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Abstract. The generalized odds-rate class of regression models for time to event data is indexed by a non-negative
constantρ and assumes that

gρ(S(t |Z)) = α(t)+ β ′Z
wheregρ(s) = log(ρ−1(s−ρ − 1)) for ρ > 0, g0(s) = log(− logs), S(t |Z) is the survival function of the time
to event for an individual withqx1 covariate vectorZ, β is aqx1 vector of unknown regression parameters, and
α(t) is some arbitrary increasing function oft . Whenρ = 0, this model is equivalent to the proportional hazards
model and whenρ = 1, this model reduces to the proportional odds model. In the presence of right censoring, we
construct estimators forβ and exp(α(t)) and show that they are consistent and asymptotically normal. In addition,
we show that the estimator forβ is semiparametric efficient in the sense that it attains the semiparametric variance
bound.

Keywords: Nonparametric maximum likelihood, proportional hazards model, proportional odds model, survival
analysis

1. Introduction

In the analysis of clinical trials, regression models are often used to assess the relationship
between a time-to-event outcome and covariates. The most widely used of these models is
the proportional hazards model introduced by Cox (1972). More recently, Bennett (1983)
presented the proportional odds regression model. A large class of models which includes
both the proportional hazards and proportional odds models was discussed by Harrington
and Fleming (1982), Clayton and Cuzick (1986) and Dabrowska and Doksum (1988a). This
class is referred to as the generalized odds-rate class of regression models and is indexed by
a non-negative constantρ. If we let T denote the time to event andZ be a corresponding
qx1 vector of covariates, then a proportionalρ-odds model within this class assumes that

gρ(S(t |Z)) = α(t)+ β ′Z (1)

wheregρ(s) = log(ρ−1(s−ρ − 1)) for ρ > 0, g0(s) = log(− logs), S(t |Z) is the survival
function of T given Z, β is a qx1 vector of unknown regression parameters, andα(t) is
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some arbitrary increasing function oft . Note that whenρ = 0, (1) is equivalent to the
proportional hazards model and whenρ = 1, (1) reduces to the proportional odds model.

The generalized odds-rate class of regression models is a subset of the class of semipara-
metric linear transformation models. This latter class is comprised of models in which an
unknown transformation of the time to event is assumed to be linearly related to covariates
plus an independent random error with a completely specified distribution. Specifically, we
can rewrite (1) as

α(T) = −β ′Z + ερ (2)

where exp(ερ) is distributed according to a Pareto(ρ) distribution forρ > 0 and an expo-
nential(1) distribution forρ = 0.

In the presence of right censoring, we are interested in making inferences about the
regression parameters. For the more general class of semiparametric linear transformation
models, at least two different approaches have been proposed to estimate these parameters.
These approaches can be applied to the generalized odds-rate class. Dabrowska and Doksum
(1988b) used a simulation-based approach to approximate the partial likelihood and the
maximum partial likelihood estimator. Assuming that the censoring distribution does not
depend on covariates, Cheng, Wei, and Ying (1995, 1997) adopted a generalized estimating
approach to estimate the regression parameters and were able to establish consistency and
asymptotic normality of their estimator. For the generalized odds-rate class, Harrington and
Fleming (1982) proposed theGρ statistic for efficiently testing the proportionality parameter
in the two-sample, right-censored data problem. Clayton and Cuzick (1986) showed how
to compute a maximum marginal likelihood estimator forβ by using a quasi-EM algorithm.
Dabrowska and Doksum (1988a) considered estimation of the proportionality parameter
in the two-sample, uncensored problem. For the proportional odds model, Bennett (1983)
approximated the likelihood by introducing new nuisance parameters for each distinct
failure time and then applied standard maximum likelihood theory to obtain a parameter
estimate forβ. Pettitt (1983, 1984) proposed a weighted least squares estimator which
was based on maximizing an approximation to the marginal likelihood of the ranks of
the censored and uncensored failure times. Parzen and Harrington (1993) developed an
adaptive spline procedure with a small number of knots to estimate exp(α(t)), the baseline
odds of failing by timet , and then applied standard likelihood techniques to estimateβ. For
the two-sample problem, Hsieh (1995) used empirical process approximations to formulate
a non-linear regression equation which yields a generalized least squares estimator forβ.
Murphy, Rossini, and van der Vaart (1997) used profile likelihood techniques to construct
a semiparametric efficient estimator forβ and showed that their estimator was consistent
and asymptotically normal. For the proportional hazards model, Cox (1975) proposed the
partial likelihood estimator for the regression parameters. The asymptotic properties of this
estimator were established by Tsiatis (1981) and Andersen and Gill (1982).

The goal of this paper is to find a semiparametric efficient estimator for the regression
parameters in the proportionalρ-odds model when the time-to-event outcome is subject to
right censoring. To do this, we first find the semiparametric variance bound (Section 3).
Then, in Section 4, we define our estimator, which is similar to the one proposed by Bennett
(1983). In Section 5, we show that our estimator is consistent, asymptotically normal, and



GENERALIZED ODDS-RATE CLASS OF REGRESSION MODELS 357

attains the efficiency bound. In the process, we provide a consistent and asymptotically
normal estimator for exp(α(t)). For the most part, our proofs mimic the techniques used
by Murphy (1994, 1995) to establish the asymptotic theory for the frailty model. Our
proofs differ in the asymptotic normality section where we introduce results from empirical
process theory (van der Vaart and Wellner, 1996). While the theoretical arguments used in
this paper are not new, it does present and validate estimation procedures for a rich class of
models which serve as an alternative to the often overused proportional hazards model.

Our results are all conditional onρ being fixed and known. Assumingρ is known, we
devote Section 6 to the results of a simulation study designed to test how well our estimation
procedure works in small to moderate samples and under different degrees of censoring.
Selection ofρ is a crucial step in model fitting. However, it is an unresolved issue as to
whether the variability ofβ should be affected by the selection ofρ (Hinkley and Runger,
1984). In an example in Section 7, we discuss two methods for estimatingρ, profile like-
lihood estimation and a graphical procedure, but present results forβ conditional on this
transformation. The alternative approach to model selection (Bickel and Doksum, 1981)
requires that the variability of the parameter estimates reflect estimation of the transforma-
tion. The theory necessary to handle this approach is beyond the scope of this paper. We
conclude with a summary in Section 8.

2. The Proportional ρ-Odds Model

Let Z be aq×1 vector of covariates. Denote the time to event and the time of censoring by
the positive, bounded random variables,T andC, respectively. Without loss of generality,
we assume thatT and C are bounded from above by 1. It is assumed thatT and C
are conditionally independent given the covariateZ. The observable time until death or
censoring will be denoted by the bivariate random vector(X,1), whereX = min(T,C)
and1 = 1 if T ≤ C and 0 otherwise.

The distribution of the survival timeT is related to the covariateZ according to the
proportionalρ-odds regression model (1). We restrict attention to positiveρ since the
theory of semiparametric efficient estimation in the proportional hazards model has been
well established. From (1), we can write

S(t |Z) = (1+ ρA(t)exp(β ′Z))−1/ρ

and

λ(t |Z) = a(t)exp(β ′Z)
1+ ρA(t)exp(β ′Z)

whereλ(t |Z) = − ∂ log S(t |z)
∂t , a(t) = exp(α(t)) dα(t)

dt is any arbitrary, non-negative function,
A(t) = ∫ t

0 a(u)du = exp(α(t)), andr (t) = log(a(t)). Let β0 andα0(t) represent the
true values ofβ andα(t), respectively. We assume thatβ0 belongs to a compact set, say
[−b,b]q, A0(t) = exp(α0(t)) is an absolutely continuous, bounded, increasing function,
and|Z| is bounded by a constantc.
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Let n be the number of individuals in the study. Suppose that associated with each
individual is the random vector(Xi ,1i , Zi ), i = 1, . . . ,n, which are assumed to be
independent and identically distributed. Since we are dealing with i.i.d. data, we will
first focus attention on the individual censored data likelihood. Suppressing the individual
subscript, we can write this likelihood as

L(β, A) = [λ(X|Z)]1S(X|Z) = (a(X)exp(β ′Z))1

(1+ ρA(X)exp(β ′Z))1/ρ+1

The log likelihood is

`(β, A) = 1(log(a(X))+ β ′Z)− (1/ρ +1) log(1+ ρA(X)exp(β ′Z))

3. Semiparametric Variance Bound

The semiparametric variance bound is defined to be the supremum of the Cramer-Rao
bounds forβ over all regular parametric submodels (see Newey, 1990). In the above
setting, a parametric submodel corresponds to a parameterization ofa(u), saya(u, η),
wherea(u, η0) = a0(u) = exp(α0(t))

dα0(t)
dt for someη0. The parameters of the submodel

areθ = (β ′, η′)′. So the log likelihood for a parametric submodel is

`(β, η) = 1(log(a(X, η))+ β ′Z)− (1/ρ +1) log(1+ ρA(X, η)exp(β ′Z))

whereA(x, η) = ∫ x
0 a(u, η)du. The score forβ is

∂`

∂β
= 1Z

1+ ρA(X, η)exp(β ′Z)
− Z A(X, η)exp(β ′Z)

1+ ρA(X, η)exp(β ′Z)

=
∫ 1

0

Z

1+ ρA(u, η)exp(β ′Z)
d M(u, ρ, β, η) (3)

whereM(t, ρ, β, η) = N(t)− ∫ t
0

a(u,η)exp(β ′Z)
1+ρA(u,η)exp(β ′Z)Y(u)du is theFt -counting process mar-

tingale,N(t) = 1(X ≤ t,1 = 1), Y(u) = 1(X ≥ u), andFt is the smallest sigma-algebra
generated by{N(u),Y(u),0≤ u ≤ t}. The score forη is

∂`

∂η
= 1

(
aη(X, η)

a(X, η)
− ρAη(X, η)exp(β ′Z)

1+ ρA(X, η)exp(β ′Z)

)
− Aη(X, η)exp(β ′Z)

1+ ρA(X, η)exp(β ′Z)

=
∫ 1

0

(
aη(u, η)

a(u, η)
− ρAη(u, η)exp(β ′Z)

1+ ρA(u, η)exp(β ′Z)

)
d M(u, ρ, β, η) (4)

whereaη(x, η) = ∂a(x,η)
∂η

and Aη(x, η) =
∫ x

0 aη(u, η)du. Let Sβ andSη denote the scores
for β andη evaluated at the truth, respectively.

Formally, we define the tangent set in the nonparametric direction,3, to be the mean
square closure of the set of all random vectorsASη, whereSη is the score forη in some
regular parametric submodel andA is a conformable constant matrix withq rows. That is,
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3 = {` ∈ Rq : E[‖`‖2] <∞, ∃Aj Sηj with lim
j→∞

E[‖`− Aj Sηj ‖2] = 0},

whereSηj is the nuisance score vector evaluated at the truth from thej th parametric sub-

model, Aj is aq-row conformable matrix of constants, and‖`‖2 = `′`. Sinceaη(u,η)
a(u,η) can

be any function ofu, a plausible conjecture for3 is

3 = { f (X,1, Z) : f (X,1, Z)

=
∫ 1

0

(
w(u)− ρ

∫ u
0 a0(v)exp(β ′0Z)w(v)dv

1+ ρA0(u)exp(β ′0Z)

)
d M(u, ρ, β0, η0),

w(u) is anyq − dimensional function ofu, E[‖ f (X,1, Z)‖2] <∞}
To verify this conjecture, we need to show that there exists a parametric submodel with
Sη = f (X,1, Z) for any f (X,1, Z) ∈ 3. Given the relationship betweenw(u) and
f (X,1, Z), a parametric submodel witha(u, η) = a0(u)(1+ η′w(u)), with η0 = 0, has
this property.

We consider3 to be a subset of a Hilbert space ofqx1 random vectorsH , with inner
product E[H ′1H2] and E[H ′H ] < ∞. We define the efficient score forβ as Sef f =
Sβ −5[Sβ |3], where5[·|·] is the projection operator. Since3 can be shown to be linear,
the projection ofSβ on3,5[Sβ |3], exists and is the unique element of3 which satisfies
E[(Sβ −5[Sβ |3])′`] = 0 for all ` ∈ 3. So, provided that theE[Sef f S′ef f ] is nonsingular,
the semiparametric variance bound,V , is (E[Sef f S′ef f ])

−1.
To projectSβ onto3, we need to find the vectorw(u) such that

E

[∫ 1

0

(
Z

1+ ρA0(u)exp(β ′0Z)
− w(u)

+ ρ
∫ u

0 a0(v)exp(β ′0Z)w(v)dv

1+ ρA0(u)exp(β ′0Z)

)′
d M(u, ρ, β0, η0)

∗
∫ 1

0

(
w∗(u)− ρ

∫ u
0 a0(v)exp(β ′0Z)w∗(v)dv
1+ ρA0(u)exp(β ′0Z)

)
d M(u, β0, η0)

]
= 0 ∀w∗

Through algebra, we can show that the vectorw(u) which satisfies the above equation is a
solution to the following integral equation:

w(u)−
∫ 1

0
K (u, v)w(v)dv = f (u), u ∈ [0,1] (5)

where

K (u, v) =
E[

ρ(1+ρ1)a0(u)exp(β ′0Z)Y(u)a0(v)exp(β ′0Z)Y(v)
(1+ρA0(X)exp(β ′0Z))2 ]

E[
(1+ρ1)a0(u)exp(β ′0Z)Y(u)

1+ρA0(X)exp(β ′0Z) ]

f (u) =
E[

(1+ρ1)Za0(u)exp(β ′0Z)Y(u)
(1+ρA0(X)exp(β ′0Z))2 ]

E[
(1+ρ1)a0(u)exp(β ′0Z)Y(u)

1+ρA0(X)exp(β ′0Z) ]
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By showing that maxu∈[0,1]
∫ 1

0 |K (u, v)|dv < 1, we know that there exists a solution to this
integral equation which can be found by successive approximation (Kress, 1989). So, we
write

max
u∈[0,1]

∫ 1

0
|K (u, v)|dv = max

u∈[0,1]

E[
(1+ρ1)a0(u)exp(β ′0Z)Y(u)

1+ρA0(X)exp(β ′0Z) ∗ ρA0(X)exp(β ′0Z)
1+ρA0(X)exp(β ′0Z) ]

E[
(1+ρ1)a0(u)exp(β ′0Z)Y(u)

1+ρA0(X)exp(β ′0Z) ]

This expression is less than 1 since
ρA0(X)exp(β ′0Z)

1+ρA0(X)exp(β ′0Z) < 1. Denote the successive approxi-

mation solution bywef f (u). Then, the efficient score is

Sef f =
∫ 1

0

(
Z

1+ ρA0(u)exp(β ′0Z)
− wef f (u)

+ ρ
∫ u

0 a0(v)exp(β ′0Z)wef f (v)dv

1+ ρA0(u)exp(β ′0Z)

)
d M(u, ρ, β0, η0)

and the variance bound isV = E[Sef f S′ef f ]
−1. In fact, we can show that

E[Sef f S
′
ef f ] = E

[
(1+ ρ1)

∫ X
0 a0(u)exp(β ′0Z)(Z − wef f (u))Z′du

(1+ ρA0(X)exp(β ′0Z))2

]

4. Estimation

To estimate the regression parameters and the baseline odds of failing by time t, we use
full nonparametric maximum likelihood. We assume that there are no tied death times
and the number of deaths,k(n), increases with the sample size. This assumption is made
for ease of presentation, but our results can be easily adapted to accommodate tied death
times. For simplicity of notation, it will be useful to reorder the indices of the data such
that X1, . . . , Xk(n) represents the increasingly ordered failure times andXk(n)+1, . . . , Xn

represents the non-decreasingly ordered censored observations. To obtain our estimates,
we maximize the following extended empirical likelihood:

n∏
i=1

∏
0≤t≤1

(
Yi (t)1A(t)exp(β ′Zi )

1+ ρA(t)exp(β ′Zi )

)1Ni (t)

exp

(
−
∫ 1

0

Yi (u)exp(β ′Zi )

1+ ρA(u)exp(β ′Zi )
d A(u)

)
(6)

where1A(t) represents the jump ofA at timet , andNi (t) andYi (t) are the failure counting
process and at risk process for thei th individual, respectively. The natural logarithm of (6)
is given by

nLn(β, A) =
n∑

i=1

∫ 1

0
log

(
Yi (u)1A(u)exp(β ′Zi )

1+ ρA(u)exp(β ′Zi )

)
d Ni (u)

−
∫ 1

0

Yi (u)exp(β ′Zi )

1+ ρA(u)exp(β ′Zi )
d A(u) (7)
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We see that the maximizer̂An of (7) must be a step function which takes positive steps at
each of the jump times of theNi ’s (i.e., the death times). Restricting ourselves to functions
of this form, we can show that̂An exists and is finite.

THEOREM1 The maximizer of Ln(β, A), (β, A) = (β̂n, Ân) exists and is finite.

Proof: Note that the log empirical likelihoodLn is a continuous function ofβ and
the jump sizes ofA. That is, Ln is a continuous function on the convex, compact set
[−b,b]q X[0,U ]k(n), whereU is finite. On this set,Ln achieves its maximum. To show
that a maximum exists on the set [−b,b]q X[0,∞)k(n), we show that there exists aU
such that for all(β, A) ∈ {[−b,b]q X[0,∞)k(n)} \ {[−b,b]q X[0,U ]k(n)} there is a value
(β, A) ∈ [−b,b]q X[0,U ]k(n) which has a larger value ofLn. Consider a proof by contra-
diction. That is, suppose there does not exist such aU . Therefore, for allU there exists
(βU , AU ) ∈ {[−b,b]q X[0,∞)k(n)} \ {[−b,b]q X[0,U ]k(n)} which maximizesLn. But,
we can show thatLn(β

U , AU ) can be made arbitrarily small by increasingU , which is a
contradiction. To see this, leta1, . . . ,ak(n) denote the jump sizes at the death times. Then,

Ln(β, A) = 1

n

k(n)∑
i=1

log

(
ai exp(β ′Zi )

1+ ρ∑j∈S(Xi )
aj exp(β ′Zi )

)

− 1

nρ

n∑
i=1

log

(
1+ ρ

∑
j∈S(Xi )

aj exp(β ′Zi )

)
whereS(u) = { j : Xj ≤ u, j = 1, . . . , k(n)}. Note thatLn(β, A) is bounded from above by
sign(ρ−1) log(ρ)− 1

nρ

∑k(n)
i=1 log(1+ρai exp(β ′Zi )). If (β, A) ∈ {[−b,b]q X[0,∞)k(n)}\

{[−b,b]q X[0,U ]k(n)}, then there exists 1≤ j ≤ k(n) such thataj > U . Therefore,
Ln(β

U , AU ) < sign(ρ−1) log(ρ)− 1
nρ log(1+ρU exp(−qbc)) andLn(β

U , AU ) decreases
toward negative infinity asU increases toward positive infinity.

Since we know that(β̂n, Ân) exists and is finite, we know that the maximum will occur
when the derivative ofLn with respect to the jump sizes ofA is equal to zero. This leads
to the following equation for̂An:

Ân(t) =
∫ t

0

(
1

n

n∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′nZi )

1+ ρ Ân(Xi )exp(β̂ ′nZi )

)−1

dN̄n(u) (8)

whereN̄n(u) = 1
n

∑n
i=1 Ni (u).

5. Asymptotics

5.1. Almost Sure Consistency

Since we are interested in almost sure (a.s.) consistency, we work with fixed realizations of
the data,ω, which are assumed to lie in a set of probability one. This set,8, is the countable
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intersection of sets,8i , each of probability one. Each8i is a set on which the strong law
of large numbers holds for some average. Our consistency proof follows Murphy’s (1994)
proof of a.s. consistency in a proportional hazards model with a random effect. The proof
requires the definition of the following quantity which helps to mediate betweenÂn(t) and
A0(t):

Ān(t) =
∫ t

0

(
1

n

n∑
i=1

(1+ ρ1i )Yi (u)exp(β ′0Zi )

1+ ρA0(Xi )exp(β ′0Zi )

)−1

dN̄n(u) (9)

Note thatĀn is a step function with jumps at each of the death times and converges uniformly
to A0 (see Lemma 2 of the Appendix).

THEOREM2 Assume Pr[Y(t) = 1] is continuous in t andinft∈[0,1] E[Y(t)|Z] > 0. Then

sup
t∈[0,1]

|Ân(t)− A0(t)| → 0 a.s. and‖β̂n − β0‖2→ 0 a.s.

Proof: To begin, fixω ∈ 8. In Lemma 1 of the Appendix, we show that{Ân} does
not diverge. We know that every bounded sequence inRk has a convergent subsequence.
Thus, there exists aβ and a sequence{β̂nk} such thatβ̂nk → β. By Helly’s theorem (Ash,
1972), we know that there exists a functionA and a subsequence{Âmk} of {Ânk} such that
Âmk(t)→ A(t) for all t ∈ [0,1] at which A is continuous. Since every subsequence of a
convergent subsequence inRk must converge to the same limit, we know that{(β̂mk , Âmk)}
must converge to(β, A). We demonstrate in Lemma 2 of the Appendix thatA is continuous
at the continuity points ofA0. Now, we know thatLmk(β̂mk , Âmk)− Lmk(β0, Āmk) ≥ 0 for
all finite mk. Furthermore, we know that

0 ≤ Lmk(β̂mk , Âmk)− Lmk(β0, Āmk)

= 1

mk

mk∑
i=1

∫ 1

0
log(χmk,i (u))

{
d Ni (u)− Yi (u)exp(β ′0Zi )

1+ ρ Āmk(u)exp(β ′0Zi )
dĀmk(u)

}
+ 1

mk

mk∑
i=1

∫ 1

0
{log(χmk,i (u))−{χmk,i (u)− 1}} Yi (u)exp(β ′0Zi )

1+ρ Āmk(u)exp(β ′0Zi )
dĀmk(u)

where

χmk,i (u) =
Yi (u)1Âmk (u)exp(β̂ ′mk

Zi )

1+ρ Âmk (u)exp(β̂ ′mk
Zi )

Yi (u)1Āmk (u)exp(β ′0Zi )

1+ρ Āmk (u)exp(β ′0Zi )

First, we note that the second term is less than or equal to zero since forx > 0, log(x) −
(x − 1) ≤ 0. Using the results and techniques of Lemma 2 of the Appendix, the first term
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can be shown to converge to zero and the second term converges to

E

∫ 1

0

log

 Y(u)exp(β ′Z)
1+ρA(u)exp(β ′Z)

Y(u)exp(β ′0Z)
1+ρA0(u)exp(β ′0Z)

γ (u)


−



Y(u)exp(β ′Z)
1+ρA(u)exp(β ′Z)

Y(u)exp(β ′0Z)
1+ρA0(u)exp(β ′0Z)

γ (u) } − 1


 Y(u)exp(β ′0Z)

1+ ρA0(u)exp(β ′0Z)
d A0(u)

 (10)

where

γ (u) =
E[

(1+ρ1)Y(u)exp(β ′0Z)
1+ρA0(X)exp(β ′0Z) ]

E[ (1+ρ1)Y(u)exp(β ′Z)
1+ρA(X)exp(β ′Z) ]

(11)

Note that (10) isequal tominus theKullback-Leibler information,E[`(β, A)]−E[`(β0, A0)].
Because of the above inequality, we know that the Kullback-Leibler information must
equal zero. By Jensen’s inequality, we know thatE[`(β, A)] is uniquely maximized
at (β0, A0). Furthermore, we can show thatE[`(β, A)] is strictly concave inβ and r
(r (u) = log(a(u))) up to a set of measure zero. Since there is a one-to-one relationship
between(β, r ) and (β, A), we know thatE[`(β, A)] − E[`(β0, A0)] = 0 if and only
if (β, A) = (β0, A0) almost everywhere. Therefore,(β̂mk , Âmk) converges to(β0, A0).
By Helly’s theorem, we know that(β̂n, Ân) must also converge to(β0, A0) This proof
can be conducted for allω ∈ 8. Therefore(β̂n, Ân) converges to(β0, A0) a.s. This
result can be strengthened to uniform convergence by the Glivenko-Cantelli theorem.

5.2. Asymptotic Normality

To establish the asymptotic distribution of our estimators(β̂n, Ân), we follow the function
analytic approach of Murphy (1995). Instead of calculating score equations as the derivative
of Ln with respect toβ and the jump sizes ofA, we work with one-dimensional submodels
through the estimators and differentiate at the estimators. That is, we setAd(t) =

∫ t
0 (1+

dh1(u))dÂn(u) andβd = dh2+ β̂n, whereh1 is a function andh2 is aq-dimensional vector.
Then, then we differentiate with respect tod and evaluate atd = 0 to getSn(β̂n, Ân)(h1, h2).
If (β̂n, Ân) maximizesLn, thenSn(β̂n, Ân)(h1, h2) = 0 for all (h1, h2). The form ofSn is
given bySn = Sn1+ Sn2, where

Sn1(β, A)(h1) = 1

n

n∑
i=1

∫ 1

0
h1(u)d Ni (u)

− 1

n

n∑
i=1

(1+ ρ1i )exp(β ′Zi )
∫ 1

0 Yi (u)h1(u)d A(u)

1+ ρA(Xi )exp(β ′Zi )

and
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Sn2(β, A)(h2) = 1

n

n∑
i=1

∫ 1

0
h′2Zi d Ni (u)− 1

n

n∑
i=1

(1+ ρ1i )h′2Zi A(Xi )exp(β ′Zi )

1+ ρA(Xi )exp(β ′Zi )

Let BV[0,1] denote the space of bounded variation functions defined on [0,1]. We
assume that the class ofh to be the spaceH = BV[0,1]x Rq. With h ∈ H , we define
the norm onH to be‖h‖H = ‖h1‖v + |h2|1, where‖h1‖v is the absolute value ofh1(0)
plus the total variation ofh1 on the interval [0,1] and|h2|1 is theL1-norm ofh2. Define
Hp = {h ∈ H : ‖h‖H = ‖h1‖v + |h2|1 ≤ p}. If p = ∞, then the inequality is strict.

Define〈β, A〉(h) = ∫ 1
0 h1(u)d A(u)+ h′2β. Then,(β, A) indexes the space of functionals

9 = {〈β, A〉 : suph∈Hp
|〈β, A〉(h)| <∞}. Now9 ⊂ `∞(Hp), where`∞(Hp) is the space

of bounded real-valued functions onHp under the supremum norm‖U‖ = suph∈Hp
|U (h)|.

The score functionSn is a random map from9 to `∞(Hp) for all finite p. Convergence
in probability (denoted byP∗) and weak convergence will be in terms of outer measure.
Outer measure allows us to deal with random quantities which may not be measurable.
A random variable isoP∗(·) if it is bounded by a measurable function which isoP(·). A
similar definition holds forOP∗(·).
THEOREM3 Assume Pr[Y(t) = 1] is continuous in t andinft∈(0,1] E[Y(t)|Z] > 0. Then

〈√n(β̂n − β0),
√

n(Ân − Ao)〉 H⇒ G

in `∞(Hp); G is a tight Gaussian process iǹ∞(Hp)with mean zero and covariance process

Cov(G(h),G(h∗)) =
∫ 1

0
h1(u)σ

−1
(1) (h

∗)(u)d A0(u)+ h′2σ
−1
(2) (h

∗)

whereσ = (σ1, σ2) is a continuous linear operator from H∞ to H∞, with inverseσ−1 =
(σ−1
(1) , σ

−1
(2) ). The form ofσ is as follows:

σ1(h)(u) = E

[
(1+ ρ1)Y(u)exp(β ′0Z)Z′

(1+ ρA0(X)exp(β ′0Z))2

]
h2

+ h1(u)E

[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]

− E

[
(1+ ρ1)Y(u)exp(β ′0Z)

∫ X
0 h1(v)exp(β ′0Z)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]

and

σ2(h) = E

[
(1+ ρ1)Z Z′A0(X)exp(β ′0Z)

(1+ ρA0(X)exp(β ′0Z))2

]
h2

+ E

[
(1+ ρ1)Z exp(β ′0Z)

∫ X
0 h1(v)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]
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The proof of Theorem 3 is guided by the following theorem from van der Vaart (1995).
In this theorem, the parameter space9 is a subset of̀∞(Hp) and the score function is a
random mapSn: 9 → `∞(Hp). The true parameter value isψ0 and a maximum likelihood
estimator isψ̂n. The asymptotic version ofSn is S. We haveSn(ψ̂n) = 0, S(ψ0) = 0, and
ψ̂n − ψ0 = oP∗(1) as elements iǹ∞(Hp). The notation “lin” before a set denotes the set
of all finite linear combinations of the elements of the set.

THEOREM4 Assume the following:

1. (Asymptotic distribution of the score function)
√

n(Sn(ψ0)− S(ψ0)) H⇒ W, where W
is a tight Gaussian process oǹ∞(Hp);

2. (Fréchet differentiability of the asymptotic score)
√

n(S(ψ̂n) − S(ψ0)) =
−√nṠ(ψ0)(ψ̂n − ψ0) + oP∗(1+

√
n‖ψ̂n − ψ0‖), whereṠ(ψ0) : lin{ψ − ψ0 : ψ ∈

9} → `∞(Hp) is a continuous linear operator;

3. (Invertibility) Ṡ(ψ0) is continuously invertible on its range;

4. (Approximation condition)‖√n((Sn− S)(ψ̂n)− (Sn− S)(ψ0))‖ = oP∗(1+
√

n‖ψ̂n−
ψ0‖)

Then,
√

n(ψ̂n − ψ0) H⇒ Ṡ(ψ0)
−1W.

Proof: (Theorem 3) To prove Theorem 3, set̂ψn = 〈β̂n, Ân〉, ψ0 = 〈β0, A0〉, and let
S(ψ) = S(β, A), whereS(β, A) is the expectation ofSn(β, A). That isS= S1+S2, where

S1(β, A)(h1) = E

[∫ 1

0
h1(u)d N(u)

]
− E

[
(1+ ρ1)exp(β ′Z)

∫ X
0 h1(u)d A(u)

1+ ρA(X)exp(β ′Z)

]

and

S2(β, A)(h2) = E

[∫ 1

0
h′2Zd N(u)

]
− E

[
(1+ ρ1)A(X)exp(β ′Z)h′2Z

1+ ρA(X)exp(β ′Z)

]
Forψ − ψ0 ∈ `∞(Hp), it is useful to place bounds on‖ψ − ψ0‖. In particular, we can
show that

p‖β − β0‖1 ∨ p‖A− A0‖∞ ≤ ‖ψ − ψ0‖ ≤ p‖β − β0‖1 ∨ 2p‖A− A0‖∞
In the proof that follows, we will often use these bounds in place of‖ψ − ψ0‖.

With the assumptions of Theorem 3, let’s validate each of the conditions of Theorem 4.
First we want to establish condition 1 for all finitep. We show that the class of score
functions9∗ ≡ {9∗(A0,β0)

h : h ∈ Hp} is Donsker, where the score operator9∗ is given

by9∗(A,β)h = l̇ah1 + h′2
∂`
∂β
, with ∂`

∂β
defined in (3) and the operatorl̇a defined by (4) with

l̇ ah1 = l̇a
aη
a = ∂`

∂η
. Boundedness ofZ implies thatSβ is a uniformly bounded function,

which implies that{h′2Sβ : h2 ∈ Rq, |h2|1 ≤ p} is Donsker (see Example 2.10.10 of van
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der Vaart and Wellner, 1996). Since the sum of bounded Donsker classes is Donsker, the
class{l̇a0h1 : h1 ∈ BV[0,1], ‖h1‖v ≤ p} is Donsker if the following two classes

F1 =
{
1h1 : h1 ∈ BV[0,1], ‖h1‖v ≤ p

}
, (12)

F2 =
{

fh1(X,Z,1)=
(1+1ρ) ∫ X

0 h1d A0 exp(β ′0Z)

1+ρA0(X)exp(β ′0Z)
: h1∈BV[0,1], ‖h1‖v≤ p

}
(13)

are Donsker with sup{|E[ f ]| : f ∈ Fi } <∞, i = 1,2. The classF1 is uniformly bounded,
and is Donsker sinceh1 varies over bounded variation functions (see Example 2.5.4 of van
der Vaart and Wellner, 1996). The classF2 equals a uniformly bounded function times the
class{ fh1(X) =

∫ X
0 h1d A0 : h1 ∈ BV[0,1], ‖h1‖v ≤ p}, and this latter class is Donsker

becauseA0 is a monotone function (see Example 2.10.27, van der Vaart and Wellner,
1996). Also sup{|E[ f ]| : f ∈ F2} <∞ becauseh1 varies over a Donsker class. Thus, we
conclude that9∗ is Donsker, so that the first condition holds.

To establish condition 2, it suffices to show that‖S(ψ) − S(ψ0) − Ṡ(ψ0)(ψ − ψ0)‖ is
o(‖ψ − ψ0‖) as‖ψ − ψ0‖ → 0. To do this, we writeS(β, A) linearly in d(A− A0) and
β − β0 plus error terms. Specifically, note that

S1(β, A)(h) = E

[
(1+ρ1)exp(β ′0Z)

∫ X
0 h1(u)exp(β ′0Z)d A0(u)ρ

∫ X
0 d(A− A0)

(1+ρA0(X)exp(β ′0Z))2

]

− E

[
(1+ ρ1)exp(β ′0Z)

∫ X
0 h1(u)d(A− A0)

1+ ρA0(X)exp(β ′0Z)

]

− (β − β0)
′E

[
(1+ ρ1)Z exp(β ′0Z)

∫ X
0 h1(u)d A0

(1+ ρA0(X)exp(β ′0Z))2

]
+ error1(β, A)(h)

and

S2(β, A)(h) = −E

[
(1+ ρ1)h′2Z exp(β ′0Z)

∫ X
0 d(A− A0)

(1+ ρA0(X)exp(β ′0Z))2

]

− (β − β0)
′E
[
(1+ ρ1)Zh′2Z A0(X)exp(β ′0Z)

(1+ ρA0(X)exp(β ′0Z))2

]
+ error2(β, A)(h)

The error terms can be very easily shown to satisfy

sup
h∈Hp

|errori (β, A)(h)|
‖β − β0‖1 ∨ ‖A− A0‖∞ → 0

as‖β − β0‖1 ∨ ‖A− A0‖∞ → 0. This follows from the boundedness ofN, Y, β, andA.

‖S(ψ)− S(ψ0)− Ṡ(ψ0)(ψ − ψ0)‖
‖ψ − ψ0‖ ≤ ‖error1(β, A)(h)‖ + ‖error2(β, A)(h)‖

p‖β − β0‖1 ∨ p‖A− A0‖∞
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As ‖ψ − ψ0‖ → 0, we know thatp‖β − β0‖1 ∨ p‖A − A0‖∞ → 0. Hence, we can
conclude that‖S(ψ)− S(ψ0)− Ṡ(ψ0)(ψ −ψ0)‖ is o(‖ψ −ψ0‖) as‖ψ −ψ0‖ → 0. As a
consequence, note that

Ṡ(ψ0)(ψ̂n − ψ0)(h) = −
∫ 1

0
σ1(h)d(Ân − A0)+ (β̂n − β0)

′σ2(h).

For condition 3, we need to prove thatṠ(ψ0) is continuously invertible. Intuitively, it is
clear that the invertibility oḟS(ψ0) is closely connected to the invertibility ofσ = (σ1, σ2).
Because of the relationship between the variance of the score andσ , we refer toσ as the
Fisher information. Note thatσ is a linear operator fromL2(d A0)x Rq into itself. The
Fisher information is defined in an almost-everywhere sense (d A0), whereas we will need
invertibility everywhere due to the discreteness ofÂn. Forh ∈ L2(d A0)x Rq, we first show
that the Fisher information is one-to-one. That is, we will demonstrate∫ 1

0
σ1(h)(u)h1(u)d A0(u)+ h′2σ2(h) = 0

implies thath2 = 0 andh1 = 0 almost everywhere (d A0). Using the definitions forσ1(h)(u)
andσ2(h), we know that

E

{h1(u)−
ρ
∫ u

0 h1(v)exp(β ′0Z)d A0(v)− h′2Z

1+ ρA0(u)exp(β ′0Z)

}2
exp(β ′0Z)

1+ ρA0(u)exp(β ′0Z)
E[Y(u)|Z]


must equal zero, a.e (d A0). Since

exp(β ′0Z)
1+ρA0(u)exp(β ′0Z)E[Y(u)|Z] is a strictly positive random

variable, we know that for almost allω ∈ Ä,

h1(u)−
ρ
∫ u

0 h1(v)exp(β ′0Z(ω))d A0(v)− h′2Z(ω)

1+ ρA0(u)exp(β ′0Z(ω))

must equal zero, a.e. (d A0). This implies that for almost allω ∈ Ä,

h1(u)+
∫ u

0
ρ(h1(u)− h1(v))exp(β ′0Z(ω))d A0(v) = −h′2Z(ω)

a.e. (d A0). From this, we see thath2 must equal zero. Withh2 = 0, it is easy to show that
h1(u) must be zero a.e. (d A0).

Now, we want to use this fact to show thatσ , as a continuous linear operator fromH∞ to
H∞ has a continuous inverse. SinceH∞ is a Banach space, we know that ifσ is invertible,
then the inverse will be continuous (see Banach inverse theorem on page 149 of Luenberger,
1969). One way to show thatσ is invertible is to demonstrate thatσ is one-to-one and that it
can be written as the difference between a bounded, linear operator with a bounded inverse
and a compact, linear operator. This follows from Corollary 3.8 and Theorem 3.4 of Kress
(1989). To show thatσ is one-to-one, we setσ = 0 and show thath2 = 0 andh1(u) = 0
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for all u. If σ1(h)(u) = 0 for all u andσ2(h) = 0, then we know, from the arguments above,
thath2 = 0 andh1(u) = 0 a.e. (d A0). Let h = (h1,0), whereh1(u) = 0 a.e. (d A0). Then,

σ1(h)(u) = −E

[
(1+ ρ1)Y(u)exp(β ′0Z)ρ

∫ X
0 h1(v)exp(β ′0Z)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]

+ E

[
(1+ ρ1)Y(u)exp(β ′0Z)h1(u)

1+ ρA0(X)exp(β ′0Z)

]
= 0

for all u. By the definition ofh1, the first term must equal zero. The second term can be
rewritten as

E

[
exp(β ′0Z)

1+ ρA0(u)exp(β ′0Z)
E[Y(u)|Z]

]
h1(u) = 0

SinceE
exp(β ′0Z)

1+ρA0(X)exp(β ′0Z)E[Y(u)|Z]] is greater than 0 for allu, we know thath1(u)must be
identically equal to zero for allu.

Now, we want to show thatσ can be written as the difference between a continuously
invertible linear operator and a compact, linear operator. The first linear operator is

6(h) =
(

h1(u)E

[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]
,

E

[
(1+ ρ1)Z Z′A0(X)exp(β ′0Z)

(1+ ρA0(X)exp(β ′0Z))2

]
h2

)
and the second term is6(h)− σ(h). The inverse of6 is

6−1(h)(u) =
(

h1(u)E

[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]−1

,

E

[
(1+ ρ1)Z Z′A0(X)exp(β ′0Z)

(1+ ρA0(X)exp(β ′0Z))2

]−1

h2

)

From the assumptions of this theorem, it follows that6−1 is a bounded linear operator.
To show that6(h)− σ(h) is compact, we let{hn} be a sequence inHp. By the definition

of a compact operator (see Kress, 1989), we must prove that there exists a convergent
subsequence of6(hn) − σ(hn). Sinceh1n is of bounded variation, we can writeh1n as
the difference of increasing functions (see Lemma 2.3.3 of Ash, 1972). Both of these
increasing functions are bounded in absolute value by 2p. This means that Helly’s theorem
can be used to find a pointwise convergent subsequence. Let{hnk} denote the convergent
subsequence and leth∗ denote its limit. We must prove that6(hnk)− σ(hnk) converges to
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6(h∗)− σ(h∗) in ‖h‖H norm. To establish this result, note that6(h)− σ(h) is equal to(
−E

[
(1+ ρ1)Y(u)exp(β ′0Z)Z′

(1+ ρA0(X)exp(β ′0Z))2

]
h2

+ E

[
(1+ ρ1)Y(u)exp(β ′0Z)ρ

∫ X
0 h1(v)exp(β ′0Z)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]
,

− E

[
(1+ ρ1)Z exp(β ′0Z)

∫ X
0 h1(v)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

])
Now, ‖6(hnk)− σ(hnk)−6(h∗)+ σ(h∗)‖H is less than or equal to∥∥∥∥−E

[
(1+ ρ1)Y(u)exp(β ′0Z)Z′

(1+ ρA0(X)exp(β ′0Z))2

]
(h2nk − h∗2)

+ E

[
(1+ ρ1)Y(u)exp(β ′0Z)ρ

∫ X
0 (h1nk(v)− h∗1(v))exp(β ′0Z)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]∥∥∥∥∥
v

+
∥∥∥∥∥−E

[
(1+ ρ1)Z exp(β ′0Z)

∫ X
0 (h1nk(v)− h∗1(v))d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]∥∥∥∥∥
∞

This quantity is less than

(1+ ρ)cexp(qbc)‖h2n − h∗2‖1
+ (1+ ρ)exp(qbc)(ρ exp(qbc)+ c)

∫ 1

0
|h1n(v)− h∗1(v)|d A0(v)

Using the dominated convergence theorem, we can show that this sum converges to zero.
Therefore, we conclude that‖6(hn) − σ(hn) − 6(h∗) + σ(h∗)‖H converges to zero and
that6(h)− σ(h) is a compact operator fromHp onto its range for all finitep.

Using this result, we want to show that for all finitep, Ṡ(ψ0) is continuously invertible
on its range. It is sufficient to demonstrate that for all finitep, there exists aMp > 0 such
that

inf
φ∈lin{ψ−ψ0:ψ∈9}

suph∈Hp
| ∫ 1

0 σ1(h)dφ1+ σ2(h)φ2|
‖φ‖ (14)

greater than or equal toMp (see Theorem 2 on page 153 of Kantorovich and Akilov, 1982).
Becauseσ is a continuously invertible fromH∞ to H∞, we know that there existsr p > 0
such thatσ−1(Hr p) ⊂ Hp. Therefore, we know that (14) is greater than or equal

inf
φ∈lin{ψ−ψ0:ψ∈9}

suph∈σ−1(Hrp )
| ∫ 1

0 σ1(h)dφ1+ σ2(h)φ2|
‖φ‖

which is equivalent to
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inf
φ∈lin{ψ−ψ0:ψ∈9}

suph∈Hrp
| ∫ 1

0 h1dφ1+ h2φ2|
‖φ‖ (15)

Now, this quantity must be greater than or equal toMp = r p

2p . To see this, consider an

arbitrary elementφ ∈ {ψ − ψ0 : ψ ∈ 9}. That is,φ = ∑k
i=1 ci (ψi − ψ0) for some

k and some(c1, . . . , ck). Therefore, suph∈Hrp
| ∫ 1

0 h1dφ + h2φ2| is greater than or equal

to r p‖
∑k

i=1 ci (βi − β0)‖1 ∨ r p‖
∑k

i=1 ci (Ai − A0)‖∞, and‖φ‖ is less than or equal to
p‖∑k

i=1 ci (βi − β0)‖1 ∨ 2p‖∑k
i=1 ci (Ai − A0)‖∞. Thus, for allφ ∈ {ψ − ψ0 : ψ ∈ 9},

we know that the ratio in (15) is greater thanMp, which implies that (14) must be greater
thanMp. Hence, we have shown thatṠ(ψ0) is continuously invertible on its range.

To verify the approximation condition of Theorem 4, it suffices to show (by Lemma 1 of
van der Vaart, 1995) that{

9∗(A,β)h−9∗(A0,β0)
h : h ∈ Hp, ‖ψ − ψ0‖ < δ

}
(16)

is Donsker for someδ > 0 and

sup
h∈Hp

E[(9∗(A,β)h−9∗(A0,β0)
h)2] → 0 (17)

as(A, β)→ (A0, β0).

By breaking the class of (16) into two classes, we proceed by showing that the classesF3

andF4 defined below are Donsker with uniformly bounded envelopes:

F3 =
{

h′2Z

[
1+ A(X)exp(β ′Z)
1+ ρA(X)exp(β ′Z)

− 1+ A0(X)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]
: h2 ∈ Rq, |h2|1 ≤ p,

β ∈ [−δ, δ]q, A nonnegative, increasing withA(1) ≤ 2A0(1)

}
(18)

F4 =
{
(1+1ρ)

[ ∫ X
0 h1d Aexp(β ′Z)

1+ ρA(X)exp(β ′Z)

−
∫ X

0 h1d A0 exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]
: h1 ∈ BV[0,1],

‖h1‖v≤ p, β∈ [−δ, δ]q, A nonnegative, increasing withA(1)≤2A0(1)

}
.(19)

We use two results from empirical process theory, that classes of smooth functions are
Donsker (Theorem 2.7.1, van der Vaart and Wellner, 1996) and classes of Lipschitz trans-
formations of Donsker classes with integrable envelope functions are Donsker (Theo-
rem 2.10.6, van der Vaart and Wellner, 1996). Differentiability ofgβ(Z) = exp(β ′Z)
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in Z and boundedness of the derivative (because|Z| <∞) implies{gβ(Z) : β ∈ [−δ, δ]q}
is Donsker for any finiteδ. Since the class of nonnegative increasing functionsA on [0,1]
with A(1) ≤ 2A0(1) is Donsker by monotonicity, and is uniformly bounded, it follows that
the denominator{1+ρA(X)exp(β ′Z)}with (β, A) varying over the index class is Donsker
for any finiteδ. Since this denominator is bounded away from zero, another application of
Theorem 2.10.6 yields thatF3 is Donsker.

Further, Theorem 2.10.6 implies the classBVM of all real-valued functions on [0,1] that
are uniformly bounded by a constantM and are of variation bounded byM is Donsker. Since
‖ ∫ X

0 h1d A‖v ≤ ‖h1‖∞ ∗ ‖A‖v < ∞, the class{∫ X
0 h1d A : h1 ∈ BV[0,1], ‖h1‖v ≤ p}

with A varying over the set in (19) is Donsker. ThenF4 is Donsker since it is comprised
of ratios of bounded Donsker classes. Boundedness ofA0 and Z give sup{E[| f |; f ∈
Fi } <∞, i = 3,4, so that (16) holds. Condition (17) holds by the dominated convergence
theorem. Thus, we have shown that the approximation condition holds.

Putting these four results together, we know that for all finitep

−Ṡ(ψ0)
√

n(ψ̂n − ψ0)(h) =
∫ 1

0
σ1(h)(u)d

√
n(Ân − A0)+

√
n(β̂n − β0)

′σ2(h)

= √n(Sn(ψ̂n)− S(ψ0))(h)+ oP∗(1)

= √n(Sn(ψ0)− S(ψ0))(h)+ oP∗(1)

uniformly in h ∈ Hp. So,
√

n(ψ̂n −ψ0) H⇒ Ṡ(ψ0)
−1W. But, what isṠ(ψ0)

−1W? By the
continuous invertibility ofσ , we know that, for finitep, there exists a finiter p for which
σ−1(g) ∈ Hr p if g ∈ Hp. To get a weak convergence result forψ̂n at g ∈ Hp, we put
h = σ−1(g) in the above equation to get∫ 1

0
g1(u)d

√
n(Ân−A0)+

√
n(β̂n−β0)

′g2=
√

n(Sn(ψ0)−S(ψ0))(σ
−1(g))+oP∗(1)

uniformly in g ∈ Hp. The right hand side converges toW(σ−1(g)), which has mean zero

and variance
∫ 1

0 g1σ
−1
(1) (g)d A0+ σ−1

(2) (g)
′g2. Since this holds uniformly ing ∈ Hp, we can

conclude that

〈√n(β̂n − β0),
√

n(Ân − A0)〉 H⇒ G

whereG is a tight Gaussian process on`∞(Hp) with mean zero and covariance process

Cov[G(g),G(g∗)] =
∫ 1

0
g1σ

−1
(1) (g

∗)d A0+ σ−1
(2) (g

∗)′g2

Hence,Ṡ(ψ0)
−1W = G.

In the above framework, specific choices ofg correspond to the quantities of interest. For
example, if we letg1(u) = 0 for all u andg2 = ei , the i th unit vector, then we get thei th
element ofβ̂n. If we let g1(u) = 1(u ≤ t) andg2 = 0, then we get our estimator forA0(t).
The above theorem shows that these quantities are asymptotically normal. Theorem 2
verifies the consistency of these estimators.
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To estimate the asymptotic variance of〈√n(β̂n − β0),
√

n(Ân − A0)〉(g), we use the
following procedure. First, estimateσ with σ̂ . Next, solve forh such thatg1 = σ̂1(h) and
g2 = σ̂2(h). Finally, estimate the asymptotic variance as

∫ 1
0 g1h1dÂn + h′2g2. The natural

estimator forσ(h) is

σ̂1(h)(u) = 1

n

n∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′nZi )Z′i
(1+ ρ Ân(Xi )exp(β̂ ′nZi ))2

h2

− 1

n

n∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′nZi )ρ
∫ Xi

0 h1(v)exp(β̂ ′nZi )dÂn(v)

(1+ ρ Ân(Xi )exp(β̂ ′nZi ))2

+ h1(u)
1

n

n∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′nZi )

1+ ρ Ân(Xi )exp(β̂ ′nZi )

and

σ̂2(h) = 1

n

n∑
i=1

(1+ ρ1i )Zi Z′i Ân(Xi )exp(β̂ ′nZi )

(1+ ρ Ân(Xi )exp(β̂ ′nZi ))2
h2

+ 1

n

n∑
i=1

(1+ ρ1i )Zi exp(β̂ ′nZi )
∫ Xi

0 h1(v)dÂn(v)

(1+ ρ Ân(Xi )exp(β̂ ′nZi ))2

Due to the continuous invertibility ofσ , this estimation procedure is equivalent to
the following naive approach of estimation of the asymptotic variance. First, form the
second derivative matrix ofLn by taking derivatives with respect toβ and the jump
sizes ofA. Next, invert this large matrix, multiply by negative one and form the vec-
tor (g1(X1), . . . , g1(Xk(n)), g2). Finally, pre and post multiply the large inverted matrix
to get the estimate for the asymptotic variance. This is essentially the standard likelihood
approach to the finite parameter problem.

THEOREM5 Assume Pr[Y(t) = 1] is continuous in t andinft∈(0,1] E[Y(t)|Z] > 0. For
g ∈ Hp, the solution h= σ̂−1(g) exists with probability going to one as n increases. In

addition,
∫ 1

0 g1h1dÂn + h′2g2 converges in probability to
∫ 1

0 g1σ
−1
(1) (g)d A0+ σ−1

(2) (g)
′g2.

Proof: In Theorem 3 of Murphy (1995), the author outlines the method of proof. Suppose
we could show

sup‖h‖=1‖σ̂ (h)− σ(h)‖H
P→ 0 (20)

Then, becauseσ is continuously invertible,̂σ is continuously invertible on a set of proba-
bility converging to 1. The range of̂σ is all of H∞, which follows by the same proof that
Range(σ ) = H∞, as in Rudin (1973, pp 99–103). Sinceσ̂ converges toσ by (20) andσ
is continuously invertible onH∞, there exists a finiteq for which σ̂−1(Hq) ⊂ Hp on a set
of probability converging to 1. Therefore

‖σ̂−1(g)− σ−1(g)‖H ≤ suph∈Hq
‖σ̂−1(q)− σ−1(q)‖H

≤ suph∈Hp
‖σ−1(σ (h))− σ−1(σ̂ (h))‖H
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≤ suph∈Hp

‖σ−1(h)‖H

‖h‖H
suph∈Hp

‖σ(h)− σ̂ (h)‖H

Sinceσ−1 is a bounded operator, once 20 is shown, the proof is complete thatσ̂−1 converges
to σ−1 uniformly overH.

The most difficult part of this is showing that the variation of

1

n

n∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′nZi )ρ
∫ Xi

0 h1(v)exp(β̂ ′nZi )dÂn(v)

(1+ ρ Ân(Xi )exp(β̂ ′nZi ))2

− E

[
(1+ ρ1)Y(u)exp(β ′0Z)ρ

∫ X
0 h1(v)exp(β ′0Z)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]
goes to zero. We can bound this variation by the variation of

1

n

n∑
i=1

(
(1+ ρ1i )ρ

∫ Xi

0 h1(v)dÂn(v)

(1+ ρ Ân(Xi )exp(β̂ ′nZi ))2
(exp(β̂ ′nZi ))

2

− (1+ ρ1i )ρ
∫ Xi

0 h1(v)d A0(v)

(1+ ρA0(Xi )exp(β ′0Zi ))2
E
[
(exp(β ′0Zi ))

2|Ni ,Yi
])

Yi (u)

plus the variation of

1

n

n∑
i=1

(
(1+ ρ1i )ρ

∫ Xi

0 h1(v)d A0(v)

(1+ ρA0(Xi )exp(β ′0Zi ))2
E
[
(exp(β ′0Zi ))

2|Ni ,Yi
]

Yi (u)

− E[
(1+ ρ1)ρ ∫ X

0 h1(v)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2
(exp(β ′0Z))2Y(u)]

)

Uniform consistency of(β̂n, Ân) implies the first term converges to zero. The variation of
the second term is bounded above by(1+ ρ)ρ times∫ 1

0
‖h1‖v

∥∥∥∥∥1

n

n∑
i=1

E
[
(exp(β ′0Zi ))

2|Ni ,Yi
]

Yi (u)Yi (·)
(1+ ρA0(Xi )exp(β ′0Zi ))2

− E

[
(exp(β ′0Z))2Y(u)Y(·)

(1+ ρA0(X)exp(β ′0Z))2

]∥∥∥∥∥
v

d A0(u)

The integrand converges to zero by the strong law of large numbers in Banach spaces.
Thus the term converges to zero by the dominated convergence theorem, using‖h1‖v ≤ 1.

Finally, we want to bring the problem full circle and demonstrate that the asymptotic
variance of

√
n(β̂n − β0) is equal to the semiparametric variance bound calculated to

Section 3.2. By the Cramer-Wold device (see Serfling, 1980), it suffices to demonstrate
that the asymptotic variance ofλ′

√
n(β̂n − β0) is equal toλ′Vλ, whereλ is any vector in
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Rq. Thus, we have to show thatσ−1
(2) (g) = V g2, whereg1(u) = 0 for all u andg2 = λ. To

find σ−1
(2) (g), we must find anh such that

σ1(h)(u) = E

[
(1+ ρ1)Y(u)exp(β ′0Z)Z′

(1+ ρA0(X)exp(β ′0Z))2

]
h2

+ h1(u)E

[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]

− E

[
(1+ρ1)Y(u)exp(β ′0Z)ρ

∫ X
0 h1(v)exp(β ′0Z)d A0(v)

(1+ρA0(X)exp(β ′0Z))2

]
= 0 (21)

and

σ2(h) = E

[
(1+ ρ1)Z Z′A0(X)exp(β ′0Z)

(1+ ρA0(X)exp(β ′0Z))2

]
h2

+ E

[
(1+ ρ1)Z exp(β ′0Z)

∫ X
0 h1(v)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]
= λ (22)

Consider the solution,h2 = Vλ andh1(u) = −wef f (u)′W−1(U V − I )λ, where

U = E

[
(1+ ρ1) A0(X)exp(β ′0Z)Z Z′

(1+ ρA0(X)exp(β ′0Z))2

]

W = E

[
(1+ ρ1)

∫ X
0 exp(β ′0Z)wef f (u)Z′d A0(u)

(1+ ρA0(X)exp(β ′0Z))2

]
Note thatV = (U − W)−1. It is clear that this solution satisfies (22). To show that it
satisfies (21), we must show that

E

[
(1+ ρ1)Y(u)exp(β ′0Z)Z′

(1+ ρA0(X)exp(β ′0Z))2

]
Vλ

−wef f (u)
′E
[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]
W−1(U V − I )λ

+E

[
(1+ρ1)Y(u)exp(β ′0Z)ρ

∫ X
0 wef f (v)

′ exp(β ′0Z)d A0(v)

(1+ρA0(X)exp(β ′0Z))2

]
W−1(U V− I )λ = 0

for all u. SinceV = W−1(U V − I ), we know that this will hold if

E

[
(1+ ρ1)Y(u)exp(β ′0Z)Z′

(1+ ρA0(X)exp(β ′0Z))2

]

+E

[
(1+ ρ1)Y(u)exp(β ′0Z)ρ

∫ X
0 wef f (v)

′ exp(β ′0Z)d A0(v)

(1+ ρA0(X)exp(β ′0Z))2

]

−wef f (u)
′E
[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]
= 0
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for all u. This is satisfied becausewef f (u) is the solution to the integral equation (5).

6. Simulation Study

We performed a simulation study to assess the accuracy of our estimation approach. In
particular, we were interested in determining how well our method performs in small to
moderate sample sizes and how it is affected by the amount of censoring and different
values ofρ. Towards this end, we generated data according to aρ-proportional odds model
with two covariates. The first covariate was uniformly distributed on [0,1] and the second
covariate was Bernoulli (0.5). We considered three values ofρ, 0.5, 1.0, and 2.0, and
assumed thatA0(t) = exp{t} − 1. In addition, we assumed that censoring times were
uniformly distributed on the interval [0, tc], wheretc was chosen to yield censoring levels
of 10%, 20%, 40%, and 60%. We considered true values for the parameters to be either
0 or 1. We simulated data in sets of 100 subjects and for each combination of simulation
parameters, we performed 500 simulations. The models that we fit to the data corresponded
to the true value ofρ. In Table 1, we report the means, average standard errors, and Monte
Carlo standard errors for the parameter estimates from these simulations.

In general, we see that there is very little bias associated with our procedure. However,
there are five situations (indicated by∗) where there is a significant difference at the 0.05
level between the average of the parameter estimates and the true value of the parameter.
In addition, we note that the variability of the parameter estimates increases with the level
of censoring and the value ofρ. Finally, the normal approximation appears to work well
for this sample size as evidenced by the closeness of the Monte Carlo standard errors and
the average standard error estimates.

7. Veteran’s Administration Lung Cancer Trial

In the Veteran’s Administration lung cancer trial (Prentice, 1973; Kalbfleisch and Pren-
tice, 1980), males with inoperative lung cancer were randomized to either a standard or
experimental chemotherapy. The primary endpoint of interested was time until death, as
measured in days. For this example, we will only consider the subset of 97 patients who
received no prior therapy. We are interested in the relationship between the time to death
and two covariates, performance status at randomization (PS) and histological type of tu-
mor (squamous, small, adeno, or large). These data were analyzed using a proportional
odds model by Bennett (1983), Pettitt (1984), Parzen and Harrington (1993), Cheng et al.
(1995), and Murphy et al. (1996). All of these authors fit a model with PS and indicator
functions for tumor type. Table 2 presents the results of fitting this model using our method
as well as the results obtained by the other approaches. Table 3 displays the results of fitting
various models within the generalized odds-rate class. Specifically, we fit models withρ’s
ranging from 0.0 to 2.0. Figure 1 presents our estimates of the baseline survival function
for each of the fitted models. Note that all of these models paint a similar picture. Namely,
performance status at randomization is positively associated with survival for patients with
all tumor types. Furthermore, there is not a significant difference between the survival rates



376 SCHARFSTEIN, TSIATIS, AND GILBERT

Table 1. Results from the Simulation Study (Asterisk indicates significant difference (0.05 level) between
mean of parameter estimates and the truth).

β̂1 β̂2

ρ (β1, β2) Censoring Mean Avg. s.e. M.C. s.e. Mean Avg. s.e. M.C. s.e.

0.5 (1,1) 20% 1.0340 0.5337 0.5165 1.0177 0.3158 0.3245
40% 1.0615∗ 0.5729 0.5717 0.9966 0.3382 0.3467
60% 1.0565 0.6567 0.6849 1.0246 0.3902 0.3924

(1,0) 20% 1.0305 0.5360 0.5372 0.0186 0.3035 0.3121
40% 1.0390 0.5760 0.5962 0.0029 0.3272 0.3329
60% 0.9719 0.6583 0.7081 0.0267 0.3731 0.3862

(0,1) 20% −0.0251 0.5271 0.5332 0.9912 0.3170 0.3267
40% 0.0187 0.5673 0.5905 0.9914 0.3384 0.3291
60% 0.0523 0.6463 0.6574 1.0041 0.3898 0.3989

(0,0) 20% 0.0305 0.5276 0.5103 0.0084 0.3053 0.2966
40% −0.0119 0.5678 0.5972 −0.0296∗ 0.3278 0.3353
60% −0.0085 0.6496 0.6590 −0.0240 0.3730 0.3923

1.0 (1,1) 20% 0.9952 0.6362 0.6351 1.0149 0.3742 0.3612
40% 0.9713 0.6588 0.6724 1.0023 0.3890 0.3942
60% 1.0438 0.7309 0.7414 1.0189 0.4282 0.4445

(1,0) 20% 0.9777 0.6309 0.6213 −0.0011 0.3625 0.3569
40% 1.0472 0.6648 0.7075 −0.0027 0.3779 0.3868
60% 0.9380 0.7234 0.7724 0.0122 0.4119 0.4110

(0,1) 20% 0.0528 0.6252 0.6528 1.0344∗ 0.3749 0.3783
40% 0.0253 0.6609 0.6686 0.9839 0.3895 0.4047
60% 0.0175 0.7220 0.7311 1.0142 0.4280 0.4237

(0,0) 20% 0.0244 0.6244 0.6275 0.0025 0.3626 0.3625
40% 0.0038 0.6554 0.6439 0.0080 0.3800 0.3807
60% −0.0002 0.7189 0.7213 −0.0284 0.4149 0.4355

2.0 (1,1) 20% 0.9880 0.7960 0.7290 0.9735 0.4638 0.4622
40% 1.0614∗ 0.8109 0.8119 0.9973 0.4741 0.4809
60% 1.0824∗ 0.8526 0.9054 1.0257 0.5005 0.5293

(1,0) 20% 0.9334 0.7906 0.8388 −0.0064 0.4543 0.4604
40% 1.0358 0.8138 0.8421 0.0228 0.4653 0.4831
60% 1.0139 0.8563 0.8268 0.0355 0.4882 0.5349

(0,1) 20% −0.0340 0.7859 0.8110 0.9760 0.4646 0.4533
40% 0.0192 0.8033 0.8101 1.0512∗ 0.4779 0.4923
60% −0.0490 0.8543 0.9084 0.9803 0.4985 0.5232

(0,0) 20% 0.0491 0.7788 0.8151 0.0043 0.4544 0.4704
40% 0.0097 0.8045 0.8229 0.0017 0.4648 0.4546
60% 0.0029 0.8521 0.8927 0.0016 0.4909 0.4761
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Table 2.Veteran’s Administration Lung Cancer Data: Comparison of model estimates for propor-
tional odds model by method.

PS Squamous Small Adeno

Method Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

Scharfstein −0.053 0.010 −0.180 0.588 1.383 0.524 1.314 0.554
Murphy −0.055 0.010 −0.217 0.589 1.440 0.525 1.339 0.556
Cheng −0.055 0.010 −0.006 0.572 1.496 0.498 1.556 0.414
Parzen −0.053 0.010 −0.173 0.620 1.380 0.482 1.31 0.453
Pettitt −0.055 0.009 −0.177 0.593 1.440 0.520 1.300 0.554
Bennett −0.053 0.010 −0.181 0.588 1.380 0.524 1.31 0.554

Table 3.Veteran’s Administration Lung Cancer Data: Comparison of model estimates for varyingρ’s.

PS Squamous Small Adeno

ρ Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e. Log Likelihood

0.00 −0.024 0.006 −0.214 0.347 0.548 0.321 0.851 0.348 −375.44
0.50 −0.040 0.008 −0.240 0.479 1.100 0.440 1.119 0.462 −371.61
0.85 −0.050 0.010 −0.205 0.558 1.309 0.505 1.258 0.528 −371.16
1.00 −0.053 0.010 −0.180 0.588 1.383 0.524 1.314 0.554 −371.25
1.50 −0.064 0.012 −0.073 0.675 1.605 0.596 1.497 0.636 −372.69
2.00 −0.072 0.014 0.046 0.749 1.813 0.661 1.678 0.712 −373.71

of patients with squamous and large tumors. However, patients with large tumor types tend
to have significantly better survival prognosis than those with either small or adeno types.

Selection ofρ is a crucial step in model fitting. Cheng, Wei, and Ying (1997) proposed
a graphical approach to selection ofρ. They noted that if the model is correct, then the
distribution ofα̂(T) + β̂ ′Z should be distributed according to a Pareto(ρ) for ρ > 0 and
according to an exponential(1) distribution ifρ = 0. For givenρ, this distribution is best
approximated by the Kaplan-Meier estimator based on the sample{(α̂(Xi )+ β̂ ′Zi ,1i ), i =
1, . . . ,n}. Figure 2 presents P-P plots comparing the error distribution and the Kaplan-Meier
estimator for varying values ofρ ranging from 0.0 to 2.0. Ifρ is correct then the P-P plot
should form a 45 degree line through the origin. In Figure 2, we presents estimates of the
area between the P-P plot and the straight line. With this criteria,ρ = 1.0 seems to provide
the best model fit. An alternative approach is to jointly maximize the profile likelihood with
respect toρ. Figure 3 presents the log profile likelihood for varying values ofρ between 0
and 5. We see that it is maximized around 0.85. The last column of Table 3 displays the
actual value of the log profile likelihoods for the six values ofρ considered. So, it appears
that there are values ofρ > 0 that fit better than the proportional hazards model.

8. Summary

In this paper, we used full nonparametric maximum likelihood to construct estimators for the
regression parameters and baseline odds function in the generalized odds-rate model. Using
theory developed by Murphy (1994), Murphy (1995) and van der Vaart and Wellner (1996),
we showed that these estimators are consistent and asymptotically normal. Furthermore,
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Figure 1. Baseline survival functions for varyingρ’s.

the estimate of the regression parameters was shown to attain the semiparametric efficiency
bound. The estimators were also shown to perform well in small to moderate samples. For
future research, we intend to pursue the issue of model selection in greater depth.

Appendix

LEMMA 1 Assume Pr[Y(t) = 1] is continuous in t. Then for eachω ∈ 8, Ân(1) is
bounded by a finite constant for all n≥ 1.

Proof: To begin, fixω ∈ 8. To prove thatÂn(1) is bounded by a finite constant for all
n ≥ 1, consider a proof by contradiction. That is, suppose that limn→∞ Ân(1) = ∞. Note
thatLn(β̂n, Ân)− Ln(β0, Ān)must be non-negative for alln. The goal is to show that this
difference will become negative asn→∞, which is a contradiction. In the following, any
terms which are bounded away from positive infinity will be represented byO(1). Now,
we can write this difference as∫ 1

0
log

(
1Ân(u)

1Ān(u)

)
dN̄n(u)− 1

n

n∑
i=1

(1/ρ +1i ) log(1+ ρ Ân(Xi )exp(β̂ ′nZi ))

+1

n

n∑
i=1

1i (β̂n − β0)
′Zi + 1

n

n∑
i=1

(1/ρ +1i ) log(1+ ρ Ān(Xi )exp(β ′0Zi ))
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Figure 2. Goodness of fit P-P plots for various values ofρ’s.
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Figure 2. Continued.
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Figure 2. Continued.
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Figure 3. Log likelihood for varyingρ’s.

The last two terms above are bounded away from positive infinity. Using (8) and (9), we can
plug in and re-express the first term above. Thus, we know thatLn(β̂n, Ân)− Ln(β0, Ān)

is bounded from above by

O(1)+
∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )Yj (u)exp(β ′0Zj )

1+ ρA0(Xj )exp(β ′0Zj )

)
dN̄n(u)

−
∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )Yj (u)exp(β̂ ′nZj )

1+ ρ Ân(Xj )exp(β̂ ′nZj )

)
dN̄n(u)

−1

n

n∑
i=1

(1/ρ +1i ) log(1+ ρ Ân(Xi )exp(β̂ ′nZi ))

The second term is bounded away from positive infinity. So,Ln(β̂n, Ân) − Ln(β0, Ān) is
less or equal to

O(1)−
∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )Yj (u)exp(β̂ ′nZj )

1+ ρ Ân(Xj )exp(β̂ ′nZj )

)
dN̄n(u)

−1

n

n∑
i=1

(1/ρ +1i ) log(1+ ρ Ân(Xi )exp(β̂ ′nZi )) (A.1)
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Intuitively, we see that aŝAn diverges to infinity, the second term diverges to positive
infinity and the third term diverges to negative infinity. We wish to show that the sum
of these two terms diverges to negative infinity. To show this, we partition the interval
[0,1] according to a nonnegative, strictly decreasing subsequence 1= s0 > s1 > · · · ≥ 0.
Lettingc∗ = e−qbc, we can show that the second term in (A.1) is bounded from above by

−1

n

n∑
i=1

Yi (s1)

∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )c∗Yj (u)

1+ ρc∗ Ân(1)

)
d Ni (u)

−
P∑

p=1

1

n

n∑
i=1

Yi (sp+1)(1− Yi (sp))

∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )c∗Yj (u)

1+ ρc∗ Ân(sp)

)
d Ni (u)

−1

n

n∑
i=1

(1− Yi (sP+1))

∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )c∗Yj (u)

1+ ρc∗ Ân(Xj )

)
d Ni (u)

The third term in (A.1) is bounded from above by

−1

n

n∑
i=1

(1/ρ +1i )Yi (1) log(1+ ρc∗ Ân(1))

−
P∑

p=1

1

n

n∑
i=1

(1/ρ +1i )Yi (sp)(1− Yi (sp−1)) log(1+ ρc∗ Ân(sp))

−1

n

n∑
i=1

(1/ρ +1i )(1− Yi (sP)) log(1+ ρc∗ Ân(Xi ))

Combining the upper bounds for the second and third terms in (A.1), we get an overall
upper bound of

O(1)− 1

n

n∑
i=1

(1/ρ +1i )(1− Yi (sP)) log(1+ ρc∗ Ân(Xi ))

−1

n

n∑
i=1

Yi (s1)

∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )c
∗Yj (u)

)
d Ni (u)

−
P∑

p=1

1

n

n∑
i=1

Yi (sp+1)(1− Yi (sp))

∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )c
∗Yj (u)

)
d Ni (u)

− log(1+ ρc∗ Ân(1))

{
1

n

n∑
i=1

(1/ρ +1i )Yi (1)− 1

n

n∑
i=1

1i Yi (s1)

}
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−
P∑

p=1

log(1+ ρc∗ Ân(sp))

{
1

n

n∑
i=1

(1/ρ +1i )Yi (sp)(1− Yi (sp−1)

− 1

n

n∑
i=1

1i Yi (sp+1)(1− Yi (sp))

}

−1

n

n∑
i=1

(1− Yi (sP+1))

∫ 1

0
log

(
1

n

n∑
j=1

(1+ ρ1j )c∗Yj (u)

1+ ρc∗ Ân(Xj )

)
d Ni (u)

Note that we can ignore the second term above because it is negative for alln. The third
term is bounded away from positive infinity. To see this, note that this term is less than or
equal to

−
{

log(c∗)+ log

(
1

n

n∑
j=1

Yj (1)

)}
1

n

n∑
i=1

1i Yi (s1)

This term converges to−{log(c∗)+ log(E[Y(1)])}E[1Y(s1)], which is a bounded quantity.
For finite P, the fourth term is also bounded away from positive infinity. To establish this,
we note that the fourth term is less than or equal to

−
P∑

p=1

{
log(c∗)+ log

(
1

n

n∑
j=1

Yj (sp)

)}
1

n

n∑
i=1

1i Yi (sp+1)(1− Yi (sp))

whichconverges to theboundedquantity−∑P
p=1{log(c∗)+log(E[Y(sp)])}E[1Y(sp+1)(1−

Y(sp))]. If P is infinite, then we will have a problem. However, we can show how to choose
a finite sequence{sp} such that the sum of the last three terms diverges to negative infinity.
The sequence is constructed by the following recursive algorithm. ChooseU > 1 and
s0 = 1. Lets1 be the smallest value in the interval [0, s0) for which

E[((Uρ)−1+1)Y(1)] ≥ E[1Y(s1)]

If s1 = 0 then stop. Ifs1 > 0, then continuity ofPr [Y(t) = 1] implies equality above.
Then, continue according to the following procedure.

1. Setp = 1.

2. Givensp, let sp+1 be the smallest value in the interval [0, sp) for which

E[((Uρ)−1+1)Y(sp)(1− Y(sp−1)] ≥ E[1Y(sp+1)(1− Y(sp)]

3. If sp+1 = 0, then stop. Ifsp+1 > 0, continuity ofPr [Y(t) = 1] implies equality above.
Then, incrementp by 1 and return to step 2.

This algorithm must converge in a finite number of steps. Consider a proof by contradiction.
For finite K , we know that



GENERALIZED ODDS-RATE CLASS OF REGRESSION MODELS 385

E[((Uρ)−1+1)Y(1)] +
K∑

p=1

E[((Uρ)−1+1)Y(sp)(1− Y(sp−1))]

is equal to

E[1Y(s1)] +
K∑

p=1

E[1Y(sp+1)(1− Y(sp))]

This implies that

E[((Uρ)−1+1)Y(sK )] = E[1Y(sK+1)] (A.2)

Since{sp} is strictly decreasing and positive, it converges to a values0. Taking the limit of
(A.2) asK goes to infinity, we find that

E[((Uρ)−1+1)Y(s0+)] = E[1Y(s0+)],
which is impossible. Therefore, a finiteP exists withsP+1 = 0. By construction of
the algorithm, we can now see that the sum of the fifth, sixth, and seventh terms of the
upper bound diverge to negative infinity. In particular, we see that the coefficients of
log(1+ρc∗ Ân(sp)) are strictly positive for largen. This implies the the sum of the fifth and
sixth terms diverge to negative infinity. In addition, the seventh term is identically equal
to zero. Hence, we have established a contradiction to the original divergence premise and
we know thatÂn does not diverge.

LEMMA 2 Suppose thatinft∈(0,1] E[Y(t)|Z] > 0. Then

sup
t∈[0,1]

|Ān(t)− A0(t)| → 0 a.s.,

and for eachω ∈ 8,

• A is absolutely continuous.

• supt∈[0,1] | dÂmk

dĀmk

(t)− γ (t)| → 0

• supt∈[0,1] |Âmk(t)−
∫ t

0 γd A0| → 0

whereγ (u) is defined by (11)

Proof: To prove the first result, note that

A0(t) =
∫ t

0

(
E

[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

])−1

d E[N(u)]

whereE[N(u)] = E[
∫ u

0
Y(v)exp(β ′0Z)

1+ρA0(u)exp(β ′0Z)d A0(u)]. Then,

Ān(t)− A0(t) =
∫ t

0

(
1

n

n∑
i=1

(1+ ρ1i )Yi (u)exp(β ′0Zi )

1+ ρA0(Xi )exp(β ′0Zi )

)−1

dN̄n(u)

−
∫ t

0

(
E

[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

])−1

d E[N(u)]
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By Lemma A.1 of Tsiatis (1981), we know that

sup
t∈[0,1]

∣∣∣∣∣1n
n∑

i=1

(1+ ρ1i )Yi (u)exp(β ′0Zi )

1+ ρA0(Xi )exp(β ′0Zi )
− E

[
(1+ ρ1)Y(u)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]∣∣∣∣∣→ 0 a.s.

Using Lemma A.2 of Tsiatis (1981), we can then establish that supt∈[0,1] |Ān(t)−A0(t)| → 0
almost surely.

For the next three results, we fixω ∈ 8. The following argument shows thatA must be
absolutely continuous. If we letf be any non-negative, bounded, continuous function, then

∫ 1

0
f (u)d A(u) =

∫ 1

0
f (u)d(A(u)− Âmk(u))

+
∫ 1

0
f (u)

(
1

mk

mk∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′mk
Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )

)−1

dN̄mk(u)

≤
∫ 1

0
f (u)d(A(u)− Âmk(u))

+ (exp(qbc)+ a)
∫ 1

0
f (u)

(
1

mk

mk∑
i=1

Yi (u)

)−1

dN̄mk(u)

where limmk→∞ Âmk(1) < a. Consider each of the two terms on the right hand side of the
above inequality. The first term converges to zero by the Helly-Bray lemma (page 180 of
Loeve, 1963). Using Lemmas A.1 and A.2 of Tsiatis (1981), we know that the second term
converges to

(exp(qbc)+ a)
∫ 1

0
f (u) (E[Y(u)])−1 E

[
Y(u)exp(β ′0Z)

1+ ρA0(u)exp(β ′0Z)

]
d A0(u)

SinceE[Y(u)] is assumed to be bounded away from zero for allu ∈ (0,1], we know that

∫ 1

0
f (u)d A(u) ≤ (exp(qbc)+ a)

∫ 1

0
f (u) (E[Y(u)])−1 E

[
Y(u)exp(β ′0Z)

1+ ρA0(u)exp(β ′0Z)

]
d A0(u)

By choosing f appropriately, this inequality implies thatA must be continuous at the
continuity points ofA0. SinceA0 is assumed to be absolutely continuous, then so isA.



GENERALIZED ODDS-RATE CLASS OF REGRESSION MODELS 387

To prove the third result, consider

dÂmk

dĀmk

(t) =
1

mk

∑mk
i=1

(1+ρ1i )Yi (t)exp(β ′0Zi )

1+ρA0(Xi )exp(β ′0Zi )

1
mk

∑mk
i=1

(1+ρ1i )Yi (t)exp(β̂ ′mk
Zi )

1+ρ Âmk (Xi )exp(β̂ ′mk
Zi )

(A.3)

By the strong law of large numbers, the numerator converges to its expectation in supremum
norm. That is,

sup
t∈[0,1]

∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′0Zi )

1+ ρA0(Xi )exp(β ′0Zi )
− E

[
(1+ ρ1)Y(t)exp(β ′0Z)

1+ ρA0(X)exp(β ′0Z)

]∣∣∣∣∣→ 0

The denominator should converge toE[ (1+ρ1)Y(t)exp(β ′Z)
1+ρA(X)exp(β ′Z) ] in supremum norm. To show

this, we see that∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β̂ ′mk
Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )
− E

[
(1+ ρ1)Y(t)exp(β ′Z)
1+ ρA(X)exp(β ′Z)

]∣∣∣∣∣
≤
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β̂ ′mk
Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )
− 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )

∣∣∣∣∣
+
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )
− 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρ Âmk(Xi )exp(β ′Zi )

∣∣∣∣∣
+
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρ Âmk(Xi )exp(β ′Zi )
− 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρA(Xi )exp(β ′Zi )

∣∣∣∣∣
+
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρA(Xi )exp(β ′Zi )
− E

[
(1+ ρ1)Y(t)exp(β ′Z)
1+ ρA(X)exp(β ′Z)

]∣∣∣∣∣
≤ (1+ ρ)(1+ ρa)exp(qbc)|1− exp(−‖β̂mk − β‖∞c)|
+ (1+ ρ)ρ exp(2qbc) sup

u∈[0,1]
|Âmk(u)− A(u)|

+
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρA(Xi )exp(β ′Zi )
− E

[
(1+ ρ1)Y(t)exp(β ′Z)
1+ ρA(X)exp(β ′Z)

]∣∣∣∣∣
The first two terms on the right hand side of the final inequality above converge to zero.
At first thought it appears that the law of large numbers can be used to show that the third
term converges to zero in supremum norm. The problem arises thatβ and A change with
ω. Furthermore, the sets of probability one over which the strong law of large numbers
applies depend onβ and A. Since there are an uncountable number ofω’s, there may be
an uncountable number of(β, A)’s. This uncountable number of limiting quantities may
lead to an uncountable number of sets of probability one, whose intersection might have
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probability zero. In this event, the strong law of large numbers may break down. To avoid
this issue, we note that the space of absolutely continuous, bounded, increasing functions
{A(t)} is separable under the supremum norm. That is, the space has a countably dense
subset. Let{Gl } represent this subset. Now, include in the intersections of sets forming8,
sets for which

sup
t∈[0,1]

∣∣∣∣∣1n
n∑

i=1

(1+ ρ1i )Yi (t)exp(ξ ′Zi )

1+ ρGl (Xi )exp(ξ ′Zi )
− E

[
(1+ ρ1)Y(t)exp(ξ ′Z)
1+ ρGl (X)exp(ξ ′Z)

]∣∣∣∣∣
converge to zero for each rationalξ andl ≥ 1. Now,∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρA(Xi )exp(β ′Zi )
− E

[
(1+ ρ1)Y(t)exp(β ′Z)
1+ ρA(X)exp(β ′Z)

]∣∣∣∣∣
≤
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρA(Xi )exp(β ′Zi )
− 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(ξ ′Zi )

1+ ρA(Xi )exp(β ′Zi )

∣∣∣∣∣
+
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(ξ ′Zi )

1+ ρA(Xi )exp(β ′Zi )
− 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(ξ ′Zi )

1+ ρA(Xi )exp(ξ ′Zi )

∣∣∣∣∣
+
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(ξ ′Zi )

1+ ρA(Xi )exp(ξ ′Zi )
− 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(ξ ′Zi )

1+ ρGl (Xi )exp(ξ ′Zi )

∣∣∣∣∣
+
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(ξ ′Zi )

1+ ρGl (Xi )exp(ξ ′Zi )
− E

[
(1+ ρ1)Y(t)exp(ξ ′Z)
1+ ρGl (X)exp(ξ ′Z)

]∣∣∣∣∣
+
∣∣∣∣E [ (1+ ρ1)Y(t)exp(ξ ′Z)

1+ ρGl (X)exp(ξ ′Z)
− E

[
(1+ ρ1)Y(t)exp(β ′Z)
1+ ρGl (X)exp(ξ ′Z)

]∣∣∣∣
+
∣∣∣∣E [ (1+ ρ1)Y(t)exp(β ′Z)

1+ ρGl (X)exp(ξ ′Z)
− E

[
(1+ ρ1)Y(t)exp(β ′Z)
1+ ρGl (X)exp(β ′Z)

]∣∣∣∣
+
∣∣∣∣E [ (1+ ρ1)Y(t)exp(β ′Z)

1+ ρGl (X)exp(β ′Z)
− E

[
(1+ ρ1)Y(t)exp(β ′Z)
1+ ρA(X)exp(β ′Z)

]∣∣∣∣
≤ 2(1+ ρ)(1+ ρa)eqbc|1− e−‖β−ξ‖∞c| + 2(1+ ρ)ρe2qbc sup

u∈[0,1]
|A(u)− Gl (u)|

+
∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(ξ ′Zi )

1+ ρGl (Xi )exp(ξ ′Zi )
− E

[
(1+ ρ1)Y(t)exp(ξ ′Z)
1+ ρGl (X)exp(ξ ′Z)

]∣∣∣∣∣
As mk → ∞, the three terms on the right hand side of the final inequality above can be
made as small as possible via a proper choice ofξ andl . Hence, we have shown that

sup
t∈[0,1]

∣∣∣∣∣ 1

mk

mk∑
i=1

(1+ ρ1i )Yi (t)exp(β ′Zi )

1+ ρA(Xi )exp(β ′Zi )
− E

[
(1+ ρ1)Y(t)exp(β ′Z)
1+ ρA(X)exp(β ′Z)

]∣∣∣∣∣→ 0
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With this result, we can now conclude that the denominator of (A.3) converges in supremum
norm to E[ (1+ρ1)Y(t)exp(β ′Z)

1+ρA(X)exp(β ′Z) ]. Combining the results for the numerator and denominator,

we can conclude that supt∈[0,1] | dÂmk

dĀmk

(t)− γ (t)| → 0.

To prove the final result, note that

∣∣∣∣Âmk(t)−
∫ t

0
γ (u)d A0(u)

∣∣∣∣
=
∣∣∣∣∣∣
∫ t

0

(
1

mk

mk∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′mk
Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )

)−1

dN̄mk(u)−
∫ t

0
γ (u)d A0(u)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∫ t

0

(
1

mk

mk∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′mk
Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )

)−1

dN̄mk(u)

−
∫ t

0

(
E

[
(1+ ρ1)Y(u)exp(β ′Z)

1+ ρA(X)exp(β ′Z)

])−1

d E[N(u)]

∣∣∣∣∣
≤
∣∣∣∣∣∣
∫ t

0

(
1

mk

mk∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′mk
Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )

)−1

−
(

E

[
(1+ ρ1)Y(u)exp(β ′Z)

1+ ρA(X)exp(β ′Z)

])−1

dN̄mk(u)

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

(
E

[
(1+ ρ1)Y(u)exp(β ′Z)

1+ ρA(X)exp(β ′Z)

])−1

d(N̄mk(u)− E[N(u)])

∣∣∣∣∣
≤ sup

u∈[0,t ]

∣∣∣∣∣∣
(

1

mk

mk∑
i=1

(1+ ρ1i )Yi (u)exp(β̂ ′mk
Zi )

1+ ρ Âmk(Xi )exp(β̂ ′mk
Zi )

)−1

−
(

E

[
(1+ ρ1)Y(u)exp(β ′Z)

1+ ρA(X)exp(β ′Z)

])−1
∣∣∣∣∣

+
∣∣∣∣∣
∫ t

0

(
E

[
(1+ ρ1)Y(u)exp(β ′Z)

1+ ρA(X)exp(β ′Z)

])−1

d(N̄mk(u)− E[N(u)])

∣∣∣∣∣
The first term on the right hand side of the inequality converges to zero because the de-
nominator of (A.3) was shown to converge toE[ (1+ρ1)Y(t)exp(β ′Z)

1+ρA(X)exp(β ′Z) ] in supremum norm. The
second term converges to zero by the Helly-Bray lemma. Pointwise convergence can be
strengthened to uniform convergence by applying the same monotonicity argument used
in the proof of the Glivenko-Cantelli Theorem (page 96 of Shorack and Wellner, 1986).
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