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Abstract. The generalized odds-rate class of regression models for time to event data is indexed by a non-negative
constantp and assumes that
9, (St12) =a(t) +B'Z

whereg,(s) = Iog(pfl(s*f’ — 1)) for p > 0, go(S) = log(—logs), S(t|Z) is the survival function of the time

to event for an individual witlyx1 covariate vecto?, § is agx1 vector of unknown regression parameters, and
a(t) is some arbitrary increasing functiontofWhenp = 0, this model is equivalent to the proportional hazards
model and whep = 1, this model reduces to the proportional odds model. In the presence of right censoring, we
construct estimators fgt and exga (t)) and show that they are consistent and asymptotically normal. In addition,
we show that the estimator fgris semiparametric efficient in the sense that it attains the semiparametric variance
bound.
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1. Introduction

In the analysis of clinical trials, regression models are often used to assess the relationship
between a time-to-event outcome and covariates. The most widely used of these models is
the proportional hazards model introduced by Cox (1972). More recently, Bennett (1983)
presented the proportional odds regression model. A large class of models which includes
both the proportional hazards and proportional odds models was discussed by Harrington
and Fleming (1982), Clayton and Cuzick (1986) and Dabrowska and Doksum (1988a). This
class is referred to as the generalized odds-rate class of regression models and is indexed by
a non-negative constapt If we let T denote the time to event artlbe a corresponding

gx1 vector of covariates, then a proportiopabdds model within this class assumes that

9,(St12)) = () + B'Z 1

whereg,(s) = log(p~1(s™ — 1)) for p > 0, go(s) = log(—logs), S(t|Z) is the survival
function of T given Z, 8 is agx1 vector of unknown regression parameters, attd is
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some arbitrary increasing function bf Note that wherp = 0, (1) is equivalent to the
proportional hazards model and wher= 1, (1) reduces to the proportional odds model.

The generalized odds-rate class of regression models is a subset of the class of semipara-
metric linear transformation models. This latter class is comprised of models in which an
unknown transformation of the time to event is assumed to be linearly related to covariates
plus an independent random error with a completely specified distribution. Specifically, we
can rewrite (1) as

a(T)=-BZ+¢, )

where exfie,) is distributed according to a Paretdistribution forp > 0 and an expo-
nential(1) distribution fop = 0.

In the presence of right censoring, we are interested in making inferences about the
regression parameters. For the more general class of semiparametric linear transformation
models, at least two different approaches have been proposed to estimate these parameters.
These approaches can be applied to the generalized odds-rate class. Dabrowska and Doksum
(1988b) used a simulation-based approach to approximate the partial likelihood and the
maximum partial likelihood estimator. Assuming that the censoring distribution does not
depend on covariates, Cheng, Wei, and Ying (1995, 1997) adopted a generalized estimating
approach to estimate the regression parameters and were able to establish consistency and
asymptotic normality of their estimator. For the generalized odds-rate class, Harrington and
Fleming (1982) proposed tit&’ statistic for efficiently testing the proportionality parameter
in the two-sample, right-censored data problem. Clayton and Cuzick (1986) showed how
to compute a maximum marginal likelihood estimatorgdsy using a quasi-EM algorithm.
Dabrowska and Doksum (1988a) considered estimation of the proportionality parameter
in the two-sample, uncensored problem. For the proportional odds model, Bennett (1983)
approximated the likelihood by introducing new nuisance parameters for each distinct
failure time and then applied standard maximum likelihood theory to obtain a parameter
estimate forg. Pettitt (1983, 1984) proposed a weighted least squares estimator which
was based on maximizing an approximation to the marginal likelihood of the ranks of
the censored and uncensored failure times. Parzen and Harrington (1993) developed an
adaptive spline procedure with a small number of knots to estimate &}p, the baseline
odds of failing by time, and then applied standard likelihood techniques to estighaft®r
the two-sample problem, Hsieh (1995) used empirical process approximations to formulate
a non-linear regression equation which yields a generalized least squares estimgtor for
Murphy, Rossini, and van der Vaart (1997) used profile likelihood techniques to construct
a semiparametric efficient estimator férand showed that their estimator was consistent
and asymptotically normal. For the proportional hazards model, Cox (1975) proposed the
partial likelihood estimator for the regression parameters. The asymptotic properties of this
estimator were established by Tsiatis (1981) and Andersen and Gill (1982).

The goal of this paper is to find a semiparametric efficient estimator for the regression
parameters in the proportionaedodds model when the time-to-event outcome is subject to
right censoring. To do this, we first find the semiparametric variance bound (Section 3).
Then, in Section 4, we define our estimator, which is similar to the one proposed by Bennett
(1983). In Section 5, we show that our estimator is consistent, asymptotically normal, and
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attains the efficiency bound. In the process, we provide a consistent and asymptotically
normal estimator for exje(t)). For the most part, our proofs mimic the techniques used
by Murphy (1994, 1995) to establish the asymptotic theory for the frailty model. Our
proofs differ in the asymptotic normality section where we introduce results from empirical
process theory (van der Vaart and Wellner, 1996). While the theoretical arguments used in
this paper are not new, it does present and validate estimation procedures for a rich class of
models which serve as an alternative to the often overused proportional hazards model.
Our results are all conditional gm being fixed and known. Assumingis known, we
devote Section 6 to the results of a simulation study designed to test how well our estimation
procedure works in small to moderate samples and under different degrees of censoring.
Selection ofp is a crucial step in model fitting. However, it is an unresolved issue as to
whether the variability of8 should be affected by the selection@{Hinkley and Runger,
1984). In an example in Section 7, we discuss two methods for estimatipfile like-
lihood estimation and a graphical procedure, but present resuls donditional on this
transformation. The alternative approach to model selection (Bickel and Doksum, 1981)
requires that the variability of the parameter estimates reflect estimation of the transforma-
tion. The theory necessary to handle this approach is beyond the scope of this paper. We
conclude with a summary in Section 8.

2. The Proportional p-Odds Model

Let Z be ag x 1 vector of covariates. Denote the time to event and the time of censoring by
the positive, bounded random variabl&ésandC, respectively. Without loss of generality,

we assume thal and C are bounded from above by 1. It is assumed thaand C

are conditionally independent given the covaridte The observable time until death or
censoring will be denoted by the bivariate random ve¢¥rA), whereX = min(T, C)

andA = 1if T < C and 0 otherwise.

The distribution of the survival tim& is related to the covariatg according to the
proportional p-odds regression model (1). We restrict attention to posijtivence the
theory of semiparametric efficient estimation in the proportional hazards model has been
well established. From (1), we can write

S(t|1Z) = (1+ pAt) exp(B'2))*

and
'z
T O ()
1+ pAt) exp(B’'Z)
wherei(t|Z) = —% at) = exp(a(t))% is any arbitrary, non-negative function,

Al) = fg a(uydu = exp(a(t)), andr(t) = log(a(t)). Let 8o andag(t) represent the
true values ofg8 anda(t), respectively. We assume th@g belongs to a compact set, say
[—b, b]9, Aq(t) = explag(t)) is an absolutely continuous, bounded, increasing function,
and|Z| is bounded by a constaat
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Let n be the number of individuals in the study. Suppose that associated with each
individual is the random vectofX;, Ai, Zi), i = 1,...,n, which are assumed to be
independent and identically distributed. Since we are dealing with i.i.d. data, we will
first focus attention on the individual censored data likelihood. Suppressing the individual
subscript, we can write this likelihood as

@(X) exp(p'2))"

— A =
L W) = DXIZNPSXIZ) = S e

The log likelihood is

£(B, A) = Adog@(Xx)) + B'2) — (1/p + A)log(L + pA(X) exp(B’'Z))

3. Semiparametric Variance Bound

The semiparametric variance bound is defined to be the supremum of the Cramer-Rao
bounds forg over all regular parametric submodels (see Newey, 1990). In the above
setting, a parametric submodel corresponds to a parameterizatau)pfsaya(u, n),
wherea(u, ng) = ag(u) = exp(ao(t))% for someng. The parameters of the submodel

ared = (B', n")". So the log likelihood for a parametric submodel is

€(B,n) = Adlog@(X, m) + B'Z) — (1/p + A)log(1 + pA(X, n) exp(B’Z))

whereA(x, n) = 5 a(u, n)du. The score fop is

e AZ _ZAX, mexpp'Z)
B 1+ pAX,nexpB'Z) 14 pAX,n)expp'Z)
1 Z
= /o 11 oAU mexppz) " 7 o ®)

whereM(, p, 8, 7) = N(t) — [ %Y(u)du is the F;-counting process mar-
tingale,N(t) = 1(X <t, A =1),Y(u) = 1(X > u), and; is the smallest sigma-algebra

generated byN(u), Y(u), 0 < u < t}. The score fop is

o A(a,,(x,m_ p A, (X, n) exp(p’'Z) )_ A, (X, ) exp(B'Z)
an aX,n)  1+pAX.mexpBZ)) 14 pA(X, n)expp'Z)
B /1(a,,(u, n _ pA U, ) expp'Z)
~Jo \au,n) 14 pA(u, n)expp'Z)

wherea, (x, n) = 2% and A, (x, ) = [, a,(u, n)du. Let S5 andS, denote the scores
for g andn evaluated at the truth, respectively.

Formally, we define the tangent set in the nonparametric directionp be the mean
square closure of the set of all random vect&l§,, wheres, is the score for in some
regular parametric submodel aAds a conformable constant matrix withrows. That is,

)dM(u,p,ﬁ, n 4)
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A ={teRI:E[L)] < oo, IA|S, with lim E[¢ — A}S, [I°] =0},
]—>00

whereS,, is the nuisance score vector evaluated at the truth fromjth@arametric sub-

model, A; is ag-row conformable matrix of constants, afél|® = ¢'¢. Since"’:(f;;’)) can
be any function ofi, a plausible conjecture fox is

A = {f(X,A,2): f(X, A, 2)
_ /1 o~ ° Jo 30(v) exp(ByZ)w (v)dv
0 1+ pAo(u) exp(ByZ)
w(u) is anyq — dimensional function ofi, E[|| f (X, A, Z)||?] < oo}

>dM(U,P,,30, n0)s

To verify this conjecture, we need to show that there exists a parametric submodel with
S, = f(X,A, Z) forany f(X, A, Z) € A. Given the relationship between(u) and
f(X, A, Z), a parametric submodel with(u, n) = ap(u)(1 + n’w(u)), with o = 0, has
this property.

We considerA to be a subset of a Hilbert space@fl random vectordd, with inner
product E[H;Hy] and E[H'H] < co. We define the efficient score f@ as Sir =
S — M[S|A], whereIl[-|-] is the projection operator. Sinde can be shown to be linear,
the projection ofSs on A, TI[S|A], exists and is the unique elementafwhich satisfies
E[(S — [S|A])'¢] = 0forall¢ € A. So, provided that th&[S:¢+S,;] is nonsingular,
the semiparametric variance bou,is (E[SeffSéff])‘l.

To projectSg onto A, we need to find the vectas(u) such that

1
E / Z —- — w(U)
o \ 1+ pAo(u)expByl)

P Jo 80v) exp(ByZ)w(v)dv

) dM(u, p, Bo, 10)

1+ pAo(u) exp(By2)
L, p o a0v) exp(BpZ)w*(v)dy B \
*/0 (u) u) — 1+ pAo() eXHALZ) dM(u, Bo,n0) | =0 Yw

Through algebra, we can show that the veeton) which satisfies the above equation is a
solution to the following integral equation:

1
w(u) —/ K(u, v)w()dv = f(u), uel0,1] (5)
0

where
E[ p(L+pA)ag(u) exp(By2)Y (U)ao(v) eXp(/%Z)Y(v)]
(1+p Ao(X) exp(By2))?
E] (I+pA)ag(u) exp(ﬂg,Z)Y(U)]
1+p Ao(X) exp(ByZ)
E[ (1+pA) Zag(u) exmﬁéz)Y(U)]
(T+pAo(X) exp(B,2))?
E[ (I+pA)ag(u) eXp(ﬁéZ)Y(U)]
T+pAo(X) exp(ByZ)

K(u, v)

f(u =




360 SCHARFSTEIN, TSIATIS, AND GILBERT

By showing that may(o, 1 fol K (u, v)|dv < 1, we know that there exists a solution to this
integral equation which can be found by successive approximation (Kress, 1989). So, we
write
: B o * oAt o)
0 0
s [ kv = e~
1+pAo(X) exp(ByZ)

. . . pPo(X) exp(BlZ) . .
Thlsf express_mn is less than 1 si 5 Ao X2 < 1 Denote the successive approxi
mation solution bywesf(u). Then, the efficient score is

1
Z
= — u
St /O (l—i—pAo(u)exp(ﬂ{)Z) wer 1 (U)
p o 80(v) exp(ByZ)wet(v)dv
1+ pAo(u) exp(ByZ)
and the variance bound s = E[S:_.ffSéff]*l. In fact, we can show that

[ ao(u) exp(BYZ)(Z — wesr(U)) Z'du
(1+ pAo(X) exp(By2))2

+ )dM(U,P,ﬂm 1n0)

E[S+S] =E |:(1+ pA)

4. Estimation

To estimate the regression parameters and the baseline odds of failing by time t, we use
full nonparametric maximum likelihood. We assume that there are no tied death times
and the number of deathis(n), increases with the sample size. This assumption is made

for ease of presentation, but our results can be easily adapted to accommodate tied death
times. For simplicity of notation, it will be useful to reorder the indices of the data such
that X4, ..., Xkm) represents the increasingly ordered failure times #pg+1, ..., Xn
represents the non-decreasingly ordered censored observations. To obtain our estimates,
we maximize the following extended empirical likelihood:

- (Yi(t)AA(t)eXp(ﬁ/Zi)>AN‘“)ex (_ /1 Yi (U) exp(B’Zi)
1+ pA®) expp'Z)) P\" L T4 oAwexppz)

d A(u))
(6)

whereA A(t) represents the jump @& at timet, andN,; (t) andY; (t) are the failure counting
process and at risk process for ttie individual, respectively. The natural logarithm of (6)
is given by

O Y WAAW EpBZ)
Lol A = Z;/o 'Og( 1+ o AW eXpB Z0) )dN'(“)

i=10<t<1

d A(u) (7)

_/1 Yi(u) exp(B'Z))
o 1+ pAu)exp(p’'Z)
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We see that the maximizek, of (7) must be a step function which takes positive steps at
each of the jump times of th;'s (i.e., the death times). Restricting ourselves to functions
of this form, we can show thak, exists and is finite.

THEOREM1 The maximizer of (8, A), (8, A) = (Bn, Ap) exists and is finite.

Proof: Note that the log empirical likelihood. , is a continuous function o and
the jump sizes ofA. That is, L, is a continuous function on the convex, compact set
[—Db, b]9X[0, U™, whereU is finite. On this setlL, achieves its maximum. To show
that a maximum exists on the seth, b]9X[0, co)k™, we show that there exists @&
such that for all(g, A) € {[—b, b]9X[0, c0)*™} \ {[—b, b]9X[0, U™} there is a value
(B, A) € [—b, b]9X[0, UT™ which has a larger value df,. Consider a proof by contra-
diction. That is, suppose there does not exist suth & herefore, for alU there exists
(BY, AY) e {[—b, b]9X][0, 0c0)X™} \ {[—b, b]9X[0, UTK™} which maximizesL,. But,

we can show thak ,(8Y, AY) can be made arbitrarily small by increasidg which is a
contradiction. To see this, lei, .. ., axn denote the jump sizes at the death times. Then,

1 KO a exp(f'Z;)
La(B. A) = 7 2_log (1 + 0 Xjesix) & €XPB'Zi)

i=1

1 n
- = Zlog (1+ o Z aj exp(ﬂ’Zi)>
no = jeSXi)
whereS(u) = {j : Xj <u, j =1,...,k(n)}. NotethalL,(8, A)isbounded fromabove by
sign(p — 1) log(p) — = Y17 log(1+ pa exp(B'Zi). If (B. A) € {[—b, b]9X[0, 00)™}\
{[—b, b]9X[0, U]*™}, then there exists & j < k(n) such thata; > U. Therefore,
La(BY, AY) < sign(p—1) log(p) — =< log(1+ pU exp(—gbo)) andL,(8Y, AV) decreases

n
toward negative infinity as increases toward positive infinity. ]

Since we know tha@ﬁn, An) exists and is finite, we know that the maximum will occur
when the derivative ok, with respect to the jump sizes éfis equal to zero. This leads
to the following equation foA,:

A -1
A 1 L+ pADYi(u) expBZi) -
Ant = - ~ ~ n dNn 8

® /o(ng1 L+ pAa(X) eXpFZ)) “ @

whereN,(u) = 2 30, Ni(u).

5. Asymptotics
5.1. Almost Sure Consistency

Since we are interested in almost sure (a.s.) consistency, we work with fixed realizations of
the datagw, which are assumed to lie in a set of probability one. This®gis the countable
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intersection of setsp;, each of probability one. Each; is a set on which the strong law

of large numbers holds for some average. Our consistency proof follows Murphy’s (1994)
proof of a.s. consistency in a proportional hazards model with a random effect. The proof
requires the definition of the following quantity which helps to mediate betwgeén and

Ao(D):

-1
_ LS (L4 pA)Yi(u) expByZi) -
An(t) = z dN, 9

® /o(n; LT+ pAo(X:) expByZ) W ®)

Note thatA, is a step function with jumps at each of the death times and converges uniformly
to Ag (see Lemma 2 of the Appendix).

THEOREM2 Assume P[Y(t) = 1] is continuous in t anéhficp 1) E[Y (t)|Z] > 0. Then

S[UD |An(t) — Ag(t)| — Oa.s. and| B, — foll. — Oas.
tel0,1

Proof: To begin, fixw € ®. In Lemma 1 of the Appendix, we show thgh,} does
not diverge. We know that every bounded sequendeihas a convergent subsequence.
Thus, there exists A and a sequenc{eﬁnk} such tha1;§nk — . By Helly’s theorem (Ash,
1972), we know that there exists a functidrand a subsequen¢én,, } of { A, } such that
Amk(t) — A(t) forall t € [0, 1] at which A is continuous. Since every subsequence of a
convergent subsequenceR must converge to the same limit, we know th@'ﬁmk, Amk)}
must converge tg8, A). We demonstrate in Lemma 2 of the Appendix thas continuous

at the continuity points of\,. Now, we know that m, (Bm.. Am,) — Lm, (Bo. Am,) > O for

all finite my. Furthermore, we know that

0 < Lm(Bme Am) — L (Bo. Am,)
LN Yi (u) exp(ByZi) ~
= — | M dN;(u) — = dAm,
Z/ 09X ’(“)){ O ) A (W X820 (“)}
Yi (u) exp(ByZi) ~
. I My, i My, i 1 N dAmk
T Z f 1000t 1)~ 0 ) A
where
Y (U)A Ay () exp(Bry, Z0)
T4p Amy (W) eXp(Biy, Z0)
ka,i(u)=

Yi (WA A, () eXP(ByZi)
14p Am, (U) exp(By Zi)

First, we note that the second term is less than or equal to zero singesfd@, log(x) —
(x — 1) < 0. Using the results and techniques of Lemma 2 of the Appendix, the first term
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can be shown to converge to zero and the second term converges to

1 YW e s2)
14+pA(u) exp(B’Z)
E /0 90| Nwewso ¥ W

1+pAo(u) exp(ByZ)

Yweapz) /
_HWHUH—l” YW expPoZ) d%(u)} (10)

BT 1+ pAo(U) exp(By2)
where
e
yu) = ; (11)

[ (L+pA)Y(u) exp(ﬂ’Z>]
T+pA(X) exp(p' Z)

Note that (10) is equal to minus the Kullback-Leibler informatigf¢, (8, A)]—E[£(B0, Ao)].

Because of the above inequality, we know that the Kullback-Leibler information must

equal zero. By Jensen’s inequality, we know tiEd¥ (8, A)] is uniquely maximized

at (Bo, Ao). Furthermore, we can show th&{¢(8, A)] is strictly concave ing andr

(r (u) = log(a(u))) up to a set of measure zero. Since there is a one-to-one relationship

between(B,r) and (8, A), we know thatE[¢(8, A)] — E[£(Bo, Ag)] = O if and only

if (8, A) = (Bo, Ao) almost everywhere. Thereforé3m,, Am,) converges taBo, Ao).

By Helly's theorem, we know thatBn, An) must also converge t@y, Ao) This proof

can be conducted for alb € . Therefore(ﬂn, An) converges ta(By, Ag) a.s. This

result can be strengthened to uniform convergence by the Glivenko-Cantelli theorem.
[ ]

5.2.  Asymptotic Normality

To establish the asymptotic distribution of our estimatgks A,), we follow the function
analytic approach of Murphy (1995). Instead of calculating score equations as the derivative
of L, with respect tg8 and the jump sizes ok, we work with one-dimensional submodels
through the estimators and differentiate at the estimators. That is, wg &et= f(;(l +
dhy(u))d An(u) andBy = d h2+Bn, whereh; is a function andh; is ag-dimensional vector.
Then, then we differentiate with respecttand evaluate a = 0to get&(ﬁn, Ay (hy, hy).

If (Bn, An) maximizesLn, thenS(Bn, An)(h1, ho) = O for all (hy, hy). The form ofS, is

given by S, = Si1 + S, where

14 (1
Sug. At = 13 [ mdNw

1 Z (L+ pA) exp(B'Zi) fo Vi (Wha(u)d Aw)
1+ pACXi) exp(B’Z)

and
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Xn: L+ pAhSZ ACX;) exp(B’Z;)
— 1+ pA(Xi) exp(B'Zi)

1 1t 1
S(B. Ahg) = =3 fo hoZid N (u) — =
i=1

Let BVJ[O, 1] denote the space of bounded variation functions defined oh].[0We
assume that the class bfto be the spacél = BV[0, 1]xR¥. With h € H, we define
the norm onH to be|h|jy = ||h1]l, + |h2|1, where|hy], is the absolute value df;(0)
plus the total variation ofi; on the interval [01] and|h;|; is theL;-norm ofh,. Define
Hp = {h € H : [hilsy = |lha]l, + [h2]s < p}. If p = oo, then the inequality is strict.
Define(B, A)(h) = fol hi(uyd A(u) + h38. Then,(8, A) indexes the space of functionals
v = {(B, A): SURhe, 1B, A)(h)| < oo}. Now W C £%°(Hp), wheref™(Hy) is the space
of bounded real-valued functions &ty under the supremum norjit) || = SURyep, U (h)].
The score functior§, is a random map fron¥ to £>°(Hp) for all finite p. Convergence
in probability (denoted byP*) and weak convergence will be in terms of outer measure.
Outer measure allows us to deal with random quantities which may not be measurable.
A random variable ip-(-) if it is bounded by a measurable function whichois(-). A
similar definition holds folOp-(+).

THEOREM3 Assume PfY (t) = 1] is continuous in t andhfic 1) E[Y (t)|Z] > 0. Then
(VB = Bo). VN(Aq — Ag)) = G

in£>(Hp); G is atight Gaussian process i (Hp) with mean zero and covariance process

1
CouG(h), G(h")) = /O ha(Wo (N (U)d Ao(U) + hyo g2 (h)

wheres = (o1, 02) is a continuous linear operator from Hto H.,, with inverses ~! =
(03). ). The form ob is as follows:

(L+pAY W) EXp(/%Z)Z’} h,
L+ pAo(X) eXP(By2))?

oi(h)y(u) = E[

+hyWE [(1 +pA)Y(U) exp(ﬁc’)Z)}

1+ pAo(X) exp(By2)

2 [ @t e W exp82) J" hav) expifsZ)d o)
(L+ pAo(X) expByZ))?

and

oa(h) = E[(l+pA)ZZ’Ao(X)eXD(/3(’)Z)]

(1+ pAo(X) exp(ByZ2))?

L | At Zemp2) JZ hi(v)d Ao(v)
(14 pAo(X) exp(ByZ))?
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The proof of Theorem 3 is guided by the following theorem from van der Vaart (1995).
In this theorem, the parameter spakes a subset of*°(Hp) and the score function is a
random mas,: ¥ — £*°(Hp). The true parameter valueiyg and a maximum likelihood

qstimator is«/?n. The asymptotic version &, is S. We haves1(1/?n) =0, S(¢g) =0, and
¥n — Yo = 0p(1) as elements > (Hp). The notation lin” before a set denotes the set
of all finite linear combinations of the elements of the set.

THEOREM4 Assume the following:

1. (Asymptotic distribution of the score functiogn(S, (o) — S(¥0)) = W, where W
is a tight Gaussian process d@f°(Hy);

2. (Fréchet dil‘ferentiability of the qsymptotic SCOfe\}/ﬁ(S(I/Afn) — Sio) =
—/NS(W0) (Yn — o) + 0p+ (1 + /NllYn — Yoll), whereS(yo) : lin{y — o : ¥ €

W} — £%°(Hp) is a continuous linear operator;
3. (Invertibility) S(y) is continuously invertible on its range;

4. (Approximation condition)/n((S — S)(¥n) — (Sy — S)(Wo) |l = 0p+(L+ /Nllvfn —
woll)

Then,/N(Ym — Vo) = S(10) *W.

Proof: (Theorem 3) To prove Theorem 3, sek, = (Bn, An), Yo = (Bo, Ao), and let
S(y) = S(B, A), whereS(8, A) is the expectation o, (8, A). ThatisS= S + S, where

oI (1+ pA)exp(B'Z) [ ha(uyd A)
Si(p. M(hy) = E /O hy(u)d N(u)] _ E[ e

and

I 1+ pA)A(X) exp(B'Z2)h,Z
S, M) = E /0 hdeN(”)} B E[ 1+ pAX) expF 2) }

Fory — o € £°(Hp), it is useful to place bounds dhy — yll. In particular, we can
show that

PIB — BollL vV PIIA = Aolles = I — Yoll = PIIB — Boll2 v 2PIIA — Aolleo

In the proof that follows, we will often use these bounds in placiyof- v

With the assumptions of Theorem 3, let’s validate each of the conditions of Theorem 4.
First we want to establish condition 1 for all finig We show that the class of score
functionsw™ = {W(, , h:h e Hp}is Donsker, where the score operatit is given
by Wis 5 = laha + hy 55, with 22 defined in (3) and the operathr defined by (4) with
lah1 = Ia% = 2. Boundedness oZ implies thatS is a uniformly bounded function,

which implies thath,S; : h, € RY, |hy|; < p} is Donsker (see Example 2.10.10 of van
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der Vaart and Wellner, 1996). Since the sum of bounded Donsker classes is Donsker, the
class{lghs : hy € BV[O, 1], |Ih1]|, < p} is Donsker if the following two classes

Fi={Ahy:hy € BV, Ihll, < p}, (12)
(1+Ap) o had Ao exp(By2)
7 { W2 A = ez e BV Ihalo=pp (13)

are Donskerwith sUpE[ f]| : f € Fi} < oo,i = 1, 2. The classF; is uniformly bounded,
and is Donsker sincle; varies over bounded variation functions (see Example 2.5.4 of van
der Vaart and Wellner, 1996). The clagsequals a uniformly bounded function times the
class{ fn, (X) = fox hid Ay : hy € BV[0, 1], ||h1]l, < p}, and this latter class is Donsker
becauseA; is a monotone function (see Example 2.10.27, van der Vaart and Wellner,
1996). Also supE[f]| : f € F>} < oo becauséd, varies over a Donsker class. Thus, we
conclude thatV* is Donsker, so that the first condition holds.

To establish condition 2, it suffices to show th&(y) — S(¥o) — SWo) (¥ — Yo)| is
o(|lvy — wol) asll¥ — Yol — 0. To do this, we writeS(8, A) linearly ind(A — Ag) and
B — Bo plus error terms. Specifically, note that

(L+pA) exp(ByZ) [ ha(u) exp(BpZ)d Ao()p [ d(A — Ao):|

S(B, At =E [

1+ Ao(X) exp(B5Z))?
e @t ed exp2) J mwd(A - A
1+ pAo(X) exp(By2)
[ @+ pA)ZexpBZ) o ha(uyd Ao
—(B—B0'E —
(1+ pAo(X) exp(By2))

+ errori1(B, A)(h)

and

(1+ pA)NLZ exp(ByZ) [y d(A— Ao):|

M) = —E
S(B, A((h) [ (1 + pAo(X) exp(BhZ))?

(B fyE [<1+ pA)YZI,Z Ao(X) eXp(/%Z)]

(14 pAo(X) exp(By2))?
+ errory(B, A)(h)
The error terms can be very easily shown to satisfy

lerror; (8, A)(h)]
S
e 1B — Poli v [A— Aolms

as||B — Bollr vV |1A — Agllec — 0. This follows from the boundednessf Y, g, andA.

IS(¥) = S(¥o) — SWo) (¥ — Yo) _ llerrora(B, Al + [lerrorz(8, A
¥ — doll B PlIB — Bolla vV PIA = Aol
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As v — Yol — 0, we know thatp||8 — Boll1 vV PIIA — Aollc — 0. Hence, we can

conclude thaf S(v) — S(0) — S(¥o) (¥ — Yo)ll is o(ll¥ — Yol asllyr — yoll - 0. Asa
consequence, note that

1
S(¥0) (¥ — Yo)(h) = — fo o1(hyd(Ay — Ag) + (Bn — o) oa(h).

For condition 3, we need to prove th&ty,) is continuously invertible. Intuitively, it is
clear that the invertibility oS() is closely connected to the invertibility of = (o1, 05).
Because of the relationship between the variance of the score,amd refer too as the
Fisher information. Note that is a linear operator fronk,(d Ag)x R¥ into itself. The
Fisher information is defined in an almost-everywhere seth#g)( whereas we will need
invertibility everywhere due to the discretenesgaf Forh € L,(d Ag)x R, we first show
that the Fisher information is one-to-one. That is, we will demonstrate

1
/O o1 (M) (Why (Wd Ag(U) + hyora(h) = 0

implies thah, = 0 andh; = 0 almost everywheral(Ay). Using the definitions fos1 (h) (u)
andos(h), we know that

2
p o i) exp(BpZ)d Ao(v) — hyZ exp(foZ)
E “hl(“) 1+ pAo(U) eXPBLZ) T+ phow expBgz) L W14

; exp(By2)
must equal zero, a.@ Q). Smcem

variable, we know that for almost all € €,

E[Y (u)|Z] is a strictly positive random

P [y h1(v) exp(BHZ(@))d Ao(v) — hyZ(w)

hy(u) — 1+ pAo(u) eXp(BLZ(w))

must equal zero, a.ed f). This implies that for almost alb € 2,

hy(u) +/0 p(h1(U) — h1(v)) exp(BpZ(w))d Ag(v) = —h5Z(w)

a.e. @ Ay). From this, we see th&, must equal zero. With, = 0, it is easy to show that
h1(u) must be zero a.ed(y).

Now, we want to use this fact to show thatas a continuous linear operator frdth, to
H. has a continuous inverse. Sinldg, is a Banach space, we know thatifs invertible,
then the inverse will be continuous (see Banach inverse theorem on page 149 of Luenberger,
1969). One way to show thatis invertible is to demonstrate thatis one-to-one and that it
can be written as the difference between a bounded, linear operator with a bounded inverse
and a compact, linear operator. This follows from Corollary 3.8 and Theorem 3.4 of Kress
(1989). To show that is one-to-one, we set = 0 and show thah, = 0 andh;(u) = 0
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forallu. If o1(h)(u) = Ofor alluando,(h) = 0, then we know, from the arguments above,
thath, = 0 andhi(u) = 0 a.e.  Ap). Leth = (hy, 0), whereh;(u) = 0 a.e. § Ay). Then,

sy()U) = —E [(l + pA)Y (u) exp(By2)p fox h1(v) exp(B,2)d Ao(v)]

L+ pAo(X) eXp(Bs2))?
Lk [<1 +PAY (W) exp(ﬂszml(u)} e
1+ pAo(X) exp(FyZ)

for all u. By the definition ofh;, the first term must equal zero. The second term can be
rewritten as

Sl

1+ pAo(U) exp(Bo2) E[Y(“”Z]} hi(u) =0

. exp(B.Z) .
§|ncgEW‘m E[Y(u)|Z]] is greater than 0O for alli, we know thath; (u) must be
identically equal to zero for all.

Now, we want to show that can be written as the difference between a continuously

invertible linear operator and a compact, linear operator. The first linear operator is

z(h) = <h1(u)E [(1 + pA)Y(U) exp(/362)] ’

1+ pAo(X) exp(y2)
£ [(1 + pA)ZZ Ag(X) exp(ﬁ{)Z)} H )
1+ pAo(X) exp(ByZ))?

and the second term B(h) — o (h). The inverse o is

1+ pA)Y () exp(ﬂéz)]‘l

-1 J—
i) = <h1(u)E[ 1+ pAo(X) exp(ByZ)

. [(1+ pAYZZ Ao(X) exp(ﬂéz)]‘l hy
(L+ pAo(X) exp(fy2))?

From the assumptions of this theorem, it follows tBat! is a bounded linear operator.

To show thatz (h) — o (h) is compact, we leth,} be a sequence iHp. By the definition
of a compact operator (see Kress, 1989), we must prove that there exists a convergent
subsequence df (h,) — o (hy). Sincehy, is of bounded variation, we can write, as
the difference of increasing functions (see Lemma 2.3.3 of Ash, 1972). Both of these
increasing functions are bounded in absolute valuefyThis means that Helly's theorem
can be used to find a pointwise convergent subsequenceghj. ¢tdenote the convergent
subsequence and let denote its limit. We must prove that(h,, ) — o (h,, ) converges to
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2 (h*) — o (h*) in ||h||y norm. To establish this result, note ti¥ath) — o (h) is equal to

(_E [(1 + pA)Y(U) exp(ﬁ(’,Z)Z/] h
(1+ pAo(X) exp(ByZ))?

L | A eAYWexnp2)p 1 hi(v) exp(ByZ)d Ag(v) |
(14 pAo(X) exp(ByZ))2

e [(1 +pA)Z exp(By2) Jy ha(v)d Ao(v) D

(14 pAo(X) exp(By2))?
Now, || 2 (hn) — o (hn) — Z(h*) + o (h*) |4 is less than or equal to
H _E [(1 + pA)Y (u)exp(By2)Z’

] (h2nk - hZ)

1+ pAo(X) exp(By2))?
L e[ @rpdvwensz)p Jo (hin, () — h(v) exp(BpZ)d Ao ()
(1+ pAo(X) exp(ByZ))2 ;

+

(1+ pAo(X) exp(By2))?

e [(H pAYZ eXP(BHZ) [y (an, (v) — hi(v))d %(v)]

o0

This quantity is less than

(1+ p)cexpgbo [hzn — h3 |1
1
+ (1+ p) exp(gbo)(p exp(qbo) + ©) /O [h1n(v) — hi(v)|d Ag(v)

Using the dominated convergence theorem, we can show that this sum converges to zero.
Therefore, we conclude thd& (h,) — o (hy) — Z(h*) + o (h*)||4 converges to zero and
that X (h) — o (h) is a compact operator frofid, onto its range for all finitep.

Using this result, we want to show that for all finige S(v) is continuously invertible
on its range. It is sufficient to demonstrate that for all firptehere exists a, > 0 such
that

| SURhcH, | Jo o1(dey + o2(h)hal
pelin{y —yoiyev} o]l

(14)

greater than or equal td, (see Theorem 2 on page 153 of Kantorovich and Akilov, 1982).
Becauser is a continuously invertible frontl,, to Hy,, we know that there existg, > 0
such thatf—l(Hrp) C Hp. Therefore, we know that (14) is greater than or equal

o S| Jo o1(hyde + oa(h)e|
|
pelin{y—yoyew) ol

which is equivalent to
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_ S Jo hadeps + haga|
in
pelin{y—yopew) ol

(15)

Now, this quantity must be greater than or equaMg = ;—'; To see this, consider an
arbitrary element € {y — ¥o : ¥ € W}. Thatis,¢ = Zik:lci(wi — ) for some

k and somecy, ..., c). Therefore, SURH,, |f0l hid¢ + hogy| is greater than or equal

to ryl Z:‘Zlq(ﬁi — Bo)ll1 V rpll Zikzl G (A — Ao)llo, and|¢|l is less than or equal to
PI Y1 G (B — Bl v 2Pl 41 G (A — Ao)llso. Thus, for allp € {y — v 1 ¢ € W},
we know that the ratio in (15) is greater thify,, which implies that (14) must be greater
thanM,. Hence, we have shown th&tyo) is continuously invertible on its range.

To verify the approximation condition of Theorem 4, it suffices to show (by Lemma 1 of
van der Vaart, 1995) that

{WZ‘A’ﬂ)h—\IJ(*AO,ﬁO)h:he Hp, I — Yol <6} (16)
is Donsker for somé > 0 and

fli'p E[(W{a ph — Win, 5] — 0 (17)

€Fp

as(A, B) — (Ao, Bo)-
By breaking the class of (16) into two classes, we proceed by showing that the cfgsses
andF, defined below are Donsker with uniformly bounded envelopes:

F , A+ AX)exp(B’'2)
° T { 2 [1+0A(X)9Xp(/5’2)

A+ AcX)exp(BpZ) . .
1+ PAO(X)GXFX,B(/)Z)] “hy e R, |haly < p,

B €[4, 8]%, A nonnegative, increasing with(1) < 2A0(1)} (18)

[ hid Aexp(B'Z)
1+ pAX) exp(B’Z)

Fa= {(14— A/O)|:

~ 7 hid Ao exp(ByZ)
1+ pAo(X) exp(By2)

} :h; € BV[0, 1],

Ihill, < p, B €[4, 8]%, A nonnegative, increasing with(1) <2Aq(1) } .(19)

We use two results from empirical process theory, that classes of smooth functions are
Donsker (Theorem 2.7.1, van der Vaart and Wellner, 1996) and classes of Lipschitz trans-
formations of Donsker classes with integrable envelope functions are Donsker (Theo-
rem 2.10.6, van der Vaart and Wellner, 1996). DifferentiabilityggtZ) = exp(g’'Z)
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in Z and boundedness of the derivative (becgd$e< oo) implies{gs(Z) : B € [-$, 5]}
is Donsker for any finité. Since the class of nonnegative increasing functiaro [0, 1]
with A(1) < 2A0(1) is Donsker by monotonicity, and is uniformly bounded, it follows that
the denominatofl+ p A(X) exp(8’Z)} with (8, A) varying over the index class is Donsker
for any finites. Since this denominator is bounded away from zero, another application of
Theorem 2.10.6 yields th&f; is Donsker.

Further, Theorem 2.10.6 implies the clda®¥8), of all real-valued functions on [@] that
are uniformly bounded by a constavitand are of variation bounded i is Donsker. Since
l fox hidAll, < [lhillec * [[All, < o0, the ClaSS{fOX hidA: hy € BV[O, 1], [hall, < p}
with A varying over the set in (19) is Donsker. Th&p is Donsker since it is comprised
of ratios of bounded Donsker classes. Boundednes&aind Z give sugE[|f|; f €
Fi} < 00,1 = 3,4, sothat (16) holds. Condition (17) holds by the dominated convergence
theorem. Thus, we have shown that the approximation condition holds.

Putting these four results together, we know that for all fipite

—S(Wo) /N (W — Yo) (h)

1
/O a1(h)(WdyN(A, — Ag) + VN(Bn — Bo) o2(h)

= VN(Si(¥n) — SW) () + 0p- (1)

= V/N(S o) — S(¥o))(h) + 0p(1)
uniformly inh € Hy. S0,+/N(¥m — ¥0) = S(v0)*W. But, what isS(10) "*W? By the
continuous invertibility ofo, we know that, for finitep, there exists a finite, for which

o~Y(g) € H, if g € Hp. To get a weak convergence result iy atg € Hp, we put
h = o~1(g) in the above equation to get

1
/O 91(Wdv/N(Ay— Ag)+/N(Bn— Bo) G2 = /N (S (¥0) — S(¥0)) (0 "1(@)) +0p- (1)

uniformly in g € Hp. The right hand side converges\(o ~1(g)), which has mean zero

and variancqo1 glaa)l(g)d Ao+ a(g)l(g)’gz. Since this holds uniformly ig € Hp, we can
conclude that

(vN(Bn — Bo), VN(A, — Ag)) = G

whereG is a tight Gaussian process 6i1(Hp) with mean zero and covariance process

1
CoMG(9), G(g")] = fo G105 (9)d Ao+ 05/ (9%) g2
Hence,S(yo) W = G. []

In the above framework, specific choicegaforrespond to the quantities of interest. For
example, if we leg;(u) = O for allu andg, = g, theith unit vector, then we get thi¢h
element of/§n. If we letg;(u) = 1(u < t) andg, = 0, then we get our estimator fég(t).

The above theorem shows that these quantities are asymptotically normal. Theorem 2
verifies the consistency of these estimators.
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To estimate the asymptotic variance (Qfﬁ(ﬁn — Bo), ﬁ(An — Ap)(g), we use the
following procedure. First, estimatewith 6. Next, solve foth such thag; = 6;(h) and

g2 = 62(h). Finally, estimate the asymptotic variancefésglhld A, + h,g.. The natural
estimator foro (h) is

1 Z (L+ pADYi (W exp(5Z0Z{

N L+ pAn(Xi) exp(By2i))?

1 Z L+ pADYi (W exp(BrZp fo hav) exp(ByZid An(v)
= (L+ pAn(Xi) exp(B}Zi))?

o) =

1SN L+ pA)DYi(U) expBLZi)
h —E — =
O T A6 expBLZ)

and

6o(h) = % A+ pADZ Z An(Xi)exp(ﬁnzi)h

7 (14 pAn(Xi) exp(B,Zi))2

! Z (L+pADZ exp(BiZi) fy ha(w)dAn(v)
= (L+ pAq(Xi) eXRB; Zi))?

Due to the continuous invertibility of, this estimation procedure is equivalent to
the following naive approach of estimation of the asymptotic variance. First, form the
second derivative matrix oL, by taking derivatives with respect t6 and the jump
sizes of A. Next, invert this large matrix, multiply by negative one and form the vec-
tor (91(X1), ..., 01(Xkm)), 92). Finally, pre and post multiply the large inverted matrix
to get the estimate for the asymptotic variance. This is essentially the standard likelihood
approach to the finite parameter problem.

THEOREMS5 Assume PJY (t) = 1] is continuous in t andnfic 1 E[Y (1)|Z] > 0. For

g € Hp, the solution h= 671(g) exists with probability going to one as n increases. In
addition, [ g:h1d A, + h,g, converges in probability tgfy 0103 (@)d Ao + 05 () Gz

Proof: In Theorem 3 of Murphy (1995), the author outlines the method of proof. Suppose
we could show

sup 16 () — o (M)ln = 0 20

Then, because is continuously invertibleg is continuously invertible on a set of proba-
bility converging to 1. The range d&f is all of H.,, which follows by the same proof that
Rangéo) = Hy,, as in Rudin (1973, pp 99-103). Sinéeconverges ta by (20) ands

is continuously invertible o, there exists a finitg for which &‘1(Hq) C Hponaset
of probability converging to 1. Therefore

16749 — @I = SURep 167H@ — o (@I
SURhen, lo " (o (h) — oS () Ik

IA
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llo=2(h)lln

= SURher, i SURhe, llo (h) — & () [l

Sinces ! is a bounded operator, once 20 is shown, the proofis completé thabnverges
to o~ uniformly overH.
The most difficult part of this is showing that the variation of

Z (L+ pADY;(U) exp(BZi)p fo h1(v) exp(B;,Zi)d An(v)
L+ pAn(Xi )eXp(ﬂnZ ))?

[(1 + pA)Y (U) exp(Bs2)p fo ha(v) exp(ByZ)d Ao(v):|

1+ pAo(X) exp(By2))?

goes to zero. We can bound this variation by the variation of

—Z<(l+pA 00 o @A) s

(L+ pAn(Xi) exp(BlZi))?
@+ pADp fy @)d Ay(v)
L+ pAo(Xi) exp(ByZi))?

plus the variation of
1 Z (1+pAi)p f5 hi(v)d Ao(v) E[
(14 pAo(Xi) exp(BpZi))?

L+ pA)p [ hi(v)d Ao(v)
(14 pAo(X) exp(By2))2

E [(exp(ByZi))?INi, Yi]> Yi (u)

(exp(BHZi))?INi, Yi] Yi (u)

— E[ (exp(ﬁaznzv(u)])

Uniform consistency 0(,3,1, An) implies the first term converges to zero. The variation of
the second term is bounded above(thy p)p times

/ Ihall. E [(exp(BoZ)?INi, Y] Vi (WY ()
' i=1 1+ pAo(Xi) exp(BZi))?

B E[ (eXP(Bp2)*Y (WY () }
(1+ pAo(X) exp(By2))?

dAg(u)

The integrand converges to zero by the strong law of large numbers in Banach spaces.
Thus the term converges to zero by the dominated convergence theoremjhuging 1.
]

Finally, we want to bring the problem full circle and demonstrate that the asymptotic
variance ofJﬁ(,én — PBo) is equal to the semiparametric variance bound calculated to
Section 3.2. By the Cramer-Wold device (see Serfling, 1980), it suffices to demonstrate
that the asymptotic variance Ef\/ﬁ(ﬁn — Bo) is equal tor’V A, wherea is any vector in
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RY. Thus, we have to show thag)l(g) = V@, wheregy(u) = 0 foralluandg, = A. To
find a(;)l(g), we must find arh such that

A+ pA)Y(U) exp(ﬁ(’,Z)Z’] hy
(1+ pAo(X) exp(ByZ))?

o1(h)(u) = E[

L hWE [(1+ PAYY(U) eXp(/%Z)]

1+ pAo(X) exp(By2)

[ @)Y W expsZ)o fo ha(v) exp(BsZ)d Aow)
(1+p Ao(X) eXp(ByZ))?

}: 0 (21)

and

oa(h) = E [(1 + pA)ZZ' Ao(X) exn(ﬂé,z)] hy

(L+ pAo(X) exp(ByZ))?

e[ atenZexsp2) 12 ha(v)d Ag(v) _.
(14 pAo(X) exp(By2))?

Consider the solutiorh; = VA andhy(u) = —wess (UYW-1UV — 1)A, where

(22)

Ao(X) exp(ByZ2)Z2Z }
U=E|Q+pA
[( e )(1+pA0(X)eXp(,3(’)Z))2
fox exp(ByZ)wes(U)Z'd Ag(u)
W = E|(1+pA
[( oY (14 pAo(X) exp(By2))?

Note thatV = (U — W)~L. It is clear that this solution satisfies (22). To show that it
satisfies (21), we must show that

E [(1 + pA)Y(U) exp(,B()Z)Z’} Vi

1+ pAo(X) eXp(By2))?
—werf(U)'E [(1 L eXp(l/%Z)i| WUV — 2
1+ pAo(X) exp(ByZ)
g | Qe W expf2)p Jo wert(v)' exp(ByZ)d Ao(v) WUV -1).=0
(1+pAo(X) exp(ByZ))?

for all u. SinceV = WUV — ), we know that this will hold if
. [(1 + pA)Y(U) exp(ﬁéZ)Z’}
(14 pAo(X) exp(By2))?

E [(1 +pA)Y (W) eXp(BHZ)p [y wert(v) exp(ByZ)d %(v)}

(L+ pAo(X) exp(ByZ))?

(14 pA)Y () exp(ﬁ(’,Z)}
1+ pAo(X) exp(By2)

—werr(U)'E |:
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for all u. This is satisfied because¢ (u) is the solution to the integral equation (5).

6. Simulation Study

We performed a simulation study to assess the accuracy of our estimation approach. In
particular, we were interested in determining how well our method performs in small to
moderate sample sizes and how it is affected by the amount of censoring and different
values ofp. Towards this end, we generated data accordingst@eoportional odds model

with two covariates. The first covariate was uniformly distributed qri]J@&nd the second
covariate was Bernoulli (0.5). We considered three values,d.5, 1.0, and 2.0, and
assumed thaf\g(t) = exp{t} — 1. In addition, we assumed that censoring times were
uniformly distributed on the interval [@], wheret. was chosen to yield censoring levels

of 10%, 20%, 40%, and 60%. We considered true values for the parameters to be either
0 or 1. We simulated data in sets of 100 subjects and for each combination of simulation
parameters, we performed 500 simulations. The models that we fit to the data corresponded
to the true value op. In Table 1, we report the means, average standard errors, and Monte
Carlo standard errors for the parameter estimates from these simulations.

In general, we see that there is very little bias associated with our procedure. However,
there are five situations (indicated kywhere there is a significant difference at the 0.05
level between the average of the parameter estimates and the true value of the parameter.
In addition, we note that the variability of the parameter estimates increases with the level
of censoring and the value of Finally, the normal approximation appears to work well
for this sample size as evidenced by the closeness of the Monte Carlo standard errors and
the average standard error estimates.

7. Veteran's Administration Lung Cancer Trial

In the Veteran's Administration lung cancer trial (Prentice, 1973; Kalbfleisch and Pren-
tice, 1980), males with inoperative lung cancer were randomized to either a standard or
experimental chemotherapy. The primary endpoint of interested was time until death, as
measured in days. For this example, we will only consider the subset of 97 patients who
received no prior therapy. We are interested in the relationship between the time to death
and two covariates, performance status at randomization (PS) and histological type of tu-
mor (squamous, small, adeno, or large). These data were analyzed using a proportional
odds model by Bennett (1983), Pettitt (1984), Parzen and Harrington (1993), Cheng et al.
(1995), and Murphy et al. (1996). All of these authors fit a model with PS and indicator
functions for tumor type. Table 2 presents the results of fitting this model using our method
as well as the results obtained by the other approaches. Table 3 displays the results of fitting
various models within the generalized odds-rate class. Specifically, we fit modelg’svith
ranging from 0.0 to 2.0. Figure 1 presents our estimates of the baseline survival function
for each of the fitted models. Note that all of these models paint a similar picture. Namely,
performance status at randomization is positively associated with survival for patients with
all tumor types. Furthermore, there is not a significant difference between the survival rates
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Table 1. Results from the Simulation Study (Asterisk indicates significant difference (0.05 level) between
mean of parameter estimates and the truth).

1 B2
P (B1, B2) Censoring Mean Avg. s.e. M.C.s.e. Mean Avg. s.e. M.C.s.e.
0.5 1,1) 20% 1.0340 0.5337 0.5165 1.0177 0.3158 0.3245
40% 1.0615 0.5729 0.5717 0.9966 0.3382 0.3467
60% 1.0565 0.6567 0.6849 1.0246 0.3902 0.3924
(1,0) 20% 1.0305 0.5360 0.5372 0.0186 0.3035 0.3121
40% 1.0390 0.5760 0.5962 0.0029 0.3272 0.3329
60% 0.9719 0.6583 0.7081 0.0267 0.3731 0.3862
0,1) 20% —0.0251 0.5271 0.5332 0.9912 0.3170 0.3267
40% 0.0187 0.5673 0.5905 0.9914 0.3384 0.3291
60% 0.0523 0.6463 0.6574 1.0041 0.3898 0.3989
(0,0) 20% 0.0305 0.5276 0.5103 0.0084 0.3053 0.2966
40% —0.0119 0.5678 0.5972 —0.0296° 0.3278 0.3353
60% —0.0085 0.6496 0.6590 —0.0240 0.3730 0.3923
1.0 1,1) 20% 0.9952 0.6362 0.6351 1.0149 0.3742 0.3612
40% 0.9713 0.6588 0.6724 1.0023 0.3890 0.3942
60% 1.0438 0.7309 0.7414 1.0189 0.4282 0.4445
(1,0) 20% 0.9777 0.6309 0.6213 -0.0011 0.3625 0.3569
40% 1.0472 0.6648 0.7075 -0.0027 0.3779 0.3868
60% 0.9380 0.7234 0.7724 0.0122 0.4119 0.4110
0,1) 20% 0.0528 0.6252 0.6528 1.0344 0.3749 0.3783
40% 0.0253 0.6609 0.6686 0.9839 0.3895 0.4047
60% 0.0175 0.7220 0.7311 1.0142 0.4280 0.4237
(0,0) 20% 0.0244 0.6244 0.6275 0.0025 0.3626 0.3625
40% 0.0038 0.6554 0.6439 0.0080 0.3800 0.3807
60% —0.0002 0.7189 0.7213 -0.0284 0.4149 0.4355
2.0 1,1) 20% 0.9880 0.7960 0.7290 0.9735 0.4638 0.4622
40% 1.0614 0.8109 0.8119 0.9973 0.4741 0.4809
60% 1.0824 0.8526 0.9054 1.0257 0.5005 0.5293
(1,0) 20% 0.9334 0.7906 0.8388 —0.0064 0.4543 0.4604
40% 1.0358 0.8138 0.8421 0.0228 0.4653 0.4831
60% 1.0139 0.8563 0.8268 0.0355 0.4882 0.5349
0,1) 20% —0.0340 0.7859 0.8110 0.9760 0.4646 0.4533
40% 0.0192 0.8033 0.8101 1.0512 0.4779 0.4923
60% —0.0490 0.8543 0.9084 0.9803 0.4985 0.5232
(0,0) 20% 0.0491 0.7788 0.8151 0.0043 0.4544 0.4704
40% 0.0097 0.8045 0.8229 0.0017 0.4648 0.4546

60% 0.0029 0.8521 0.8927 0.0016 0.4909 0.4761
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Table 2. Veteran’s Administration Lung Cancer Data: Comparison of model estimates for propor-
tional odds model by method.

PS Squamous Small Adeno
Method Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.
Scharfstein  —0.053 0.010 -0.180 0.588 1.383 0.524 1.314 0.554
Murphy —0.055 0.010 -0.217 0.589 1.440 0.525 1.339 0.556
Cheng -0.055 0.010 -0.006 0.572 1.496 0.498 1.556 0.414
Parzen —0.053 0.010 -0.173 0.620 1.380 0.482 1.31 0.453
Pettitt -0.055 0.009 -0.177 0.593 1.440 0.520 1.300 0.554
Bennett -0.053 0.010 -0.181 0.588 1.380 0.524 1.31 0.554

Table 3.Veteran's Administration Lung Cancer Data: Comparison of model estimates for varging

PS Squamous Small Adeno

0 Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e. Log Likelihood

0.00 -0.024 0.006 -0.214 0.347 0.548 0.321 0.851 0.348 37544
0.50 —0.040 0.008 —0.240 0.479 1.100 0.440 1.119 0.462 —37161
0.85 —-0.050 0.010 -0.205 0.558 1.309 0.505 1.258 0.528 37116
1.00 -0.053 0.010 -0.180 0.588 1.383 0.524 1.314 0.554 37125
150 -0064 0.012 -0.073 0.675 1.605 0.596 1.497 0.636 —37269
2,00 -0.072 0.014 0.046  0.749 1.813 0.661 1.678 0.712 -37371

of patients with squamous and large tumors. However, patients with large tumor types tend

to have significantly better survival prognosis than those with either small or adeno types.
Selection ofp is a crucial step in model fitting. Cheng, Wei, and Ying (1997) proposed

a graphical approach to selection @f They noted that if the model is correct, then the

distribution ofé&(T) + B’'Z should be distributed according to a Parg)dpr p > 0 and

according to an exponential(1) distributiondf= 0. For givenp, this distribution is best

approximated by the Kaplan-Meier estimator based on the sai@l& ) + 8'Zi, Ai), i =

1,...,n}. Figure 2 presents P-P plots comparing the error distribution and the Kaplan-Meier

estimator for varying values qf ranging from 0.0 to 2.0. Ip is correct then the P-P plot

should form a 45 degree line through the origin. In Figure 2, we presents estimates of the

area between the P-P plot and the straight line. With this criteria,1.0 seems to provide

the best model fit. An alternative approach is to jointly maximize the profile likelihood with

respect tqo. Figure 3 presents the log profile likelihood for varying valueg tietween 0

and 5. We see that it is maximized around 0.85. The last column of Table 3 displays the

actual value of the log profile likelihoods for the six valuesafonsidered. So, it appears

that there are values @f > 0 that fit better than the proportional hazards model.

8. Summary

In this paper, we used full nonparametric maximum likelihood to construct estimators for the
regression parameters and baseline odds function in the generalized odds-rate model. Using
theory developed by Murphy (1994), Murphy (1995) and van der Vaart and Wellner (1996),
we showed that these estimators are consistent and asymptotically normal. Furthermore,
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Figure 1. Baseline survival functions for varyings.

the estimate of the regression parameters was shown to attain the semiparametric efficiency
bound. The estimators were also shown to perform well in small to moderate samples. For
future research, we intend to pursue the issue of model selection in greater depth.

Appendix

LEMMA 1 Assume P[Y(t) = 1] is continuous in t. Then for each € @, A1) is
bounded by a finite constant for all:a 1.

Proof: To begin, fixw € ®. To prove thatA, (1) is bounded by a finite constant for all
n > 1, consider a proof by contradiction. That is, suppose tha,tJ'LmAn(l) = 00. Note
thath(Bn, An) — Ln(Bo, Ay) must be non-negative for all The goal is to show that this
difference will become negative as— oo, which is a contradiction. In the following, any
terms which are bounded away from positive infinity will be represente@®td). Now,
we can write this difference as

1 AALU) Y\ | - 18 _ N .
/(; log (AAMU)) dNp(u) — n ;(1//0 + Aj) log(1 + P A(Xi) exp(BrZi))

1 X , 1 - ,
+= ; Ai(ba— B0 Zi + = ;(w + A log(L+ pAn(Xi) exp(BLZi))
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Figure 2. Goodness of fit P-P plots for various valuesof.
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The last two terms above are bounded away from positive infinity. Using (8) and (9), we can
plug in and re-express the first term above. Thus, we knowl_thléﬁn, An) — Ln(Bo, An)
is bounded from above by

A+ pADY;W) exp(,BOZJ -
o<1)+/ |og<nj; 7 » Ac(X)) SXPALZ)) )dNn(U)

1
/I09< Z(HpA’m(u)eXp(ﬁ"Z’))dNn(u)
0 nj:1 1+pAn(XJ)eXﬁ,3nZ])

1¢ A A
== 2 (W/p+ A log(L+ pAn(Xi) exp(ByZ)
i=1

The second term is bounded away from positive infinity. Sa8n, An) — Ln(Bo, An) is
less or equal to

L+ pADYjWexpBiZ) \ | -
o) — / log AR (W)
<n ; 1+ pAn(X)) exp(B,Z)) )

1 A N
- Z(l/p + A log(1+ pAn(Xi) exp(B)Zi)) (A.1)
i=1
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Intuitively, we see that ad\, diverges to infinity, the second term diverges to positive
infinity and the third term diverges to negative infinity. We wish to show that the sum
of these two terms diverges to negative infinity. To show this, we patrtition the interval
[0, 1] according to a nonnegative, strictly decreasing subsequeacgy> s > --- > 0.
Letting c* = e~9°¢, we can show that the second term in (A.1) is bounded from above by

1 ! 1 (L4 pAj)erYj(u)
—— Yi log| — — dNi(u
n; (Sl)fo g(n; 1+ pc*An(D) w

1< 1 1N (L+ pAj)CrY;(u)
=323 Yilsp @Y, /Io =3 = dN (u
2n 2 (Sp+1)( (Sp) A g(n 21 po Aty )

1< L 1N (1 + pAj)CY(u)
—= 1-Y(s log| — = dnN;
h 2 <p+1))/0 g(nj; T oo A ()

The third term in (A.1) is bounded from above by

(1/p + ADYi (1) log( + pc* An(1))

1 n
nI=l

P n

1 "
=2 = > A/ + ADYi(Sp) (L= Yi(Sp-1)) 10g(L + pC* An(sp)

p=1 i=1

n

1 .
—= 2 1/p+ AN = Yi(se) log(1 + pc* An(Xi))

i=1

Combining the upper bounds for the second and third terms in (A.1), we get an overall
upper bound of

n

1 N
O — = > (A/p + A)(L = Yi(sp)) I0g(L + pc* An(Xi))
i=1

1 ! 18

—=)Y (so/ log (— Y L+ pApeTY, (u)) dN ()
ni= 0 n i=1
P

1 ! 1¢
P IFD N ICHENCERACH) /0 log (ﬁ Y A+ pApcty (u)) dN (u)
p=1 1 j=1

A 18 18
—log(1 + pc*An(1)) {ﬁ 2P +AD == A, <sl>}
i=1 i=1
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p=1

- XP: log(1 + pc* An(sp)) = i(l/p + ADYi(sp) (1 — Yi($p-1)
n n et I | (3 I —1
1 n
— =Y Al (sp»}
n i=1
1< 1 1N (14 pAj)CHY(u)
- ;(1 - (SP+1))/0 log <ﬁ > 2 22 ) dN(u)

= 1+ pct An(X)

Note that we can ignore the second term above because it is negativerforTde third
term is bounded away from positive infinity. To see this, note that this term is less than or
equal to

1< 1<
- {Iog(c*) +log <ﬁ Y m)} — Y AYitsn)
j=1 i=1

This term converges te{log(c*) +1og(E[Y (D] }E[AY (s1)], which is a bounded quantity.
For finite P, the fourth term is also bounded away from positive infinity. To establish this,
we note that the fourth term is less than or equal to

P

18 1<
- Z {Iog(c*) +log (ﬁ Z Y] (Sp)> } o Z AiYi(Sp+1)(1 = Yi(sp))
=1 i-1

p=1

which convergesto the bounded quan%it[:g:l{log(c*)ﬂog(E[Y(sp)])} E[AY (Sp4+1)(1—

Y (sp))]. If Pisinfinite, then we will have a problem. However, we can show how to choose
a finite sequencgsy} such that the sum of the last three terms diverges to negative infinity.
The sequence is constructed by the following recursive algorithm. CHdosel and

s = 1. Lets; be the smallest value in the interval ) for which

E[((Up)™* + A)Y(D] > E[AY(s1)]

If s = 0 then stop. Ifs; > 0, then continuity ofPr[Y(t) = 1] implies equality above.
Then, continue according to the following procedure.

1. Setp=1.

2. Givensy, lets,,1 be the smallest value in the interval |) for which

E[(Up) ™ + A)Y(sp)(1 — Y(Sp-1)] = E[AY (Spr0) (1 — Y(sp)]
3. Ifspy1 = 0, then stop. I5p1 > O, continuity of Pr[Y (t) = 1] implies equality above.
Then, incremenp by 1 and return to step 2.

This algorithm must converge in a finite number of steps. Consider a proof by contradiction.
For finite K, we know that
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K
E[(Up) ™+ A)YD] + Y E[((Up) ™" + A)Y(5p) (1 — Y($p-1)]
p=1

is equal to

K
E[AY(sD] + ) E[AY (Spr0) (1= Y(sp))]
p=1

This implies that
E[(Up) ™ + A)Y(s¢)] = E[AY (Sk41)] (A.2)

Since{s} is strictly decreasing and positive, it converges to a vafudaking the limit of
(A.2) asK goes to infinity, we find that

E[(Up) ™t + A)Y(%H)] = E[AY (" +)],

which is impossible. Therefore, a finite exists withsp,; = 0. By construction of

the algorithm, we can now see that the sum of the fifth, sixth, and seventh terms of the
upper bound diverge to negative infinity. In particular, we see that the coefficients of
log(1+ pc* A, (sp)) are strictly positive for larga. This implies the the sum of the fifth and

sixth terms diverge to negative infinity. In addition, the seventh term is identically equal
to zero. Hence, we have established a contradiction to the original divergence premise and
we know that/i‘ln does not diverge. [ |

LEMMA 2 Suppose thatfic 1) E[Y(1)[Z] > 0. Then

sup |An(t) — Ag(t)] — Oa.s,
te[0,1]

and for eachw € @,
e Ais absolutely continuous.

o SURcpo 520 — ¥ (O~ 0
o SURo. | Am (D) — [y ¥d Aol — 0
wherey (u) is defined by (11)

Proof: To prove the first result, note that

YT @+ pA)Y(u)expBy2) D‘l
1) = E dE[N
Ao(t) /0< [HpAO(X)eXp%Z) [NW)]

whereE[N(w)] = E[ [, %ﬂ%d Ao(w)]. Then,

-1
. 1SS (L + pADYi(u) expBiZi) .
An - = - dNn
- = | (nZ; 15 pAo(X0) eXPBYZ) w

_ /t (E [(1 + pA)Y (u) exp(ByZ)
0 14+ pAo(X) exp(By2)

DldE[N(u)]
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By Lemma A.1 of Tsiatis (1981), we know that

180 (L4 pAnYi (U) expByZ) [(1+pA)Y(U)eXp(ﬂ()Z)]
— —E 0a.s.
SUP 15 2T pAcK) X2 1+ pACO OB || o

Using LemmaA.2 of Tsiatis (1981), we can then establish that gupl An(t)—Ag(t)| = 0
almost surely.

For the next three results, we fixe ®. The following argument shows thé&tmust be
absolutely continuous. If we ldt be any non-negative, bounded, continuous function, then

1 1
f f (W)d AU) f F(W)A(AW) — An, ()
0 0

1 1™ A+ papYiwexphnzn\
f — _ ML dNm,
- /0 o (mk ; 1+ pAm (Xi) exp(B, Zi) ) w

IA

1
/0 f (u)d(AU) — Ap, (U))

1 m -1
+ (exp(gbo) + a) / f(u) (i DY (u)) dNi, (u)
0 My 7=

where limy, -« Amk(l) < a. Consider each of the two terms on the right hand side of the
above inequality. The first term converges to zero by the Helly-Bray lemma (page 180 of
Loeve, 1963). Using Lemmas A.1 and A.2 of Tsiatis (1981), we know that the second term
converges to

Y (u) exp(p2)
1+ pAo(u) exp(By2)

1
(exp(gbo) + a) fo f () (E[YW])E [ }d%(u)

SinceE[Y (u)] is assumed to be bounded away from zero fouadl (0, 1], we know that

Y (u) exp(By2)
1+ pAo(U) exp(ByZ)

1 1
/ F(WAAW) < (expbo + a) / f () (E[YW])*E [ } d Ao(u)
0 0

By choosing f appropriately, this inequality implies th& must be continuous at the
continuity points ofAq. SinceAg is assumed to be absolutely continuous, then #a is
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To prove the third result, consider

1 M A4pADYi () expByZi)

dAnm, t) = M £«i=1 TTrpAg(X) expBlZi) A3)
dAm, 1 me LFPADYi() expBh, Zi) '
e 2

=1 14 p Ay (X0) expBin Z0)

By the strong law of large numbers, the numerator converges to its expectation in supremum
norm. That s,

sup |1 35 (L pAOY () explfyZ) _E[(1+pA>Y(t>exp<§aZ)} o
teloy | M &7 1+ pAo(X:) eXPAGZ)) 1+ pAo(X) exp(fyZ)

The denominator should converge fj S22 70 ex/2)
this, we see that

1 % (L+pADYi () exp(Br, Zi) = [(1+ PAY () exp(,B/Z)H

] in supremum norm. To show

M & 1+ p A, (X)) expiBr, Z0) 1+ pAX) exp(B'Z)

_|t i(lwmwnexp(é;nkzi) 1 i (L+ pADYi (1) exp(B'Zi)
T M 14 pAn (XD expBl Z) Mk = 14 pAn (X)) expiBl, Zi)

N ii (1+ pADYi () exp(B'Zi) _ii(l'FpAi)Yi (t) exp(p'Zi)
M = 1+ pAn (X)) eXpBn, Zi) Mk = 14 pAn (X)) exp(B'Zi)
N ii(l‘}‘pAi)Yi(t)exeﬂ/zi) _ii(l"‘PAi)Yi(t)eXp(ﬁ/zi)
M = 14 pAn (XD expB'Z) M= 1+ pA(X)exp'Z)
L LSS A+ pAYi ) exppZi) _E[<1+pA>Y<t>exp(ﬁ’Z>]
Mg = 1+ pACXi) exp(B’Zi) 1+ pA(X)exp(B’2)

< (14 p)(1+ pa) expqbo)|1 — exp(—l fm, — Bll=C)l
+ (1+ p)pexp2qbe) sup |Am, (u) — AU)|
uel0,1]

1 ”‘Z A+pa)YiOeXpp'Z) [(1 +pA)Y (M) eXp(ﬁ’Z)}
Mg = 1+ pA(X)) exp(B’ Zi) 1+ pA(X) exp(B’'Z)

The first two terms on the right hand side of the final inequality above converge to zero.
At first thought it appears that the law of large numbers can be used to show that the third
term converges to zero in supremum norm. The problem ariseg #wadl A change with

. Furthermore, the sets of probability one over which the strong law of large humbers
applies depend ofi and A. Since there are an uncountable numbew'sf there may be

an uncountable number 68, A)’'s. This uncountable number of limiting quantities may
lead to an uncountable number of sets of probability one, whose intersection might have
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probability zero. In this event, the strong law of large numbers may break down. To avoid
this issue, we note that the space of absolutely continuous, bounded, increasing functions
{A(t)} is separable under the supremum norm. That is, the space has a countably dense
subset. LefG,} represent this subset. Now, include in the intersections of sets forning

sets for which

18 (A4 pADYi (1) exp&'Z:) _E[<1+pA>Y<t>exp(s/Z>]
N4 1+ pG (X)) expiE'Z:) 1+ 0Gi (X) exp(&'Z)

sup
te[0,1]

converge to zero for each ratioriandl > 1. Now,

1 i L+ pA)Yi O eXPBZ) [<1+ pA)Y(t)eXp(ﬂ’Z)]
mc &= 1+ pACX) exp(B'Z;) 1+ pAX) exp(p'2)

i=1

B ii(l—l—pAi)Yi(t)exp(ﬂ’Zi) _iiamm)vﬁ(t)exp(s’zi)
M T oA ePBZ) My 1+ pAX) expfZ))

1 A+ pADYi)expE'Z) 1 s 1+ pA)Yi(t) expE’Z)
e 2

m &= 1+ pAXDexpB'Z) M 1+ pAXi) expE'Zy)

n 1A+ pADYiOexpE'Z) 1S L+ pADYi (D) expE’'Zi)
me = 1+ pA(X)expé’Zi) My = 1+ pGi(Xi) exp§’Zi)

1 N A +pADYiexpE'Z) £ [(1+ pA)Y () exp(S/Z)}
My = 1+ pG (Xi) exp&'Zi) 1+ pGi(X) exp§’'2)
[+ pA)Y (M) expé'Z) £ [(l + pA)Y (1) exp(B’'2) :H

L 1+ pGi(X)exp§’'2) 1+ pGi(X) expé’'2)

[+ pA)Y(M) expp'Z) e [(1 + pA)Y (V) exp(B'2) ”

L 1+ pGi(X)expé’'Z) 1+ pGi(X)exp(B’'2)

[(1+ pA)Y(t) exp(B'2) _E |:(1 + pA)Y (1) exp('Z2) iH

L 1+ pGi(X)exp(B'2) 1+ pA(X) exp(f’2)

< 2(1+ p)(1+ pa)e®|1 — e 1F=51=C| L 2(1 + p)pe®PC sup |A(U) — G (U)]
uel0,1]

+ [E

+ |E

+ [E

ks i(HpAi)Yi(t)exp(s/zi) ~ E[(1+pA>Y(t> exp(s/zq
me & 1+ pGi(X) expE'Zy) 1+ 0Gi(X) exp'Z)

As my — oo, the three terms on the right hand side of the final inequality above can be
made as small as possible via a proper choicgaridl. Hence, we have shown that

sup
te[0,1]

1 Z L+ pADVI eXpB'Z) [(1+pA>Y(t>exp(ﬂ’Z>]’ o

my 1+ pA(Xi) exp(B'Zi) 1+ pA(X) exp(p’Z)

i=1
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With this result, we can now conclude that the denominator of (A.3) converges in supremum

(A+pA)Y () exp(8'Z) - .
norm to E[W]' Combining the results for the numerator and denominator,
dAm,

we can conclude that sy, 4 |dAm t) -y — 0.
. k
To prove the final result, note that

t
A () — fo y (uyd Ag(u)

/t 188 A+ pA)Yi (W) exp(B, Zi)
o \me & 14 pAn (X)) exp(By, Z0)

_1 ‘
) AR (U) — /0 Y (Wd Ao(W)

/t 138 A+ pA)Yi (W) exp(Bry Zi)
o \Me & 14 pAn (X)) exp(By, Z0)

t ’ -1
B / <E |:(1+ pA)Y (U) exp(p Z)i|> dE[NW)]
0 1+ pA(X) exp(B’Z)

-1

) /t 18 L+ pADY W) expAn Z0)
~|Jo \Mk 1+PAmk(Xi)eXp(/§ﬁqui)

’ -1
~ (E [(1+ pA)Y (U) exp(B Z)D AR ()
1+ pA(X) exp(p’Z)

t A+ pAYWexpBZ)T\ L, -
" /o (E[ 1+ pAX) expB'Z) D AN (W) — E[NOD
(1 m, <1+pAi)wu)exp<B;nkzi)>‘l
< sup || — = =
uelo.] |\ Mk =7 1+ pAm (Xi) exXp(B, Zi)

1+ pAX) exp(B'Z)

/t (E [(1+ pA)Y (U) exp(B'Z)
0 1+ pAX) exp(B'Z)

_ (E [(1+ PAY (W) exp(ﬁ/aD‘l

+

-1
D d(Nm, (u) — E[N(u)])’

The first term on the right hand side of the inequality converges to zero because the de-

nominator of (A.3) was shown to convergﬁ@%] in supremum norm. The
second term converges to zero by the Helly-Bray lemma. Pointwise convergence can be
strengthened to uniform convergence by applying the same monotonicity argument used
in the proof of the Glivenko-Cantelli Theorem (page 96 of Shorack and Wellner, 1986).
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