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This paper considers estimation of a sample selection model subject to condi-
tional heteroskedasticity in both the selection and outcome equations+ The form
of heteroskedasticity allowed for in each equation is multiplicative, and each of
the two scale functions is left unspecified+ A three-step estimator for the param-
eters of interest in the outcome equation is proposed+ The first two stages involve
nonparametric estimation of the “propensity score” and the conditional interquar-
tile range of the outcome equation, respectively+ The third stage reweights the
data so that the conditional expectation of the reweighted dependent variable is
of a partially linear form, and the parameters of interest are estimated by an ap-
proach analogous to that adopted in Ahn and Powell~1993, Journal of Econo-
metrics58, 3–29!+ Under standard regularity conditions the proposed estimator is
shown to beMn-consistent and asymptotically normal, and the form of its limit-
ing covariance matrix is derived+

1. INTRODUCTION AND MOTIVATION

Estimation of economic models is often confronted with the problem of sample
selectivity, which is well known to lead to specification bias if not properly
accounted for+ Sample selectivity arises from nonrandomly drawn samples, which
can be due to either self-selection by the economic agents under investigation
or to the selection rules established by the econometrician+ In labor economics,
the most studied example of sample selectivity is the estimation of the labor
supply curve, where hours worked are only observed for agents who decide to
participate in the labor force+ Examples include the seminal works of Gronau
~1974! and Heckman~1976, 1979!+ It is well known that the failure to account
for the presence of sample selection in the data may lead to inconsistent esti-
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mation of the parameters aimed at capturing the behavioral relation between
the variables of interest+

Econometricians typically account for the presence of sample selectivity by
estimating a bivariate equation model known as the sample selection model
~or, using the terminology of Amemiya, 1985, the type 2 Tobit model!+ The
first equation, typically referred to as the “selection” equation, relates the bi-
nary selection rule to a set of regressors+ The second equation, referred to as
the “outcome” equation, relates a continuous dependent variable, which is only
observed when the selection variable is 1, to a set of possibly different regressors+

Parametric approaches to estimating this model require the specification of
the joint distribution of the bivariate disturbance term+ The resulting model is
then estimated by maximum likelihood or parametric “two-step” methods+ This
approach yields inconsistent estimators if the distribution of the disturbance
vector is parametrically misspecified and0or conditional heteroskedasticity is
present+ This negative result has motivated estimation procedures that are ro-
bust to either distributional misspecification or the presence of conditional het-
eroskedasticity+ Powell~1989!, Choi ~1990!, and Ahn and Powell~1993! propose
two-step estimators that impose no distributional assumptions on the distur-
bance vector, but none of these are robust to the presence of conditional het-
eroskedasticity in the outcome equation+ Alternatively, Donald~1995! proposes
a two-step estimator that allows for general forms of conditional heteroskedas-
ticity but requires the disturbance vector to have a bivariate normal distribu-
tion+ Chen~1999! recently relaxed the normality assumption but still requires
joint symmetry of the error distribution+1

Given the observed characteristics of some types of microeconomic data, such
as differing variability across agents with differing characteristics, and also em-
pirical distributions exhibiting asymmetry and0or tails thicker than would be
consistent with a Gaussian distribution,2 it appears important to address the
issues of both heteroskedasticity and nonnormality0asymmetry simultaneously+
This paper attempts to do so by considering a model that exhibits nonparamet-
ric multiplicative heteroskedasticity in each of the two equations+ This allows
for conditional heteroskedasticity of general forms and does not require a para-
metric specification or a symmetric shape restriction for the distribution of the
disturbance vector+3

In this paper we show thatMn-consistent estimation of the parameters in the
outcome equation is still possible with the presence of nonparametric multipli-
cative heteroskedasticity+ Our estimation approach involves three stages+ The
first stage concentrates on the selection equation, estimating the “propensity
scores” introduced in Rosenbaum and Rubin~1983!+ In the second stage, non-
parametric quantile regression methods are used to estimate the conditional in-
terquartile range of the outcome equation dependent variable for the selected
observations+ It will be shown that the conditional interquartile range is a prod-
uct of the outcome equation scale function and an unknown function of the
propensity score+ This fact implies that when the dependent variable and regres-
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sors are reweighted by dividing by the conditional interquartile range, the con-
ditional expectation of the reweighted outcome equation is of the partially linear
form that arises in homoskedastic sample selection models+ Since the nonpara-
metric component of the partially linear model is a function of the propensity
score, the first-stage estimated values can be used in combination with the re-
weighted values to estimate the parameters of interest in a fashion analogous to
the approaches used in Ahn and Powell~1993!, Donald~1995!, and Kyriazidou
~1997!+

The rest of the paper is organized as follows+ The next section describes the
model in detail and further details the estimation procedure+ Sections 3 and 4
detail the regularity conditions imposed and establish the asymptotic properties
of the estimator, respectively+ Section 5 concludes and suggests topics for fu-
ture research+ The Appendix collects the proofs of the asymptotic arguments+

2. HETEROSKEDASTIC MODEL AND ESTIMATION PROCEDURE

We consider estimation of the following model:

di 5 I @m~wi ! 2 s1~wi !ni $ 0# , (2.1)

yi 5 di yi
*5 di{~xi

'b0 1 s2~xi !ei !, (2.2)

whereb0 [ Rd11 are the unknown parameters of interest, xi ,wi are observed
vectors of explanatory variables~with possibly common elements!, m~wi !,
s1~wi !,s2~xi ! are unknown functions of the explanatory variables, and ni , ei

are unobserved disturbances, which are independent of the regressors but not
necessarily independent of each other+ The observed dependent variabledi in
the selection equation is binary, with I @{# denoting the usual indicator func-
tion, and the dependent variable of the outcome equation, yi

*, is only observed
when thedi 5 1+

Of interest is to estimateb0 from n observations of a random sample of the
quadruple~di , yi ,wi

' , xi
'!' , where ' denotes the transpose of a vector+ We show

in this paper thatMn-consistent estimation ofb0 is possible, and we propose a
three-step estimator that achieves this rate of convergence+ The following three
sections discuss each of the stages in detail+

2.1. First Stage: Kernel Estimation of the Propensity Score

The first stage estimates the probability of selection conditional on the selec-
tion equation regressors+ Following frequently used terminology, we refer to
these conditional probabilities as “propensity scores+” We denote the propen-
sity score as

pi [ p~wi ! 5 E @di 6wi # 5 P~di 5 16wi ! 5 FnS m~wi !

s1~wi !
D, (2.3)
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whereFn~{! denotes the cumulative distribution function~c+d+f+! of the random
variableni and is assumed to be strictly monotonic+ Noting that the propensity
score is merely a conditional expectation, it can be estimated using nonpara-
metric methods for estimating the conditional mean+ Denoting the estimated
value by [pi , we consider the Nadaraya–Watson kernel estimator:

[pi 5

(
jÞi

dj KSwj 2 wi

h1n
D

(
jÞi

KSwj 2 wi

h1n
D , (2.4)

whereK~{! is a kernel function andh1n is a “bandwidth” converging to 0 as the
sample size increases to infinity+ Additional conditions imposed onK~{! and
h1n are discussed in the section detailing regularity conditions+

2.2. Second Stage: Nonparametric Estimation
of the Conditional Interquartile Range

In the second stage, we turn attention to the outcome equation+ Specifically, we
estimate two conditional quantile functions+ Let zi denote the vector of distinct
elements of the vector~wi

' , xi
'!' + For a fixed numbera [ ~0,1!, we denote thea

conditional quantile function as

qa~zi ! [ Qa~ yi 6di 5 1, xi !, (2.5)

where Qa~{! denotes thea quantile of the distribution ofyi conditional on
di 51 andxi + This quantile function can be estimated using nonparametric meth-
ods on the subsample of observations for whichdi 5 1+ Although there exist
various nonparametric estimation procedures in the literature, we adopt the lo-
cal polynomial estimator introduced in Chaudhuri~1991a, 1991b!, which is also
used as a preliminary estimator in Chaudhuri, Doksum, and Samarov~1997!,
Chen and Khan~2000, 2001!, Khan ~2001!, and Khan and Powell~2001!+ We
first introduce some new notation that will help facilitate a description of the
local polynomial procedure+

First, we assume that the regressor vectorzi , whose distribution function we
denote byFZ~{!, can be partitioned as~zi

~ds! , zi
~c! !, where thekds-dimensional

vectorzi
~ds! is discretely distributed and thekc-dimensional vectorzi

~c! is con-
tinuously distributed+

We let Cn~zi ! denote the cell of observationzi and let h2n denote the se-
quence of bandwidths that govern the size of the cell+ For some observa-
tion zj , j Þ i , we let zj [ Cn~zi ! denote thatzj

~ds! 5 zi
~ds! and zj

~c! lies in the
kc-dimensional cube centered atzi

~c! with side lengthh2n+4

Next, we let , denote the assumed order of differentiability of the quantile
functions with respect tozi

~c! , and we letA denote the set of allkc-dimensional
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vectors of nonnegative integersbl , where the sum of the components of each
bl , which we denote by@bl # , is less than or equal to,+ We order the elements
of the setA such that its first element corresponds to@bl # 5 0, and we lets~A!
denote the number of elements inA+

For anys~A!-dimensional vectorJ, we let J~l ! denote itsl th component,
and for any twos~A!-dimensional vectorsa,b, we letab denote the product of
each component ofa raised to the corresponding component ofb+ Finally, we
let I @{# be an indicator function, taking the value 1 if its argument is true and 0
otherwise+ The local polynomial estimator of the conditionalath quantile func-
tion at an observationzi involvesa-quantile regression~see Koenker and Bas-
sett, 1978! on observations that lie in the defined cells ofzi + Specifically, let
the vector

~ ZJ~1! , ZJ~2! , + + + ZJ~s~A!! !

minimize the objective function

(
j51

n

dj I @zj [ Cn~zi !#raSyj 2 (
l51

s~A!

J~l !~zj
~c! 2 zi

~c! !blD, (2.6)

where we recall thatra~{! [ a6{6 1 ~2a 2 1!~{! I @{ , 0# + The conditional
quantile estimator that will be used in the first stage will be the valueZJ~1!+

A computational advantage of using this estimator is that its evaluation can
be carried out by linear programming techniques, whereby a solution can be
reached in a finite number of simplex iterations+ Since the objective function is
globally convex, the solution found is guaranteed to be a global minimizer+

The second stage of the estimation procedure involves this local polynomial
estimation procedure of the conditional quantile function, at two particular quan-
tiles, 0 , a1 , a2 , 1+5 From these two estimators, we can estimate the con-
ditional interquartile range, defined as

Dq~z! [ qa2
~z! 2 qa1

~z!+ (2.7)

We let D [q~z! [ [qa2
~z! 2 [qa1

~z! denote the second-stage estimator+

2.3. Third Stage: Reweighting and Estimation
of a Partially Linear Model

The third-stage estimator is based on the relationship between the propensity
score estimated in the first stage and the conditional interquartile range esti-
mated in the second stage+ This relationship arises from the result that the con-
ditional distribution function of the outcome equation, given the selection variable
is 1 and the regressors, can be expressed as a function of the propensity score+6

That is,
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P~ei # c6di 5 1, zi 5 z! 5 P~ei # c6ni # m~wi !0s1~wi !, zi 5 z! (2.8)

5 G~c,m~w!0s1~w!! (2.9)

5 H~c, p!, (2.10)

whereG is the unknown conditional distribution function ofei given the event
involving ni , p 5 P~ni # m~w!0s1~w!! [ Fni

~m~w!0s1~w!!, and the last equal-
ity is based onm~w!0s1~w! 5 Fni

21~ p!+7 It immediately follows that any func-
tional of this conditional distribution function can be expressed as a function of
the propensity score+

The third-stage estimator is based on three such functionals+ First, we note
that

qa2
~zi ! 5 xi

'b0 1 s2~xi !Qa2
~ei 6di 5 1, zi ! (2.11)

5 xi
'b0 1 s2~xi !la2

~ pi !, (2.12)

where the second equality results from the established result that the condi-
tional quantile ofei depends onwi only through the propensity scorepi , with
la2

~{! denoting the unknown selection correction function+ Similarly we have

qa1
~zi ! 5 xi

'b0 1 s2~xi !la1
~ pi !+ (2.13)

Letting Dl~ pi ! 5 la2
~ pi ! 2 la1

~ pi !, we now have

Dq~zi ! 5 s2~xi !Dl~ pi !+ (2.14)

This result will prove very useful when combined with the more conventional
selection correction equation

E @ yi 6di 5 1, zi # 5 xi
'b0 1 s2~xi !l~ pi !, (2.15)

wherel~ pi ! 5 E @ei 6di 5 1, zi # +We notice that~2+15! has a similar form to the
conditional expectation in Donald~1995!+ Following a similar approach, we
now combine~2+14! and~2+15!+ Define the transformed variables

Iyi 5
yi

Dq~zi !
, (2.16)

Ixi 5
xi

Dq~zi !
(2.17)

and define

Dl~ pi ! 5
l~ pi !

Dl~ pi !
+ (2.18)
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Then we have the following relationship:

T Jyi [ E @ Iyi 6di 5 1, zi # 5 Ixi
'b0 1 Dl~ pi !+ (2.19)

This now looks like the partially linear form of the conditional expectation func-
tion in the homoskedastic sample selection model+ Assuming the valuesIyi , Ixi

were observed for the selected observations, we could estimateb0 by the same
procedure used in Ahn and Powell~1993!+8 The idea behind their procedure is
that for a pair of observations, indexed byi, j, if pi 5 pj , then by differencing
the conditional expectations, we have

D T Jyij 5 D Ixij
' b0, (2.20)

whereD Ixij [ Ixj 2 Ixi andD T Jyij [ T Jyj 2 T Jyi + As pointed out in Powell~1989! and
Ahn and Powell~1993!, if pi is continuously distributed, such ties wherepi 5
pj will occur with probability 0, making it impossible to translate the condition
in ~2+20! into a feasible estimator ofb0+ Nonetheless, if the function Dl~{! is
smooth, then first differencing can be applied to pairs wherepi is close topj ,
resulting in~2+20! holding approximately+

This suggests an estimator based on weighting across pairs, assigning rela-
tively large weight to pairs of observations for which the propensity scores are
close and relatively low weight to pairs of observations for which the propen-
sity scores are far apart+ If Iyi and Ixi were observed, one could follow Ahn and
Powell ~1993! and assign kernel weights to pairs of observations based on the
distance between their estimated propensity scores+ This would lead to an in-
feasible weighted least squares estimator of the form

ZbIF 5 S(
iÞj

di dj kS [pi 2 [pj

h3n
DD Ixij D Ixij

'D21

(
iÞj

di dj kS [pi 2 [pj

h3n
DD Ixij D Iyij , (2.21)

wherek~{! is a kernel function assigning weights to pairs andh3n is a band-
width converging to 0 as the sample size increases, ensuring that in the limit,
only pairs with identical propensity score values are assigned positive weight+

This estimator is infeasible because the valuesIyi , Ixi are not observed+ How-
ever, a feasible estimator is immediately suggested, since the second stage of
the estimation procedure can be used to construct estimators ofIyi , Ixi as follows:

[Iyi 5
yi

D [q~zi !
,

[Ixi 5
xi

D [q~zi !
+

So we can define the third-stage estimator as

Zb 5 S(
iÞj

ti tj di dj kS [pi 2 [pj

h3n
DD [Ixij D [Ixij

'D21

(
iÞj

ti tj di dj kS [pi 2 [pj

h3n
DD [Ixij D [Iyij ,

(2.22)
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where the trimming functionsti [ t~zi ! are incorporated in the estimator+ These
functions trim away observations for whichzi lies outsideZ, a compact subset
of Rk, to ensure that only precise estimators of the conditional interquartile
range are used+

We conclude this section by commenting on some important issues regard-
ing implementing our procedure in practice+

Remark 2+1+ Our procedure requires the choice of multiple smoothing pa-
rameters by the econometrician+ Although rate conditions on these parameters
are given in the following section, they give no indication on how to select
values for a given sample+ However, the semiparametric literature provides many
guidelines for smoothing parameter selection when estimating nonparametric
components of the model+ For example, h2n may be selected by adopting data
driven approaches that accommodate prespecified rate conditions, such as pro-
posed in Chen and Khan~2000! and Khan~2001!+ Also, the parametersh1n and
h3n may be selected by the cross validation procedures mentioned in Ahn and
Powell ~1993! and Chen and Khan~2003!+

Other parameters that are at the discretion of the econometrician are the quan-
tile pair a1,a2 and the trimming function+ For the quantile pair, it was men-
tioned that one natural choice would bea1 5 0+25, a2 5 0+75+ However, as
detailed in the next section, the asymptotic variance of our estimator depends
on the choice of quantile pair+ The expression for this asymptotic variance can
provide some insight on pair selection for maximizing asymptotic efficiency,
which would involve a trade-off between having the quantiles as spread out as
possible and having them away from the extremes, where they are estimated
imprecisely+ Expanding on this point, efficiency can be further improved by
combining various estimators ofb0 that are based on various quantile pairs,
perhaps by extending the generalized method of moments~GMM ! framework
suggested in Buchinsky~1998!+ Finally, we feel the choice of trimming func-
tion is not as important as the other smoothing parameters+ Trimming functions
are included primarily for technical reasons, to help alleviate the common prob-
lem of imprecise nonparametric estimation in low density areas+ In practice they
can simply be indicator functions that throw away observations where the re-
gressors take extreme values+

Remark 2+2+ Focusing on equation~2+20!, we consider the situation where
b0 includes an intercept term, in which case the first component ofxi , denoted
by xi

~0! , equals 1+ Therefore, we have

D Ixij
~0! 5

1

s2~xi !Dl~ pi !
2

1

s2~xj !Dl~ pj !
+

We note that under homoskedasticity the preceding difference is 0 whenever
pi 5 pj , implying that our kernel-weighted regressor matrix will be singular in
the limit+ However, homoskedasticity is a testable restriction, and if it cannot
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be rejected Ahn and Powell~1993! can be used to estimate the slope coeffi-
cients+ In this situation, the intercept term, which is of interest in the treatment
effects literature, can be estimated separately by exploiting its “identification at
infinity” ~Heckman, 1990! as is done in Andrews and Schafgans~1998!+ On
the other hand, from standard results involving the estimability of a subset of
regression parameters~see, e+g+, Amemiya, 1985!, our estimator of the slope
coefficients will still be consistent under homoskedasticity, and if heteroskedas-
ticity is indeed present, our procedure will simultaneously estimate the inter-
cept term and slope coefficients at the parametric~root-n! rate+

Remark 2+3+ It is worth noting the similarities and differences our approach
has with the estimation procedure introduced in Carroll~1982! and Robinson
~1987! for the heteroskedastic linear model and in Andrews~1994! for the het-
eroskedastic partially linear model+9 In their approach, both the dependent and
independent variables were weighted by a nonparametric estimator of a condi-
tional variance function that was based on residuals of the ordinary least squares
~OLS! estimator+ Unfortunately, this generalized least squares~GLS! type pro-
cedure cannot be applied here; this is because one cannot use existing estima-
tors such as those of Ahn and Powell~1993! in a preliminary stage to get
“residuals,” because these estimators are generally inconsistent as a result of
the heteroskedasticity in the outcome equation+

The following sections discuss the asymptotic properties of this three-stage
procedure+

3. REGULARITY CONDITIONS

The conditions we need for developing the limiting distribution of the estima-
tor are similar to but more detailed than those required in Ahn and Powell
~1993!+10 Because of the extra step of nonparametrically estimating the condi-
tional interquartile range, additional assumptions on both the bandwidth se-
quence used in the local polynomial estimator and the conditional distribution
of the residual associated with the two conditional quantile functions are re-
quired+ We first state the identification condition on which our estimation pro-
cedure is based+

Assumption I~Identification!+ The distribution of the propensity scorepi has
a density with respect to Lebesgue measure, with density function denoted by
fp~{!+ Defining the following functions ofpi :

fi 5 fp~ pi !,

mti 5 E @ti 6pi # ,

mtxi 5 E @ti Ixi 6pi # ,

mtxxi 5 E @ti Ixi Ixi
' 6pi # ,
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we require that the matrix

Sxx 5 2E @ pi
2 fi ~mti mtxxi 2 mtxi mtxi

' !#

have full rank+

We next impose the following conditions on the third-stage kernel function
used to match propensity score values and on its bandwidth sequence+

Assumption K3~Third-Stage Kernel Function!+ The kernel functionk~{! used
in the third stage is assumed to have the following properties+

K3+1+ k~{! is twice continuously differentiable with bounded second derivative and
has compact support+

K3+2+ k~{! is symmetric about 0+
K3+3+ k~{! is a fourth-order kernel:

Eulk~u!du 5 0 for l 5 1,2,3,

Eu4k~u!duÞ 0+

Assumption H3~Third-Stage Bandwidth Sequence!+ The bandwidth sequence
h3n used in the third stage is of the form

h3n 5 c3n2d,

wherec3 is some constant andd [ ~ 1
8
_ , 16_!+

The following assumption characterizes the order of smoothness of density
and conditional expectation functions+

Assumption S1~Order of Smoothness of Functions of the Propensity Score!+

S1+1+ The functionsfp~{!, E @ti 6pi 5 {# , andE @ti Ixi 6pi 5 {# have order of differen-
tiability of 4, with fourth-order derivatives that are bounded+ The function Dl~{!
is fifth-order differentiable, with bounded fifth derivative+

We next impose conditions associated with estimation of the interquartile
range+ This involves smoothness assumptions on the conditional quantile func-
tions and on the distributions ofzi and the residuals associated with the quan-
tile functions+

Assumption RD1~Regressor Distribution!+ The regressor vector can be de-

composed aszi 5 ~zi
~c!' , zi

~ds!' !' where thekc-dimensional vectorzi
~c! is contin-

uously distributed and thekds-dimensional vectorzi
~ds! is discretely distributed+

Letting fZ~c! 6Z~ds! ~{6z~ds! ! denote the conditional density function ofzi
~c! given

zi
~ds! 5 z~ds! , we assume it is bounded, bounded away from 0, and Lipschitz

continuous onZ+
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Letting fZ~ds! ~{! denote the mass function ofzi
~ds! , we assume a finite number

of mass points onZ+ Finally, we let fZ~{! denotefZ~c! 6Z~ds! ~{6{! fZ~ds!~{!+

Assumption S2~Order of Smoothness of Conditional Quantile Functions!+

S2+1+ For all values ofzi
~ds! , the functionsqa2

~{!,qa1
~{! are bounded andM2 times

continuously differentiable with boundedM2
th derivatives, with respect tozi

~c!

on Z+
S2+2+ The polynomial used for the second-stage quantile function estimators is of

orderM2+

Assumption CED~Outcome Equation Conditional Error Distribution!+ The
homoskedastic component of the outcome equation error term, conditional on
selection andzi , denoted byei 6di 5 1, zi , has a continuous distribution with
density function that is bounded, positive, and continuous, for all zi [ Z+

Assumption H2~Second-Stage Bandwidth Sequence for Interquartile Range
Estimation!+ The bandwidth sequence used to estimate the conditional inter-
quartile range is of the form

h2n 5 c2n2g2,

wherec2 is a constant andg2 [ ~~d 1 1
2
_!0M2, ~1 2 4d!03kc!+

The final set of assumptions involve restrictions for the first-stage kernel
estimator of the propensity score+ This involves smoothness conditions on both
the propensity scorespi and the distribution of the regressors in the selection
equation and the rate at which the first-stage bandwidth sequence decreases
to 0+

Assumption RD2~Distribution of Selection Equation Regressors!+ The
regressor vector in the selection equation can be decomposed aswi 5

~wi
~c!' ,wi

~ds!' !' where thewc-dimensional vectorwi
~c! is continuously distributed

and thewd-dimensional vectorwi
~ds! is discretely distributed+

Letting fW ~c! 6W ~d ! ~{6w~ds! ! denote the conditional density function ofwi
~c!

given wi
~ds! 5 w~ds! , we assume it is bounded away from 0 and̀on W, a

predetermined compact subset of the support ofwi + Following Ahn and Powell
~1993!, we redefinedi to take the value 0 ifwi Ó W+

Letting fW ~ds! ~{! denote the mass function ofwi
~ds! , we assume a finite num-

ber of mass points onW+ Finally, we let fW~{! denotefW ~c! 6W ~ds! ~{6{! fW ~ds! ~{!+

Assumption PS~Order of Smoothness of Functions Involving the Selection
Regressors!+ For eachw~d! in the support ofwi

~d ! , pi and fW~{! are bounded
and continuously differentiable of orderM1 functions ofwi

~c! , whereM1 is an
even integer satisfyingM1 . wc0~

1
3
_ 2 2d!+

Assumption K1~First-Stage Kernel Function Condition!+ The kernel func-
tion K~{! used in the first stage is of bounded variation, has bounded support,
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integrates to 1, and is of orderM1, where the order of a kernel function was
defined in Assumption K3+

Assumption H1~Rate Condition on First-Stage Bandwidth Sequence!+ The
bandwidth sequenceh1n of the first-stage kernel estimator of the propensity
score is of the form

h1n 5 c1n2g,

wherec1 is some constant andg satisfies

g [ S 1

2M1

,

1

6
2 d

wc

D,
whered is regulated by Assumption H3+

Remark 3+1+ These regularity conditions are quite standard when compared
to other estimators in the semiparametric literature+ They are very similar to
those required in Ahn and Powell~1993!, and we state the important similari-
ties and differences here+

~i! The identification in Assumption I is analogous to Assumption 3+4 in Ahn and
Powell ~1993!+ As discussed in that paper, with the assumption of a linear index
in the selection equation, an exclusion restriction is required for identification of
b0+ Specifically, it is required that a component included inwi be excluded from
xi +We impose this exclusion restriction for the results in this paper as the special
case wheres2~{! [ 1 corresponds to the homoskedastic model+ Although it may
be possible to identify the parameterb0 without an exclusion restriction by the
“nonlinearity” induced by the presence of the scale functions, we are not comfort-
able with requiring heteroskedasticity for identification without exclusion+

~ii ! Assumptions RD1, S2, and CED, which impose conditions on the regressors and
error term in the outcome equation, are generally not required for the homoske-
dastic model considered in Ahn and Powell~1993!+ They are imposed here to
ensure uniform rates of convergence for the conditional quantile estimator used
in the second stage of our procedure+

4. ASYMPTOTIC PROPERTIES

Here we briefly discuss the asymptotic properties of the proposed three-stage
estimation procedure+ The first result, illustrated in the following lemma, estab-
lishes the asymptotic difference between the proposed estimator and the in-
feasible estimator that assumesIyi and Ixi are observed for observations with
di 5 1+11 The details of the proof are left to the Appendix+

LEMMA 4 +1+ Let ZbIF be defined as in equation (2.21), with the trimming
functionsti ,tj included. Then under the regularity conditions detailed in the
previous section,
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Zb 5 ZbIF 1 Sxx
21

1

n (
i51

n

c2i 1 op~n2102! (4.1)

with

c2i 5 22ti di ~ fU26Z~06zi !
21~I @ yi # q2i # 2 a2!

2 ~ fU16Z~06zi !
21~I @ yi # q1i # 2 a1!!

3 Dqi
21 fi Dl~ pi !pi

2~ Ixi mti 2 mtxi !, (4.2)

where q1i ,q2i denote qa1
~zi ! and qa2

~zi !, respectively, and fU26Z, fU16Z denote
the conditional density functions of the residuals associated with the condi-
tional quantile functions.

An immediate implication of this lemma is that the arguments developed in
Powell ~1989! and Ahn and Powell~1993! can be used to derive the limiting
distribution of the feasible estimatorZb+ The limiting distribution is character-
ized in the following theorem+

THEOREM 4+1+ The feasible estimator isMn-consistent and asymptotically
normal; specifically, we have

Mn~ Zb 2 b0! n N~0,Sxx
21VxxSxx

21!, (4.3)

whereVxx is the covariance matrix of the k-dimensional vectorci [ c1i 1 c2i

with

c1i 5 2ti pi fi ~ Ixi mti 2 mtxi !{~di Iui 1 pi Dl'~ pi !~di 2 pi !! (4.4)

with Dl'~{! denoting the derivative ofDl~{! and Iui is the “residual”

Iui 5 Iyi 2 Ixi
'b0 2 Dl~ pi !+ (4.5)

For the purpose of conducting inference we propose a consistent estimator
of the asymptotic variance matrix+ To estimate the componentSxx we propose a
standard “plug-in” estimator that replaces unknown values and expectations with
estimated values and sample averages, respectively:

ZSxx 5
1

n~n 2 1!h3n
S(

iÞj

ti tj di dj kS [pi 2 [pj

h3n
DD [Ixij D [Ixij

'D+ (4.6)

Estimation ofVxx is more involved, because it involves the unknown selection
correction function and its derivative+We propose the following estimator, which
is analogous to those found in Powell~1989! and Ahn and Powell~1993!:

ZVxx 5
1

n (
i51

n

~ Zc1i 1 Zc2i !~ Zc1i 1 Zc2i !
', (4.7)
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where Zc1i [ Zc11i 1 Zc12i with

Zc11i 5 2ti diS 1

nh3n
(
j51

n

tj dj kS [pi 2 [pj

h3n
DD [Ivij D [IxijD (4.8)

with D [Ivij 5 D [Iyij 2 D [Ixij
' Zb and where

Zc12i 5 2 ZDzi ~di 2 [pi ! (4.9)

with

ZDzi 5
1

nh3n
2 (

lÞj

tl tj dl dj k
'S [pl 2 [pj

h3n
DKSwl 2 wi

h1n
DD [Ivlj D [Ixlj

3 F(
l51

n

KSwl 2 wi

h1n
DG21

, (4.10)

wherek'~{! denotes the derivative of the third-stage kernel function+
Finally, to estimatec2i we require an estimator of the conditional density of

the quantile residuals+ Letting [u2i [ di ~ yi 2 [q2i ! denote the estimated residual
of the higher quantile, we propose a kernel estimator of its conditional density
function:

ZfU26Z~06zi ! 5

1

nn
(
l51

n

dl I @zl [ Cni # DkS [u2i

nn
D

(
l51

n

dl I @zl [ Cni #

, (4.11)

where Dk~{! is a nonnegative kernel function with bounded support that inte-
grates to 1 and is continuously differentiable with bounded derivative+ The se-
quencenn satisfies the constraints

nn r 0, nnn r `,
~ log n!102~nh2n

kc !2102 1 h2n
M2

nn
2 r 0+

A similar estimator can be constructed for the density of the lower quantile
residual+ With these in hand we can construct the following estimator ofZc2i :

Zc2i 5 22ti di [pi ~ ZfU26Z~06zi !
21~I @ yi # [q2i # 2 a2!

2 ZfU16Z~06zi !
21~I @ yi # [q1i # 2 a1!!D [qi

21

3 S 1

nh3n
(
j51

n

tj dj kS [pi 2 [pj

h3n
D2 [Ivj D [IxijD+ (4.12)
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The following theorem, whose proof is left to the Appendix, establishes the
consistency of the estimatorZSxx

21 ZVxx ZSxx
21+

THEOREM 4+2+ Under the conditions used to establish Theorem (4.1),

ZSxx
21 ZVxx ZSxx

21 p
&& Sxx

21VxxSxx
21+ (4.13)

5. CONCLUSIONS

This paper introduces a new estimator for a semiparametric sample selection
model that is consistent in the presence of multiplicative heteroskedasticity of
unknown form+ The estimation procedure involves three stages, two of which
are analogous to the steps taken in the estimators introduced in Powell~1989!,
Ahn and Powell~1993!, Donald~1995!, and Kyriazidou~1997!+ The new esti-
mator is shown to converge at the parametric rate and has an asymptotic nor-
mal distribution+

The work here suggests areas for future research+ As was suggested, it would
be useful to formally construct a pretest for conditional heteroskedasticity to
see if the slope coefficients and the intercept term could be estimated simulta-
neously+ The effect of this pretesting procedure on the limiting distribution theory
developed here is also worth exploring+ Also, one could consider imposing the
multiplicative structure to model heteroskedasticity in other bivariate models,
such as the type 3 Tobit model, where the selection equation now involves a
censored, instead of binary, variable+

NOTES

1+ Kyriazidou ~1997! considers estimation of a sample selection model for longitudinal data+
Her approach allows for cross-sectional heteroskedasticity and also for individual specific effects+
The purpose of our paper is to estimate the parameters of interest when only a cross-sectional data
set is available to the econometrician+

2+ For example, in his empirical analysis of female labor supply, Mroz ~1987! finds the dis-
turbance term in the labor force participation equation to have skewness and kurtotis levels that
are inconsistent with the normality assumption+

3+ The idea of modeling conditional heteroskedasticity through a multiplicative structure is
quite common in the econometrics and statistics literature, in both applied and theoretical work+
See Chen and Khan~2000, 2003! and references therein for a list of examples+

4+ Here we have required an observation’s discrete component to match up exactly for it to
fall in a given cell+ However, it is often the case that the finite-sample performance of nonparamet-
ric procedures can be improved by smoothing across discrete components also~see Li and Racine,
2000!+

5+ We note that any two quantiles may be used in this stage+ One natural choice would be
a1 5 0+25, a2 5 0+75 because the interquartile range is typically used as a quantile-based measure
of dispersion in practice+

6+ This result is based on the assumption of strict monotonicity of the c+d+f+ of the random
variableni , the disturbance in the selection equation+

7+ This result was first used in the work of Ahn and Powell~1993!, where the authors assumed
that the selection equation disturbance term was additively separable and distributed independently
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of the regressors+ Although we relax their homoskedasticity assumption, we require additive sepa-
rability and multiplicative heteroskedasticity to express the distribution function as a function of
the propensity score+

8+ We note that any of the existing estimators for the partially linear model, such as in Rob-
inson~1988! and Andrews~1991, 1994!, could be used in this stage+

9+ This type of procedure is also used to estimate a heteroskedastic nonlinear regression model
in Delgado~1992! and Hildago~1992!+

10+ In this section we assume thatb0 does include an intercept term to be estimated+ As dis-
cussed in Remark 2+2, the intercept cannot be consistently estimated under conditional homoske-
dasticity, though the slope coefficients can be+ Thus we are implicitly assuming that either conditional
heteroskedasticity is present or that the parameter of interest is the lastk components ofb0+

11+ We note that this result is in contrast to the results found in Carroll~1982! and Robinson
~1987! for the heteroskedastic linear regression model and in Andrews~1994! for the ~partially!
heteroskedastic partially linear model, where asymptotic equivalence is established for their GLS-
type procedures+
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APPENDIX

To keep expressions notationally simple, in this section we letq1i ,q2i denoteqa1
~zi !

andqa2
~zi !, respectively+ We denote estimated values by[q1i , [q2i + For the second-stage

nonparametric procedure, we let Cni denoteCn~zi !+ Also, for any matrixA with ele-
mentsaij , we let 7A7 denote~(i, j aij

2!102+
We begin by stating two uniform convergence results, one for each of the non-

parametric estimators used in the first two stages of the estimation procedure+ These
uniform rates can be found in Ahn and Powell~1993! and Chaudhuri et al+ ~1997!,
respectively+

LEMMA A +1+ ~From Ahn and Powell, 1993, Lemma A+1!+ Under Assumptions RD2,
PS, K1, H1, and H3

sup
w[W
6 [p~w! 2 p~w!6 5 Op~n2~1031d! !+ (A.1)
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LEMMA A +2+ ~From Chaudhuri et al+, 1997, Lemma 4+1!+ Under Assumptions RD1,
S2, H2, and CED,

sup
z[Z
6D [q~z! 2 Dq~z!6 5 Op~~ log n!102~nh2n

kc !2102 1 h2n
M2!+ (A.2)

Before proceeding to the arguments used in the proof, we first state rates of conver-
gence for various terms that will arise in the proof+ These rates arise directly from the
preceding two lemmas and also from Assumptions H1–H3+ We adopt the notation that
7{7` denotes the supremum over the set in question+

h3n
227 [qa 2 qa7`7 [p 2 p7` 5 op~n2102!, (A.3)

h3n
21~nh2n

kc !2304 5 op~n2102!, (A.4)

h3n
21h2n

2kc 5 o~n!, (A.5)

h3n
21h2n

M2 5 o~n2102!, (A.6)

h3n
217 [qa 2 qa7`2 5 op~n2102!+ (A.7)

The proof of Theorem 4+1 is based on an asymptotically linear representation for
Zb 2 b0+ By ~2+22!, we have

Zb 2 b0 5 ZSxx
21 ZSxy, (A.8)

where

ZSxx 5
1

n~n 2 1! (
iÞj

h3n
21ti tj di dj kS [pi 2 [pj

h3n
DD [Ixij D [Ixij

' (A.9)

and

ZSxy 5
1

n~n 2 1! (
iÞj

h3n
21ti tj di dj kS [pi 2 [pj

h3n
DD [Ixij ~D [Iyij 2 D [Ixij

' b0!+ (A.10)

The following lemma establishes the probability limit of A+9+

LEMMA A +3+ Under Assumptions I, K3.1, K3.2, H3, RD1, S2, H2, CED, RD2, PS,
K1, and H1,

ZSxx
p
&& Sxx+ (A.11)

Proof. Define

Sxx 5 (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij D Ixij

' +
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We first show that

ZSxx 2 Sxx 5 op~1!+ (A.12)

Let rni 5 Ixi 2 [Ixi andDrnij 5 rnj 2 rni + We thus have

D [Ixij D [Ixij
' 5 D Ixij D Ixij

' 1 D Ixij Drnij
' 1 Drnij D Ixij

' 1 Drnij Drnij
' +

We note thatDqi is bounded away from 0 on the support ofti + Noting that [Ixi 2 Ixi 5
xi ~10D [qi 2 10Dqi ! we have by the bounds onk~{! and the support ofti and Assump-
tion H2 that

max
1#i#n

7rni7 5 Op~7 [q1 2 q17`1 7 [q2 2 q27` !+

It thus follows by the bound onk~{! that

ZSxx 5 Sxx 1 Op~h3n
21~7 [q1 2 q17`1 7 [q2 2 q27` !! 5 Sxx 1 op~1!,

where the second equality follows by~A+7!+ This establishes~A+12!+ By the same argu-
ments of Lemma 3+1 and Theorem 3+1 in Ahn and Powell~1993! it follows that

Sxx 2 Sxx 5 op~1!,

which concludes the proof+ n

We next derive a linear representation forZSxy+ The following lemma establishes the
difference betweenZSxy and the analogous expression involving the true values of the
conditional interquartile range+

LEMMA A +4+ Under Assumptions K3.1, K3.2, H3, H2, RD1, S2, and CED,

ZSxy 5 Sxy 1
1

n (
i51

n

c2i ,

where

Sxy 5
1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij ~D Iyij 2 D Ixij

' b0!

and

c2i 5 22ti di ~ fU26Z~06zi !
21~I @ yi # q2i # 2 a2! 2 ~ fU16Z~06zi !

21~I @ yi # q1i # 2 a1!!

3 Dqi
21 fi Dl~ pi !pi

2~ Ixi mti 2 mtxi !+
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Proof. We replace the firstD [Ixij in ~A+10! with D Ixij and derive a linear representation
for

1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij @~D [Iyij 2 D [Ixij

' b0! 2 ~D Iyij 2 D Ixij
' b0!# + (A.13)

We note the preceding expression can be expressed as

1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij S 1

D [qj

2
1

Dqj
D~ yj 2 xj

'b0! (A.14)

2
1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij S 1

D [qi

2
1

Dqi
D~ yi 2 xi

'b0!+ (A.15)

We next linearize 10D [qi 2 10Dqi as

1

D [qi

2
1

Dqi

5
21

~Dqi !
2 ~D [qi 2 Dqi ! 1

1

D [qi Dqi

~D [qi 2 Dqi !
2+

It follows that the quadratic terms in this expansion areop~n2102! by ~A+7!+ Plugging
the linear term of the expansion into~A+14! and~A+15! yields the expression

1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij Dqi

21~D [qi 2 Dqi !~ Iyi 2 Ixi
'b0! (A.16)

2
1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij Dqj

21~D [qj 2 Dqj !~ Iyj 2 Ixj
'b0!+ (A.17)

Writing Dqi asq2i 2 q1i , we have that~A+16! and~A+17! can be expressed as

1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij Dqi

21~ [q2i 2 q2i !~ Iyi 2 Ixi
'b0! (A.18)

2
1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
DD Ixij Dqj

21~ [q2j 2 q2j !~ Iyj 2 Ixj
'b0! (A.19)

plus analogous terms involving[q1i , q1i , [q1j , andq1j + We focus our attention on~A+18!+
By a mean value expansion ofh3n

21k~~ [pi 2 [pj !0h3n! aroundh3n
21k~~ pi 2 pj !0h3n!

and the bound on the second moments ofti tj di dj D Ixij ~ Iyi 2 Ixi
'b0! it follows that

h3n
21k~~ [pi 2 [pj !0h3n! can be replaced withh3n

21k~~ pi 2 pj !0h3n! in ~A+18! with a result-
ing remainder term that is

OpSh3n
22 max

1#i#n
6 [pi 2 pi 6 6 [q2i 2 q2i 6D 5 op~n2102!,

where the equality follows from~A+3!+ Noting that we can replacedi ~ Iyi 2 Ixi
'b0! with

di ~ Dl~ pi ! 1 Iui ! in ~A+18!, where we recall that theIui is a mean 0 residual term, we will
first show that
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1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS pi 2 pj

h3n
DD Ixij Dqi

21~ [q2i 2 q2i ! Iui 5 op~n2102!, (A.20)

and we will then derive a linear representation for

1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS pi 2 pj

h3n
DD Ixij Dqi

21~ [q2i 2 q2i ! Dl~ pi !+ (A.21)

To show~A+20!, we use the local Bahadur representations for the local polynomial es-
timator established in Chaudhuri~1991a! and Chaudhuri et al+ ~1997!+ In our context
this can be expressed as

[q2i 2 q2i 5
1

nh2n
kc

fU2,Z~0, zi !
~21! (

kÞi

dk I @zk [ Cni # ~I @ yk # q2~k, i !
* # 2 a2! 1 Rni , (A.22)

where q2~k, i !
* denotes the Taylor polynomial approximation ofq2k for zk close tozi ,

fU2,Z~{,{! denotes the joint density function of the quantile residual andzk; Rni is a re-
mainder term converging to 0 at a rate depending on the bandwidthh2n+ Using the same
arguments as in Chen and Khan~2000, 2001!, it can be shown that under Assumptions
RD1, S2, H2, and H3 that

sup
zi[Z

h3n
217Rni7 5 Op~h3n

21~nh2n
kc !2304! 5 op~n2102!,

where the second equality follows from~A+4!+ Thus to show~A+20!, it will suffice to
show the asymptotic negligibility of the following third-orderU-statistic:

1

n~n 2 1!~n 2 2! (
iÞÊÞk

ti tj di dj h3n
21kS pi 2 pj

h3n
D

3 ~I @ yk # q2~k, i !
* # 2 a2! fU2,Z~0, zi !

21h2n
2kcD Ixij dk I @zk [ Cni # Iui + (A.23)

We next replaceq2~k, i !
* with q2k+ By Assumption S2+1, this replacement results in

a remainder term that isOp~h3n
21h2n

M2!, which is op~n2102! by ~A+6!+ Let xi 5
~ yi , zi

' ,q2i , pi ,u2i , Iui ,ti ,di !
' + Let Fn~xi ,xj ,xk! denote the expression in the preceding

triple summation after this replacement+ It follows after a change of variables that

E @7Fn~{,{,{!72# 5 O~h3n
21h2n

2kc! 5 o~n!,

where the second equality follows from~A+5!+ We can thus apply the projection theo-
rem for U-statistics in Ahn and Powell~1993!+ We note that

E @Fn~{,{,{!# 5 E @Fn~xi ,{,{!# 5 E @Fn~{,xj ,{!# 5 E @Fn~{,{,xk!# 5 0,

where the last three terms denote expectations conditional on first, second, and third
arguments, respectively, and the last term is 0 because of the presence ofIui + We thus
have by Lemma A+3 in Ahn and Powell~1993! that

1

n~n 2 1!~n 2 2! (
iÞÊÞk

Fn~xi ,xj ,xk! 5 op~n2102!,

establishing~A+20!+
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It thus remains to derive a linear representation for~A+21!+ To do so we again plug in
the linear representation for the conditional quantile estimator; this yields another mean
0 third-orderU-statistic after showing that the bias term is asymptotically negligible+
We will let F3n~xi ,xj ,xk! denote the term in the triple summation of thisU-statistic+ As
before, we haveE @F3n~{,{,{!# 5 E @F3n~xi ,{,{!# 5 E @F3n~{,xj ,{!# 5 0, and will derive a
linear representation for

1

n (
k51

n

E @F3n~{,{,xk!# + (A.24)

Once again, we ignore the bias component of the nonparametric estimator, as it con-
verges to 0 at the parametric rate+ We will thus derive a linear representation for

1

n (
k51

n

dk~I @ yk # q2k# 2 a2!J1n~zk!, (A.25)

where

J1n~zk! 5Eti tj D Ixij h2n
2kc I @zk [ Cni #Dqi

21 fU2,Z~0, zi !
21 dF~zi 6pi ! dF~zj 6pj !

3 Dl~ pi !pi pj f ~ pi ! f ~ pj ! dpi dpj +

To derive an expression for~A+25!, we will again use Chebyshev’s inequality+ Since
each term in the summation has mean 0, we will show that

E @J1n~zk!# r 2fU26Z~06zk!Dqk
21 fktk Dl~ pk!pk

2~ Ixk mtk 2 mtxk!+ (A.26)

To do so, we make a change of variables in the definition ofJ1n~zk!+ Using the change
of variablesui 5 ~zk

~c! 2 zi
~c!!0h2n and vi 5 ~ pi 2 pj !0h3n, by the dominated conver-

gence theorem,

J1n~zk! r Etktj ~ Ixj 2 Ixk!Dqk
21 fU2,Z~0, zk!21 dF~zk6pj ! dF~zj 6pi ! Dl~ pi !pi

2 f ~ pi !
2 dpi +

Expression~A+26! follows by noting thatpi is a function ofzi + Thus we have shown that
~A+21! has the following linear representation:

1

n (
i51

n

2ti fU26Z~06zi !
21di ~I @ yi # q2i # 2 a2!Dqi

21 fi Dl~ pi !pi
2~ Ixi mti 2 mtxi ! 1 op~n2102!,

(A.27)

and identical arguments can be used to show that double summations involving
~ [q2j 2 q2j !, ~ [q1i 2 q1i !, and~ [q1j 2 q1j ! have analogous linear representations+ Combin-
ing these results, we get that~A+13! has the following linear representation:

1

n (
i51

n

22ti di ~ fU26Z~06zi !
21~I @ yi # q2i # 2 a2! 2 fU16Z~06zi !

21~I @ yi # q1i # 2 a1!!

3 Dqi
21 fi Dl~ pi !pi

2~ Ixi mti 2 mtxi ! 1 op~n2102!+ (A.28)
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The remaining step involves showing that

1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS [pi 2 [pj

h3n
D~D [Ixij 2 D Ixij !~D [Iyij 2 D [Ixij

' b0! 5 op~n2102!+ (A.29)

This can be done by using similar arguments as before, so we only sketch the details+
First, we note that we can replaceh3n

21k~~ [pi 2 [pj !0h3n! with h3n
21k~~ pi 2 pj !0h3n!,

and the remainder term is asymptotically negligible as shown previously+ We can also
replace~D [Iyij 2 D [Ixij

' b0! with ~D Iyij 2 D Ixij
' b0!, and the remainder terms are of order

~D [qi 2 Dqi !
2 and~D [qj 2 Dqj !

2, which are~uniformly! of orderop~n2102!+ Thus we will
show

1

n~n 2 1! (
iÞj

ti tj di dj h3n
21kS pi 2 pj

h3n
D~D [Ixij 2 D Ixij !~D Iyij 2 D Ixij

' b0! 5 op~n2102!+ (A.30)

Note that we can replace~D Iyij 2 D Ixij
' b0! with Dl~ pj ! 2 Dl~ pi ! 1 D Iuij +We also note that

we need only show negligibility of the term involving[Ixj 2 Ixj because the same argu-
ment can be used for[Ixi 2 Ixi + We can write [Ixj 2 Ixj as xj ~ [qj

21 2 qj
21! and as before

linearize the difference and plug in the linear representation of the conditional quantile
estimator, yielding a centered third-orderU-statistic plus a remainder term that is
op~n2102!+ The term in theU-statistic involvingD Iuij is negligible by the same argu-
ments as used in showing~A+23!+ The term in the U-statistic involvingDl~ pj ! 2 Dl~ pi ! is
also negligible, as a result of presence ofh3n

21k~~ pi 2 pj !0h3n!, the smoothness assump-
tion on Dl~{! ~Assumption S1+1!, and the rate condition onh3n ~Assumption H3!+ This
shows~A+30! and hence~A+29!+

This proves the lemma and establishes the asymptotic difference between the feasible
and infeasible estimators, as stated in Lemma 4+1+ n

The final step in deriving the limiting distribution of the estimator is to establish a
linear representation forSxy+ This is done in the following lemma, whose proof is omit-
ted because it follows from identical arguments used in the proof of Theorem 3+1~ii ! of
Ahn and Powell~1993!+

LEMMA A +5+ Under Assumptions K3, H3, S1, RD2, PS, K1, and H1,

Sxy 2
1

n (
i51

n

c1i 5 op~n2102!+ (A.31)

The limiting distribution in Theorem 4+1 now easily follows+

Proof of Theorem 4.2. We note that the consistency ofZSxx follows easily from Lemma
A+3+ To show consistency ofZVxx we first define Dzi as

Dzi 5 2ti pi fi ~ Ixi mti 2 mtxi !{pi Dl'~ pi !+

We show the following lemma+

LEMMA A +6+ Under the assumptions,

sup
ti.0
7 Dzi 2 ZDzi 7 5 op~1!+
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Proof. First we note that by standard results from kernel estimation~e+g+, Bierens,
1987! the expression

1

n (
i51

n

h1n
2wcKSwl 2 wi

h1n
D

converges uniformly~in wi ! in probability to the density ofwi , fW~wi !, so we focus on
the expression

1

n2h3n
2 h1n

wc (
lÞj

tl tj dl dj k
'S [pl 2 [pj

h3n
DKSwl 2 wi

h1n
DD [Ivlj D [Ixlj +

We decomposeD [Ivlj D [Ixlj as

D [Iylj D [Ixlj 2 D [Ixlj
' Zb0 D [Ixlj

and decomposeZDzi accordingly+ Concentrating on the first term after this decomposition,
we note that by the bounds onk'~{!,K~{!, the trimming functions, andxl , xj in the sup-
port of the trimming functions, and also by the moment conditions onyl , yj , we can
replaceD [ Iylj D [ Ixlj with D Iylj D Ixlj , and the resulting remainder term~uniformly in i ! is
Op~h3n

22h1n
2wc7 [qa 2 qa7`!, which by ~A+3! and Assumptions H1 and H3, is op~1!+ Simi-

larly, exploiting the result that Zb 2 b0 5 Op~n2102! the second term~involving
D [Ixlj
' Zb0 D [Ixlj ! can be replaced withD Ixlj

' b0 D Ixlj with a resulting remainder term that is
uniformly op~1!+ We can thus turn our attention to the expression

1

n2h3n
2 h1n

wc (
lÞj

tl tj dl dj k
'S [pl 2 [pj

h3n
DKSwl 2 wi

h1n
DD Ivlj D Ixlj +

We replace [pl 2 [pj with pl 2 pj + Again exploiting boundedness~this time involving the
second derivative ofk~{!! and moment conditions, this time the remainder term is uni-
formly Op~7 [p 2 p7`h3n

23h1n
2wc!, which also isop~1! by Assumptions H1 and H3, and

Lemma A+1+ We are thus left with the expression

1

n2h3n
2 h1n

wc (
lÞj

tl tj dl dj k
'S pl 2 pj

h3n
DKSwl 2 wi

h1n
DD Ivlj D Ixlj +

We treatwi as fixed and multiply the preceding expression byn0~n 2 1!; we have a
second-orderU-statistic+ We note that the expectation of the squared norm of this
U-statistic isO~h3n

23h1n
2wc!, which is o~n! by Assumptions H1 and H3+ Thus by Lemma

A+3~i! in Ahn and Powell~1993!, the U-statistic converges in probability to the ex-
pected value of the term in the double summation divided byh3n

2 h1n
wc+Working with this

sequence of expected values, the usual change of variables, and the bounded conver-
gence theorem, the sequence of expected values converges toDzi fW~wi !+ Furthermore, it
follows by uniform laws of large numbers forU-statistics~see, e+g+, Sherman, 1994!
that this convergence is uniform inwi + This establishes the lemma+ n
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Next we define

c11i 5 2ti pi fi ~ Ixi mti 2 mtxi !{~di Iui !

and

c12i 5 2ti pi fi ~ Ixi mti 2 mtxi !{~ pi Dl'~ pi !~di 2 pi !!+

An immediate consequence of the lemma, using the uniform convergence of[pi to pi , is
that Zc12i converges uniformly ini to c12i + We note that similar, though simpler, argu-
ments used in Lemma A+6 can be used to establish the uniform convergence ofZc11i

to c1i + As a final step we show uniform convergence ofZc2i to c2i + We first show uni-
form convergence ofZfU26Z~zi ! to fU26Z~zi !+ A mean value expansion ofDk~ [u2i 0nn! around
Dk~u2i 0nn! yields a remainder term of ordernn

227 [q2 2 q27`, which is op~1! by the con-
ditions onnn and Lemma A+2+

Also, similar, though simpler, arguments than used in Lemma A+6 can be used to
establish uniform convergence of

S 1

nh3n
(
j51

n

tj dj kS [pi 2 [pj

h3n
D [Ivj D [IxijD

to fi Dl~ pi !pi ~ Ixi mti 2 mtxi !+ The uniform convergence ofZc2i to c2i then follows from
the uniform convergence of[pi , [q1i , [q2i to pi ,q1i ,q2i , respectively+

It immediately follows that

1

n (
i51

n

~ Zc1i 1 Zc2i !~ Zc1i 1 Zc2i !
' 5

1

n (
i51

n

~c1i 1 c2i !~c1i 1 c2i !
' 1 op~1!+

Thus by the law of large numbers, we have ZVxx
p
&& Vxx+ Slutsky’s theorem then implies

Theorem 4+2+ n
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