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Semiparametric estimation of outbreak regression 
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A regression may be constant for small values of the independent variable (for example time), 
but then a monotonic increase starts. Such an “outbreak” regression is of interest for example in 
the study of the outbreak of an epidemic disease. We give the least square estimators for this 
outbreak regression without assumption of a parametric regression function. It is shown that the 
least squares estimators are also the maximum likelihood estimators for distributions in the 
regular exponential family such as the Gaussian or Poisson distribution. The approach is thus 
semiparametric. The method is applied to Swedish data on influenza, and the properties are 
demonstrated by a simulation study. The consistency of the estimator is proved. 
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1.  Introduction 

Model selection is important and different adaptive and model-free approaches have been suggested (see e.g. [1]). 
Without including available assumptions on the shape of the regression, the estimates would be unnecessary 
inefficient. On the other hand, wrong assumptions might cause wrong conclusions from the data. Thus, limited 
constrains on a regression, focused on the issues that are important for the application, are of interest.  
 One important aim in public health surveillance is to detect disease outbreaks. An outbreak can be 
characterised as a change from a constant level to a monotonically increasing incidence. Outbreak detection is an 
important part of surveillance for bioterrorism as well as of surveillance for the detection of new diseases such as the 
recent SARS and avian flu. Outbreaks are also important in the study of ordinary influenza. For likelihood-based 
surveillance methods ([2], [3]) maximum likelihood estimates are needed. Such estimators will be given in this 
article. However, this article will not deal with the sequential issues of surveillance. 
 In many applications the “normal” or base-line state can be described by a constant level. At a possibly 
unknown time, the process changes to a monotonically increasing (or decreasing) regression. In this paper we will 
treat the case of a monotonically increasing regression following the change point, but the statistical problem is the 
same for a decreasing regression. This “outbreak” regression is of interest not only at the outbreak of an epidemic 
disease. We have a similar statistical problem when investigating whether data deviate from a specified econometric 
model by analysing whether there is a change point after which the residuals are increasing. 
 Often a parametric regression is used to estimate the expected incidence during the outbreak. In many 
cases, however, the parameters would vary from case to case. One example of this is the outbreak of influenza, 
where the parameters describing the outbreak do vary from one year to the next. The character of the outbreak also 
varies from one period to the next, thus making it difficult to use a parametric model without misspecification. In [4] 
and [5] it is concluded that parametric models are not suitable when the parameters vary much from year to year, as 
they do for influenza data. The importance of avoiding the effects of estimation errors is also discussed in [6]. Thus, 
here we suggest a nonparametric approach (with respect to the regression function) utilising only the characteristics 
of a constant start followed by a monotonic increase.  
  There are several related nonparametric regression problems. Unimodal or “J-shaped” regression is treated 
in e.g. [7], [8] and [9]. Concave regression is treated for example in [10]. A broken-line estimation is suggested in 
[11], where the parameter, in a distribution belonging to the exponential family, is constant at first, but at an 
unknown time there is an onset of a positive constant change. The authors point out that also nonlinear regression 
can be treated by this approach, after a parametric transformation, and they study conditions for consistent 
estimation of the time of the change-point. They consider the case where the behaviour of the parameter is known 
after the change, while this paper requires only that the expected value is monotonically changing with time. 
Smoothing by kernel methods (see e.g. [12]) is often used. In [13] [14] and [15] there are discussions on the use of 
the extra information by monotonicity restriction in connection with smoothing methods. Smoothing methods are 
very useful for illustrating the outbreak behaviour, but for some purposes, such as alarm systems and hypothesis 
testing, maximum likelihood estimates are useful.  
  The aim of this paper is to derive the least squares and maximum likelihood estimators of the localization 
parameter for outbreak regression under monotonicity restrictions. We study both the case of a known and an 
unknown change point. The normal distribution and the Poisson distribution are of special interest but other 
members of the exponential family are also considered. The estimator is semiparametric in the sense that the 
regression function is nonparametric while the distributions used for the maximum likelihood estimators are 
parametric. The result of this paper is used in derivation of sequential likelihood based surveillance in [16] and [17]. 
  In Section 2 the model is specified and notations are given. In Section 3, the least squares estimators are 
derived. In Section 4 the method is illustrated by an example. Consistency is discussed in Section 5. Maximum 
likelihood properties are given in Section 6. The properties are demonstrated by a simulation study in Section 7. In 
Section 8 some concluding remarks are given. 
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2. Models and specifications 

We observe the process X and at time t we have m(t) observations x1(t), x2(t), ..., xm(t)(t), t= 0, 1, … s. Let τ be the 
time when the monotonic increase starts. Thus τ is the first time for which the regression function is not constant. 
The change point τ may be known or unknown. The expected value of Xi(t) is denoted by μτ(t). The superscript is 
suppressed when obvious. At time τ  the expected value μ changes from a constant level to an increasing 
regression: 
 
  μ(0)=...= μ(τ-1) < μ(τ) ≤ ... ≤μ(s). (1) 
 
The monotonicity restriction contains two parts 
  μ(0)=...= μ(τ-1) (1a) 
  and  
  μ(τ-1) < μ(τ) ≤ ... ≤μ(s) (1b) 
 
We will pay special interest to the situation when Xi(t) is normally distributed and the situation when Xi(t) follows a 
Poisson distribution, but some results are relevant to all members of the exponential family. 

3. Least squares estimation of an outbreak regression 

Least squares estimation with monotonicity restrictions was described for example in [18] and [19]. We need 
optimisation under two restrictions, (1a) and (1b). We will prove that if we first optimise under (1a) and then 
optimise the resulting series under (1b), we will get estimators with the desired properties. In a situation with more 
that 1 observation at a specific time (i.e. m(t)>1), the mean is calculated. The mean is the least square estimator of μ. 
The same vector μ̂  that minimizes the sum of square around the observations will also minimize the sum of square 
around the means. For a specific value τ the suggested estimator is constructed by first considering condition (1a), 
which is the base for the computation of a provisional series y(t) where 
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The next step is to consider condition (1b): 
 
  ˆ (t)τμ  = g(t Y (0),Y (1),...,Y (s))τ τ τ , (3) 

 
where the function g(t) is the least squares estimator of the provisional series Y (t)τ  under the monotonicity 
restriction (1b).  
  The order in which the two conditions (1a and 1b) are used will matter and only this ordering will result in 
estimators which satisfy the least squares and maximum likelihood conditions under the combined restrictions. The 
estimator can also be seen as a pool-adjacent-violators algorithm (PAVA) [19] as will be demonstrated below. 
 
Theorem 1 For a fixed number of observations s and a fixed time point τ from which ( )tμ is increasing, the 

least squares estimator under the order restriction (1) is given by ˆ (t)τμ , given in (3).  
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Proof Since the ordering of the observations before τ is irrelevant, we can formulate the problem as having τ-1 

observations at time τ-1 and 1 observation at each time τ, τ+1,...,s, and the restriction for this new problem is: 

 

  μ(τ-1) < μ(τ) ≤ ... ≤μ(s) 
which is on the border of 
  μ(τ-1) ≤ μ(τ) ≤ ... ≤μ(s).  
 
This problem is an ordinary monotonic regression and the LS estimator is given by PAVA. See for example Section 
2.4.1 of [20].■ 
 
The estimator ˆ (t)τμ  is weighted by the number of observations. It could also be weighted by using special weights, 
for example ( ) 1/ ( )w t tσ=  where σ2(t) is the variance of each of these observations. 
 
Theorem 2 When the change point is unknown, the least squares estimator of μ(t) is  

  ˆ (t)μ = 1ˆ (t)μ  (4) 

 
Proof All other restrictions are included in the monotonic restriction of τ=1. Thus, no other joint estimators could 

have a smaller value of 
m(t )s

j 2
i

t 0 i 1

ˆ(x (t) (t))μ
= =

−∑∑ = Q(j) than Q(1).■ 

 One conclusion from Theorem 2 is that it is not possible to estimate the value of τ without further 
restrictions as discussed in Section 8. 

4. Calculations of influenza incidences  

In order to illustrate the computation of the estimator, we give the details for an example with a few observations. 
This is the number of laboratory-identified cases of influenza in Sweden during the first weeks of the winter 
2003/2004. 
  There are observations x(0), x(1), … , x(7) at time points t=0, 1,..., 7 (in this example m(t)≡1). We calculate 
the estimates for the cases when τ=3 and when τ=6. For τ=3, it is assumed that μ(0)=μ(1)=μ(2) and 
μ(2)<μ(3)≤μ(4)≤μ(5)≤μ(6)≤μ(7), and for τ=6 it is assumed that μ(0)=μ(1)=μ(2)=μ(3)=μ(4)=μ(5) and 
μ(5)<μ(6)≤μ(7) respectively. The data (x), the provisional series (y) and the least squares estimators ( μ̂ ) are given 
in Table 1. The sum of squares is smaller for τ=3, compared to τ=6, thus the earlier change point fits the data best. 
The observations and the least squares estimates are seen in Figure 1  
 

Table 1.  The computat ions for  the res tr ic t ions τ  = 3 and τ  =  6  
t x(t) y3(t) 3ˆ ( )tμ  y6(t) 6ˆ ( )tμ  
0 0 0 0 1 1 
1 0 0 0 1 1 
2 0 0 0 1 1 
3 2 2 1 1 1 
4 0 0 1 1 1 
5 4 4 4 1 1 
6 23 23 23 23 23 
7 38 38 38 38 38 
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Figure 1: The observed data x and the estimates conditional on the monotonicity restriction τ=3 and τ=6, 
respectively.  
 

5. Consistency 

When the number of observations at each time t, m(t), increases we get consistent estimators for the µ vector. 
 
Theorem 3 If the distribution belongs to the exponential family, then ˆ (t)τμ  will give a consistent estimate of 

µ(t) which fulfils condition (1). 

 

Proof  Let m= min{ ( )}
t

m t . The estimator will use the averages 
m(t)

i
i 1

X(t) X (t) / m(t)
=

= ∑ , as 

commented in Section 3. Since X(t)  is a strongly consistent estimator of the expected value in the exponential 

family, so is ˆ (t)τμ , since only averaging and PAVA are used in the transformations of x(t) . It follows that, with 

probability one, 

  
m
lim max | ( ) ( ) | 0

t
Y t tτ μ

→∞
− = . 

 
Thus, with probability one ˆ (t)μ satisfies the condition (1) as m goes to infinity. ■  
 
 Unfortunately this consistency does not carry over to the case where there is only one observation for each 
time but the number of time points increases. For the case when we have a pre-grouping of the time points into 
classes, the consistency property carries over to the expected values in these time-classes if the number of 
observations in each time-class increases. 
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6. Maximum likelihood estimation 

For certain distributions the least squares estimators given above are also maximum likelihood estimators. We will 
consider the regular exponential family with the conditions of the derivatives of the parameters as specified on page 
34 of [19] and give special cases of this family. 
 
Theorem 4 The least squares solutions of Theorem 1 and 2 are the maximum likelihood solutions if the values 

of the dispersion parameter in the exponential distribution are equal for all times (but possibly unknown). 

 
Proof This follows from properties of ordinary isotonic regression since the current problem can be expressed in 

these terms, as demonstrated in the proof of Theorem 1. See for example Section 2.4.2 of [20].■ 

 
Theorem 5 The weighted least squares estimator is the maximum likelihood solution for known but possibly 

different values of the dispersion parameter.  

 
Proof This follows from properties of ordinary isotonic regression. See for example Section 2.4.2 of [20].■ 

 
Corollary 1 The least squares solutions ˆ (t)τμ  and ˆ (t)μ  in (3) and (4) are the maximum likelihood solutions 

when the observations at each time follow a normal distribution with equal variances. 

 
Corollary 2 The weighted least squares solutions ˆ (t)τμ  and ˆ (t)μ  in (3) and (4) (with the weights 

( ) 1/ ( )w t tσ= ) are the maximum likelihood solutions when the observations at each time follow a normal 

distribution with unequal variances, where the variances are known (or their relation to each other is known).  

 
Corollary 3 The (unweighted) least squares solutions ˆ (t)τμ  and ˆ (t)μ  in (3) and (4) are the maximum 
likelihood solutions for a Poisson distribution. 
 
This follows from the fact that there is no additional dispersion parameter for the Poisson distribution. One might 
have expected that weights should be used since the parameter of the Poisson distribution also reflects the variance. 
However, the only places where the regression differs from the observations are where the estimates by the PAVA 
are constants. A weighted regression should thus have constant weight.■ 
 
 The estimated curve (and the corresponding likelihood) may be used for inference such as hypothesis 
testing or surveillance concerning the start of the influenza season, but such inference will not be treated here.  

7. Simulation study of properties 

We performed a simulation study in order to illustrate bias, variance and the influence of the value of τ (the time 
when the increase starts). We generated data similar to those that can be expected at an influenza outbreak according 
to [4]. In Sweden, the monitoring of influenza starts at week 40 each year but the time of the onset varies 
considerably between years and thus also the length of the constant phase. Here is a situation where there is need of 
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a surveillance system in order to get early warnings regarding the start of the influenza. We investigated several 
possible scenarios. The reported results are based on at least  one million replicates. In some cases, such as for 
Figures 3 and 7, we used 50 million replicates in order to avoid influence of random fluctuations in the reported 
simulation results. We report results for Poisson and normally distributed variables. 
 To illustrate the case of a Poisson distribution we generated weekly numbers of laboratory-diagnosed 
influenza cases (LDI) according to their similarity with the influenza season 2003/2004, which was a “typical” 
season. The observed process X follows a Poisson distribution with the parameter μ(t), where 
 

  0

0 1

, t
(t)

exp( (t 1)), t
μ < τ⎧

μ = ⎨ β +β ⋅ − τ + ≥ τ⎩
 

 
where μ0=1, β0=-0.26, β1=0.826.  
 In Figure 2 the mean and standard deviation (by 2 SD bars) of the estimates of     1 000 000 replicates are 
given. The cases are generated for different values of τ (τ=4 and τ=8). The estimates were produced with knowledge 
of the true value. The variation of the estimates is smaller than without the restriction, thus Var( ˆ (t)τμ )<Var(X(t)). 

The effect of the restriction of a constant phase has a major influence on Var( ˆ (t)τμ ) during this phase, and this 
variance is smaller than the variance for the  mean of all the observations during the constant phase. The 
monotonicity restriction has a small variance-reducing effect when the slope is large in comparison with the 
variance.  
 There is a bias, but this is too small to be seen in the scale of Figure 2. Thus the two series (the mean of the 
estimate and the expected value of the generated data) coincide in Figure 2. The bias ( ˆ[ ]−E μ μ ) is illustrated in a 
larger scale in Figure 3. 
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Figure 2. The mean of the estimated values at each time point (dot) and the variation of the estimated values, 
illustrated by ± 2SD (bars). The true expected value, μ(t), cannot be distinguished from the mean of the estimates, 
E[ μ̂ (t)], in the scale of the figure. The left figure is estimated under the true restriction of τ=4, and the right figure is 
estimated under the true restriction that τ=8.  
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 Figure 3. The bias ˆ[ ]E μ μ−  for the situations when data are generated for τ=1 τ=4 and τ=8 and the true value of τ 
is known in the estimation. 
 
 
As could be expected the bias in the constant phase is small since the first step of forming the mean (provisional 
series) produces an unbiased estimate. In the next step the isotonic regression will produce a too low estimate of the 
constant phase. The weight of the unbiased estimate is (τ-1)/s, thus the bias will be small for a large value of τ. For 
the next part of the regression the bias is as expected for an isotonic curve; namely, there is a negative bias for early 
time points and a positive bias for late ones. This is illustrated in Figure 4 where a constant value is generated and 
the estimation is made under the restriction of τ=1.  
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Figure 4. Estimation under the restriction of τ=1 for data generated by a Poisson distribution with a constant mean 
(i.e. generated under the condition that τ=∞).  
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The pattern in Figure 3 will not completely agree with the one in Figure 4 even at the isotonic phase, since we have 
an exponential increase as soon as the influenza has started. Thus, we will very soon have very little influence of the 
isotonic regression. The later points will almost always be estimated by the observed values, and the bias will thus 
decrease to zero. 
 The effect of misspecification of τ is illustrated in Figure 5. Both curves (τ=4 and τ=8) from which data are 
generated are the same as those in Figure 2. 
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Figure 5. The mean of the estimated values at each time point (dot) and the variation of the estimated values, 
illustrated by ± 2SD (bars). The effect of error in the assumption of τ is illustrated: in the left figure, the true τ equals 
4 but the restriction τ=8 is imposed in the estimation, and in the right figure, the true τ equals 8 but the restriction 
τ=4 is imposed in the estimation.  
 
 
In Figure 5 we can see that a restriction of a later change than the true one will give a constant phase at a too high 
level. In Figure 5 (right) we can see that a restriction of an earlier change than the true one has very little impact. In 
Figure 6 we illustrate the bias and the standard deviation when no assumption of the value of τ is made but the 
general maximum likelihood estimator ˆ (t)μ  is used. 
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Figure 6. The maximum likelihood estimator, without any information about τ (true τ equals 8). Left: The mean of 
the estimated values at each time point (dot) and the variation of the estimated values, illustrated by ± 2SD (bars). 
The true expected value, μ(t), cannot be distinguished from the mean of the estimates, E[ μ̂ (t)], in the scale of the 
figure. Right: The bias at each time point (dot).   
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In Figure 6 (left) we see that the mean of the estimated curve, even without information on τ, is very close to the real 
curve in the current scale. Thus, even without knowledge of τ, the estimator produces a reasonable estimate. 
However, by comparing the bias in the right panel of Figure 6 with the one in Figure 3 (for τ=8), we can conclude 
that the knowledge of the value of τ decreases the bias – especially for the constant phase. By comparing the 
variation of the estimates (±2SD) in Figure 6 (left) with that of Figure 2, we can see that the correct restriction 
(knowledge about τ) decreases the variation – especially during the constant phase. 
  For the Poisson distribution, the variance and the expected value have the same value. Therefore, normally 
distributed data are used to examine the effect of the variance. To illustrate the properties for normal distributions 
with different variances we generated data with means similar to the number of influenza-like cases (ILI) during the 
winter 2003/2004 and a constant variance. The following model was used for the observed process X: 
 
  X(t) ∼N(μ(t); σ2),  
 
where 

  0

0 1

, t
(t)

exp( (t 1)), t
μ < τ⎧

μ = ⎨ β +β ⋅ − τ + ≥ τ⎩
 

 
and μ0=20, β0=2.67, β1=0.68 and different values of the variance σ2 are used. A normal distribution is a reasonable 
approximation here since the incidences are rather high. Different scenarios were considered regarding the length of 
the constant phase. 
 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9

σ=6

σ=3

 
Figure 7. Average bias of the ML-estimator for normally distributed data with standard deviation σ=3 and σ=6 
respectively. The data are generated for τ=4 and this is used as a restriction in the estimation. 
 
 
In Figure 7 we can see that the bias is small for a small variance. This illustrates that the estimator is consistent.  

8. Concluding remarks 

The results presented here on outbreak regression are of importance not only in pure estimation contexts but also for 
on-line surveillance based on maximum likelihood estimators. The outbreak of a disease can often be characterised 
as a change from a constant level to a monotonically increasing incidence. Surveillance systems for detecting 
outbreaks are crucial in surveillance for bioterrorism as well as in surveillance for the detection of new diseases, see 
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[21]. Outbreak detection is also important in the study of ordinary influenza [22]. Surveillance systems based on 
likelihood ratios have important optimality properties [3]. For nonparametric surveillance as in [5] (nonparametric 
with respect to the shape of the curve), maximum likelihood estimates are useful as a basis for maximum likelihood 
ratios. The estimators presented here can be used for likelihood-based surveillance to detect the onset of an 
increasing incidence. Smoothing methods are useful for the description of the outbreak behaviour but will not give 
the required maximum likelihood estimators.  
 Sometimes it is reasonable to believe that the regression is continuous and has continuous derivatives. 
However, this condition can always be satisfied by some definition of estimates between the discretely observed 
times. Thus this is no restriction to the estimates. When a smooth curve is needed for illustration, it is possible to fit 
a smooth curve (such as a spline [23]) to the maximum likelihood estimates.  
 One may be interested in estimating the time, τ, of the onset of the increasing phase and also the level of the 
constant phase, µ(0). The maximum likelihood estimation of the curve by the proposed method will also give 
maximum likelihood estimates of these parameters. Generally, however, there will not be one unique maximum 
likelihood estimator of τ. No other value of τ can give a larger value of the likelihood than τ=1, since µ(0)= ... =µ(i-
1)<µ(i)≤ ...≤µ(s) is a special case of, or on the limit of, µ(0)<µ(1)≤...µ(i)...≤µ(s). The maximum likelihood estimator 
of µ(0) will be unique but biased since the maximum likelihood estimators of τ and µ(0) are closely related. This 
problem of bias in the endpoints is shared with other maximum likelihood estimators of ordered statistics such as the 
usual monotonic regression. In order to get unbiased estimators of τ and µ(0), more (parametric) structure could be 
used, for example a certain size of the change. In [24] a penalization of the distance between µ(0)- µ(s) was used to 
avoid bias in connection with a test of whether the regression is constant or monotonic for the whole period.  
  When the maximum likelihood statistic derived here is used for test or surveillance purposes, the bias is not 
a problem. In such cases there are natural false alarm requirements which give the user the opportunity to state that 
only important deviations should be detected. This corresponds to the above-mentioned parametric size condition for 
the estimator but is expressed by probability and does not require any parametric assumption for the curve.  
 The estimator is consistent (for a large number of observations at each time) but not unbiased.  The 
direction of the bias is that the estimates are too low. However, the bias is very small for the constant phase. For the 
increasing phase the bias is smaller to start with due to the stabilisation by the constant phase. A long constant phase 
exaggerates this tendency. 
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