsow < 6. (4) Ea [(fx”ixi)

dy

< 005 (5) k(ng) = O (n§”+dz),

Ixp ()
fXa ()

oty _ Ixp () o 1)2
Ng X Iy, e =o(n="/*).

THEOREM 5. Let 3 be the CEP-GMM estimator given in (3). Under Assumptions 1,
2, 3 and 4, we have \/n(B8—0o) = N(0,V), withV = (jéng)_ljﬁlWQ@)ng(j/éng)_l,
where Qg is given in Theorem 1. Furthermore, if W = Q/gl, then \/E(B—ﬁo) = N(0,Vp),
with Vp = (jﬁ’lejg)*l, where Jg = jﬁ} and Qg = Qé under moment condition (1),
and Jg = Jg and Qg = Q% under moment condition (2).

Remark 2: (i) Assumptions 3 and 4 allow for m(Z; ) to be non-smooth such as in
quantile based moment functions. (ii) The weights w and w; are needed since the sup-
port of the conditioning variable X is allowed to include the entire Euclidean space.
When X has bounded support and fx is bounded above and below over its support, we
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can simply set w = 0 = wy in Assumptions 3 and 4, and replace Assumption 4.1 with

the assumption that 3.1 holds with v > d, /2. (iii) Since gzg; = ?1()—(1))8(7)?;7 Assump-

tion 5.4 is automatically satisfied under the condition 0 < p < p(z) < p < 1, which

is a condition typically imposed in the program evaluation literature such as in [18].

p(X)
1-p(X)"

dy
In particular, if we let k(ng) = O (né”*dz ) , the growth order which leads to the optimal

Assumption 4.5 will be satisfied under mild smoothness conditions imposed on

~ R
convergence rate of ||E(+; Bo) —E(+; Bo)l|2,a = Op <na Syt >, then Assumption 4.5 is sat-

___da
isfied with ’ ;X:8 — Iy ;28 . =0 <na W) ) — (k(na)_%) For example, both
Assumptions 4.4 and 4.5 will be satisfied as long as 18;2_) € A (X, wy) with v > d, /2.

The proofs of Theorems 4 and 5 follow directly from those in CHT, who also provide
simple consistent estimators of V and Vj:

V=(TWNH'ITWAIWT(ITWT)™ and Vo= (TQ 7)),

where for both moment conditions (1) and (2),

Np i=1 aﬂ/ ’
~ 1 Qe — —~ \/  ng P R R
= nia f (U(Z]Ua]) (UajUaj) + n*;j s (5(Xp@,ﬁ)g(sz,ﬁ),> s
J= i=
~ =N . R - 1 Ny / Q’Q 1
Uaj = m(Yaj, Xaji 0) = E(Xag3 ), v, = [nzqk("a)(Xm)] ( n > ") (Xq5).
P =1 a

3.2. CEP estimation with parametric or known propensity score. Suppose now that
the propensity score p(X) is correctly parameterized as p(X; ) up to a finite-dimensional
unknown parameter . Theorems 2 and 5 show that the optimally weighted CEP-GMM
estimator defined in (3) still achieves the semiparametric efficiency bound for 5 defined
by moment condition (2). However, according to Theorems 3 and 5, such an estimator
is no longer efficient for 5 defined through moment condition (1).

Rewriting moment condition (1) as E {5 (Xi; ﬁo)@] = 0, we can again construct an

efficient estimator for Gy based on the sieve estimate & (X; 8) and the correctly specified
parametric form p(X;+). In particular, the optimally weighted GMM estimator using
the following sample moment condition will achieve the efficiency bound in Theorem 3
for 8 defined through (1):

znzé(Xi;ﬁ)p(X;;&),
=1

S|+

(6)
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where p = % and ¥ is the parametric MLE estimator that solves the score equation for
~:

—N " S85(Di, Xi) = — L ps(X;)=0.
n & 5D Y A

i=1 n i=1 p

THEOREM 6. Let p(X;~v) be the parametric propensity score function known up to
the parameters v and let E[S, (D, X)S~, (D, X)'] be positive definite. Let By satisfy the
moment condition (1) and 3 be its CEP-GMM estimator using the sample moment (6).
Under Assumptions 1, 2, 3 and /, we have /n(3 — By) = N(0,V), with

!/ _ / ~ / _
Vo= (J3WI5) T3 WW I (T3 WT)
where Qg is given in Theorem 3. Further, if W = le, then /n(3 — o) = N(0, Vo),
where Vy = (jﬁllflgljﬂl)_l 1s the efficiency variance bound given in Theorem 3.

The proof of this theorem is very similar to the previous ones and hence is omitted.
It suffices to point out that f v E(XG; ﬁo)p(XTm can be shown to be asymptotically
equivalent to

{ (Xi: o) + %[m(zi;ﬁo)a&;%ﬂ}

(X3)

p

+E {E(Xi;ﬁo)p7 ] V(¥ =),

where

-1

\/ﬁ(’?—’m) = [ES’YO(D’X)S (D X) \/‘ZS’YO Dl’X)—’_OP(l)

We remark that even when a parametric assumption is being made about the propen-
sity score p(X;+) (in fact even if in addition f(Y') is assumed to be a parametric likeli-
hood), the inference about (3 is still semiparametric. This is because the marginal density
f(X) is still nonparametric and contains semiparametric information about 3. This ex-
plains why nonparametric estimation is still needed to achieve the efficiency bound for
0.

The case where the propensity is fully known can be considered a special case of
parametric propensity score where the parameters are known. In this case, the efficient
moment condition is as in (6) after replacing p(Xj;%) with the known p(Xj;).
Remark: When the auxiliary data set is a validation data set, e.g. p(X) = p, the
parameters 3 defined by both moment conditions (1) and (2) coincide. Therefore the
CEP-GMM estimator defined in (3) when we take n, = n and the summation to be
over the all observations will achieve semiparametric efficiency.
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4. TIPW-GMM Estimation. An alternative estimation method for 3 is the in-
verse probability weighting based GMM (IPW-GMM). Several authors have considered
inverse probability weighting paired with a conditional independence assumption for es-
timation in presence of missing information. Recent examples include parametric IPW
as in [24], [34], [35] and [32], for missing data models, and nonparametric inverse prob-
ability weighting as in [18] for the case of mean treatment effect analysis. In this sec-
tion, we extend existing results and first show that the optimally weighted IPW-GMM
estimator of § is semiparametrically efficient when the propensity score is unknown.
The same estimator, however, will be generally inefficient when the propensity score is
known or belongs to a correctly specified parametric family; combinations of nonpara-
metric and known or parametric estimated propensity scores are needed to achieve the
semiparametric efficiency bounds for these cases.

4.1. Efficient estimation with unknown propensity score. The IPW-GMM method
uses the fact that under Assumption 2, moment condition (1) can be rewritten as:

. 1= Blm(z: 2 A D) 5 _ .
(7) B(m(Z:)| D = 1] = E [m(Z: )= esP| D =]
while moment condition (2) is equivalent to:
(®) Blm(Z: )] = E [ m(Z:p) s D = 0].

Let p(X) be a consistent estimate of the true propensity score. Then we can estimate
Bo defined by case (1) using GMM with the following sample moment:

g X) 1
(9) Vim0

and estimate () defined by case (2) using GMM with the following sample moment:
1 Ja 1-p
(10) Vin—">3 m(Zj; B) =

The inverse probability weighting approach is considered semiparametric when p(X)
is estimated nonparametrically. In this case, it can be shown that the sample moment
(9) evaluated at [y is asymptotically equivalent to

p(X;) D;—p
m(Zi; 7+5X; = 22U 4o,(1).
The two components of this influence function are negatively correlated. Because of
this, the asymptotic variance might be smaller than that of the estimator of Gy based
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on moment condition (9) with the known p(X). The influence function can be rewritten
in terms of two orthogonal terms as

Z { (235 ) — £ 60)) 20 + DX o) | + 0y(1),

j)
X;)

which is identical to the influence function in (4). Therefore,
(

1 & D 1— ]3
Avar (Vi 3 (2 o) 2 )=,
a ]:1

where Qé is given in Theorem 1. An optimally weighted GMM estimator for 3y defined
by case (1) using sample moment (9) should then achieve the semiparametric efficiency
bound stated in Theorem 1.

The influence function representation for sample moment (10) can be calculated as

1 o Di —p(X) o
Z |: Zz,ﬁo)w +5(XZ7BO) 1 _p(Xz) :| + p(l)a

whose two components are again negatively correlated. As in the previous case, the
influence function can be written in terms of two orthogonal components as

i 20 DO (s 0) — £08 ) Ty + LX)+ ),

which is identical to the influence function in (5). Hence, an optimally weighted GMM
estimator for By defined by case (2) using sample moment (10) achieves the semipara-
metric efficiency bound for case (1) stated in Theorem 1.

In this subsection, to emphasize that the true propensity score function is unknown
and has to be estimated nonparametrically, we use p,(z) = E(D|X = z) to indicate
the true propensity score and p(z) to denote any candidate function. (Note that to save
notations in the rest of the main text p(x) denotes the true propensity score.) Let p(-)
be a sieve estimator of p,(z) that uses the combined sample {(D;, X;) : i = 1,...,n}. Let
{Zai = (Yai, Xai) : i = 1,...,n4} be the auxiliary (i.e. D = 0) data set. We define the
IPW-GMM estimator 3 for moment condition (1) as

5 RS P(Xa) | 7 (L P(Xai)
11 = argmin | — m( Lo B)————— | W[ — M(Lgi; B) —————
and the IPW-GMM estimator 3 for moment condition (2) as

/A 1 Ng 1
(123_ argrﬁngn( Zm Zazy/B (Xm)> w (WZ;m(Zai;ﬁ)%) '

There are two popular sieve nonparametric estimators of p,():
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(i) a sieve Least Squares (LS) estimator p;s(x) as in [16]:

n

1
Dis = arg min — D; — p(X;))?/2.
i =g D p(X0)?

In the appendix we establish the consistency and convergence rate of pis(x) under
the assumption that the variables in X have unbounded support.
(ii) a sieve Maximum Likelihood (ML) estimator py,.(x) as in [18]:

Prie = arg max - Z {D;log[p(X;)] + (1 — D;)log[1 — p(Xi)]}

Ho = {heALX):hiz) = [A5(@)72} or {heAJ(X): h(z) = exp(A (2)m)} .

Recall Eq(-) = [(-) fx|p=o(z)dx. Define a weighted sup-norm as, for some w > 0,

||h’|oo,w = sup ‘h(;p)[l + |x’2]—w/2‘ ‘
zeX

ASSUMPTION 5. Let W — W = op(1) for a positive semidefinite matrix W, and the
following hold: (1) p,() belongs to a Hélder ball H = {p() € AJ(X) :0 < p < p(x) <
P < 1} for some v > 0; (2) [(1+ |z|?)* fx(x)dx < co for some w > 0; (3) there is a
non-increasing function b(-) such that b(6) — 0 as 6 — 0 and

E, | sup [|m(Z;B) —m(Z,B)|[*| < b(3)
[18—Bl|<é

for all small positive value 0; (4) Eq [supﬁeB Hm(Zi;ﬂ)HQ] < o0 (5) for any h € H,
there is a sequence oo h € Hy, such that ||h — ogph||cow = o(1).

THEOREM 7. Let 3 be the IPW-GMM estimator given in (11) or (12). Under As-
sumptions 2, 1 and 5, if °= En 50, k, — o0, then: B — By = op(1).

Let E(-) = [(-)fx(z)dz, ||h|]2 = \/f h(z)2fx(x)dx, and I,k be the projection of
h onto the closed linear span of ¢*»(x) = (q1(z), ..., qx, (x))" under the norm || - |]2. We
need the following additional assumptions to obtain asymptotic normality.

ASSUMPTION 6. : Let By € int(B), E[lp‘;(( E(X; Bo)E(X; Bo)'] be positive definite,
and the following hold: (1) Assumptions 5.1 and 5.2 are satisfied with v > d;/2 and

w > y; (2) There exist a constant € € (0,1] and a small §o > 0 such that

E,| sup |[m(ZsB) —m(Z;,B)||*| < const.6¢
[18—pB]|<d
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for any small positive value § < dy; (3) Eq {Supgeg;uﬁ_ﬁongéo lm(Zi; B)[1*(1 + |Xi‘2)w} <
o0 for some small §o > 0; (4) E {H%ﬁﬁ@ (1+ |X|2)%] < 00, and for allz € X, 88(%;@

dg . .
is continuous around By; (5) kn, = O (n“*—dx), n T x Hfflf?) — Iy, 157('1’,0((’,)) ’2 =

o(n=1/2). (6) either one of the following is satisfied: (6a) SUPge B:||8—fo || <00 SWPzex | € (2, B)|| <

const. < oo for some small 6 > 0; (6b) E, [SUPBEB:Hﬁfﬁo\IStSo |E(X, ﬁ)||4} < const. <

oo for some small 6o > 0, and fx|p=o(-) € AZ(X) with~y > 3dy/4; (6c) Eq [SupﬁeB:Hﬁ—ﬁOHgéo 1E(X, ﬂ)”ﬂ <
const. < oo for some small 5o > 0, and fx|p—o(-) € AY(X) with v > d.

THEOREM 8. Let 3 be the IPW-GMM estimator given in (11) or (12). Under
Assumptions 1, 2, 5 and 6, we have /n(8 — Bo) = N(0,V), with V the same as in
Theorem 5.

Remark 3: (i) The weighting w is needed since the support of the conditioning vari-
able X is assumed to be the entire FKuclidean space. When X has bounded support
and fx|p—o is bounded above and below over its support, we can simply set w = 0
in Assumptions 5 and 6 and replace 6.1 with the assumption that 5.1 holds with
v > dg /2. Note that Assumption 6.6a is easily satisfied when X has compact sup-
port. When X = R%, Assumption 6.6a rules out £(x, 3) being linear in z; Assumptions
6.6b or 6.6¢ allow for linear £(z, 3) but need smoother propensity score p(z) and den-
sity fx|p—o- (ii) Assumptions 5 and 6 again allow for non-smooth moment conditions.
(iii) Since LXjpoe) — 1ope(0)
that i—g < %:;){()X) < %, hence E() and E4() in Assumptions 5 and 6 are effec-
tively equivalent. (iv) Although Assumption 5.1 imposes the same strong condition
0 < p<po(r) <p <1 as that typically assumed in the program evaluation literature,
unlike most existing papers on estimation of average treatment effects, our paper allows
for unbounded support of X and assumes weaker smoothness on p,(z) and £(+; 5,). In

, the assumption 0 < p < po(z) < p < 1 implies

dy
particular, if we let k, = O <n2W+dw), the growth order which leads to the optimal

convergence rate of |[p() —po()||2 = Op (ni Hid ), then Assumption 6.5 is satisfied with
. . 7d7$ _l
H E(Bo) s, f(w o) ’2 -0 (n 2(27+d1)> -0 (k?n 2>.

1=po(-) —po(-)

4.2. IPW Estimation with parametric or known propensity score. The case of mo-
ment condition (2) is simpler and therefore we briefly discuss it first. Theorems 1 and 2
have shown that knowledge about the propensity score does not change the semipara-
metric efficiency bound. Furthermore, theorems 5 and 8 show that both a nonparamet-
ric CEP-GMM estimator and a nonparametric IPW-GMM estimator for 3 achieve this
semiparametric efficiency bound regardless of whether the propensity score is unknown,
known or parametrically specified. The following theorem also states, without proof,
the interesting result that the parametric IPW estimator using p(X;#) is in fact less
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efficient than the one using a nonparametric estimate p(X) in (10), but is more efficient
than the one using the known p(X).

THEOREM 9. Suppose the parametric model p(X;;~y) is correctly specified. Suppose
also that E[S,(D, X)S, (D, X)"] is positive definite. Under moment condition (2) and
using the optimally weighted sample moment condition (10), an IPW-GMM estimator
for B using a parametric estimate of p(X;;7) in place of p(X;) in (10) is more effi-
cient than the one using the known p(X;), but is less efficient than the one using a
nonparametric estimate p(X;) of the propensity score.

This result is based on the following relations, which hold asymptotically

VRS 1—p VIS 7 gy —
Avar( 3 m(Z5 ) ) S Avar(LE 3 i o) Ty

and

U et VLSS 20 o) LD
Avar(ajzlm(zgvﬁo)l_p(m) > AWT(%;m(ZJ’ﬂO)l—ﬁ(Xi))'

Now consider the more interesting case where moment condition (1) holds and sample
moment condition (9) is used. Consider the case when the parametric propensity score
is correctly specified. First, it is clear that the optimally weighted IPW-GMM estimator
of B based on (9) that uses a nonparametric estimate of p(X) does not achieve the
efficiency bound in Theorem 3, because we see from Theorem 8 that this estimator
achieves instead the variance bound in Theorem 1, which is larger than the variance
bound in Theorem 3.

However, the parametric two step IPW estimator that uses a parametric first step
for p(X; ) does not achieve the efficiency bound in Theorem 3 either. To see this, note
that the parametric two step IPW estimator is based on the moment condition

RS p(X5%) 1-p
\/ﬁi meB : X ~
na; S ETs eI

which has a linear influence function representation of

1 a1 = Di)p(Xi) : o Di —p(Xi) -

5 m(Zi,ﬂg)W +PrOJ(E(XZ,ﬂo)m SW(D“XZ))} ,
where
Proi(§(x: ) T 1 5, Dix) = B [ecxim U]

xE [8,(Dy, X:)5,(Dys, X;)'] " S,(Dy, X;)
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is the influence function from the first step estimation of . The difference between this
influence function and the influence function for Theorem 3 can be verified to be equal
to

p(X) , .
Res((D - p(X))?mg(X, ﬁO) S’Y(D’Lv Xz));
which is obviously orthogonal to the influence function of Theorem 3. Therefore, the two
step parametric IPW estimator has a variance larger than the efficiency bound under
the assumption of correct specification of the parametric model for p(X;~).
An IPW type estimator that achieves the efficiency bound under correct specification
can be obtained by combining both nonparametric and parametric estimates of the
propensity score. Such an efficient moment condition is given by

1 & p(X539) 1-p
(13) Vin—73 m(Z;;B)——7 -

Nq Jz::l 7 - p(Xj) p ’
where 4 is the maximum likelihood estimator for vy and p(X) is the sieve estimate
of the propensity score. This moment condition has the following asymptotic linear
representation:

LS (1= D) (m(Zis Bo) — E(Xi; o)) 7250 + p(X0)E(Xss o)
+B [F5Rp, (X0)] vaty — ),

which is identical to the influence function under correct parametric specification of
p(X;~) leading to the semiparametric efficiency bound in Theorem 3.

The case where the propensity score is fully known can be considered a special case of
parametric propensity score where the parameters are known. In this case, the efficient
moment condition is as in (13) after replacing p(X;;¥) with the known p(Xj).

It is finally worth noting that Assumption 2 is an identification assumption that is
not testable. Therefore both the CEP-GMM estimator and the IPW-GMM estimator
will converge to the same population limit regardless of whether Assumption 2 holds,
as long as the same weighting matrix is being used. The population difference between
CEP and IPW can only arise from the parametric mis-specification of the approximating

models for £(X; ) and p(X).

5. Empirical Illustration. We illustrate our method empirically using data from
the Indian National Sample Survey (NSS), a data set routinely used by the Indian
Government to monitor changes in the distribution of private consumption. Several re-
searchers have argued that due to changes in the expenditure questionnaire adopted for
data collection in the 1999-2000 round of the NSS, poverty estimates from this round
are likely to be non-comparable with those from previous years. A change in the ques-
tionnaire section where food expenditures are recorded likely led to the overestimation
of food consumption, and hence to the underestimation of poverty ([14], [32]). In other
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words, a missing data problem arises because the variable of interest (total expenditure
as it would have been recorded using a standard questionnaire) is not observed. [13],
[12] and [32] argue that total expenditure in a set of miscellaneous items for which
the questionnaire was not modified (“comparable items” hereafter) can be used as a
proxy variable to produce an estimate of poverty for 1999-2000 that is comparable with
previous years.

In this section, we assume that the researcher is interested in estimating the cu-
mulative distribution function (cdf) for rural India in 1999-2000 of a measure of total
monthly expenditure that is comparable with previous NSS rounds. In the terminology
used in this article, this situation corresponds to a verify-out-of-sample case (1), where
the parameter of interest (§ is identified in terms of a variable Y that is not observed
in the primary sample (the 1999-2000 survey). The moment function takes the form
m(Z; 5p) = L(Y < y)— By, where y is a given threshold. We use the previous round of
the NSS (1993-94) as auxiliary survey, and expenditure in “comparable items” as proxy
variable X. The two rounds are independent cross-sections from the Indian population.
The crucial identifying assumption is that the distribution of Y conditional on X re-
mained stable between 1993-94 and 1999-2000 (for a discussion and indirect evidence is
support of this assumption see [32]).

Table 1 reports point estimates and standard errors for the cdf of total (log) household
expenditure at selected thresholds, using different estimators. The first column reports
the cdf estimated using the noncomparable data from the primary sample. Column 2
reports CEP-GMM estimates, calculated using 3"¢ order polynomial splines in expen-
diture in comparable items as sieve basis, with 10 knots at the equal range quantiles of
the empirical distribution of the proxy variables. Column 3 reports estimates obtained
using moment condition (7), but with a nonparametric first step where we estimate
P(X) using sieve-logit, including the basis functions we used for CEP-GMM as regres-
sors. In Column 4 we impose a parametric model, and we estimate the propensity score
using logit, with X entered linearly in the single index. Column 5 reports the results
for the estimator described in Section 3.2, which is efficient when a parametric model is
correctly specified for P(X).

For values of Y below 7 the adjusted estimates of the cdf in columns 2 to 4 are larger
than the unadjusted figures presented in column 1, even if only by one-two percentage
points. This is consistent with what would be expected based on the hypothesis that
the change in the questionnaire introduced in 1999-2000 led to an overstatement of total
reported expenditure with respect to previous NSS rounds. As expected, CEP and IPW
non-parametric estimators produce virtually identical results. The estimates in columns
4 and 5 impose a simple logit for the propensity score, but they are still very similar.
In the verify-out-of-sample case, knowledge of a parametric form for P(X) lowers the
semiparametric efficiency bound, and this may explain why in some cases the standard
errors in column 4 are lower than for the estimators in columns 2 and 3, which are only
efficient when P(X) is unknown. Notice also that when the parametric assumption is
correct the efficient estimator is the one in column 5. Indeed the standard errors for this
estimator are always lower or virtually identical to those in column 4 every time this
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latter estimator is more precise than the nonparametric estimators in columns 2 and 3.

6. Conclusions. We derive semiparametric efficiency bounds for the estimation of
parameters defined through general nonlinear, possibly non-smooth and over-identified
moment conditions, when variables in the primary sample of interest are missing. For
identification we rely on the validity of a conditional independence assumption and on
the availability of an auxiliary sample that contains information on the relation be-
tween missing variables and other proxy variables that are also observed in the primary
sample. We study two alternative frameworks. In the first case (“verify-out-of-sample”)
validation is done with an auxiliary data set which is independent from the primary
data set of interest. In the second case (“verify-in-sample”) a subset of the observations
in the primary sample is validated.

We show that the optimally weighted CEP-GMM estimators achieve the semipara-
metric efficiency bounds when the propensity score is unknown, or is known or belongs
to a correctly specified parametric family. These estimators only use a nonparametric
estimate of the conditional expectation of the moment functions, and their asymptotic
efficiency is obtained under regularity conditions weaker than the existing ones in the lit-
erature. In particular, these CEP-GMM estimators still achieve efficiency bounds when
proxy (conditioning) variables have unbounded supports and moment conditions are
not smooth.

We also prove that an optimally weighted IPW-GMM estimator is semiparamet-
rically efficient with fully unknown propensity score. However, this estimator is not
efficient when the propensity score is either known, or is parametrically estimated using
a correctly specified parametric model; in such instances, appropriate combinations of
nonparametric and parametric estimates of the propensity score are needed to achieve
the efficiency bounds.

We have also demonstrated that, from the theoretical point of view, the CEP-GMM
estimators are more attractive than the IPW-GMM estimators. Recently and indepen-
dently [19] advocated a similar sieve conditional expectation projection based estimator
for the average treatment effect parameter in program evaluation applications. Also, for
the estimation of the average treatment effects in missing data models, [33] suggested
that a semiparametrically specified propensity score, such as a single index or a partially
linear form, can be used to reduce the curse of dimensionality in the nonparametric es-
timation of the propensity score. An interesting topic for future research is to study the
efficiency implications of these semiparametric restrictions on the propensity score.
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Appendix A - Calculation of Efficiency Bounds.

ProoOF. Theorem 1

We follow closely the structure of semiparametric efficiency bound derivation of [22]
and [2].

Case (1). Consider a parametric path 6 for the joint distribution of Y, D and X.
Define pg = Py(D = 1). The joint density function for Y, D and X is given by

(14)  fo(y,@,d) = pg(1 —po)' =" fo(x|D = 1) fo(a| D = 0)'~ f(y|z)" .
The resulting score function is given by

d — pg

Sp(doy.z) = —2—P0
0(dy,) Po (1 — po)

Po+ (1 —d)sg(xz|D =0) +dsg(z|D=1)+ (1 —d)sg(y | x),

wheresg (y | #) = Z5log fo (y | x),  po = Zpe, s (x|d) = Zlog fy (x|d) . The tangent
space of this model is therefore given by:

(15) T =a(d—pg) + (1 —d)sg(z|D =0) + (1 —d)sg(y|x) + dsp(x]|D = 1),

where [sg (y|z) fo(y|z)dy =0, [sg(z|d) fo (x|d)dr =0, and a is a finite constant.
Consider first the case when the model is exactly identified. In this case § is uniquely
identified by condition (1). Differentiating under the integral gives

w PO (e (i)

dlog fy (Y, X | D =1)
06’

D= 1] .

The second component of the right hand side of this expression can be calculated as
(17) B [m(Z;8)so (Y | X)' | D =1] + E [m(Z; B)sg (X | D=1)' | D =1]
Pathwise differentiability follows if we can find ¥! (Y, X, D) € 7 such that

(18) 08(9) /09 = B [W" (Y, X, D) S (Y, X, D)



22 X. CHEN, H. HONG AND A. TAROZZI

Define pp = [pg (z) fo () dz, Ep(X) = E[m(Z;3)| X]. It can be verified that path-

-1
wise differentiability is satisfied by choosing: ¥! (Y, X,D) = — (jﬁl) F} (Y, X, D)
where

1-D p(X) £(X)
19 FY(Y,X,D) = m(Z:5) — E(X)]+ ——=D
(19) 5 ( ) 5 1_p(X)[( ) = &(X)] ’

Since jﬁl is a nonsingular transformation, this can be shown proving that

(20 [m(2:0) 1 log fo (V. X | D = 1) | D= 1| = B [F} (v, X, D) 8 (V. X, D).

This can in turn be verified by checking that

Bm(z0)s (1% 1D=1] = B[Pz - e Colsar1x |
E|m(Z®)s(X | D=1/ |D=1] = E [E(Z)X)DSG(XW = 1)’} .

Now one can also verify that Fé (Y, X, D) belongs to the tangent space 7 in equation
(15), with the first and second terms of F[}(Y, X, D) taking the role of (1 — d)sg(y|x)
and dsg(X|D = 1) respectively, and the two other components in (15) being identically
equal to 0.

Therefore all the conditions of Theorem 3.1 in [22] hold, and the efficiency bound for
regular estimators of the parameter 3 is given by
eovi = (9) " B[E X oy B a0y ] (7)< (98) 9 ()

Case (2). For this case we use an alternative factorization of the likelihood function.
Define py (x) = Py (D = 1| x). The joint density function for Y, D and X is given by

(22) Jo (y,x,d) = fo (x) po ()" [L = po ()]~ fo (y | )"~
The resulting score function is then given by

d — pp (x)

So(dy,o) = (L= d)so(y | 2) + —ovg— T

))pe (z) +tg (),

where sg (y | 2) = S log fo (y | ), Po(x) = Spe (x), g (x) = S5 log fo (x).
The tangent space of this model is therefore given by:

(23) T ={(1=d)sg(y|x)+a(x)(d—py(r))+to(x)}

where [sg(y| ) fo(y|z)dy =0, [tg(x) fo(x)dr = 0, and a(x) is any square inte-
grable function.
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In case (2), equation (16) is replaced by:

-1 { OIOg!ggH(/Y,X)}

1
= —(78) {Em@a)s (| X)]+E[€X)t(X)]}.
Now we replace F) /31 (Y, X, D) in (19) with the following:
1-D [
1 —p(X)
and then it can be verified that E [FE (Y,X,D) Sy (Y, X, D)'] =F [m(Z; ﬁ)%é(/yx)}

-1
Then the efficient influence function for case (2) is equal to — (jg) Fg (Y, X, D) with

the two terms being orthogonal to each other, and the second result in Theorem 1
follows.

Now consider overidentified moment conditions. We only consider case (1), as the
derivation for case (2) is analogous. When d,,, > dg, the moment conditions in (1) is
equivalent to the requirement that for any matrix A of dimension dg x d,, the follow-
ing exactly identified system of moment conditions holds AE [m(Z;3) | D =1] = 0.
Differentiating again,

953 (0 om(Z; - 0 =

Therefore, any regular estimator for § is asymptotically linear with influence function

of the form
_ (AE [%/Zg?m D= ID_lAm(z;ﬁ).

For a given matrix A, the projection of the above influence function onto the tangent

(24) 8() = (7

(24) F}(Y,X,D) = m(Z:8) - € (X)] + € (X)

~1
set follows from the previous calculations, and is given by — {AJ b] F ﬁl (y,z,d). The

asymptotic variance corresponding to this efficient influence function for fixed A is
therefore

(23) agh] o [gra)

where Q = FE {Fé (Y, X, D) Fé (Y, X, D)'} as calculated above. Therefore, the efficient
influence function is obtained when A minimizes (23). It is easy to show that such matrix

-1
A is equal to j[}/ﬂ_l, so that the asymptotic variance becomes V = (jﬂl’ﬂ_ljﬁl)
In fact, a standard textbook calculation shows

T3 T = THA (AQA) T AT
_ <jﬁ1/Q—1/2 . jﬁIIQ_l/le/2, (91/291/2,)—1 Q1/2)

(9—1/2jﬂ1 _Ql/ {Q1/291/2/rl Q1/29—1/2\%1) >0
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PrROOF. Theorem 2

As for Theorem 1, it suffices to present the proof for the case of exact identification,
since the overidentified case follows from choosing the optimal linear combination ma-
trix. If the propensity score p(x) is known, the score becomes (c.f. [16]) Sy (d,y,x) =
(1—d)sp(y|x)+tg(x), so that the tangent space becomes 7 = {(1 —d) sy (y | z) +
tg ()} where [sg(y|z) fo(y|xz)dy =0, and [ty () fo (x)dr = 0. Consider case (1)
first. The pathwise derivative becomes

p(X) . / p(X) /
£\ Pz 5)s (v X)] +E [pg (X)t(X)]

Pathwise differentiability is established by verifying that equation (18) holds, with

1-d p(x)

(20) Fﬁl (y,z,d) = P

-1
Then the efficient influence function is as before equal to — (jé) Fé (y,z,d), and

the result of Theorem 2 follows using Theorem 3.1 of [22].
Since p(x) does not enter the definition of 3 in case (2), there is no change to the
efficient influence function and to the semiparametric efficiency bound for that case.

O]

Proor. Theorem 3
When p(X) belongs to a correctly specified parametric family p(X;~), the score
function for moment (1) becomes

d— Op(z;7v) 0

po () p(xlv) Dty (@).
po(x)(L—py(x)) Oy 00
The tangent space is therefore 7 = {(1 —d) sg (y | ) + S, (d; z) + tg (x)} where ¢ is
a finite vector of constants and S, (d;x) is the parametric score function. Now define
F3(Y,X,D) as

Sg(d,y,l‘):(l—d)SQ(y|l‘)+

1-D p(X) o roi D —p(X)
D () - € (X)) + Proj(e () P

It is clear that Fﬁl (Y, X, D) lies in the tangent space. Also note that %(:) can be written
as

5,(D, X))

~(7)" {E [m(Z:8)s (V | XY | D=1] + E {m(Z; B)(to(x) + Sw(d;x)’(;g)’ D= 1] }

The second term in curly brackets can also be written as

E(D —p(X))E(X)Sy(D; X) 9y N p(X)E(X)te(X)
p o p '
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With these calculations it can be verified that

95 (0)

5o =~ (78) B[ (v.x.0) s,(v.x. D).

In particular,

GRS
p

)57(D3X)/} —FE [Proj(S(X)D_;:m‘Sfy(DaX))Se(YaXa D)'|.

1
Therefore — (j 5) F 5 (Y, X, D) is the desired efficient influence function and its vari-
ance is given as the efficient variance of Theorem 3. O

Appendix B - Proofs of Asymptotic Properties. In this appendix we
establish the large sample properties for the IPW-GMM estimator with nonparamet-
rically estimated propensity score function. Again to stress the fact that the true
propensity score is unknown, in this appendix we denote the true propensity score
by po(x) = F[D|X = x| and any candidate function by p(z).

Denote Lo(X) = {h : X — R : |[hlla = /[ h(x)2fx(x)dz < 0o} and Loa(X) =

{h: X =R :|hll2e = \/f h(x)?fx,(z)dx < oo} as the two Hilbert spaces. We use
[|hl]2 < ||h||2,o to mean that there are two positive constants c1, co such that ¢;||h||2 <
||h]]2,a < ca||h|]2, which is true under the assumption 0 < p < po(x) <P < 1.

Proposition B.1 provides large sample properties for the sieve LS estimator p(z) of
pO(I')‘
Proposition B.1: Under Assumptions 5.1, 5.2 and 5.5, and %" — 0, k, — o0, we
have (i)

[1P(®) = po(®)lloow = 0p(1);  [|P(®) = po(e)

(ii) in addition, if Assumption 6.1 holds, then

2.0 < |[P(®) = po(@)[2 = 0p(1);

|ﬂﬂ—w@hwﬂﬁﬂ—mmm=@( %+wm”%).

ProoF. (Proposition B.1):(i) Recall that p(z) is the sieve LS estimator of p,(-) €
AY(X) based on the entire sample. That is,

1 n
p() = arg min — D; — p(X;)}¥?/2,
O =ars iy 3D~ DX

where H,, increases with sample size n, and is dense in AY(X) as k, — oo (by as-
sumption 5.5). Moreover, by Assumptions 5.1 and 5.2 we have the following results:
(1) the parameter space is compact under the norm || - ||ow for w > 0, see [1];
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(2) E[{D; —p(X;)}?/2] is uniquely maximized at p,(z) = E[D|X = z] € H; (3)
E [{D; — p(X;i)}?/2] is continuous in p() under the metric || - ||oow; and (4)

sup
pOeH | T

= op(1);

Z{D )}?/2 = B{Di — p(X;)}*/2

where both results (3) and (4) are due to the fact that for any p(), p() € H,

{D; = p(X0)} = {D;s = BX)Y2| = {2Di = [p(Xs) + B(X)]} [p(X) = X))
< const. |[p(Xy) — POGI(1+ X[X0) 75| x (1+ X[X,)%.

Now E[(1+ X!X;)2] < co by assumption 5.2.
Hence by either Theorem 0 in [15] or Lemma 2.9 and Theorem 2.1 in [23], ||p(e) —
Po(®)lcow = 0p(1). Now

\// )2 fx (2)de

< \/(Hﬁ(') — po(’)”oo,w)2 /(1 +2'z)* fx(x)dr = op(1)  (by assumption 5.2).

[[p(®) — po(e)]]2

(ii) We can obtain the convergence rate of ||p(e) — p,(®)||2 by applying Theorem 1
n [10] or Theorem 2 in [31]. Let L, (p()) = 2 X7, €(D;, X;,p()) with €(D;, X;,p()) =
—{D; — p(X;)}?/2. Since all the assumptions of [10] Theorem 1 are satisfied given our
Assumptions 5.1 and 5.2. We obtain

Hﬁ(.) - po(.)HQ = Op (max {\/];7’ Hpo - H2np0|2}> .

Under Assumption 6.1, for p, € AY(X), there exists [loonpo € AY(X) such that for any
fixed w > v,

[1Po = ToonPol oo = $UD | [Po(®) — Moonpo(@)](1 + [2[) 72| < const. (k) 1/,
xT

see [1]. Hence by Assumption 6.1 with w = v + ¢ for a small € > 0,

IA

Hpo - H2npo‘ |2

||Po — Hoonpoll2 = \//LPO(SC) — Hoonpo(2)]? fx (z)dx

< \/(HPO() - HoonPO(')HOO,W)2 /(1 + 2'z) fx (x)dr < C/(kn)iv/dz

Then [[5s) = pole)lla = O (/5 + () /%) = 0,(1). s
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PrOOF. (Theorem 7): We only provide the proof of the IPW-GMM estimator for
moment condition (1), since the one for moment condition (2) is very similar. We es-
tablish this theorem by applying Theorem 1 in [9] (hereafter CLK) with their 6 being
our 3 and their h being our p(). Define

1 & p(Xi)
Mn ) = Ziv )
Gp0) = oo omz A
p(Xi) p(X)
M@0) = Ea|m(Zup) 2 S| = B |m(z.8) 72 25D =0
1 —p(Xi) - p(X)
CLK’s conditions (1.1) and (1.2) are directly implied by our Assumptions 1.1, 2 and
moment condition (1). Note that for any p() € H, 0 < t& -5 = #(X) < ﬁ < 00, we
have
p(X) Po(X)
M(8,p0) = M(3.po0)| = |Elm(Z.5){; D=
[M(B,p() = M5, o)) [m(Z, B){ “o(X)  1—po(X )}\ ]
1 w w
< —E, Z,B)|1(1+|X|*)2 1+ |z*)"2
< g B llm(Z AN+ IXP)E] x sup [ip(z) - po(a)](1+ o)~
) 1/2
< =gy Balsup Im(Z, B)11P] x Ba[(1+ 1X[%)“] < [[p0) = Po()lloc e,
(1-p) BeB
where the last inequality is due to our Assumptions 5.1, 5.2 and 5.4, hence CLK’s
condition (1.3) is satisfied with respect to the norm || - || = || - ||co,w. CLK’s condition

(1.4) [IP() = Po)|loo,w = 0p(1) is implied by Proposition B.1(i). Note that

) . .
Ea‘ - sup (Zz’ﬁ)l—(())() - m(ZZMB)lf(a«o)() ]
_|W—IB'|<67Hp()_;()||oo,u<5 ? p 1
~ XZ
< E.| sup |m(Z,B)—m(Z,B)|| x sup ‘119())(
| 118—B]|<6 pOer | 1 —p(Xi)
~ Xz Xz
VB, |sup|[m(Z, )| x  sup 1p( ))( ~ 1P(~)>(
peB 1p0—p0l o< | L — P(Xi) - p(X;)
< Ei| sw [Im(Zif) - m(ZiB)ll| x 7=
[1B—B]|<d | p
~ 1 supy, 5 sup,e |[p(x) — P(2)])(1 + |f2)~%
+E, |sup [|[m(Z, B)||(1 + | X:[2)~/2 lPO—=POll 0,0 <6 ex ’ i
BeB | (1-p)
< const.b(d) + const.o,

where the last inequality is due to our Assumptions 5.1 - 5.4 and Proposition B.1(i).
Then CLK’s condition (1.5) is satisfied, hence 5 — By = 0p(1). O
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Lemma B.2: Under assumptions 1, 2, 5 and 6, we have

vae {ex, p) PP nZ BEPAR (. 6) + 0,1,

PrOOF. (Lemma B.2): To establish this result, we follow the approach in [30] and
[10]. Recall py(z) = E[D|X = z] € AY(X) and

p() = arg min —E{D (X;)}?/2.

p( eHn
Define the inner product associated with the space Lo(X') as
(h, ) = E{h(X)g(X)} hence [[h()|[3 = (h, h) = E[{h(X)}?].

Then the Riesz representor v* for functional F {5 (X, BO)M} is simply given by

1—po(X)
(x) = K Bo)
v (X) - 1 _pO(X)a
this is because
—Po 2
e sp LPECWRERGY] (s
pOerptpe  E(P(X) = po(X))?] 1 — po(X)
and
£ {0 PE R — (0050 = pul) = 0" 0RO — o)1)

Let La(p() = 137, 6Dy Xi,p()) with €Dy, Xi,p()) = —{Di — p(X:)}2/2. Let
Ui = D; — po(X;). Then by definition E[U;|X;] = 0, and ¢(D;, X;,p()) = —{U; —
[P(X:) — po(Xi)]}?/2. We denote puin(g) = 3 31y [9(Ds, Xi) — E(g(Di, X;))] as the em-
pirical process indexed by ¢, and &, be any posmve sequence with &, = o( f) Then

by definition,

0 < Lp(p)— Ln(p £ enllyv™)

= pn ({(Di, Xi, D) — U(Ds, X3, p £ enllonv®)) + E (U(Di, Xi, p) — €Dy, X;, D £ 51l2,0")) .
A simple calculation yields
E (U(Dj, X;,p) — €(D;, Xi, p % e,llan0"))
= ke BllTon0” (X){A(XD) — po(Xo)}] + 33 B [{TTane" (X))
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tin (£(Dy, X4, D) — €Dy, Xi, P £ £,112,0%))
2{P0 —p.(} £ €nH2nv*)

= Fep X pp (Topv*U;) £ & X iy, <H2nv 5

hence
0 < Fpn (H2nv™(Xy)Us) £ Ellgnv™ (X {P(Xi) — po(Xi)}]
i (T (X (POXD) — ol Xi)}) + 5 D (Tt (X))
i=1
= Fpn ([Manv” = U & p (0" 05) £ B[[Henv” —v"}{p— po}] F B[v* (5~ po}]

£t (T (X (POXD) = polXi)}) + 5 D (Tt (X))
i=1

In the following we shall establish (B2.1)-(B2.4):

(B2.1) i ([Tant (X;) — v*(X)|U;) = op<jﬁ>
(B2.2) B ([T (Xi) — v (X)I{B(X:) — po(X0)}) = op<jﬁ>
(B2.3) i, (Mot (X){A(X) — polX0)}) = op%)

(B2.4) L3 {1 (X)) = 0,0)
=1

Note that (B2.1) is implied by Chebychev inequality, i.i.d. data, and ||[IL,v* — v*||2 =
o(1) which is satisfied given the expression for v* and Assumptions 5.1 and 6.5. (B2.2) is
implied by Assumption 6.5 and |[p() — po()||2 = Op (niﬂ%dz) from Proposition B.1(ii).
(B2.4) is implied by Markov inequality, i.i.d. data, and Assumptions 5.1 and 6.5. Fi-
nally for (B2.3), let F,, = {Ilx,v*(-)h(-) : h(-) € AJ(X)}, then by Assumption 6.1,
log Nj(8, F, || - [|2) < const.(g)dxm for any 6 > 0. Applying Theorem 3 in [10] with
their 6, = n=?/(27+d=)  we have

2y—dg

sup |V, (a0 {h() | = (n 2<2v+dz)> = op(1).
h€Fn:|[h()=po()l|2<5n

Hence we obtain (B2.3). Now (B2.1)-(B2.4) imply 0 < tpp (v'U;) F E[v{p — po}| +

op(J), that is VRE[o (X){P(X) ~ po(X)}] = 7 iy v*(X)U; + 0y(1). hence the
result follows. ]

PROOF. (Theorem 8): Again we only provide the proof of the IPW-GMM estimator
for moment condition (1). We establish this theorem by applying Theorem 2 in CLK
(2003). Given the definition of fp and Theorem 7, CLK’s Condition (2.1) is directly
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satisfied. Note that their I'1(3,p,) = I%Jé, hence their Condition (2.2) is satisfied
with our Assumption 1.1.

Following the proof of CLK’s Theorem 2, we note that the conclusion of CLK’s
Theorem 2 remains true when CLK’s Conditions (2.3)(i) and (2.4) are replaced by the
following one:

") s [MB,50) = M(B,p60) ~ T2(8,5) B0 — 20l = 0p(n V),

BeB:||B—Pol|<do

where
L5000 - 2a0) = B {mz.m)50 ) b —of
_ P(X) = po(X)
= m{eat e )
_ P(X) = po(X) Fxip=o(X)
- { KD Tn®P () }

P(X) — po(X) }
1 — po(X) ’

and the last equality is due to fx|p—o(X)/fx(X) = (1 = po(X))/(1 - p).
Before we apply Assumptions 6.6a or 6.6b or 6.6¢ to verify Condition (*), let us check

CLK’s Conditions (2.3)(ii), (2.5) and (2.6). Since for all 8 with ||3 — [o]| < dp and all
p() with |1p() — po0)lloess < do, we have

|F2(ﬁapo) [P() - po()] - FQ(ﬁmpo) [p() - po()”

1 P(X) = po(X) B - £(X, B) p(X) = po(X)
— 1_E{[5(X,5)—5(X,50)] 1~ po(X) H ‘1_0 { op 1 — po(X) H

Hﬁ Bol\ H'%Xﬁ‘ \Xm;]xsup\[p@)—pO(m)](H\xl )2

1
e {a(x, 3)

(1 — 1 — zeX

where [ is in between 8 and ;. Thus, under our Assumptions 5.2, 6.4, Proposition
B.1(i) and Theorem 7, [Ta(8, po) [p() — 7o ()] — Ta(Bos po)p() — po()]| < const.||— Byl x
[1P() = Po()||oow hence CLK’s Condition (2.3)(ii) is satisfied.

Now we verify CKL’s Condition (2.5) by applying their Theorem 3. In fact, given our
Theorem 7 and Proposition B.1(i), it suffices to consider some neighborhood around
(Boy Do) Let dp > 0 be a small value, then for all (5, D) € B x H with Hﬁ Bol| < do and
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1D — Polloow < do, we have for any ¢ € (0, dg],

[ . —~ oy . 2
Eq _ sup (Zz,ﬁ)l_()i;()—m(zuﬁ)% }
L118=B11<8,1pO)—P)| 00,0 <8 i P{Ai
~ X;) ?
< E.| s \|m<zi,ﬂ>—m<zi,ﬂm2xsup15((;)
LI18-Bl|<é h pii
~ 2
VB sz AP sp [PPSR
BeB:||F—ol|<bo 1P0=P0lleow<s | L —P(Xi) 1 —p(Xi)
- 7 2
< E| sw (m(Z.0) - m(vi XA x (12
168—B|<8 b
+Eq | sup Hm(Zi,B)!F(lHXiIQ)“’]
BeB||B—Fo||<d0
< s supllp@) ~ @)1+ 2 E [
up up T —
1PO =50 |00 <8 TEX (1-7p)?

< const.6* + const.6*  for some € € (0, 1],

where the last inequality is due to our Assumptions 6.2, 6.3 and Proposition B.1(i). In
the following we let N (e, A7 (X),||||cow) denote the ||-||oo w—covering number of A7 (X)
[i.e., the minimal number of N for which there exist e—balls {h : [|h — uj||ccw < €},
j=1,...,N to cover AJ(X)]. Then our assumption 6.1 implies

do /Y
log N (8, A2(X), || - ||oow) < const. ( ) /\/IogN (8, AL(X), ]|+ |oow)dd < o0.

Thus by applying CLK’s Theorem 3, CLK’s Condition (2.5) is satisfied.
It remains to verify CLK’s Condition (2.6). First we note

Rz Po(Xi) 1 N py i gy PelXi)
mMn(ﬂo,po) — Mg p ( 2 BO) 1— po(Xz) - \/n—a ;(1 D’L) (Z’HBO) 1— po(Xz)
B n i n B m Po Xz)
e na X ~ ;(1 Dz) (Zla ﬁo) 1— po(Xi)’

Next we notice

\/7Tar2(ﬁo,po)[p()_p0()] = \/TTaEa {g(X7BO)W}

p(X) —po(X)}
1_po(X) .

Ng

- < VB {€(X, 5,

nl—
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By Lemma B.2 and nq/n =1 —p + 0,(1), we obtain

\/E{M (Bos Po) + T2(Bo, po) [P() — Po()] }
Xl Di_ o Xz
B \/> WZ{ miZ ﬁ")l—z(oo())g) * 1—pi((Xi))5(X’ﬂo)}+0p(1)7

thus CLK’s Condition (2.6) is satisfied. Moreover from the proof of CLK’s Theorem 2
we obtain:

M(B\ - ﬂo) = _(Fllwrl)ilrllw\/nia{Mn(ﬂmpo) + F2(607p0)[ﬁ() - po()]} + OP<1)
== _1;p(<][13/WJ[‘§)1J5/W¢%{Mn(507po) + F2(ﬂ07p0)[ﬁ() - pO()]} + Op(l)'

Since ;- = ﬁ +0p(1),

\/ﬁ(g - ﬁo) = _I;p(Jé,WJﬁl)_lJé/W\/ﬁ{Mn(ﬁoapo) + FQ(ﬁoapo)[ﬁ() - po()]} + Op(l)

/ / - D;lpo(X; D; — po(X;
= —(JFWJIH 4 WZ{ (Zs, Bo) [ 1_p]£)é> ) 1—pi<(xi>)

£(X, ﬁo)} +o,(1).

thus we obtain Theorem 8 after we establish condition (*).
We now apply Assumption 6.6a or 6.6b or 6.6¢ to verify condition (*). Since

M(B,p()) = M(B,p0()) — T'2(8,p0)[P() — po()]
_ . p(X) po(X)  p(X) = po(X)
= B{mzp) 5 o) T-p(X) (1= pu(X))? )
_ m(Z, 3)[p(X) — po(X)] 1 1
N Ea{ 1_po(X) |:1—p(X) 1_po(X):|}

- {£<X, 9)lp(X) —po<X>]2}

LA =p(X))(1 - po(X))? |

we have under Assumption 5.1,

sup —||M(B,p()) = M(B,p0()) = T2(8, o) [p() — Po ]l

BEB:||3—Pol|<bo
E(X, B)p(X) — po(X)JZ} ‘

= E,

s BB Roll < { (1 - p(X))(L - po(X))?

1
— _E, E(X, X) —po(X))? Y.
a=77 {5eB:|%E%O|<6OH (X, B)[| x [p(X) — po( )]}
If Assumption 6.6a holds, then

IN

Ea{ sup —|[E(X, B x [p(X) —po(X)]Q}
BEBi||8—Poll<b0

< swpswplEG A X Ea {[p(X) — po(X)?} < const.[llp() — po()l ol
BEB:||B—[ol|<do *
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dy
Now Proposition B.1(ii), k, = O <n27+dw> and vy > d,/2 imply [|[P() — po()||2.a)?> =

0,(n~1/2), hence condition (*) is satisfied.
If Assumption 6.6b holds, then

Ea{ sup IIS(Xﬁ)HX[P(X)—po(X)F}

BEB:||B—PolI<do

IN

BEB:||8—Boll<do

< const. x [||p() —po()Hz,a]Qi% for all [|p() — po()

1/4
(E[ sup HE(X,ﬂ)II‘*D (Ba {Ip(X) — pox)1")) " VE A — o)1}

a = 0(1)7

where the last inequality is due to the following inequalities for any s € [%,7):

1/4

(Ba{[p(X) = po(X))'}) " < const. (1) = poQ)ll2.a + [I7°{P) = PoO}|2.0) ,
1V 4p0) = poO}lza < const.[[p() = po)llaa]' ™

7.

dg

dgr —
Now Proposition B.1(ii), k, = O (nQWdz) and vy > 3d,/4 imply [||p() —po()Hg,a]2 o =

0p(n~1/2), hence condition (*) is satisfied.
If Assumption 6.6¢ holds, then

Ea{ sup —|[E(X, B)]] % [p(X) —po(X)]Q}

BEB:||f—Boll<do

< JEl sup Hemu?] %/ Ea {[p(X) — po(X)]}

BEB:||B—Fol|<do

< const. x [[[p) = poO)ll2al®™ %) for all [|p() — po()l[2.a = 0(1)-

Now Proposition B.1(ii), k, = O (n%izdz) and vy > d imply [|[p() —po()]|27a]2(17%

0p(n~1/?), hence condition (*) is satisfied. O
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TABLE 1
Cumulative Distribution Functions (x100) of total (log) household expenditure
® @) @) @ )

y Unadjusted Adjusted Adjusted Adjusted Adjusted

(primary) NP CEP NP IPW Par. IPW Eff. CEP
6 ~ 2.92 (.067) 3.388 (.0695) 3.337 (.0694) 3.15 (.0594) 3.23 (.0598)
6.25  5.67 (.092) 6.521 (.0948) 6.522 (.0948) 6.31 (.0846) 6.38 (.0845)
6.50 11.06 (.125) 12.272 (.1237) 12.273 (.1234) 12.21 (.1165) 12.21 (.1149)
6.75  20.28 (.161) 21.679 (.1588) 21.674 (.1587) 21.89 (.1645) 21.76 (.1575)
7 34.06 (.189) 35.052 (.1763) 35.041 (.1772) 35.53 (.1794) 35.28 (.1738)
7.25  50.75 (.200) 50.600 (.1967) 50.592 (.1975) 51.19 (.1948) 50.88 (.1920)
7.50  66.98 (.188) 65.682 (.1925) 65.687 (.1929) 66.15 (.1973) 65.91 (.1880)

Source: Authors’ calculations from Indian National Sample Survey, rounds 50 (1993-94, n = 58, 846)
and 55 (1999-2000, n = 62,679), rural sector only from the major Indian states, which account for
more than 95% of the total population. Column (1) - Calculated from the unadjusted primary sample.
Column (2) - CEP-GMM cubic sieve Estimator, with 10 knots, using “comparable items” as predictor.
Column (3) - IPW-GMM. Flexible logit with cubic sieve, with 10 knots, using “comparable items” as
predictor. Column (4) - Parametric IPW Estimator. The propensity score is estimated using logit and
including total expenditure in “comparable items” as sole predictor. Column (5) - Semiparametric
estimator efficient for the case of correctly specified propensity score.
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