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Semiparametric Estimation of Treatment
Effect in a Pretest–Posttest Study
with Missing Data
Marie Davidian, Anastasios A. Tsiatis and Selene Leon

Abstract. The pretest–posttest study is commonplace in numerous appli-
cations. Typically, subjects are randomized to two treatments, and response
is measured at baseline, prior to intervention with the randomized treatment
(pretest), and at prespecified follow-up time (posttest). Interest focuses on
the effect of treatments on the change between mean baseline and follow-up
response. Missing posttest response for some subjects is routine, and disre-
garding missing cases can lead to invalid inference. Despite the popularity of
this design, a consensus on an appropriate analysis when no data are missing,
let alone for taking into account missing follow-up, does not exist. Under a
semiparametric perspective on the pretest–posttest model, in which limited
distributional assumptions on pretest or posttest response are made, we show
how the theory of Robins, Rotnitzky and Zhao may be used to characterize
a class of consistent treatment effect estimators and to identify the efficient
estimator in the class. We then describe how the theoretical results translate
into practice. The development not only shows how a unified framework for
inference in this setting emerges from the Robins, Rotnitzky and Zhao the-
ory, but also provides a review and demonstration of the key aspects of this
theory in a familiar context. The results are also relevant to the problem of
comparing two treatment means with adjustment for baseline covariates.

Key words and phrases: Analysis of covariance, covariate adjustment, in-
fluence function, inverse probability weighting, missing at random.

1. INTRODUCTION

1.1 Background and Motivation

The so-called pretest–posttest trial arises in a host of
applications. Subjects are randomized to one of two in-
terventions, denoted here by “control” and “treatment,”
and the response is recorded at baseline, prior to inter-
vention (pretest response), and again after a prespeci-
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fied follow-up period (posttest response). We use the
terms “baseline/pretest” and “follow-up/posttest” in-
terchangeably. The effect of interest is usually stated as
“difference in change of (mean) response from baseline
to follow-up between treatment and control.”

For instance, in studies of HIV disease, a com-
mon objective is to determine whether the change in
measures of immunologic status such as CD4 cell
count from baseline to some subsequent time follow-
ing initiation of antiretroviral therapy is different for
different treatments. Depressed CD4 counts indicate
impairment of the immune system, so larger, posi-
tive such changes are thought to reflect more effec-
tive treatment. To exemplify this situation, we consider
data from 2139 patients from AIDS Clinical Trials
Group (ACTG) protocol 175 (Hammer et al., 1996),
a study that randomizes patients to four antiretrovi-
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ral regimens in equal proportions. The findings of
ACTG 175 indicate that zidovudine (ZDV) monother-
apy is inferior to the other three [ZDV+didanosine
(ddI), ZDV+zalcitabine, ddI] therapies, which showed
no differences on the basis of the primary study end-
point of progression to AIDS or death. Accordingly,
we consider two groups: subjects who receive ZDV
alone (control) and those who receive any of the other
three therapies (treatment). As is routine in HIV clini-
cal studies, measures such as CD4 count were collected
on all participants periodically throughout, and interest
also focused on secondary questions regarding changes
in immunologic and virologic status. An important sec-
ondary endpoint was change in CD4 count from base-
line to 96±5 weeks.

To formalize this situation, let Y1 and Y2 denote
baseline and follow-up response (e.g., baseline and
96±5 week CD4 count) and let Z = 0 or 1 indi-
cate assignment to control or treatment, respectively.
Because, under proper randomization, pretest mean
response should not differ by intervention, it is rea-
sonable to assume that E(Y1|Z = 0) = E(Y1|Z = 1) =
E(Y1) = µ1. Letting E(Y2|Z) = µ2 + βZ, the desired
effect may then be expressed as

{E(Y2|Z = 1) − µ1} − {E(Y2|Z = 0) − µ1}
(1)

= E(Y2|Z = 1) − E(Y2|Z = 0) = β

and interest focuses on the parameter β . A number of
ways to make inference on β have been proposed. Be-
cause the question is usually posed in terms of differ-
ence in change from baseline, analysis is often based
on the “paired t test” estimator for β found by tak-
ing the difference of the sample averages of (Y2 − Y1)

in each group. The second expression in (1) involves
only posttest treatment means, suggesting estimating β

in the spirit of the two-sample t test by the differ-
ence of Y2 sample means for each treatment (ignoring
baseline responses altogether). However, if baseline re-
sponse is correlated with change in response or posttest
response itself, intuition suggests taking this into ac-
count. For continuous response, this has led many re-
searchers to advocate the use of analysis of covariance
(ANCOVA) techniques, in which one estimates β di-
rectly by fitting the linear model E(Y2|Y1,Z) = α0 +
α1Y1 +βZ. A variation is to include an interaction term
involving Y1Z; here, β is estimated as the coefficient
of (Z − Z) in the regression of Y2 − Y 2 on Y1 − Y 1,
Z − Z and (Y1 − Y 1)(Z − Z), where the overbars
denote overall sample average. Singer and Andrade
(1997) mentioned a “generalized estimating equation”

(GEE) approach (see also Koch, Tangen, Jung and
Amara, 1998), where (Y1, Y2)

T is viewed as a mul-
tivariate response vector with mean (µ1,µ2 + βZ)T

and standard GEE methods are used to make inference
on β . Yang and Tsiatis (2001) and Leon, Tsiatis and
Davidian (2003) provided further details on all of these
methods. The two-sample t test approach implicitly
assumes pre- and posttest responses are uncorrelated,
which may be unrealistic, while the paired t test and
ANCOVA evidently assume linear dependence of Y1
and Y2, which may not hold in practice; for example,
Figure 1 shows baseline and follow-up CD4 counts in
ACTG 175 and suggests a mild curvilinear relationship
between them in each group. Numerous authors (e.g.,
Brogan and Kutner, 1980; Crager, 1987; Laird, 1983;
Stanek, 1988; Stein, 1989; Follmann, 1991; Yang and
Tsiatis, 2001) have studied these “popular” procedures
under various assumptions, yet no general consensus
has emerged regarding a preferred approach, providing
little guidance for practice.

A further complication facing the data analyst, par-
ticularly in lengthy studies, is that of missing follow-
up response Y2 for some subjects. In the ACTG 175
data, for example, although baseline CD4 (Y1) is avail-
able for all 2139 participants, 37% are missing CD4
count at 96±5 weeks (Y2) due to dropout from the
study. A common approach in this situation is to un-
dertake a complete-case analysis, applying one of the
above techniques only to the data from subjects for
whom both the pre- and posttest responses are ob-
served. In the GEE method, one may in fact include
data from all subjects by defining the “multivariate re-
sponse” for those with missing Y2 to be simply Y1, with
mean µ1. However, as is well known, for all of these
approaches, unless the data are missing completely at
random (Rubin, 1976), which implies that missingness
is not associated with any observed or unobserved sub-
ject characteristics, these strategies may yield biased
inference on β .

Often, baseline demographic and physiologic char-
acteristics X1, say, are collected on each participant.
Moreover, during the intervening period from baseline
to follow-up, additional covariate information X2, say,
including intermediate measures of the response, may
be obtained. In ACTG 175, at baseline CD4 count (Y1)
and covariates (X1), including weight; age; indica-
tors of intravenous drug use, HIV symptoms, prior
experience with antiretroviral therapy, hemophilia,
sexual preference, gender and race; CD8 count (an-
other measure of immune status); and Karnofsky score
(an index that reflects a subject’s ability to perform
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activities of daily living) were recorded for each par-
ticipant. In addition, CD4 and CD8 counts and treat-
ment status (on/off assigned treatment) were recorded
intermittently between baseline and 96±5 weeks (X2).
Missingness at follow-up is often associated with
baseline response and baseline and intermediate co-
variates, and this relationship may be differential by
intervention. For example, HIV-infected patients who
are worse off at baseline as suggested by low base-
line CD4 count may be more likely to drop out, par-
ticularly if they receive the less effective treatment.
Moreover, HIV-infected patients may base a decision
to drop out on post-baseline intermediate measures of
immunologic or virologic status (e.g., CD4 counts),
which themselves may reflect the effectiveness of their
assigned therapy. Here, the assumption that follow-up
is missing at random (MAR; Rubin, 1976), associated
only with these observable quantities and not the miss-
ing response, may be reasonable.

If one is willing to adopt the MAR assumption,
methods that take appropriate account of the miss-
ingness should be used to ensure valid inference.
A standard approach to missing data problems is max-
imum likelihood, which in the pretest–posttest setting
with Y2 MAR involves full (parametric) specification
of the joint distribution of V = (X1, Y1,X2, Y2,Z).
Alternatively, adaptation of popular estimators such as
ANCOVA to handle MAR Y2 on a case-by-case basis
may be possible. Maximum likelihood techniques are
known to suffer potential sensitivity to deviations from
modeling assumptions, and neither approach has been
widely applied by practitioners in the pretest–posttest
context.

In summary, although missing follow-up response is
commonplace in the pretest–posttest setting, there is no
widely accepted or used methodology for handling it.
In this paper we demonstrate how a unified framework
for pretest–posttest analysis under MAR may be devel-
oped by exploiting the results in a landmark paper by
Robins, Rotnitzky and Zhao (1994).

1.2 Semiparametric Models, Influence Functions,
and Robins, Rotnitzky and Zhao

A popular modeling approach that acknowledges
concerns over sensitivity to parametric assumptions is
to take a semiparametric perspective. A semiparamet-
ric model may involve both parametric and
nonparametric components, where the nonparametric
component represents features on which the analyst
is unwilling or unable to make parametric assump-
tions, and interest may focus on a parametric com-
ponent or on some functional of the nonparametric

component. For example, in a regression context one
may adopt a parametric model for the conditional ex-
pectation of a continuous response given covariates
and seek inference on the model parameters but be
uncomfortable assuming the full conditional distrib-
ution is normal, instead leaving it unspecified. Un-
der the semiparametric model for the pretest–posttest
trial we consider, features of the joint distribution
of V = (X1, Y1,X2, Y2,Z) beyond the independence
of (X1, Y1) and Z induced by randomization are left
unspecified and thus constitute the nonparametric com-
ponent, and interest focuses on the functional β of this
distribution defined in (1). When Y2 is MAR, this semi-
parametric view not only offers protection against in-
correct assumptions on V , but allows us to exploit the
theory of Robins, Rotnitzky and Zhao (1994) to deduce
estimators for β . These authors derived an asymptotic
theory for inference in general semiparametric models
with data MAR that may be used to identify a class
of consistent estimators for parametric components or
such functionals, as we now outline.

Robins, Rotnitzky and Zhao (1994) restricted atten-
tion to estimators that are regular and asymptotically
linear. Regularity is a technical condition that rules
out “pathological” estimators with undesirable local
properties (Newey, 1990), such as the “superefficient”
estimator of Hodges (e.g., Casella and Berger, 2002,
page 515). Generically, an estimator β̂ for β (p × 1)

in a parametric or semiparametric statistical model
for a random vector W based on i.i.d. data Wi , i =
1, . . . , n, is asympotically linear if it satisfies, for a
function ϕ(W),

n1/2(β̂ − β0) = n−1/2
n∑

i=1

ϕ(Wi) + op(1),(2)

where β0 is the true value of β generating the data,
E{ϕ(W)} = 0, E{ϕT (W)ϕ(W)} < ∞ and expectation
is with respect to the true distribution of W . The func-
tion ϕ(W) is referred to as the influence function of β̂ ,
as to a first-order ϕ(W) is the influence of a single ob-
servation on β̂ in the sense given in Casella and Berger
(2002, Section 10.6.4). An estimator that is both reg-
ular and asymptotically linear (RAL) with influence
function ϕ(W) is consistent and asymptotically normal
with asymptotic covariance matrix E{ϕ(W)ϕT (W)}.
Although not all consistent estimators need be RAL,
almost all reasonable estimators are. For RAL estima-
tors, there exists an influence function ϕeff(W) such
that E{ϕ(W)ϕT (W)} − E{ϕeff(W)ϕeffT (W)} is non-
negative definite for any influence function ϕ(W);
ϕeff(W) is referred to as the efficient influence function
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and the corresponding estimator is called the efficient
estimator. In fact, for any regular estimator, asymptot-
ically linear or not, with asymptotic covariance matrix
�, � − E{ϕeff(W)ϕeffT (W)} is nonnegative definite;
thus, the best estimator in the sense of “smallest”
asymptotic covariance matrix is RAL, so that restrict-
ing attention to RAL estimators is not a limitation. We
use the term “influence function” unqualified to mean
the influence function of an RAL estimator.

As indicated by (2), there is a relationship between
influence functions and consistent and asymptotically
normal estimators; thus, by identifying influence func-
tions, one may deduce corresponding estimators. In
missing data problems, Robins, Rotnitzky and Zhao
(1994) distinguished between full-data and observed-
data influence functions. “Full data” refers to the data
that would be observed if there were no missingness;
in the pretest–posttest setting the full data are V . Ac-
cordingly, full-data influence functions correspond to
estimators that could be calculated if full data were
available and are hence functions of the full data.
“Observed data” refers to the data observed when some
components of the full data are potentially missing;
hence observed-data influence functions correspond to
estimators that can be computed from observed data
only and are functions of the observed data. For a
general semiparametric model, the pioneering contri-
bution of Robins, Rotnitzky and Zhao (1994) was to
characterize the class of all observed-data influence
functions when data are MAR, including the efficient
influence function, and to demonstrate that observed-
data influence functions may be expressed in terms of
full-data influence functions. Because for many popu-
lar semiparametric models the form of full-data influ-
ence functions is known or straightforwardly derived,
this provides an attractive basis for identifying estima-
tors when data are MAR, including the efficient one.

In summary, the Robins, Rotnitzky and Zhao (1994)
theory provides a series of steps for deducing estima-
tors for a semiparametric model of interest when data
are MAR: (1) Characterize the class of full-data influ-
ence functions, (2) characterize the observed data un-
der MAR and apply the Robins, Rotnitzky and Zhao
theory to obtain the class of observed-data influence
functions, including the efficient one and (3) identify
observed-data estimators with influence functions in
this class. In this paper, for the semiparametric pretest–
posttest model when Y2 is MAR, β is a scalar (p = 1),
and we carry out each of these steps and show how
they lead to closed-form estimators for β suitable for
routine practical use. Interestingly, despite the ubiq-

uity of the pretest–posttest study and the simplicity of
the model when no data are missing, to our knowledge
explicit application of this powerful theory to pretest–
posttest inference with data MAR with an eye toward
developing practical estimators has not been reported.

1.3 Objectives and Summary

The goals of this paper are twofold. The first main
objective is to develop accessible practical strategies
for inference on β in a semiparametric pretest–posttest
model with follow-up data MAR by using the funda-
mental theory of Robins, Rotnitzky and Zhao (1994) as
described above. Although this theory is well known to
experts, many researchers have only passing familiar-
ity with its essential elements. Thus, the second main
goal of this paper is to use the pretest–posttest prob-
lem as a backdrop to provide a detailed and mostly
self-contained demonstration of application of the the-
ory of semiparametric models and the powerful, gen-
eral Robins, Rotnitzky and Zhao results in a concrete,
familiar context. This account hopefully will serve as
a resource to researchers and practitioners wishing to
appreciate the scope and underpinnings of the Robins,
Rotnitzky and Zhao theory by systematically tracing
the key concepts and steps involved in its application
and explicating how it can lead to practical insight and
tools.

In Section 2 we summarize the semiparametric
pretest–posttest model and outline how the class of
full-data influence functions for estimators for β may
be derived. In Section 3 we characterize the observed
data when Y2 is MAR, review the essential Robins,
Rotnitzky and Zhao (1994) results and apply them to
derive the class of observed-data influence functions.
Sections 4 and 5 present strategies for constructing es-
timators based on observed-data influence functions,
and we demonstrate the new estimators by application
to the ACTG 175 data in Section 6. Results and prac-
tical implications are presented in the main narrative;
technical supporting material and details of derivations
are given in the Appendix.

As in any missing-data context, validity of the as-
sumption of MAR follow-up response is critical and is
best justified with availability of rich baseline and in-
tervening information. We assume throughout that the
analyst is well equipped to invoke this assumption.

2. MODEL AND FULL-DATA
INFLUENCE FUNCTIONS

2.1 Semiparametric Pretest–Posttest Model

First, consider the full data (no missing posttest re-
sponse). Suppose each subject i = 1, . . . , n is ran-
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domized to treatment with known probability δ, so
Zi = 0 or 1 as i is assigned to control or treatment; in
ACTG 175, δ = 0.75. Then Y1i and Y2i are i’s pretest
and posttest responses (baseline and 96±5 week CD4
in ACTG 175), X1i is i’s vector of baseline covariates
and X2i is the vector of additional covariates collected
on i after intervention but prior to follow-up, which
may include intermediate measures of response. As-
suming subjects’ responses evolve independently, the
full data on i are Vi = (X1i , Y1i ,X2i , Y2i ,Zi), i.i.d.
across i with density p(v) = p(x1, y1, x2, y2, z); we
often suppress the subscript i for brevity. From (1) in-
terest focuses on β = E(Y2|Z = 1) − E(Y2|Z = 0) =
µ

(1)
2 − µ

(0)
2 , µ

(1)
2 = µ2 + β and µ

(0)
2 = µ2; throughout,

expectation and variance are with respect to the true
distribution of V .

From Section 1.2, under a semiparametric perspec-
tive the analyst may be unwilling to make specific para-
metric assumptions on p(x1, y1, x2, y2, z) such as nor-
mality or equality of variances of Y1 and Y2. For exam-
ple, in HIV research it is customary to assume that CD4
counts are normally distributed on some transformed
scale and to carry out analyses on this scale; however,
as there is no consensus on an appropriate transforma-
tion, methods that do not require this assumption are
desirable. Thus, in arguments to deduce the form of
full- and observed-data influence functions here and in
Sections 3 and 4, we do not impose any specific as-
sumptions beyond independence of (X1, Y1) and Z in-
duced by randomization and assumptions on the form
of the mechanism governing missingness. As our ob-
jective is to outline the salient features of the arguments
without dwelling on technicalities, we assume needed
moments, derivatives and matrix inverses exist without
comment.

2.2 Full-Data Influence Functions

As presented in Section 1.2, our first step in apply-
ing the Robins, Rotnitzky and Zhao (1994) theory is
to characterize the class of all full-data influence func-
tions for RAL estimators for β; these will be functions
of V . This may be accomplished by appealing to the
theory of semiparametric models (e.g., Newey, 1990;
Bickel, Klaassen, Ritov and Wellner, 1993), which pro-
vides a formal framework for characterizing influence
functions for RAL estimators in such models, includ-
ing the efficient influence function. The theory takes
a geometric perspective, where, generically, influence
functions based on data V for RAL estimators for a
p-dimensional parameter or functional β in a statisti-
cal model for V are viewed as elements of a particular

“space” of mean-zero, p-dimensional functions of V

for which there is a certain relationship between the
distance of any element of the space from the origin
and the covariance matrix of the function. From (2),
as the covariance matrix of an influence function is
equal to the asymptotic covariance matrix of the cor-
responding estimator, the search for estimators with
small covariance matrices, especially the efficient es-
timator, may thus be focused on functions in this space
and guided by geometric distance considerations.

In Appendix A.1 we first sketch an argument that
demonstrates that any RAL estimator has a unique
influence function, supporting the premise of work-
ing with influence functions. We then review famil-
iar results for fully parametric models and show how
they may be regarded from this geometric perspective.
Finally, we indicate how this perspective is extended
to handle semiparametric models. The key results are a
representation of the form of all influence functions for
RAL estimators in a particular model and a convenient
characterization of the efficient influence function that
corresponds to the efficient estimator.

In Appendix A.2 we apply these results to show that
all full-data influence functions for estimators for β in
the semiparametric pretest–posttest model must be of
the form{

Z(Y2 − µ2 − β)

δ
− (Z − δ)

δ
h(1)(X1, Y1)

}
−

{
(1 − Z)(Y2 − µ2)

1 − δ
(3)

− {(1 − Z) − (1 − δ)}
1 − δ

h(0)(X1, Y1)

}
,

where h(c)(X1, Y1), c = 0,1, are arbitrary functions
with var{h(c)(X1, Y1)} < ∞. Technically, the influence
function (3) depends on µ2 and β through their true
values. As is conventional, here and in the sequel we
write influence functions as functions of parameters,
which highlights their practical use as the basis for de-
riving estimators, shown in Section 5. From (3), in-
fluence functions and hence all RAL estimators for β

are functions only of (X1, Y1, Y2,Z) and hence do not
depend on X2. This is intuitively reasonable; because
X2 is a post-intervention covariate, we would not ex-
pect it to play a role in estimation of β when Y2 is
observed on all subjects. In Section 3, however, we
will observe that when Y2 is MAR for some subjects,
such covariates are important not only for validating
the MAR assumption, but for increasing efficiency of
estimation of β , as discussed in Robins, Rotnitzky and
Zhao (1994, page 848).
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The results in Appendix A.2 also show that the ef-
ficient influence function, that with smallest variance
among all influence functions in class (3), is found by
taking

h(c)(X1, Y1) = E(Y2|X1, Y1,Z = c) − µ
(c)
2 ,

(4)
c = 0,1, µ

(1)
2 = µ2 + β, µ

(0)
2 = µ2.

Thus, if full data were available in ACTG 175, the op-
timal estimator for β would involve the true regression
of 96±5 week CD4 on pretest CD4 and other base-
line covariates listed in Section 1.1. Leon, Tsiatis and
Davidian (2003) identified class (3) when no interven-
ing covariate X2 is observed and showed that influ-
ence functions for the popular estimators discussed in
Section 1.1 are members; for example, the two-sample
t test estimator

β̂2s = n−1
1

n∑
i=1

ZiY2i − n−1
0

n∑
i=1

(1 − Zi)Y2i ,

(5)

nc =
n∑

i=1

I (Zi = c), c = 0,1,

has influence function (3) with h(c) ≡ 0, c = 0,1 (see
Appendix A.2). Thus, popular estimators are RAL and
valid under the semiparametric model, and hence con-
trary to widespread belief, are consistent and asymp-
totically normal even if Y1 and Y2 are not normally
distributed. Leon, Tsiatis and Davidian (2003) also
showed that none of the popular estimators has the ef-
ficient influence function, suggesting that improved es-
timators are possible, and proposed estimators based
on (4) that offer dramatic efficiency gains over popular
methods.

In fact, (3) is the difference of the forms of all
influence functions for µ

(1)
2 and µ

(0)
2 , respectively,

which may themselves be deduced separately by ar-
guments analogous to those in Appendix A.2. In
Appendix A.3 we argue that, for the purposes of iden-
tifying observed-data estimators for β , it suffices to
identify observed-data influence functions for estima-
tors for µ

(1)
2 and µ

(0)
2 separately. We thus focus for

simplicity in Section 3 on estimation of µ
(1)
2 .

3. OBSERVED DATA INFLUENCE FUNCTIONS

3.1 Semiparametric Pretest–Posttest Model with
MAR Follow-Up Response

Suppose now that Y2 is missing for some subjects,
with all other variables observed, and define R = 0 or 1

as Y2 is missing or observed. Then the observed data
for subject i are Oi = (X0i , Y1i ,X1i ,Ri,RiY2i ,Zi),
i.i.d. across i. We represent the assumption that Y2 is
MAR as

P(R = 1|X1, Y1,X2, Y2,Z)

= P(R = 1|X1, Y1,X2,Z)(6)

= π(X1, Y1,X2,Z) ≥ ε > 0,

reflecting the reasonable view for a pretest–posttest
trial that there is a positive probability of observing Y2
for any subject. Equation (6) formalizes that missing-
ness does not depend on the unobserved Y2, but may
be associated with baseline and intermediate charac-
teristics and be differential by intervention, the latter
highlighted by the equivalent representation

π(X1, Y1,X2,Z) = Zπ(1)(X1, Y1,X2)
(7)

+ (1 − Z)π(0)(X1, Y1,X2)

for π(c)(X1, Y1,X2) = π(X1, Y1,X2, c) ≥ ε > 0,
c = 0,1. For ACTG 175, (6) and (7) make explicit the
belief that subjects may have been more or less likely
to drop out (and hence be missing CD4 at 96±5 weeks)
depending on their baseline CD4 and other characteris-
tics as well as intermediate measures of CD4 and CD8
and off-treatment status, where this relationship may
be different for patients treated with ZDV only versus
the other therapies, but that dropout does not depend
on unobserved 96±5 week CD4. Relaxation of the as-
sumption that X1, Y1,X2 are observed for all subjects
is discussed in Section 7.

3.2 Complete-Case Analysis and
Inverse Weighting

As noted in Section 1.1, a naive approach under these
conditions is to conduct a complete-case analysis. For
example, using the two-sample t test, estimate β by

n−1
R1

n∑
i=1

RiZiY2i − n−1
R0

n∑
i=1

Ri(1 − Zi)Y2i ,

(8)

nRc =
n∑

i=1

RiI (Zi = c), c = 0,1,

the difference in sample means based only on data
for subjects with Y2 observed. Under the semipara-
metric model, as E(RZY2) = E{ZY2E(R|X1, Y1,X2,

Y2,Z)} = E{ZY2π
(1)(X1, Y1,X2)} by (6) and (7), and

E{RI (Z = 1)} = E(RZ) = E{Zπ(1)(X1, Y1,X2)},
the first term in (8) converges in probability to E{ZY2 ·
π(1)(X1, Y1,X2)}/E{Zπ(1)(X1, Y1,X2)}, which is not
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equal to E(Y2|Z = 1) = µ
(1)
2 in general. Similarly, the

second term is not consistent for µ
(0)
2 . Thus, (8) is not

a consistent estimator for β in general.
A simple remedy is to incorporate inverse weight-

ing of the complete cases (IWCC; e.g., Horvitz and
Thompson, 1952). Here, whereas the estimator for µ

(1)
2

in (8) solves
∑n

i=1 RiZi(Y2i − µ
(1)
2 ) = 0, weight each

contribution by the inverse of the probability of see-
ing a complete case; that is, solve

∑n
i=1 RiZi(Y2i −

µ
(1)
2 )/π

(1)
i (X1i , Y1i ,X2i) = 0, yielding the estimator

for µ
(1)
2 ,

n−1
RZ(1)

n∑
i=1

RiZiY2i/π
(1)(X1i , Y1i ,X2i),

(9)

nRZ(1) =
n∑

i=1

RiZi/π
(1)(X1i , Y1i ,X2i),

and analogously for µ
(0)
2 . It is straightforward to show

that such inverse weighting yields consistent estimators
for µ

(c)
2 , c = 0,1; for example, for (9) (c = 1), using

(6) and (7),

E

{
RZY2

π(1)(X1, Y1,X2)

}

= E

{
ZY2

E(R|X1, Y1,X2, Y2,Z)

π(1)(X1, Y1,X2)

}
= E(ZY2) = E{ZE(Y2|Z)} = δE(Y2|Z = 1),

and similarly E{RZ/π(1)(X1, Y1,X2)} = δ, so that (9)
converges in probability to E(Y2|Z = 1) = µ

(1)
2 . Sub-

tracting µ
(c)
2 and multiplying by n1/2 for each of

c = 0,1, the associated influence functions are seen
to be

RZ(Y2 − µ
(1)
2 )

δπ(1)(X1, Y1,X2)
and

(10)
R(1 − Z)(Y2 − µ

(0)
2 )

(1 − δ)π(0)(X1, Y1,X2)
,

which have the form of the corresponding full-data in-
fluence functions in (3) weighted by 1/π(c), c = 0,1,
for the complete cases only (R = 1). The IWCC may
be applied to any RAL estimator with influence func-
tion in class (3), including popular ones. However,
although such simple IWCC leads to consistent infer-
ence, methods with greater efficiency are possible.

3.3 The Robins, Rotnitzky and Zhao Theory

As noted in Section 1.2, the pioneering advance of
Robins, Rotnitzky and Zhao (1994) was to derive, for

a general semiparametric model, the class of all ob-
served data influence functions for estimators for a
parameter β under complex forms of MAR and to
characterize the efficient influence function. The the-
ory reveals, perhaps not unexpectedly, that there is a
relationship between full- and observed-data influence
functions and that the latter involve inverse weighting.

Denote the subset of the full data V that is always
observed for all subjects as O∗; O∗ = (X1, Y1,X2,Z)

here. Under MAR, the probability that full data are ob-
served depends only on O∗, which we write as π(O∗).
Assuming π(O∗) is known for now, if ϕF (V ) is any
full-data influence function, Robins, Rotnitzky and
Zhao showed that, in general, all observed-data influ-
ence functions have the form RϕF (V )/π(O∗)−g(O),
where g(O) is an arbitrary square-integrable function
of the observed data that satisfies E{g(O)|V } = 0. For
situations like that here, where a particular subset of V

(Y2) is either missing or not for all subjects, this be-
comes

RϕF (V )

π(O∗)
− R − π(O∗)

π(O∗)
g(O∗),(11)

where g(O∗) is an arbitrary square-integrable function
of the data always observed. In (11), the first term has
the form of an IWCC full-data influence function; the
second term, which has mean zero, depending only
on data observed for all subjects, “augments” (e.g.,
Robins, 1999) the first, which leads to increased effi-
ciency provided that g is chosen judiciously.

3.4 Observed-Data Influence Functions for the
Pretest–Posttest Problem

In the special case of the pretest–posttest problem,
focusing on estimation of the treatment mean µ

(1)
2 =

µ2 + β , with O∗ = (X1, Y1,X2,Z), (3) and (11) im-
mediately imply that the class of all observed-data
influence functions for estimators for µ

(1)
2 when Y2 is

MAR is

R{Z(Y2 − µ
(1)
2 ) − (Z − δ)h(1)(X1, Y1)}

δπ(X1, Y1,X2,Z)
(12)

− R − π(X1, Y1,X2,Z)

π(X1, Y1,X2,Z)
g(1)(X1, Y1,X2,Z)

for arbitrary h(1) and g(1) such that var{h(1)(X1,

Y1)} < ∞ and var{g(1)(X1, Y1,X2,Z)} < ∞. Defining
g(1)′(X1, Y1,X2,Z) = (Z−δ)h(1)(X1, Y1)+δg(1)(X1,

Y1,X2,Z), we may write (12) equivalently in a way
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that is convenient in subsequent developments as

RZ(Y2 − µ
(1)
2 )

δπ(X1, Y1,X2,Z)
− (Z − δ)

δ
h(1)(X1, Y1)

(13)

− R − π(X1, Y1,X2,Z)

δπ(X1, Y1,X2,Z)
g(1)′(X1, Y1,X2,Z);

there is a one-to-one correspondence between
(12) and (13).

As in the full-data problem, it is of interest to identify
the optimal choices of h(1) and g(1), or, equivalently,
h(1) and g(1)′ , that is, those that yield the efficient
observed-data influence function with smallest vari-
ance among all influence functions of form (12) or,
equivalently, (13). In Appendix A.4 we show that the
optimal choices of h(1) and g(1)′ in (13) are

heff(1)(X1, Y1)

= E(Y2|X1, Y1,Z = 1) − µ
(1)
2 ,

geff(1)′(X1, Y1,X2,Z)(14)

= Z
{
E(Y2|X1, Y1,X2,Z) − µ

(1)
2

}
= Z

{
E(Y2|X1, Y1,X2,Z = 1) − µ

(1)
2

}
.

The forms geff(1)′ and heff(1) show explicitly how aug-
mentation exploits relationships among variables to
gain efficiency. In ACTG 175, then, (14) shows that the
optimal estimator for β involves knowledge of the true
regressions of 96±5 week CD4 on baseline CD4 and
other baseline covariates, and on this baseline informa-
tion plus post-intervention CD4 and CD8 measures and
off-treatment status, respectively.

To develop estimators for practical use with good
properties, it is sensible to consider influence func-
tions with form close to that of the efficient influence
function. Accordingly, from the expression for geff(1)′

in (14) and the representation of π in (7), we re-
strict attention in the sequel to the subclass of (13)
with elements of the form, for g(1)′(X1, Y1,X2,Z) =
Zq(1)(X1, Y1,X2) for arbitrary square-integrable
q(1)(X1, Y1,X2),

ψ(X1, Y1,X2,R,RY2,Z)

= RZ(Y2 − µ
(1)
2 )

δπ(1)(X1, Y1,X2)
− (Z − δ)

δ
h(1)(X1, Y1)

(15)

− {R − π(1)(X1, Y1,X2)}Z
δπ(1)(X1, Y1,X2)

· q(1)(X1, Y1,X2).

Equation (15) includes the optimal g(1)′ , but rules out
choices that cannot have the efficient form.

3.5 Estimation of the Missingness Mechanism

The foregoing results take π and, hence, π(1)(X1,

Y1,X2) to be known, which is unlikely unless Y2 is
missing purposefully by design for some subjects in
a way that depends on a subject’s baseline and inter-
mediate information. In practice, unknown π(1) is of-
ten addressed by positing a parametric model for π(1);
intuition suggests that such a model be correctly
specified, although we discuss this further in Sec-
tion 4.2. For now, then, suppose that a parametric
model π(1)(X1, Y1,X2;γ ), say, for γ (s × 1) has been
proposed and is correct, where γ0 is the true value of
γ so that evaluation at γ0 yields the true probability
π(1)(X1, Y1,X2). For definiteness, we focus hence-
forth on the logistic regression model

π(1)(X1, Y1,X2;γ )

= exp{dT (X1, Y1,X2)γ }(16)

· [1 + exp{dT (X1, Y1,X2)γ }]−1,

where d(X1, Y1,X2) is a vector of functions of its ar-
gument, but a development analogous to that below is
possible for other choices (e.g., a probit model). In the
ACTG 175 analysis in Section 6 we model the prob-
ability of observing CD4 at 96±5 weeks by a logis-
tic function, where d(X1, Y1,X2) includes functions of
baseline and intermediate characteristics.

Under these conditions, a natural strategy is to derive
an estimator for µ

(1)
2 from an influence function of the

form (15), assuming that π(1)(X1, Y1,X2) is known;
estimate γ based on the i.i.d. data (X1i , Y1i ,X2i ,

Ri,Zi), i = 1, . . . , n, and substitute the estimated
value for γ in the (correct) parametric model π(1)(X1,

Y1,X2;γ ); and estimate µ
(1)
2 acting as if π(1) were

known. Robins, Rotnitzky and Zhao (1994) showed
that, for any choice of h(1) and q(1) in (15), as long
as an efficient procedure [e.g., maximum likelihood
(ML)] is used to estimate γ , the resulting influence
function for the estimator for β obtained by this strat-
egy has the form

ψ(X1, Y1,X2,R,RY2,Z)

+ dT (X1, Y1,X2)A
−1
(1)

(
bq(1) − b(1)

)
(17)

· {R − π(1)(X1, Y1,X2)}Z
δ

,

where

b(1) = E
[(

Y2 − µ
(1)
2

){
1 − π(1)(X1, Y1,X2)

}
· d(X1, Y1,X2)|Z = 1

]
,
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bq(1) = E
[
q(1)(X1, Y1,X2)

{
1 − π(1)(X1, Y1,X2)

}
· d(X1, Y1,X2)|Z = 1

]
,

A(1) = E
[
π(1)(X1, Y1,X2)

{
1 − π(1)(X1, Y1,X2)

}
· d(X1, Y1,X2)d

T (X1, Y1,X2)|Z = 1
]
,

and π(1)(X1, Y1,X2) is the true probability (i.e., the
parametric model evaluated at γ0). In Appendix A.5 we
give the basis for this result. Thus, estimators for µ

(1)
2

with influence functions in class (17) may be de-
rived by finding estimators with influence functions in
class (15) (so for “γ known” in the context of a correct
parametric model for π(1)) and substituting the ML es-
timator for γ . Thus, although influence functions of the
form (17) are useful for understanding the properties of
estimators for µ

(1)
2 when γ is estimated, one need only

work with influence functions of the form (15) to de-
rive estimators.

When q(1)(X1, Y1,X2) has the efficient form E(Y2|
X1, Y1,X2,Z = 1)−µ

(1)
2 , b(1) = bq(1). Hence, as long

as the parametric model for π(1) is correct, even if
γ is estimated, the last term in (17) is identically
equal to zero, but this will not necessarily be true
otherwise. This reflects the general result shown by
Robins, Rotnitzky and Zhao (1994) that an estimator
derived from the efficient influence function will have
the same properties whether the parameters in a (cor-
rect) model for the missingness mechanism are known
or estimated. For general h(1) and q(1) not necessarily
equal to the optimal choices, the theory also implies
the seemingly counterintuitive result that, even if γ is
known, estimating it anyway can lead to a gain in ef-
ficiency; that is, for a specific (nonoptimal) choice of
h(1) and q(1), the variance of (17) is at least as small as
that of (15). In Appendix A.5 we give a justification of
this claim.

3.6 Summary

By a development entirely similar to that above for
influence functions for estimators for µ

(1)
2 , we may ob-

tain similar influence functions for estimators for µ
(0)
2 .

Here, influence functions in a subclass that contains
the efficient influence function are of the form (15)
with Z, π(1), δ, h(1) and q(1) replaced by 1 − Z,
π(0), (1 − δ) and analogous functions h(0) and q(0),
respectively, with similar modifications in (17). The
efficient influence function has, analogous to (14),
heff(0) = E(Y2|X1, Y1,Z = 0) − µ(0) and qeff(0) =
E(Y2|X1, Y1,X2,Z = 0) − µ

(0)
2 . To deduce estimators

for β when Y2 is MAR, we derive estimators for µ
(1)
2

and µ
(0)
2 from these developments and take their dif-

ference, which is justified by the argument in Appen-
dix A.3.

It may be shown that if the true missingness mecha-
nism follows a parametric model π(X1, Y1,X2,Z;γ ),
inducing models π(c)(X1, Y1,X2;γ ), c = 0,1, cor-
rectly specifying this model and estimating γ by ML
from the data for subjects with Z = 0 and 1 sepa-
rately leads to estimators for µ

(1)
2 and µ

(0)
2 at least

as efficient as those found by estimating γ by fitting
π(X1, Y1,X2,Z;γ ) to all the data jointly. We recom-
mend this approach in practice.

4. ESTIMATORS FOR β

4.1 Derivation of Estimators from
Influence Functions

As a generic principle, based on (2), to identify an
estimator from a given influence function, one sets the
sum of terms that have the form of the influence func-
tion for each subject i = 1, . . . , n to zero, regarding
the influence function as a function of the parame-
ter of interest, and solves for this parameter, possibly
substituting estimators for other unknown quantities.
In complex models, particularly when p > 1, it may
be impossible to solve for the parameter explicitly,
and this and additional considerations can lead to
computational and other challenges. However, for the
simple pretest–posttest model, this strategy straightfor-
wardly leads to closed-form estimators for β , as we
now demonstrate.

The form of the efficient influence function is a
natural starting point from which to derive estima-
tors with good properties. Thus, focusing on µ

(1)
2 , ap-

plying this strategy to (15) with the optimal choices
h(1)(X1, Y1) = E(Y2|X1, Y1,Z = 1) − µ

(1)
2 and

q(1)(X1, Y1,X2) = E(Y2|X1, Y1,X2, Y = 1) − µ
(1)
2 ,

simple algebra yields

µ
(1)
2 = (nδ)−1

n∑
i=1

RiZiY2i

π(1)(X1i , Y1i ,X2i )

− (nδ)−1
n∑

i=1

(Zi − δ)

· E(Y2i |X1i , Y1i ,Zi = 1)(18)

− (nδ)−1
n∑

i=1

{Ri − π(1)(X1i , Y1i ,X2i)}Zi

π(1)(X1i , Y1i ,X2i)

· E(Y2i |X1i , Y1i ,X2i ,Zi = 1),
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and similarly for µ
(0)
2 . Thus, to estimate β , one would

take the difference of (18) and the analogous expres-
sion for µ

(0)
2 . In practice this is complicated by the

fact that π(X1, Y1,X2) must be modeled and fitted;
moreover, it is evident that suitable regression models
for E(Y2|X1, Y1,Z) and E(Y2|X1, Y1,X2,Z) must be
identified and fitted. We discuss strategies for resolving
these practical challenges in Section 5.

4.2 Double Robustness

So far we have assumed that postulated models
for π(c), c = 0,1, are correctly specified. If the pos-
tulated model is incorrect, substituting this incor-
rect model into an influence function of the form
(15) or (17) when c = 1 with arbitrary h(1) and
q(1) yields an expression that need not have mean
zero; for example, the leading term in ψ(X1, Y1,

X2,R,RY2,Z) in (15) has expectation zero only if
P(R = 1|X1, Y1,X2,Z = 1) = π(1)(X1, Y1,X2), the
true probability, and similarly for c = 0. Because a
defining characteristic of an influence function is zero
mean, estimators derived under such conditions need
no longer be consistent. However, there is an excep-
tion when the optimal h(1) and q(1) are used as in (18),
which we now describe.

In general, the augmentation in (11) induces the in-
teresting property that estimators derived from (11)
will be consistent if either (1) the choice g(O∗) does
not correspond to the optimal choice but π(O∗) is cor-
rectly specified or (2) the optimal choice of g(O∗)
is used but π(O∗) is misspecified. This property is
referred to as double robustness (e.g., Scharfstein,
Rotnitzky and Robins, 1999, Section 3.2.3; van der
Laan and Robins, 2003, Section 1.6).

We may demonstrate the double robustness prop-
erty for estimators for the pretest–posttest model;
for definiteness, consider µ

(1)
2 . Under option 1, with

any arbitrary choices for h(1) and q(1), if the model
π(1)(X1, Y1,X2;γ ) corresponds to the true mecha-
nism, that (15) has mean zero is immediate. Thus,
even if one models E(Y2|X1, Y1,Z) and E(Y2|X1, Y1,

X2,Z) incorrectly in (18), the resulting estimator
still has a corresponding legitimate influence func-
tion in class (17) (assuming γ is estimated) and
hence is consistent. Conversely, under option 2, sup-
pose E(Y2|X1, Y1,Z) and E(Y2|X1, Y1,X2,Z) are
correctly specified in (18), but π(1)(X1, Y1,X2) is
specified incorrectly by some π∗(X1, Y1,X2), say.
Substituting π∗ for π(1) in (18), it is straightforward to

show that the right-hand side converges in probability
to µ

(1)
2 (see Appendix A.6), suggesting that an estima-

tor based on (18) would still be consistent. In fact, the
second term in (18) converges in probability to zero
even if E(Y2|X1, Y1,Z = 1) is replaced by any arbi-
trary function of (X1, Y1), so that the double robustness
property holds if only E(Y2|X1, Y1,X2,Z) is correct.
Of course, if both π(1) and E(Y2|X1, Y1,X2,Z) are
specified incorrectly, we cannot expect (18) to yield
consistent inference in general.

As we discuss in Section 5, in practice one must
develop and fit models for π(c), E(Y2|X1, Y1,Z) and
E(Y2|X1, Y1,X2,Z), so the results above are some-
what idealized. However, if the analyst uses his or her
best judgment and efforts to develop these models, the
chance of coming very close to specifying at least one
of them correctly may be high. The theoretical double
robustness property suggests that, by using estimators
like (18) based on the efficient influence function, the
analyst has some protection against inadvertent mis-
modeling. In our experience, even if both types of mod-
els are mildly incorrectly specified, valid inferences
may be obtained; if one model is grossly incorrect, that
with the mild misspecification error tends to dominate,
so that reliable inferences are still possible.

5. PRACTICAL IMPLEMENTATION

To obtain estimators for β based on (18) and the
analogous expression for µ

(0)
2 suitable for practice,

π(c)(X1, Y1,X2), E(Y2|X1, Y1,Z = c) and E(Y2|X1,

Y1,X2,Z = c), c = 0,1, must be modeled and fit-
ted. Given parametric models π(c)(X1, Y1,X2;γ ), if
γ is estimated by ML separately from the data for
Z = 0 and 1 as at the end of Section 3.6, yield-
ing estimators γ̂ (c), c = 0,1, we may form esti-
mated probabilities π̂

(c)
i = π(c)(X0i , Y1i ,X1i; γ̂ (c)),

say. Similarly, given fits of some regression models
E(Y2|X1, Y1,Z = c) and E(Y2|X1, Y1,X2,Z = c), we
may obtain predicted values êh(c)i and êq(c)i , c = 0,1,
say, for E(Y2i |X1i , Y1i ,Zi = c) and E(Y2i |X1i , Y1i ,

X2i ,Zi = c), respectively. Letting δ̂ = n1/n, substi-
tuting in (18) and its analog for c = 0 then yields the
estimator β̂ = µ̂

(1)
2 − µ̂

(0)
2 , where

µ̂
(1)
2 = n−1

1

{
n∑

i=1

RiZiY2i/π̂
(1)
i −

n∑
i=1

(Zi − δ̂)̂eh(1)i

−
n∑

i=1

(
Ri − π̂

(1)
i

)
Ziêq(1)i/π̂

(1)
i

}
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and

µ̂
(0)
2 = n−1

0

{
n∑

i=1

Ri(1 − Zi)Y2i/π̂
(0)
i

+
n∑

i=1

(Zi − δ̂)̂eh(0)i

−
n∑

i=1

(
Ri − π̂

(0)
i

)
(1 − Zi)̂eq(1)i/π̂

(0)
i

}
.

Intuitively, replacing the unknown quantities in (18)
and its analog for c = 0 by consistent estimators should
not alter the implications for consistency of β̂ dis-
cussed earlier. We now review considerations involved
in obtaining π̂

(c)
i , êh(c)i and êq(c)i , c = 0,1.

A natural approach to modeling E(Y2|X1, Y1,Z = c)

and E(Y2|X1, Y1,X2,Z = c) is to adopt parametric
models based on usual regression considerations. For
example, in ACTG 175, Y2 = CD4 at 96±5 weeks
is a continuous measurement, suggesting that stan-
dard linear regression models may be used. Because
of the assumption of MAR, E(Y2|X1, Y1,X2,Z,R)

does not depend on R; thus, E(Y2|X1, Y1,X2,Z) =
E(Y2|X1, Y1,X2,Z,R = 1), implying that this model
may be postulated and fitted based only on the com-
plete cases. Thus, standard techniques for model selec-
tion and diagnostics may be applied to the data from
subjects with R = 1. For example, inspection of plots
like those in Figure 1, which shows only data for sub-
jects for whom CD4 at 96±5 weeks is observed, may

be used. Figure 1 suggests that such reasonable models
might include both linear and quadratic terms in Y1 =
baseline CD4.

Considerations for developing and fitting models
for E(Y2|X1, Y1,Z = c) are trickier. Ideally, the cho-
sen model for this quantity must be compatible with
that for E(Y2|X1, Y1,X2,Z), as E(Y2|X1, Y1,Z) =
E{E(Y2|X1, Y1,X2,Z)|X1, Y1,Z}. Several practical
strategies are possible, although none is guaranteed to
achieve this property and hence yield the efficient es-
timators for µ

(c)
2 , c = 0,1. One approach is to adopt a

model directly for E(Y2|X1, Y1,Z) that is likely “close
enough” to be “approximately compatible.” For exam-
ple, if E(Y2|X1, Y1,X2,Z) is a linear model in func-
tions of (X1, Y1,X2), one may be comfortable with
a linear model for E(Y2|X1, Y1,Z) that includes the
same functions of X1, Y1. We demonstrate this ad hoc
strategy for the ACTG 175 data in Section 6. If all
of X1, Y1,X2, Y2 are continuous, assuming joint nor-
mality may be a reasonable approximation, in which
case standard results may be used to deduce both
models. Alternatively, one might use the relationship
E(Y2|X1, Y1,Z) = E{E(Y2|X1, Y1,X2,Z)|X1, Y1,Z}.
For example, for low-dimensional X2, a distribu-
tional model for X2|X1, Y1,Z might be fitted based
on the (X1i , Y1i ,X2i ,Zi), i = 1, . . . , n, which are
observed for all subjects; integration with respect
to this model would yield the desired conditional
quantities for c = 0,1. For univariate binary X2,

FIG. 1. CD4 counts after 96±5 weeks versus baseline CD4 counts for complete cases for (a) ZDV alone and (b) the combination of
ZDV+ddI, ZDV+ddC or ddI alone, ACTG 175. Solid lines were obtained using the Splus function loess() (Cleveland, Grosse and
Shyu, 1993).
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a logistic model for P(X2 = 1|X1, Y1,Z) may be
used; this is straightforward, but could be more chal-
lenging for mixed continuous and discrete and/or
high-dimensional X2. Instead, one might invoke an
empirical approximation, for example, obtaining the
predicted value êh(c)i , c = 0,1, for each i by aver-
aging estimates of E(Y2i |X1i , Y1i ,X2j ,Zi = c) over
subjects j that share the same values for (X1, Y1,Z)

as i, which would likely be feasible only in specialized
circumstances. A cruder version would be to average
over all X2j for j in the same group as i; this would
yield the desired result only if X2 is conditionally in-
dependent of (X1, Y1) given Z.

A further complication is that, for any chosen model
for E(Y2|X1, Y1,Z), it is no longer appropriate to fit
the model based on the complete cases only. Ideally
this fitting should be carried out by a procedure that
accounts for the fact that Y2 is MAR, such as an IWCC
version of standard regression techniques. However, if
the model is an approximation anyway, complete-case-
only fitting may not be seriously detrimental. Even if
the fit of the chosen model is not consistent for that
model, the discussion of double robustness in Sec-
tion 4.2 suggests that the resulting estimators µ̂

(c)
2 and

hence β̂ should be consistent regardless.
Another approach would be to use nonparamet-

ric smoothing to estimate E(Y2|X1, Y1,X1,Z) and
E(Y2|X1, Y1,Z) and obtain predicted values êq(c)i

and êh(c)i , for example, locally weighted polynomial
smoothing (Cleveland, Grosse and Shyu, 1993) or
generalized additive modeling (Hastie and Tibshirani,
1990). Ideally, smoothing for E(Y2|X1, Y1,Z) should
be modified to take into account that Y2 is MAR,
although this may not be critical by double robust-
ness. Instead, an estimate of E(Y2|X1, Y1,Z) could
be derived from integration of the nonparametric fit of
E(Y2|X1, Y1,X2,Z). Feasibility of smoothing might
be limited in high dimensions.

However one approaches developing and fitting
models for E(Y2|X1, Y1,X2,Z = c) and E(Y2|X1, Y1,

Z = c), c = 0,1, we have found that it may be ad-
vantageous, at least for large n, to fit separate models
for c = 0,1. We also recommend including in all four
models the same functions of components of X1, Y1
and X2 (if appropriate) if they were found to be impor-
tant in any one model, as it may be prudent to over-
model rather than undermodel.

Similarly, standard techniques for parametric binary
regression may be used to fit models π(c)(X1, Y1,

X2;γ ) for each c = 0,1, as all n subjects will have
the requisite data. We recommend including in these

models all covariates found to be important in any of
the regression models above, as it may be shown that
including covariates in this model that are correlated
with Y2, even if they are not associated with missing-
ness, can lead to gains in efficiency. Lunceford and
Davidian (2004) demonstrated this phenomenon in a
simple related setting. Thus, we suggest developing
this model after building and fitting of the models for
E(Y2|X1, Y1,X2,Z = c) and E(Y2|X1, Y1,Z = c) are
complete.

Theoretically, if all of these models are correctly
specified, then β̂ should be efficient in the sense de-
scribed earlier. For parametric regression models for
E(Y2|X1, Y1,X2,Z = c) and E(Y2|X1, Y1,Z = c),
although additional regression parameters must be es-
timated because of the geometry, there is no effect as-
ymptotically; a similar phenomenon for nonparametric
estimation of these quantities is suggested by the re-
sults of Newey (1990, pages 118–119) as long as this is
at a rate faster than n−1/4. The double robustness prop-
erty discussed in Section 4.2 ensures that consistent
estimators for β and µ

(c)
2 , c = 0,1, will be obtained as

long as either set of models is correct; however, effi-
ciency is no longer guaranteed.

The asymptotic variance of β̂ is obtained from the
expectation of the square of the difference of (15) and
the analogous control influence function, given by

E

{
(Y2 − µ

(1)
2 )2

π(1)(X1, Y1,X2)δ

∣∣∣Z = 1
}

+ E

{
(Y2 − µ

(0)
2 )2

π(0)(X1, Y1,X2)(1 − δ)

∣∣∣Z = 0
}

− δ(1 − δ)

· E
[{

E(Y2|X1, Y1,Z = 1) − µ
(1)
2

δ

+ E(Y2|X1, Y1,Z = 0) − µ
(0)
2

1 − δ

}2]
(19)

− ∑
c=0,1

(
I (c = 1)

δ
+ I (c = 0)

1 − δ

)

· E
[

1 − π(c)(X1, Y1,X2)

π(c)(X1, Y1,X2)

· {
E(Y2|X1, Y1,X2,Z = c)

− µ
(c)
2

}2
]
.

Implicit here is the assumption that the models for
π(c)(X1, Y1,X2), E(Y2|X1, Y2,X2,Z = c) and E(Y2|



TREATMENT EFFECT IN A PRETEST–POSTTEST STUDY 273

X1, Y1,Z = c) are correct. Equation (19) may be esti-
mated by replacing the first two terms by (̂δn̂RZ(1))

−1 ·∑n
i=1 RiZi(Y2i − µ̂

(1)
2 )2/π̂

(1)2
i and {(1 − δ̂)n̂RZ(0)}−1 ·∑n

i=1 Ri(1 − Zi)(Y2i − µ̂
(0)
2 )2/π̂

(0)2
i , where n̂RZ(c) =∑n

i=1 RiI (Zi = c)/π̂
(c)
i , and replacing the remaining

terms by sample averages with estimates substituted
for needed quantities. Alternatively, var(β̂) may be es-
timated by

∑n
i=1 ϕ̂2

i /n2, corresponding to the so-called
sandwich technique, where ϕ̂i is the difference of the
influence functions with estimates substituted, that is,

ϕ̂i = RiZi(Y2i − µ̂
(1)
2 )

δ̂π̂
(1)
i

− (Zi − δ̂)(̂eh(1)i − µ̂
(1)
2 )

δ̂

− (Ri − π̂
(1)
i )Zi (̂eq(1)i − µ̂

(1)
2 )

δ̂π̂
(1)
i

− Ri(1 − Zi)(Y2i − µ̂
(0)
2 )

(1 − δ̂)π̂
(0)
i

+ (Zi − δ̂)(̂eh(0)i − µ̂
(0)
2 )

(1 − δ̂)

− (Ri − π̂
(0)
i )(1 − Zi)(̂eq(1)i − µ̂

(0)
2 )

(1 − δ̂)π̂
(0)
i

.

If E(Y2|X1, Y2,X2,Z) and E(Y2|X1, Y1,Z) are mis-
modeled, the influence function of µ̂

(1)
2 would instead

be of the form (17) to account for estimation of γ , and
similarly for µ̂

(0)
2 . Although technically then the above

formulae would seem to require modification, we have
extensive empirical evidence to suggest that they yield
reliable estimates of precision if incorrect models are
used.

6. TREATMENT EFFECT IN ACTG 175

We now apply the proposed methods to the data
from ACTG 175, where β is the difference in mean
CD4 count at 96±5 weeks for subjects receiving ZDV
(control) and those receiving any of the other three
therapies (treatment), so that δ = 0.75. The analysis
here is not definitive, but is meant to illustrate the typi-
cal steps in an analysis based on these techniques.

Following Section 5, we begin by modeling E(Y2|
X1, Y1,X2,Z = c), c = 0,1. As reviewed in Sec-
tion 1.1, X1 contains 11 baseline covariates in ad-
dition to baseline CD4 (Y1). For X2, we considered
three covariates available for all subjects: CD4 at 20±5
weeks postrandomization, CD8 at 20±5 weeks and
an indicator of whether the subject went off his/her

assigned treatment prior to 96 weeks; reasons could
include death, dropout or other patient or physician
decisions. Because of the high dimension of X1 and
the fact that both X1 and X2 contain a mixture of
continuous and discrete variables, we considered para-
metric linear regression modeling. Based on the 1342
of n = 2139 subjects that are complete cases, stan-
dard model selection techniques indicate that weight,
indicators of HIV symptoms and prior antiretroviral
therapy, Karnofsky score, CD8 count and CD4 count
(linear and quadratic terms in CD4 and CD8) at base-
line, CD8 and CD4 count at 20±5 weeks (linear and
quadratic terms), and off-treatment status are associ-
ated with Y2 = CD4 count at 96±5 weeks in one
or both treatment groups. Thus, we fit separately for
c = 0,1, the models

E(Y2|X1, Y1,X2,Z = c)

= α
(c)
0 + α

(c)
1 wt + α

(c)
2 HIV + α

(c)
3 prior

+ α
(c)
4 Karn + α

(c)
5 CD80 + α

(c)
6 CD82

0
(20)

+ α
(c)
7 CD40 + α

(c)
8 CD42

0 + α
(c)
9 CD820

+ α
(c)
10 CD82

20 + α
(c)
11 CD420 + α

(c)
12 CD42

20

+ α
(c)
13 offtrt

by ordinary least squares (OLS), obtaining predicted
values êq(c)i , c = 0,1 for each i = 1, . . . , n. Adopting
the ad hoc strategy in Section 5, we directly modeled
E(Y2|X1, Y1,Z = c), c = 0,1, by including the same
terms in X1 and Y1 as in (20), that is,

E(Y2|X1, Y1,Z = c)

= α
(c)
0 + α

(c)
1 wt + α

(c)
2 HIV + α

(c)
3 prior

+ α
(c)
4 Karn + α

(c)
5 CD80 + α

(c)
6 CD82

0

+ α
(c)
7 CD40 + α

(c)
8 CD42

0,

again fitting the model for each c by OLS and obtain-
ing predicted values êh(c)i , c = 0,1 for all n subjects.
Finally, based on standard techniques for logistic re-
gression and the guidelines in Section 5, we arrived at

logitπ(c)(X1, Y1,X2;γ (c))
= γ

(c)
0 + γ

(c)
1 wt + γ

(c)
2 HIV + γ

(c)
3 prior

+ γ
(c)
4 Karn + γ

(c)
5 CD80 + γ

(c)
6 CD82

0

+ γ
(c)
7 CD40 + γ

(c)
8 CD42

0 + γ
(c)
9 CD820

+ γ
(c)
10 CD82

20 + γ
(c)
11 CD420 + γ

(c)
12 CD42

20

+ γ
(c)
13 offtrt, c = 0,1,
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TABLE 1
Treatment effect estimates for 96±5 week CD4 counts

for ACTG 175

Estimate SE

New method 57.24 10.20
IWCC 54.69 11.79
ANCOVA 64.54 9.33
Paired t test 67.14 9.23

NOTE. Standard errors for the new method and the IWCC estimate
were obtained using the sandwich approach. ANOVA denotes or-
dinary analysis of covariance with no interaction term. Standard
errors for the popular estimators based on complete cases were ob-
tained from standard formulæ.

where γ was estimated separately by ML for each
group.

Table 1 shows the estimate of β̂ and the estimated
standard error obtained by the sandwich technique, and
appears to provide strong evidence that mean CD4 at
96±5 weeks is higher in the treatment group relative
to the control. Table 1 also presents the estimate of β

obtained via the IWCC method. The IWCC estimated
standard error is larger than that for the proposed meth-
ods, consistent with the implication of the theory that
incorporation of baseline and intervening covariate in-
formation should improve precision. For comparison,
Table 1 shows estimates of β obtained by the two most
popular approaches in practice based on the complete
cases only. These results suggest there may be nonneg-
ligible bias associated with these naive methods, in this
case suggesting an overly optimistic treatment differ-
ence.

7. DISCUSSION

We have shown how the theory developed by Robins,
Rotnitzky and Zhao (1994) may be applied to the
ubiquitous pretest–posttest problem to deduce analy-
sis procedures that take appropriate account of MAR
follow-up data, yield consistent inferences and lead to
efficiency gains over simpler methods by exploiting
auxiliary covariate information. This perspective pro-
vides a general framework for pretest–posttest analysis
with missing data that illuminates how relationships
among variables play a role in both accounting for
missingness and enhancing precision, thus offering the
analyst guidance for selecting appropriate methods in
practice. We hope that this explicit, detailed demon-
stration of this theory in a familiar context will help re-
searchers who are not well versed in its underpinnings
appreciate the fundamental concepts and how the theo-
retical results may be translated into practical methods.

We have carried out extensive simulations that show
that the proposed methods lead to consistent inference
and considerable efficiency gains over simpler methods
such as IWCC estimators; a detailed account is avail-
able at http://www4.stat.ncsu.edu/~davidian.

We considered the situation where only follow-up re-
sponse is potentially missing; baseline and intermedi-
ate covariates are assumed observable for all subjects.
In some settings covariate information in the period be-
tween baseline and follow-up may be censored due to
dropout, leading to only partially observed X2. The de-
velopment may be extended to this case via the Robins,
Rotnitzky and Zhao (1994) theory and is related to that
for causal inference for time-dependent treatments, re-
quiring assumptions similar to those of sequential ran-
domization identified by Robins (e.g., Robins, 1999;
van der Laan and Robins, 2003).

Although our presentation is in the context of the
pretest–posttest study, it is evident that the results are
equally applicable to the problem of comparing two
means in a randomized study with adjustment for base-
line covariates to improve efficiency, as discussed, for
example, by Koch et al. (1998), because the pretest
response Y1 may be viewed as simply another base-
line covariate. Thus, the developments also clarify
how such optimal adjustment should be carried out to
achieve efficient inferences on a difference in means
in this setting; moreover, they provide a systematic ap-
proach to accounting for missing response.

APPENDIX

A.1. INFLUENCE FUNCTIONS AND
SEMIPARAMETRIC THEORY

Correspondence between influence functions and
RAL estimators. Before we describe semiparametric
theory, we sketch an argument that more fully justifies
why working with influence functions is informative
for identifying (RAL) estimators. It is straightforward
to show by contradiction that an asymptotically lin-
ear estimator [i.e., an estimator satisfying (2)] has a
unique (almost surely) influence function. In the nota-
tion in (2), if this were not the case, there would exist
another influence function ϕ∗(W) with E{ϕ∗(W)} = 0
that also satisfies (2). If (2) holds for both ϕ(W)

and ϕ∗(W), it must be that A = n−1/2 ∑n
i=1{ϕ(Wi) −

ϕ∗(Wi)} = op(1). Whereas the Wi are i.i.d., A con-
verges in distribution to a normal random vector with
mean zero and covariance matrix � = E[{ϕ(W) −
ϕ∗(W)}{ϕ(W)−ϕ∗(W)}T ]. Whereas this limiting dis-
tribution is op(1), it must be that � = 0, implying
ϕ(W) = ϕ∗(W) almost surely.
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Parametric model. We begin by considering fully
parametric models. Formally, a parametric model for
data V is characterized by all densities p(v) in a
class P indexed by a q-dimensional parameter θ , so
that p(v) = p(v, θ) ∈ P is fully specified by θ . Sup-
pose that interest focuses on a parameter β in this
model. In the most familiar case, θ may be partitioned
explicitly as θ = (βT , ηT )T for β (p×1) and η (r ×1),
r = q − p, so that η is a nuisance parameter, and we
may write p(v,β, η). Alternatively, β = β(θ) may be
some function of θ , and identifying the nuisance pa-
rameter may be less straightforward, but the principles
are the same. For simplicity, whereas β in the pretest–
posttest problem is a scalar, we restrict attention to
p = 1.

Maximum likelihood estimator in a parametric mod-
el. For definiteness, consider the case where θ =
(β, ηT )T . Define as usual the score vector Sθ (V, θ) =
{Sβ(V, θ), ST

η (V, θ)}T = [∂/∂β {logp(V,β,η)},
∂/∂ηT {logp(V,β,η)}]T and let θ0 = (β0, η

T
0 )T be the

true value of θ . Then E{Sθ (V, θ0)} = 0 and the infor-
mation matrix is

I(θ0) = E{Sθ (V, θ0)S
T
θ (V , θ0)}

=
(

Iββ Iβη

IT
βη Iηη

)
, Iηη (r × r), Iβη (1 × r),

where expectation is with respect to the true density
p(v,β0, η0). Writing θ̂ = (β̂, η̂T )T to denote the max-
imum likelihood estimator for θ found by maximiz-
ing

∑n
i=1 logp(vi, β, η), it is well known (e.g., Bickel

et al., 1993, Section 2.4) that, under regularity condi-
tions,

n1/2(β̂ − β0) = n−1/2
n∑

i=1

ϕeff(Vi) + op(1),(A.1)

ϕeff(V ) = I−1
ββ•η{Sβ(V, θ0)

− IβηI
−1
ηη Sη(V, θ0)},(A.2)

Iββ•η = Iββ − IβηI
−1
ηη IT

βη,

so that E{ϕeff(V )} = 0 and β̂ is RAL with influ-
ence function ϕeff(V ). Whereas Seff(V ) = Sβ(V, θ0)−
IβηI

−1
ηη Sη(V, θ0) has variance Iββ•η, β̂ is consistent

and asymptotically normal with asymptotic variance
E{ϕeff(V )ϕeffT (V )} = 1/Iββ•η, the well-known
Cramér–Rao lower bound, the smallest possible vari-
ance for (regular) estimators for β . Thus, β̂ is the effi-
cient estimator and, accordingly, Seff(V ) is often called

the efficient score. Evidently ϕeff(V ) is the efficient in-
fluence function, and these familiar results emphasize
the connection between efficiency and the score vector.

We are now in position to place these results in a
geometric context. Our discussion of this geometric
construction for both parametric and semiparametric
models is not meant to be rigorous and complete, but
serves only to highlight the crucial elements.

Hilbert space. A Hilbert space H is a linear vec-
tor space, so that ah1 + bh2 ∈ H for h1, h2 ∈ H
and any real a, b, equipped with an inner product;
see Luenberger (1969, Chapter 3). The key feature
that underlies the geometric perspective is that influ-
ence functions based on data V for estimators for
a p-dimensional parameter β in a statistical model
may be viewed as elements in the particular Hilbert
space H of all p-dimensional, mean-zero random
functions h(V ) such that E{hT (V )h(V )} < ∞, with
inner product E{hT

1 (V )h2(V )} for h1, h2 ∈ H and cor-
responding norm ‖h‖ = [E{hT (V )h(V )}]1/2, measur-
ing distance from h ≡ 0. Thus, the geometry of Hilbert
spaces provides a unified framework for deducing re-
sults with regard to influence functions in both para-
metric and semiparametric models.

Some general results concerning Hilbert spaces are
important. For any linear subspace M of H , the set
of all elements of H orthogonal to those in M , de-
noted M⊥ (i.e., such that if h1 ∈ M and h2 ∈ M⊥,
the inner product of h1, h2 is zero), is also a linear
subspace of H . Moreover, for two linear subspaces
M and N , M ⊕ N is the direct sum of M and N if
every element in M ⊕N has a unique representation of
the form m + n for m ∈ M , n ∈ N . Intuitively, it is the
case that the entire Hilbert space H = M ⊕M⊥. As we
will see momentarily, a further essential concept is the
notion of a projection. The projection of h ∈ H onto a
closed linear subspace M of H is the element in M , de-
noted by (h|M), such that ‖h−(h|M)‖ < ‖h−m‖
for all m ∈ M and the residual h − (h|M) is orthog-
onal to all m ∈ M ; such a projection is unique (e.g.,
Luenberger, 1969, Section 3.3).

In light of the pretest–posttest problem, we again
take p = 1. Let θ0 be the true value of θ .

Geometric perspective on the parametric model.
Consider first the case where θ may be partitioned
as θ = (β, ηT )T , η (r × 1). Let � be the linear
subspace of H that consists of all linear combina-
tions of Sη(V, θ0) of the form BSη(V, θ0), that is,
� = {BSη(V, θ0) for all (1 × r) B}, the linear sub-
space of H spanned by Sη(V, θ0). Whereas � depends
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on the score for nuisance parameters, it is referred to
as the nuisance tangent space. A fundamental result
in this case is that all influence functions for RAL es-
timators for β may be shown to lie in the subspace
�⊥ orthogonal to �. Although a proof of this is be-
yond our scope, it is straightforward to provide an
example by demonstrating that the efficient influence
function in (A.2) lies in �⊥. In particular, we must
show that E{ϕeffT (V )BSη(V, θ0)} = E[{Sβ(V, θ0) −
IβηI

−1
ηη Sη(V, θ0)}T BSη(V, θ0)]/Iββ•η = 0 for all B

(1 × r). By taking B successively to be a (1 × r)

vector with a 1 in one component and 0s elsewhere,
this may be seen to be equivalent to showing that
E[{Sβ(V, θ0) − IβηI

−1
ηη Sη(V, θ0)}ST

η (V, θ0)] = 0,
which follows immediately. Thus, one approach to
identifying influence functions for a particular model
with θ = (β, ηT )T is to characterize the form of ele-
ments in �⊥ directly.

Alternatively, other representations are possible.
For general p(v, θ), the tangent space � is the lin-
ear subspace of H spanned by the entire score vec-
tor Sθ(V, θ0), where Sθ (V, θ) = ∂/∂θ {logp(V, θ)},
that is, � = {BSθ(V, θ0) for all (1 × q) B}. We have
the following key result.

RESULT A.1. Representation of influence func-
tions. All influence functions for (RAL) estimators
for β may be represented as ϕ(V ) = ϕ∗(V ) + ψ(V ),
where ϕ∗(V ) is any influence function and ψ(V ) ∈ �⊥,
the subspace of H orthogonal to �.

This may be shown for general β(θ); we demon-
strate when θ = (β, ηT )T . In this case, a defining
property of influence functions ϕ(V ) which is related
to regularity is that (1) E{ϕ(V )Sβ(V, θ0)} = 1 and
(2) E{ϕ(V )ST

η (V, θ0)} = 0 (1 × r); the proof is out-
side our scope here. Given this, we now show that
all influence functions can be represented as in Re-
sult A.1. First, we demonstrate that if ϕ(V ) can be
written as ϕ∗(V )+ψ(V ), where ϕ∗(V ) and ψ(V ) sat-
isfy the conditions of Result A.1, then ϕ(V ) is an in-
fluence function. Letting �β = {BSβ(V, θ0) for all real
B} be the space spanned by the score for β , it may be
shown that � = � ⊕ �β . Thus, if ψ ∈ �⊥, ψ(V ) is
orthogonal to functions in both � and �β , so that
E{ψ(V )Sβ(V, θ0)} = 0 and E{ψ(V )ST

η (V, θ0)} = 0
(1× r). Moreover, because ϕ∗(V ) is an influence func-
tion, it satisfies properties 1 and 2, whence it follows
that ϕ(V ) also satisfies properties 1 and 2 and, hence,
is itself an influence function. Conversely, we show that
if ϕ(V ) is an influence function, it can be represented
as in Result A.1. If ϕ(V ) is an influence function, it

must satisfy properties 1 and 2, and, writing ϕ(V ) =
ϕ∗(V ) + {ϕ(V ) − ϕ∗(V )} for some other influence
function ϕ∗(V ), it is straightforward to use properties
1 and 2 to show that ψ(V ) = {ϕ(V ) − ϕ∗(V )} ∈ �⊥.
Thus, in general, by identifying any influence function
and �⊥, one may exploit Result A.1 to characterize all
influence functions.

Depending on the particular model and nature of β ,
one method for characterizing influence functions may
be more straightforward than another. When using Re-
sult A.1 in models where θ = (β, ηT )T , � may be most
easily determined by finding � and �β separately; for
general β(θ), � may often be identified directly.

From Result A.1, we may also deduce a useful char-
acterization of the efficient influence function ϕeff(V )

that satisfies E{ϕ2(V )} − E{ϕeff 2(V )} ≥ 0 for
all influence functions ϕ(V ). Whereas for
arbitrary ϕ(V ), ϕeff(V ) = ϕ(V ) − ψ(V ) for ψ ∈ �⊥
and E{ϕeff 2(V )} = ‖ϕ − ψ‖ must be as small as pos-
sible, it must be that ψ = (ϕ|�⊥). Thus, we have the
following result.

RESULT A.2. Representation of the efficient in-
fluence function. The function ϕeff(V ) may be repre-
sented as ϕ(V ) − (ϕ|�⊥)(V ) for any influence func-
tion ϕ(V ).

In the case θ = (β, ηT )T , it is in fact possible to
identify explicitly the form of the efficient influence
function. Here, the efficient score is defined as the
residual of the score vector for β after projecting it onto
the nuisance tangent space, Seff(V , θ0) = Sβ(V, θ0) −
(Sβ |�), and the efficient influence function is an ap-
propriately scaled version of Seff given by ϕeff(V ) =
[E{Seff 2(V , θ0)}]−1Seff(V , θ0). It is straightforward to
observe that ϕeff(V ) is an influence function by show-
ing it satisfies properties 1 and 2 above. Specifically,
by construction Seff ∈ �⊥, so property 2 holds. This
implies E{ϕeff(V )(Sβ |�)(V )} = 0, so that

E{ϕeff(V )Sβ(V, θ0)}
= E{ϕeff(V )Seff(V , θ0)} + E{ϕeff(V )(Sβ |�)(V )}
= E{Seff2(V , θ0)}E{Seff2(V , θ0)} = 1,

demonstrating property 1. That ϕeff(V ) has the small-
est variance among influence functions may be seen by
using the fact that all influence functions may be writ-
ten as ϕ(V ) = ϕeff(V ) + ψ(V ) for some ψ(V ) ∈ �⊥.
Because Sβ ∈ �β and (Sβ |�) ∈ � are both in �, it
follows that E{ψ(V )ϕeff(V )} = 0. Thus, E{ϕ2(V )} =
E[{ϕeff(V )+ψ(V )}2] = E{ϕeff 2(V )}+E{ψ2(V )}, so
that any other influence function ϕ(V ) has variance at
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least as large as that of ϕeff(V ), and this smallest vari-
ance is immediately seen to be 1/Seff 2(V , θ0).

Finally, we may relate this development to the famil-
iar maximum likelihood results when θ = (β, ηT )T .
By definition, (Sβ |�) ∈ � is the unique element
B0Sη ∈ � such that E[{Sβ(V, θ0) − B0Sη(V, θ0)} ·
BSη(V, θ0)] = 0 for all B (1 × r). As above, this is
equivalent to requiring E[{Sβ(V, θ0) − B0Sη(V, θ0)} ·
ST

η (V, θ0)] = 0 (1 × r), implying B0 = IββI−1
ηη . Thus,

(Sβ |�) = IββI−1
ηη Sη(V, θ0) and Seff(V , θ0) =

Sβ(Vi, θ0) − IβηI
−1
ηη Sη(Vi, θ0), as expected.

For a parametric model, it is usually unnecessary to
appeal to the foregoing geometric construction to iden-
tify the efficient estimator and influence functions. In
contrast, in the more complex case of a semiparamet-
ric model such results often may not be derived readily.
However, as we now discuss, the geometric perspective
may be generalized to semiparametric models, provid-
ing a systematic framework for identifying influence
functions.

Geometric perspective on the semiparametric model.
In its most general form, a semiparametric model for
data V is characterized by the class P of all densities
p{v, θ(·)} that depend on an infinite-dimensional para-
meter θ(·). Often, analogous to the familiar parametric
case, θ(·) = {β,η(·)}, where β is (p × 1) and η(·) is
an infinite-dimensional nuisance parameter, and inter-
est focuses on β . For example, in the regression sit-
uation in Section 1.2, β specifies a parametric model
for the conditional expectation of a response given
covariates, and η(·) represents all remaining aspects,
such as other features of the conditional distribution,
that are left unspecified. Alternatively, interest may fo-
cus on a functional β{θ(·)} of θ(·). This is the case
in the semiparametric pretest–posttest model, where
θ(·) represents all aspects of the distribution of V =
(X1, Y1,X2, Y2,Z) that are left unspecified and β is
given in (1).

The key to generalization of the results for paramet-
ric models to this setting is the notion of a paramet-
ric submodel. A parametric submodel is a parametric
model contained in the semiparametric model that con-
tains the truth. In the most general case, with densi-
ties p{v, θ(·)} and functional of interest β{θ(·)}, there
is a true θ0(·) such that p0(v) = p{v, θ0(·)} ∈ P is
the density that generates the data. A parametric sub-
model is the class of all densities Pξ characterized by a
finite-dimensional parameter ξ such that Pξ ⊂ P and
the true density p0(v) = p{v, θ0(·)} = p(v, ξ0) ∈ Pξ ,
where the dimension r of ξ varies according to the

particular choice of submodel. That is, there exists a
density identified by the parameter ξ0 within the pa-
rameter space of the parametric submodel such that
p0(v) = p(v, ξ0). In Appendix A.2 below, we give
an explicit example of parametric submodels in the
pretest–posttest setting.

The importance of this concept is that an estimator
is an (RAL) estimator for β under the semiparamet-
ric model if it is an estimator under every parametric
submodel. Thus, the class of estimators for β for
the semiparametric model must be contained in the
class of estimators for a parametric submodel and,
hence, any influence function for the semiparametric
model must be an influence function for a paramet-
ric submodel. Now, if �ξ is the tangent space for a
given submodel p(v, ξ) with score vector Sξ (v, ξ) =
∂/∂ξ {logp(v, ξ)}, by Result A.1 the corresponding
influence functions for estimators for β must be rep-
resentable as ϕ(V ) = ϕ∗(V ) + γ (V ), where ϕ∗(V ) is
any influence function in the parametric submodel
and γ (V ) ∈ �⊥

ξ . Thus, intuitively, defining � to be
the mean square closure of all parametric submodel
tangent spaces [i.e., � = {h ∈ H such that there ex-
ists a sequence of parametric submodels Pξj

with
‖h(V ) − BjSξj

(V , ξ0j )‖2 → 0 as j → ∞}, where Bj

are (1 × rj ) constant matrices], then it may be shown
that Result A.1 holds for semiparametric model influ-
ence functions. That is, all influence functions ϕ(V )

for estimators for β in the semiparametric model may
be represented as ϕ∗(V ) + ψ(V ), where ϕ∗(V ) is
any semiparametric model influence function and
ψ(V ) ∈ �⊥. Moreover, Result A.2 also holds: as in
the parametric case, the efficient estimator with small-
est variance has influence function ϕeff(V ) and may
be represented as ϕeff(V ) = ϕ(V ) − (ϕ|�⊥)(V ) for
any semiparametric model influence function ϕ(V ). In
Appendix A.2 we use these results to deduce full-data
influence functions for the semiparametric pretest–
posttest model.

Although the pretest–posttest model may be han-
dled using the above development, it is worth not-
ing that a framework analogous to the parametric
case ensues when θ(·) = {β,η(·)}, so that p(v) =
p{v,β, η(·)}, with true values β0, η0(·) such that the
true density is p0(v) = p{v,β0, η0(·)} ∈ P . Here,
a parametric submodel Pβ,ξ is the class of all densi-
ties characterized by β and finite-dimensional ξ such
that Pβ,ξ ⊂ P , p{v,β0, η0(·)} = p(v,β0, ξ0) ∈ Pβ,ξ .
As a parametric model, a submodel has a correspond-
ing nuisance tangent space and, as above, because
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the class of estimators for β for the semiparamet-
ric model must be contained in the class of estima-
tors for a parametric submodel, influence functions
for estimators for β for the semiparametric model
must lie in a space orthogonal to all submodel nui-
sance tangent spaces. Thus, defining the semiparamet-
ric model nuisance tangent space � as the mean square
closure of all parametric submodel nuisance tangent
spaces, it may be shown that all influence functions
for the semiparametric model lie in �⊥. Moreover,
the semiparametric model tangent space � = � ⊕ �β ,
where �β is the space spanned by Sβ{V,β0, η0(·)} =
∂/∂β [logp{V,β,η0(·, )}] evaluated at β0. The semi-
parametric model efficient score Seff is Sβ{V,β0,

η0(·)} − (Sβ |�)(V ) with efficient influence func-
tion ϕeff{V,β0, η0(·)} = {E([Seff{V,β0, η0(·)}]2)}−1 ·
Seff{V,β0, η0(·)}. The variance of ϕeff, {E([Seff{V,β0,

η0(·)}]2)}−1, achieves the so-called semiparametric ef-
ficiency bound, that is, the supremum over all paramet-
ric submodels of the Cramér–Rao lower bounds for β .

A.2. DERIVATION OF FULL-DATA
INFLUENCE FUNCTIONS

We apply the theory in Appendix A.1 to iden-
tify the class of all influence functions ϕ(V ) for
estimators for β depending on the full data V =
(X1, Y1,X2, Y2,Z) under the semiparametric pretest–
posttest model with no assumptions on p(v) beyond
independence of (X1, Y1) and Z. By Result A.1, these
may be written as ϕ(V ) = ϕ∗(V ) + ψ(V ), where
ψ(V ) ∈ �⊥ and ϕ∗ is any influence function, so we
proceed by identifying a ϕ∗ and characterizing �⊥.

To identify a ϕ∗ under the semiparametric model,
consider the two-sample t test estimator β̂2s in (5).

Using nc/n
p→ δc(1 − δ)1−c, c = 0,1, E(ZY2) =

E{ZE(Y2|Z)} = δE(Y2|Z = 1) and similarly for
E{(1 − Z)Y2}, β̂2s is clearly consistent under the min-
imal assumptions on p(v), and from the ensuing ex-
pression for n1/2(β̂2s − β), writing β = µ

(1)
2 − µ

(0)
2

and using nc/n
p→ δc(1 − δ)1−c, it is straightforward

to derive the corresponding influence function

ϕ∗(V ) = Z
(
Y2 − µ

(1)
2

)
/δ

(A.3)
− (1 − Z)

(
Y2 − µ

(0)
2

)
/(1 − δ),

where we write this as a function of µ
(0)
2 and µ

(1)
2 fol-

lowing the convention noted after (3).
To find �⊥, we consider the class P of all den-

sities for our semiparametric model. Incorporating

the only restriction on such densities of indepen-
dence of (X1, Y1) and Z, it follows that P has el-
ements of the form, in obvious notation, p(v) =
p(x1, y1)p(x2|x1, y1, z)p(y2|x1, y1, x2, z)p(z|x1, y1),
where p(z|x1, y1) = δz(1 − δ)1−z and δ is known. The
tangent space � is the mean square closure of the tan-
gent spaces of parametric submodels

p(x1, y1; ξ1)p(y2|x1, y1, z; ξ2)
(A.4)

· p(x2|x1, y1, y2, z; ξ3)δ
z(1 − δ)1−z,

say. Each of the first three components of (A.4) must
contain the truth. For example, if p0(x2|x1, y1, y2, z)

is the true conditional density of X2 given (X1, Y1,

Y2,Z), then, for h3 such that E{h3(X1, Y1,X2, Y2,Z)|
X1, Y1, Y2,Z} = 0, a typical submodel for this compo-
nent is

p(x2|x1, y1, y2, z; ξ3)

= p0(x2|x1, y1, y2, z)

· {1 + ξ3h3(x1, y1, x2, y2, z)},
where ξ3 is sufficiently small so that p(x2|x1, y1, y2,

z; ξ3) is a density and the score with respect to ξ3
may be shown to be h3(X1, Y1, Y2,Z), and similarly
for the first two components of (A.4). Evidently � =
�1 ⊕ �2 ⊕ �3, where (e.g., Newey, 1990)

�1 = {all h1(X1, Y1) ∈ H} [so E{h1(X1, Y1)} = 0],
�2 = [h2(X1, Y1, Y2,Z) ∈ H

such that E{h2(X1, Y1, Y2,Z)|X1, Y1,Z} = 0],
�3 = [h3(X1, Y1,X2, Y2,Z) ∈ H

such that E{h3(X1, Y1,X2, Y2,Z)|
X1, Y1, Y2,Z} = 0].

It is easy to verify that �1, �2 and �3 are all mutually
orthogonal; e.g., for h2 ∈ �2, h3 ∈ �3,

E{h2(X1, Y1, Y2,Z)h3(X1, Y1,X2, Y2,Z)}
= E[h2(X1, Y1, Y2,Z)

· E{h3(X1, Y1,X2, Y2,Z)|X1, Y1, Y2,Z}] = 0.

Thus, �⊥ is the space orthogonal to all of �1, �2
and �3. It is straightforward to verify that the space
�4 = [h4(X1, Y1,Z) ∈ H such that E{h4(X1, Y1,Z)|
X1, Y1} = 0] is orthogonal to all of �1, �2 and �3.
Moreover, it may also be deduced that �1 ⊕ �2 ⊕
�3 ⊕ �4 is in fact the entire Hilbert space H of mean-
zero functions of V . Thus, it follows that �4 contains
all elements of H orthogonal to �, so that �⊥ = �4.
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Because Z is binary, we may write any element
in �⊥ equivalently as Zh(1)(X1, Y1)+ (1−Z)h(0)(X1,

Y1) for some h(c)(X1, Y1), c = 0,1, with finite variance
such that E{Zh(1)(X1, Y1) + (1 − Z)h(0)(X1, Y1)|X1,

Y1} = 0. This implies h(1)(X1, Y1) = −h(0)(X1, Y1) ·
(1 − δ)/δ for arbitrary h(0)(X1, Y1), showing that ele-
ments in �⊥ may be written as (Z − δ)h(X1, Y1) for
arbitrary h with var{h(X1, Y1)} < ∞. Equivalently, we
may write these elements as −(Z−δ)h(X1, Y1), which
proves convenient in later arguments.

Recalling that µ
(1)
2 = µ2 + β and µ

(0)
2 = µ2 and

combining the foregoing results, we thus have that all
influence functions for RAL estimators for β must be
of the form

Z(Y2 − µ2 − β)

δ

− (1 − Z)(Y2 − µ2)

1 − δ
− (Z − δ)h(X1, Y1),(A.5)

var{h(X1, Y1)} < ∞,

which may also be expressed in the equivalent form
given in (3).

We may in fact identify the efficient influence func-
tion ϕeff in class (A.5). By Result A.2 we may represent
ϕeff(X1, Y1, Y2,Z) = ϕ∗(X1, Y1, Y2,Z) − (ϕ∗|�⊥)

for any arbitrary influence function ϕ∗, and, from
above, we know that (ϕ∗|�⊥) must be of the form
−(Z − δ)heff(X1, Y1) for some heff. Projection is a lin-
ear operation; hence, taking ϕ∗ to be (A.3), the projec-
tion may be found as the difference of the projections
of each term in (A.3) separately. Moreover, by defi-
nition the residual for each term must be orthogonal
to �⊥. Thus, we wish to find heff (c)(X1, Y1), c = 0,1,
such that

E

([
Z(Y2 − µ

(1)
2 )

δ

− {−(Z − δ)heff(1)(X1, Y1)
}]

(A.6)

· (Z − δ)h(X1, Y1)

)
= 0,

E

([
(1 − Z)(Y2 − µ

(0)
2 )

1 − δ

− {−(Z − δ)heff(0)(X1, Y1)
}]

(A.7)

· (Z − δ)h(X1, Y1)

)
= 0

for all h(X1, Y1). For (A.6), then, we require

E

[{
Z(Y2 − µ

(1)
2 )

δ

+ (Z − δ)heff(1)(X1, Y1)

}
· (Z − δ)

∣∣∣X1, Y1

]
= 0 a.s.,

and similarly for (A.7). Using independence of (X1,

Y1) and Z, we obtain

heff(c)(X1, Y1)

= (−1)c
{E(Y2|X1, Y1,Z = c) − µ

(c)
2 }

δc(1 − δ)1−c
,

c = 0,1.

For example, for c = 1 this follows from

E
{
Z(Z − δ)

(
Y2 − µ

(1)
2

)|X1, Y1
}

= E
[
Z(Z − δ)E

{(
Y2 − µ

(1)
2

)|X1, Y1,Z
}|X1, Y1

]
= (1 − δ)E

{(
Y2 − µ

(1)
2

)|X1, Y1,Z = 1
}

· P(Z = 1|X1, Y1),

where P(Z = 1|X1, Y1) = δ, and similarly

E
{
(Z − δ)2heff(1)(X1, Y1)|X1, Y1

}
= δ(1 − δ)heff(1)(X1, Y1).

Substituting in ϕ∗(X1, Y1, Y2,Z) − (ϕ∗|�⊥), the ef-
ficient influence function is[

Z(Y2 − µ2 − β)

δ

− (Z − δ){E(Y2|X1, Y1,Z = 1) − µ2 − β}
δ

]
−

[
(1 − Z)(Y2 − µ2)

1 − δ

+ (Z − δ){E(Y2|X1, Y1,Z = 0) − µ2}
1 − δ

]
.

A.3. REPRESENTATION OF OBSERVED-DATA
INFLUENCE FUNCTIONS

Robins, Rotnitzky and Zhao (1994) derived the
form of observed-data influence functions in (11) by
adopting the geometric perspective on semiparamet-
ric models outlined in Appendix A.1. In contrast to
the full-data situation of Appendix A.2, the relevant
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Hilbert space Hobs, say, in which observed-data influ-
ence functions are elements is now that of all mean-
zero, finite-variance random functions h(O), with
analogous inner product and norm, that is, such func-
tions depending on the observed data. The key is to
identify the appropriate linear subspaces of Hobs (e.g.,
�obs⊥ say) to deduce a representation of the influence
functions, which in the general semiparametric model
is a considerably more complex and delicate enterprise
than for full-data problems.

We noted in Section 2.2 that, for purposes of de-
riving estimators for β based on the observed data,
it suffices to identify observed-data influence func-
tions for estimators for µ

(1)
2 and µ

(0)
2 separately. We

now justify this claim. It is immediate from the defi-
nition (2) of an influence function that the differences
of all observed-data influence functions for estimators
for µ

(1)
2 and µ

(0)
2 are influence functions for observed-

data estimators for β . Conversely, we may show that all
observed-data influence functions for estimators for β

can be written as the difference of observed-data in-
fluence functions for estimators for µ

(1)
2 and µ

(0)
2 . In

particular, if ϕ1(O) and ϕ0(O) are any observed-data
influence functions for estimators for µ

(1)
2 and µ

(0)
2 ,

respectively, then ϕ1(O)−ϕ0(O) is an influence func-
tion for β by the above reasoning. By Result A.1 it fol-
lows that any observed-data influence function for an
estimator for β can be written as ϕ1(O) − ϕ0(O) +
ψ(O), where ψ(O) ∈ �obs⊥. We may rewrite this as
{ϕ1(O) + ψ(O)} − ϕ0(O). However, by Result A.1
{ϕ1(O) + ψ(O)} is an observed-data influence func-
tion for an estimator for µ

(1)
2 , concluding the argument.

A.4. DERIVATION OF THE EFFICIENT OBSERVED
DATA INFLUENCE FUNCTION

Robins, Rotnitzky and Zhao (1994) provide a gen-
eral mechanism for deducing the form of the efficient
influence function. In the pretest–posttest problem this
approach may be used to find the optimal choices for
h(1) and g(1)′ in (13) given in (14). However, because
this mechanism is very general, for a simple model as
in the pretest–posttest problem it is more direct and in-
structive to identify these choices via geometric argu-
ments, as we now demonstrate.

We wish to determine heff(1) and geff(1)′ such that the
variance of (13) is minimized; that is, writing (13) as
A−B1 −B2, as E(A−B1 −B2) = 0, we wish to min-
imize E{(A−B1 −B2)

2}. Geometrically, this is equiv-
alent to finding the projection of A onto the subspace
of Hobs of (mean-zero) functions of the form B1 +B2.

It is straightforward to show that B1 and B2 are uncor-
related, whence it follows that, as E{(A−B1 −B2)

2} =
E{(A − B1)

2} + E{(A − B2)
2} − E(A2) under these

conditions, this minimization is equivalent to minimiz-
ing the variances of A − B1 and A − B2 separately.
Because B1 and B2 are uncorrelated, they define or-
thogonal subspaces of Hobs, so that these minimiza-
tions may be viewed as finding the separate projections
of A onto these subspaces. Thus, as for the full-data
case in Section A.2, we wish to find heff(1)(X1, Y1) and
geff(1)′(X1, Y1,X2,Z) such that, for all h(1) and g(1)′ ,

E

([
RZ(Y2 − µ

(1)
2 )

δπ(X1, Y1,X2,Z)

−
{
(Z − δ)

δ
heff(1)(X1, Y1)

}]
· (Z − δ)

δ
h(1)(X1, Y1)

)
= 0,

E

([
RZ(Y2 − µ

(1)
2 )

δπ(X1, Y1,X2,Z)

− geff(1)′(X1, Y1,X2,Z)

· {R − π(X1, Y1,X2,Z)}
δπ(X1, Y1,X2,Z)

]
· g(1)′(X1, Y1,X2,Z)

· {R − π(X1, Y1,X2,Z)}
δπ(X1, Y1,X2,Z)

)
= 0.

A conditioning argument as in Section A.2 using
E(R|X1, Y1,X2, Y2,Z) = π(X1, Y1,X2,Z) under
MAR then leads to (14). In (14), geff(1)′ does not de-
pend on heff(1), and heff(1) is identical to the opti-
mal full-data choice in (4). These features need not
hold for general semiparametric models; in particular,
the choice of ϕF (V ) in (11) that yields the efficient
observed-data influence function will not be the ef-
ficient full-data influence function in general. Here,
this is a consequence of the simple pretest–posttest
structure.

A.5. DEMONSTRATION OF (17)

The form of the influence function (17) when γ

in (16) is estimated follows from a general result shown
by Robins, Rotnitzky and Zhao (1994). In particular,
Robins, Rotnitzky and Zhao showed precisely that,
in our context, the influence function for the estima-
tor for µ

(1)
2 found by deriving an estimator for µ

(1)
2

from the influence function ψ(X1, Y1,X2,R,RY2,Z)
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in (15) (assuming π(1) is known) and then substituting
an estimator for γ , where γ is estimated efficiently
(e.g., by ML), is the residual from projection of
ψ(X1, Y1,X2,R,RY2,Z) onto the linear subspace
of Hobs spanned by the score for γ . To demon-
strate this, consider the special case of IWCC in
(10), that is, (15) with h(1) ≡ q(1) ≡ 0. Suppose γ

is estimated by ML from data with Z = 1 only. The
score for γ is Sγ (X1, Y1,X2,Z;γ0) = d(X1, Y1,X2) ·
{R − π(1)(X1, Y1,X2;γ0)}Z and the relevant linear
subspace of Hobs is {BSγ (X1, Y1,X2,Z;γ0) for all
(p × s) matrices B}. Here, bq(1) = 0 and the projec-
tion of ψ onto this space, B0Sγ (X1, Y1,X2,Z, γ0),
say, must satisfy

E

[{
RZ(Y2 − µ

(1)
2 )

δπ(1)(X1, Y1,X2;γ0)

− B0Sγ (X1, Y1,X2,Z, γ0)

}
· BSγ (X1, Y1,X2,Z, γ0)

]
= 0

for all B . By a conditioning argument similar to those
in Appendices A.2 and A.4, we may find B0 and show
the projection is equal to the second term in the influ-
ence function

RZ(Y2 − µ
(1)
2 )

δπ(1)(X1, Y1,X2)

− dT (X1, Y1,X2)A
−1
(1)b(1)(A.8)

· {R − π(1)(X1, Y1,X2)}Z
δ

and that (A.8) is (17) in this special case.
As noted in Section 3.5, for choices of h(1) and q(1)

other than the optimal ones, estimating γ even if it is
known leads to a gain in efficiency. Geometrically this
is because (17) is the residual found from projection
of ψ onto a linear subspace of Hobs.

A.6. DEMONSTRATION OF DOUBLE
ROBUSTNESS PROPERTY 2

We must show that the right-hand side of (18) con-
verges in probability to µ

(1)
2 if the true π(1) is replaced

by an incorrect model π∗. Multiplying and dividing
each term by n and using n1/n → δ, that the second
term converges in probability to zero is immediate by
the independence of Z and (X1, Y1). The first term

converges in probability to

E

{
RZY2

δπ∗(X1, Y1,X2)

}

= E

{
Zπ(1)(X1, Y1,X2)

δπ∗(X1, Y1,X2)
Y2

}

= E

{
Zπ(1)(X1, Y1,X2)

δπ∗(X1, Y1,X2)
E(Y2|X1, Y1,X2,Z)

}
by a conditioning argument similar to those above.
Similarly, the third term converges to

E

[
Z{π(1)(X1, Y1,X2) − π∗(X1, Y1,X2)}

δπ∗(X1, Y1,X2)

· E(Y2|X1, Y1,X2,Z)

]
,

using ZE(Y2|X1, Y1,X2,Z = 1) = ZE(Y2|X1, Y1,

X2,Z). Thus, their difference converges to E{E(ZY2|
X1, Y1,X2,Z)}/δ = E{ZE(Y2|Z)}/δ = E(Y2|Z = 1)

as in Section 3.2.
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Comment
Hyonggin An and Roderick Little

We congratulate the authors on a very useful arti-
cle. The semiparametric approaches of Robins and co-
workers have attracted considerable attention among
theoretically-inclined statisticians, but it appears to us
that the difficulties of understanding exactly how to
implement the approach in real problems has deterred
many practitioners from applying the methods. This
application of the methods to a common issue in bio-
statistical analysis is thus most welcome, and we are
pleased to have the opportunity to comment.

Our attitude to the methodology mirrors the situation
of a consumer at an electronics store who is trying to
keep apace with the advances in electronic wizardry.

Hyonggin An is Assistant Professor, Department
of Biostatistics, University of Iowa, 200 Hawkins
Drive, Iowa City, Iowa 52242-1009, USA (e-mail:
hyonggin-an@uiowa.edu). Roderick Little is Richard
D. Remington Collegiate Professor of Biostatistics,
Department of Biostatistics, University of Michi-
gan, 1420 Washington Heights, Ann Arbor, Michigan
48109-2029, USA (e-mail: rlittle@umich.edu).

We have a PSM (Predictive Statistical Modeling) ma-
chine that we like, which has a flexible set of options,
some of which we have figured out how to use, and oth-
ers which have not attracted our attention sufficiently
for us to try to master them. The Robins Company
has now developed a new spiffy SPDRWEE (Semi-
Parametric Doubly Robust Weighted Estimating Equa-
tion) model, which beguiles us with offers of increased
power and flexibility. The only problem is that the in-
struction manual is even more complicated than the one
for our current model, which we have just begun to
master, and the dials and switches on the new model
are located in different places. Our question (particu-
lar from the author whose capacity to absorb new ideas
has been regrettably tarnished by age) is whether the
new model is a major breakthrough, or whether we can
continue to live with the current model.

Our PSM machine’s approach to the pretest–posttest
trial without missing data is to regress the outcome
on the treatment dummy and baseline covariates that
are predictive of the outcome. Parametric modeling of
the baseline covariates should suffice, since the ran-
domization ensures balance with the respect to these
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variables, so misspecification of the parametric model
may slightly reduce efficiency but will not lead to bias.
In principle we believe that baseline variables should
be adjusted since they are causally prior to the treat-
ment; the question of whether to adjust for pretest val-
ues and/or their interactions with treatment dummies
is a model selection issue. The authors state that “no
general consensus has emerged regarding the preferred
approach,” but the methods covered in this comment
all fall under the general rubric of regression model-
ing, and there can be no “general consensus” any more
than one can make general rules about which variables
to include in any real-world regression. We see no need
to change our existing modeling philosophy to address
these variable selection issues, since they are not an-
swered by the Robins et al. theory any more than in the
PSM framework.

We now turn to the problem of missing data in the
outcome variable. With no intervening variables, and
assuming MAR, the incomplete cases carry no infor-
mation for the regression and can be discarded (see,
e.g., Little and Rubin, 2002, Section 2.3). The regres-
sion modeling of the resulting complete cases needs
more attention to parametric assumptions, to the ex-
tent that the balance from randomization has been
disturbed, but the problem is still essentially one of
regression, so we see nothing very new here. (Two
minor quibbles: the authors’ “paired t-test” method
is actually an unpaired t test on the posttest–pretest
differences; and contrary to the authors’ statement,
complete-case regression methods allow missingness
to depend on the covariates included as predictors, and
hence do not assume MCAR.)

With intervening variables, the incomplete cases po-
tentially carry information about the missing outcomes,
but including them as predictors in the regression
model is inappropriate since they are post-treatment
variables. To illustrate, we ran a regression of the out-
come on the complete cases that included the covari-
ates and intermediate variables (namely, wt, HIV, prior,
Karn, CD80, CD80

2, CD40, CD40
2, CD820, CD820

2,
CD420, CD420

2, offtrt and treatment). This yielded
a treatment effect for the data in question of 31.14
(SE 7.93), which is quite a bit lower than other esti-
mates, and we expect is biased downwards by the in-
appropriate adjustment for the intermediate variables.

The question, then, is how to include the information
in the incomplete cases without adjusting for the inter-
mediate variables in the final regression. If the latter are
earlier measures of the outcome, such as intermediate
CD4, then this can be achieved by a parametric linear
mixed model, fitted by maximum likelihood—the au-

thors’ claim that this approach is not widely used by
practitioners surprises us, since our experience is that
it is widely used in the pretest–posttest context. As with
any model there are dangers of misspecification of the
form of the regression model, but mixed models allow
random effects to model the association between the
repeated measures over time without adjusting them
in the analysis. We do not pursue this approach in de-
tail here, since there are intermediate variables other
than CD4 that are not naturally modeled by a repeated-
measures approach.

A parametric PSM approach to the problem is to
impute the outcomes based on the baseline and inter-
mediate variables, and compute the regression of the
outcome on the treatment dummy and baseline co-
variates using the filled-in data. A general approach
is to apply multiple imputation (MI), with imputa-
tion uncertainty assessed by Rubin’s MI combining
rules; in this simple setting we simply imputed con-
ditional means and assessed uncertainty by bootstrap-
ping the whole procedure (e.g., Little and Rubin, 2002,
Chapter 5). The imputation step can be achieved us-
ing a normal model, or more flexible MI methods such
as the sequential imputation algorithms in IVEWARE
(Raghunathan et al., 2001) or MICE (van Buuren and
Oudshoorn, 1999). This analysis takes advantage of an
attractive feature of MI, namely that the imputation
model does not have to be the same as the analysis
model. Here the imputation model conditions on the
intermediate variables, but the final regression model
does not.

This approach relies on a correct specification of the
imputation model, particularly if there are a lot of miss-
ing data—the analysis model is protected by the bal-
ance from the randomization. What to do if we want to
avoid such parametric assumptions? With a single co-
variate one might base imputations on a smooth non-
parametric function of the covariate, such as a kernel
regression model (e.g., Cheng, 1994). However, with
multiple predictors nonparametric specification of the
imputation model is subject to the so-called “curse of
dimensionality,” which inhibits the ability to fit spline-
like regression models without assumptions of additiv-
ity, as are made in generalized additive models.

We recently proposed a semiparametric approach
that addresses the “curse of dimensionality” within the
PSM framework, which we call propensity spline pre-
diction (Little and An, 2004). In this approach, the
propensity to be missing is modeled by a logistic re-
gression of the missing-data indicator on the baseline
and intermediate variables. The missing outcomes are
then imputed by a penalized spline on the estimated
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propensity (Eilers and Marx, 1996). Other predictors
are also regressed on penalized splines of the response
propensity, and the residuals from these regressions
are added parametrically to the imputation model. The
key idea is that the relationship between the outcome
and the propensity to respond needs to be modeled
correctly to avoid bias, and hence an estimate of the
propensity to respond is included nonparametrically
in the prediction model. The other variables can be
added parametrically to increase precision; since re-
spondents and nonrespondents are balanced with re-
spect to these variables conditional on the propensity
score, misspecification of the parametric form does not
result in bias. Little and An (2004) discuss a “double
robustness property” for this method, and claim that
propensity spline prediction obviates the need for the
“calibration” correction in the SPDRWEE approach.

In the application described, the PSM approach with
a parametric imputation model yields an estimated

treatment effect of 52.76 (Bootstrap SE = 11.64),
and the propensity spline prediction approach yields
an estimated treatment effect of 52.37 (Bootstrap
SE = 10.92). These estimates are not very different
from the IWCC method, which yields a treatment ef-
fect of 54.69 (SE = 11.79), or the SPDRWEE method,
which yields an estimate of 57.24 (SE = 10.20). The
question of which method is better cannot be answered
by comparing results for a single data set, but our pre-
diction approaches are more comparable to the au-
thors’ methods than the ANCOVA and paired t-test
methods in the authors’ Table 1, since they make full
use of the observed information and capitalize on the
observed covariates.

We suggest that the existing principles of regression
modeling, made more robust by the propensity spline
prediction, provide good answers for the problem de-
scribed, without the need for a new “unified frame-
work” of inference.

Comment
Babette A. Brumback and Lyndia C. Brumback

1. INTRODUCTION

We are grateful to the Editor, George Casella, for
the opportunity to discuss this elucidating paper by
Davidian, Tsiatis and Leon. It is the first time either
of us has seen such a concrete and accessible account
of the semiparametric efficiency results of Robins and
colleagues. The focus on the pretest–posttest problem
with MAR posttest data coincides with a problem we
have met several times in practice. In studying the
ideas presented, we have spent much time scrutinizing
the semiparametric efficient estimator (SPEE) given by
the authors’ equation (18) and paying special atten-
tion to its reductions under some commonplace sim-
plifying restrictions. One of the most conspicuous fea-
tures of the SPEE, under any circumstances, is an ab-

Babette A. Brumback is Associate Professor, Di-
vision of Biostatistics, Department of Health Ser-
vices Research, Management, and Policy, University
of Florida, Gainesville, Florida 32611, USA (e-mail:
bbrumback@phhp.ufl.edu). Lyndia C. Brumback is Re-
search Assistant Professor, Department of Biostatis-
tics, University of Washington, Seattle, Washington
98195-7232, USA (e-mail: lynb@u.washington.edu).

sence of dependence on the conditional variance of the
posttest data. This prompts us to compare the SPEE
to shrinkage estimators (Lehmann and Casella, 1998)
that not only rely on conditional means of the posttest
data, but also make use of conditional variances. To
gradually build a better understanding of the SPEE, in
our Section 2 we restrict attention to data only on a
pretest score, a continuous posttest score and treatment
assignment. In Section 3 we consider data only on an
intermediate test score, a continuous posttest score and
treatment assignment. In Section 4 we discuss dimen-
sion reduction via the probability of missingness and
apply it in conjunction with a shrinkage estimator to re-
analyze the ACTG 175 data. We conclude with a sum-
mary of the questions we have raised and answered, as
well as some additional unanswered questions for the
authors.

2. AUXILIARY DATA ON Y1 ONLY

We first focus on the SPEE under the restriction that
the posttest data Y2 are MAR conditional on pretest
data Y1 and treatment assignment Z, and that data
on additional baseline covariates X1 and intermediate
variables X2 are irrelevant.
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2.1 Connection with Lord’s Paradox

Were one to discard data from participants miss-
ing Y2, the statistical model for the remainder would be
structurally identical to that for causal inference mod-
els with ignorable (Stone, 1993) treatment assignment
conditional on Y1. Because the missingness mecha-
nism depends only on Y1 and Z, and not on posttreat-
ment variables, the complete-case data could just as
well have been generated by randomizing treatment
assignment Z within (possibly infinitesimal) strata de-
fined by Y1. The latter scenario was contemplated
by Lord (1967), who identified a paradox that would
sometimes occur if, perchance, statistician A con-
trasted the distribution of the change score Y2 − Y1
across Z, whereas statistician B contrasted the condi-
tional distribution of the posttest score given the pretest
score, Y2|Y1, across Z. Consider an idealized example
in which E(Y2 − Y1|Z = 1) − E(Y2 − Y1|Z = 0) = 0
but E(Y2|Y1,Z = 1) − E(Y2|Y1,Z = 0) = β > 0.
In this case, statistician A would conclude no differ-
ence, while statistician B would conclude a positive
effect β of treatment. The paradox resolves when one
recognizes that Y1 not only confounds the effect of Z

on Y2, but also confounds the effect of Z on the change
score Y2 − Y1. Thus Lord’s paradox is really just an
instance of Simpson’s paradox, with E(Y2 − Y1|Z =
1) − E(Y2 − Y1|Z = 0) = 0 but E(Y2 − Y1|Y1,Z =
1) − E(Y2 − Y1|Y1,Z = 0) = β > 0.

The IWCC estimator would make use of essen-
tially the same data available to statisticians A and B,
and would consistently estimate β . The IWCC es-
timator relies on a correct model for either P(R =
1|Y1,Z) or P(Z = 1|Y1,R = 1), but does not need
to model E(Y2|Y1,Z). The SPEE, on the other hand,
uses models for E(Y2|Y1,Z). Suppose these are cor-
rectly modeled with E(Y2|Y1,Z = 1) = β1 + αY1 and
E(Y2|Y1,Z = 0) = β0 + αY1, so that the true effect is
β ≡ β1 −β0. Based on these models, the SPEE reduces
to

β̂initial + Ê
[
(Y2 − β1 − αY1)R/π(1)|Z = 1

]
− Ê

[
(Y2 − β0 − αY1)R/π(0)|Z = 0

]
.

The SPEE makes use of additional data from persons
with missing Y2 in the computation of β̂initial, which
technically equals

(1/n)
∑
all i

(
Ê(Y2|Y1,Z = 1) − Ê(Y2|Y1,Z = 0)

)
,(1)

where the sum is over all individuals, including those
with missing Y2. We observe with this example how the
various modeling choices for E(Y2|Y1,Z) can lead to

confusion as to the exact form of the SPEE: in work-
ing with (1), it is unclear whether we should handle
the regressions E(Y2|Y1,Z = 1) and E(Y2|Y1,Z = 0)

separately or first reduce their subtraction to β and then
estimate in any way we wish.

2.2 Comparison with Shrinkage Estimators

We next assume that no posttest data are missing and
that Y1 can be dichotomized into Y1 = 0 or Y1 = 1
without loss of information for estimating β . Under
these conditions, the SPEE for µ

(1)
2 simply equals the

unweighted mean of Y2 in the treatment group, that is,

(1/n1)
∑
i

ZiY2i .

Similarly the SPEE for µ
(0)
2 equals the unweighted

mean of Y2 in the control group.
Although the SPEE is efficient in many circum-

stances, it is not always. As we next demonstrate,
some scenarios give way to a preference for estima-
tors that take into account the conditional variance
of Y2, for example, shrinkage estimators, which shrink
imprecise cluster means toward precise cluster means
when the means are close relative to their variability.
For simplicity and without loss of generality, we fo-
cus during the remainder of this subsection on esti-
mation of µ

(1)
2 . Rather than using the SPEE, which

assigns weight mj/n1, j = 0,1, m0 ≡ ∑
i Zi(1 − Y1i ),

m1 ≡ ∑
i ZiY1i , to each cluster mean, that is, to

Ȳ20 =
(∑

i

Zi(1 − Y1i )Y2i

)/
m0

and

Ȳ21 =
(∑

i

ZiY1iY2i

)/
m1

in the calculation of µ
(1)
2 , one might try instead

a weighted average of the two cluster means with
weights proportional to their inverse variances. Prefer-
ably, a compromise will be sought and determined by
the distance between the two cluster means relative to
their variances.

Specifically, we propose the compromise estimator
(CE) for µ

(1)
2 which can be derived under the mixed

effects model

Y2 = Xµ
(1)
2 + Uu + ε,

with X the vector of ones (1n1 ), µ
(1)
2 a fixed effect,

U a two-column matrix with first column contain-
ing indicators (1 − Y1) and second column contain-
ing indicators Y1, u a vector of two random effects
independent of one another and each N(0, τ 2/wj ),
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TABLE 1
Comparison of CE and SPEE (of µ

(1)
2 ) in terms of mean squared error (m0 = m1 = n1/2, σ 2

0 = σ 2
1 /2)

¯Y20 ¯Y21 τ2 σ 2
1 n1 CE SPEE MSECE MSESPEE

0 0 0 1 1000 0 0 0.000667 0.00075
0 0.01 2.5e−05 1 1000 0.0034 0.005 0.000669 0.00075
0 0.1 0.0025 1 1000 0.046 0.05 0.00073 0.00075
0 1 0.25 1 1000 0.5 0.5 0.00075 0.00075

wj = mj/n1, j = 0,1 and ε the vector of error terms,
assumed independent of one another and of the ran-
dom effects, with distribution N(0, σ 2

0 ) for observa-
tions with Y1 = 0 and N(0, σ 2

1 ) for observations with
Y1 = 1.

Straightforward calculation shows that the CE
of µ

(1)
2 equals the weighted average of cluster means

with weights proportional to

1

τ 2/w0 + σ 2
0 /m0

for cluster Y1 = 0 and to

1

τ 2/w1 + σ 2
1 /m1

for cluster Y1 = 1. If the two cluster means are equal,
then τ 2 = 0 and the CE weights proportionally to the
inverse variance of each cluster mean. For example,
when σ 2

0 = σ 2
1 /2, m0 = m1 = n1/2 and τ 2 = 0, we

weight observations with Y1 = 0 twice as much as
those with Y1 = 1. However, when the cluster means
are far apart, τ 2/wj is large relative to σ 2

j /mj , and the
CE weights proportionally to wj , exactly as the SPEE
would do. For situations in between, the CE compro-
mises between the two estimators based on the size
of τ 2/wj (which measures the distance between the
two cluster means) and the σ 2

j /mj (the variance of
each cluster mean).

Why is the CE sometimes preferable to the SPEE?
It allows for a smaller mean squared error under some
circumstances, even when normality is not assumed,
and a nearly equivalent mean squared error under other
circumstances. Continuing with our example, in which
m0 = m1 = n1/2 and σ 2

0 = σ 2
1 /2, when τ 2 = 0 the

mean squared error of the SPEE is (3/4)σ 2
1 /n1, while

that of the CE is only (2/3)σ 2
1 /n1, and both estima-

tors are unbiased. When τ 2 > 0 the CE is biased in
small samples, but its mean squared error (MSE) is less
than that of the unbiased SPEE, until the sample size is
large enough that the CE almost equals the SPEE (see

Table 1). Because the univariate mean is admissible
(Lehmann and Casella, 1998), there must be a region
for τ 2 in which the unconditional MSE of the SPEE is
less than that of the CE, but the table does not show
it. This is because we approximated the MSE by not
accounting for the estimation of τ 2. We leave as a con-
jecture for future study that the CE is itself admissible.
Note that for Table 1 we estimated τ 2 as the variance
of (Ȳ20

√
w0, Ȳ21

√
w1 ).

What is the relevance of this discussion for the gen-
eral case with missing posttest data? We again find
that the SPEE will tend toward an unweighted aver-
age of the weighted individual observations Y2i/π

(1)
i ,

whereas the CE will compromise based on the con-
ditional variance so as to reduce the mean squared
error when the conditional mean is constant. Which
estimator should we prefer in practice? This is a dif-
ficult question, mostly because in practice the condi-
tional variances as well as the conditional means must
be estimated, often leading to great uncertainty associ-
ated with either choice.

3. AUXILIARY DATA ON X2 ONLY

In this section we shift focus to the case of posttest
data Y2 MAR conditional on intermediate data X2 and
treatment assignment Z, with pretest data Y1 and addi-
tional baseline covariates X1 irrelevant.

It is generally well known that conditioning on a
variable that is affected by treatment and then sub-
sequently affects the posttest can induce bias, typi-
cally by canceling out the indirect effect. However,
if the missing data depend on an intermediate vari-
able, we can neither ignore it in the analysis nor treat
it identically as a pretreatment variable. How does
SPEE recognize an intermediate variable from a base-
line variable? The difference is encoded in the model-
ing assumption that Z  (Y1,X1) and the absence of
the assumption that Z  X2. We also observe that X2
enters the estimating equation only in the case of miss-
ing posttest data; otherwise, the third term of the SPEE
equals zero.
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We note that if Y2 = X2, the SPEE of µ
(1)
2 equals

(1/n1)
∑

i ZiX2i . If instead Y2 = X2 + ε, the estimator
becomes

1

n1

∑
i

ZiRi

(εi)

π(1)(X2i )
+ 1

n1

∑
i

ZiX2i .

Thus, if Y2i is observed, we upweight its residual, ef-
fectively making multiple copies, and we add one copy
to the corresponding X2i and the others to X2j , corre-
sponding to missing Y2j . Then we average. The overall
effect is to impute missing values Y2j based on X2j and
one of the observed εi .

In general, we can make use of the MAR assumption
to unbiasedly estimate µ

(1)
2 via the equation

E[Y2|Z = 1] = EX2|Z=1E[Y2|X2,Z = 1,R = 1].(2)

It is important to recognize that the outer expectation
is taken with respect to the conditional distribution of
X2|Z = 1 rather than X2|Z = 1,R = 1. The MAR as-
sumption allows us to condition on R = 1 in the inner
expectation, because R is independent of Y2 given X2

and Z. We use the inner expectation to predict Y2

given X2 and Z = 1 based on the observed data, and
then we average over these predictions based on the
distribution of X2|Z = 1 in the complete data set. In
this procedure we both condition on X2 and then un-
condition on X2, but in a way that does not leave us
back with the obviously flawed estimator Ê[Y2|Z = 1,

R = 1].

4. COMPARATIVE ANALYSIS OF ACTG 175

4.1 Dimension Reduction via the Probability
of Missingness

A consequence of assuming a known model for
π(X1, Y1,X2,Z) is that for each participant, the mul-
tivariate data (X1, Y1,X2,Z) can be reduced to the
univariate data Q ≡ π(X1, Y1,X2,Z) when imputing
the missing posttest scores. That is, rather than imput-
ing Y2 with a high-dimensional model for E(Y2|X1, Y1,

X2,Z) and Var(Y2|X1, Y1,X2,Z), we can instead
impute based on a simpler model for E(Y2|Q,Z)

and Var(Y2|Q,Z). The proof is straightforward: that
Y2 is MAR conditional on (X1, Y1,X2,Z) and that
π(X1, Y1,X2,Z) is a known function implies that Y2

is MAR conditional on Q and A, for A any function of
(X1, Y1,X2,Z).

4.2 An Alternative Methodology and its
Application to ACTG 175

We next combine the dimension reduction based
on Q, the shrinkage methodology outlined in Sec-
tion 2.2, and a generalization of (2) to reanalyze the
ACTG 175 data.

By the argument in Section 4.1, the MAR assump-
tion allows us to estimate E[Y2|Q,Z = 1] using the
quantity E[Y2|Q,Z = 1,R = 1] based on observed
data only. Thus, we find that we can estimate µ

(1)
2 via

E[Y2|Z = 1] = EQ|Z=1E[Y2|Q,Z = 1,R = 1],(3)

similarly to (2). That is, we first regress Y2 on Q us-
ing complete case data in the treated group and then
we average the predictions based on this model using
the distribution of Q on everyone in the treated group,
including those with missing Y2. This gives us an un-
biased estimator of µ

(1)
2 that is easy to compute, but

that is not necessarily efficient for two reasons. The
first is that by reducing the data via Q we lose the
ability to use the rest of X1, Y1,X2 for efficiency pur-
poses. The second is that using shrinkage estimators
for E[Y2|Q,Z = 1,R = 1] or in the averaging of that
quantity with respect to EQ|Z=1 can lead to efficiency
gains, as in Section 2.2.

It is computationally more difficult but still theoret-
ically feasible to increase efficiency either by using
more than Q in the estimation of µ

(1)
2 , that is, by basing

estimation on

E[Y2|Z = 1]
(4)

= E(Q,A)|Z=1E[Y2|Q,A,Z = 1,R = 1]
rather than on (3), or by using shrinkage ideas that
compromise between averaging with respect to
Q|Z = 1 (to produce an unbiased estimator) and av-
eraging with respect to the inverse of Var[Y2|Q,

Z = 1,R = 1] (to produce an estimator that would
be efficient and unbiased if E[Y2|Q,Z = 1,R = 1]
did not depend on Q). One could also combine the
two approaches, trading between an average based
on (Q,A)|Z = 1 and one based on the inverse of
Var[Y2|Q,A,Z = 1,R = 1].

For expository purposes, we reanalyze the ACTG
175 data based on Q only (i.e., letting A be empty).
We first estimate π(X1, Y1,X2,Z) exactly as did the
authors, to obtain Q. We then focus on estimating
E[Y2|Q,Z,R = 1] within each treatment group sep-
arately. The scatterplots in Figure 1 show Y2 versus Q

within each treatment group, and the rug plots detail
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FIG. 1. Y2 versus Q by Z.

the distribution of Q|Z for all individuals (and not
just those with R = 1). Interestingly, for each treat-
ment group the scatterplot separates into two distinct
clusters. It turns out that the contribution of the off-
treatment variable overwhelms that of the other vari-
ables in the calculation of Q. When we dichotomize Q

into Q ≡ 1 (original Q ≥ 0.6), Q is identical to one mi-
nus off-treatment for all but five people. For ease of il-
lustration, we use the dichotomized version of Q. This
leads to the statistical summary in Table 2.

We first compute the estimator (3), which weights
each cluster mean according to the total number of ob-
servations, as follows. For Z = 0, the Q = 0 cluster
mean is weighted by 213/532 = 0.40 and the Q = 1
mean is weighted by 0.60. Thus (3) estimates µ

(0)
2 at

241.8 × 0.4 + 299.5 × 0.6 = 276.4. For Z = 1, the
Q = 0 cluster mean is weighted by 562/1607 = 0.35
and the Q = 1 mean is weighted by 0.65. This esti-

TABLE 2

Control Group Treatment Group
Q = 0 Q = 1 Q = 0 Q = 1

Mean of Y2 241.8 299.5 253.9 362.7
SE of mean of Y2 23.8 9.8 11.5 6.0
Number nonmissing Y2 66 255 200 821
Total number 213 319 562 1045

mates µ
(1)
2 at 324.7. The estimate of β is thus 48.3. We

approximate the standard error as{
23.82 × 0.42 + 9.82 × 0.62

+ 11.52 × 0.352 + 6.02 × 0.652}1/2 = 12.5.

To calculate the CE, instead of weighting by, for ex-
ample, 0.4 and 0.6 in the Z = 0 group, we estimate τ 2

and weight proportionally to 1/(τ 2/0.4 + 23.82) and
1/(τ 2/0.6 + 9.82). We estimate τ 2 as 3126. Since
τ 2/wj is so much larger than σ 2

j /mj in each cluster,
the CE is effectively identical to (3).

It is interesting to compare the CE, which equals 48.3
with a standard error of 12.5, to the authors’ SPEE,
which equals 57.24 with a standard error of 10.2, and
the authors’ ANCOVA, which equals 64.54 with a stan-
dard error of 9.33. The ANCOVA estimator uses data
on complete cases only. Perhaps because these partic-
ipants tend to have Q = 1, the ANCOVA estimator is
close to the estimator obtained by incorrectly stratify-
ing on Q = 1, which gives 362.7 − 299.5 = 63.2. The
CE seems to incorporate more information from the
Q = 0 group than does the SPEE. Perhaps if we were
to treat Q continuously, we would find an estimator
closer to the SPEE, or perhaps we need to incorporate
additional covariates, rather than letting A be empty.
Because the variance of Y2 seems to depend on Y1 in
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the authors’ figure, it would be interesting to do further
analyses letting A ≡ Y1. This would raise many prac-
tical issues for calculating the CE; for instance, with
three clusters rather than two, should one shrink two
of the three cluster means together if they are “close”
relative to their variances, or would one only shrink in
the scenario that all three cluster means are close to one
another? With a continuous A and/or Q, we move from
a discrete number of clusters to the continuous setting
in which a finite basis must be selected. The practical
issues become even more complex.

5. SUMMARY AND ADDITIONAL QUESTIONS

Our discussion has explored the SPEE under some
commonplace simplifying restrictions. We have also
compared the SPEE to shrinkage estimators based on
a dimension reduction via the probability of missing-
ness. We briefly discussed the incorporation of other
covariates via (4). This leaves as a question for future
research how to select A to calculate efficient estima-
tors, which might be considered parallel to the problem
of estimating the unknown conditional expectations
during computation of the SPEE. Furthermore, there
remain several practical issues alluded to at the end of
Section 4 that involve shrinkage when Q and/or A are
continuous.

We conclude our discussion with three additional
questions for the authors. First, given that many of the
participants in ACTG 175 go off treatment, why has an

intent-to-treat parameter been chosen as the target of
inference? This is most likely for ease of illustration,
but it would be of further interest to apply methods for
noncompliance [e.g., as discussed by Robins (1994)]
to assess treatment efficacy rather than programmatic
effectiveness.

Second, how would the methodology of Robins and
colleagues unfold if the class of influence functions
were narrowed to include only those with E(φ(W)|
V ) = 0 for V some subset of W ? For example, in the
authors’ analysis V could be Y1. How would the ef-
ficient estimator for the class of E(φ(W)) = 0 relate
to that for the class of E(φ(W)|V ) = 0? Additionally,
were we to narrow the class of influence functions in
this way, would the authors then recommend conduct-
ing conditional (on V ) or unconditional inference?

Third, we wonder about the practical issues associ-
ated with model choice in computation of the SPEE.
The authors comment in Section 5 that by basically us-
ing larger component models (in calculating the con-
ditional expectations), one will obtain more efficient
results. Why, mathematically, might this be so? Surely
there must be a breakdown of this phenomenon in prac-
tical sample sizes. Related to this, could the SPEE
be derived via our (4)? Equation (4) produces robust
estimators: when Q is misspecified but the equation
still holds, we achieve consistency. Also, could bas-
ing estimation on (4) lead to straightforward transfer
of model choice procedures designed for standard re-
gression?

Comment
Geert Molenberghs

1. INTRODUCTION

The existing research area of incomplete data meth-
odology is characterized by three main, interrelated is-
sues. First, biopharmaceutical and other practice still
sticks to amazingly simplistic and generally incorrect
methods. Second and related, more advanced method-
ology, such as methods valid when data are miss-
ing at random and missing not at random, are per-

Geert Molenberghs is Professor of Biostatistics, Center
for Statistics, Limburgs Universitair Centrum, Univer-
sitaire Campus, B-3590 Diepenbeek, Belgium (e-mail:
geert.molenberghs@luc.ac.be).

ceived to be complicated and lacking unification. Third
and equally related, the academic research community
is divided between two rather opposing schools: the
likelihood-oriented school of Rubin and co-workers,
on the one hand, and the weighting-based school of
Robins, Rotnitzky and co-workers, on the other hand.
Exchanges between these two school can certainly be
entertaining, but when debates are too fierce and go on
for too long, the winner is likely to be a third party. In
this case, the third party may well be last observation
carried forward (LOCF), complete case analysis (CC)
and related simplistic methods.

The tremendous merit of this paper is that it ad-
dresses these problems in a very successful way, using
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sound yet accessible methodology. The authors steer
clear of controversies merely rooted in principle and,
instead, present a unifying framework. The use of the
pretest–posttest setting, which in the authors’ concept
of the term encompasses almost every longitudinal set-
ting (and, as such, the term may sound more limited
than it is supposed to be), allows clear and understand-
able illustration of the concepts developed. The paper
nicely illustrates how simple methods, such as two-
sample, paired t tests and analysis of covariance, can
be correct but inefficient with complete data, but in ad-
dition inconsistent when some data are missing. This,
and motivation why more advanced weighting methods
are useful, is done by presenting Robins’ framework
in a clear and accessible way, deferring more complex
technical details to the Appendix. The Appendix in-
cludes the intricate method of double robustness, on
which an accessible and insightful perspective is of-
fered. The position of likelihood-based score equations
is described as well, pointing to the advantages of effi-
ciency as well as to the dangers that arise from an in-
creased misspecification risk. It would have been nice
to see a likelihood-based analysis added to the one pre-
sented by the authors, in particular an analysis of the
relationship between starting from influence functions,
on the one hand, and a full probabilistic specification
for likelihood, on the other hand.

2. THE PRETEST–POSTTEST STUDY

The applicability of the results is wider than might
be understood from a narrow interpretation of pretest–
posttest designs. In fact, most longitudinal settings are
embraced by calling the last measurement of interest
the posttest measurement and considering intermittent
ones as auxiliary measurements, in line with the de-
velopment in the paper. The work is also important to
shed light on the longstanding and still confusing dis-
cussion on how to deal with baseline measurements:
ignore them, treat them as covariates, treat them as out-
comes, subtract them from the measurement of inter-
est and hence provide absolute differences or use them
to calculate relative differences instead. The strong ad-
vantage of the authors’ developments is that their opin-
ion is rooted, not in subjective judgment, school of
thought, preference or custom, but rather in the objec-
tive results derived from optimality theory. It hopefully
will slow down the stream of publications that tackle
this issue in an ad hoc, situation-based and subjective
fashion. Indeed, one is sometimes under the impres-
sion that each team that designs a clinical study feels
obliged to reinvent the wheel regarding this issue.

Of course, the developments do not have to be re-
stricted to the pretest–posttest study, not even in its
broadest interpretation, since Robins’ theory holds
very generally. However, by making this deliberate
choice, a framework has been selected, which is wide
but helps to fix ideas and focus. This contribution will
help bring proper incomplete data methodology closer
to the board room, even though experience dictates that
it still may take a while before it is routinely embraced
by, for example, the biopharmaceutical industry and
the regulatory authorities, and implemented in clinical
trials. However, a remark is necessary here. The drug
development process is costly in economic, time con-
sumption and ethical terms. It is therefore imperative
to look for the most optimal strategy in every aspect
of drug development. How then, could one advocate
the use of grossly simplistic and incorrect statistical
methodology, in conjunction the most sophisticated
and advanced biological, molecular, pharmacokinetic,
pharmacological and clinical knowledge?

Thus, more than ever, it is necessary to incessantly
reiterate that simplistic methods such as LOCF and
CC are to be avoided (Mallinckrodt, Clark, Carroll
and Molenberghs, 2003; Molenberghs et al., 2004),
especially because less than adequate reports of the re-
verse still abound in certain areas of the scientific liter-
ature (Shao and Zhong, 2003). The usefulness of CC,
for example, is put to rest in Section 3.2 of the subject
article. Of course, a properly weighted version of CC is
consistent, but still inefficient. This would seem to be
sufficient reason to forget about it altogether, and shift
to consistent and optimal or, pragmatically, sufficiently
efficient methods.

3. REBUILDING OUR INTUITION

The authors establish very clearly that, under MAR,
the use of intermediate measurements, grouped in-
to X2, is important both for validating the MAR as-
sumptions and for increasing efficiency. While this is
intuitively obvious to those familiar with missing data
work, it generally is not true, due to the fact that re-
sults for situations with complete data are different.
This is one of those instances where results under com-
plete (balanced) data differ from their incomplete data
counterparts. For example, the basic result for a multi-
variate normal sample that the mean and variance es-
timators have independent sampling distributions does
not hold under incomplete data, except under missing
completely at random (MCAR). It illustrates that MAR
and MCAR results do differ in important ways, even
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though one would be inclined, especially in a likeli-
hood context, to consider the split between MAR and
MNAR (missing not at random) as the really impor-
tant one. The dependence between mean and variance
estimators is related to the fact that E(Y2|X1, Y1,Z =
c) − µ

(c)
2 provides an intuitively appealing correction

to the estimating equations and, hence, in particular to
the likelihood equations. It can be seen as an “expected
residual” in terms of information obtained on a sub-
ject prior to the final measurement Y2. As a result, it is
clear that expected means and observed means need to
be different at the posttest occasion when not all mea-
surements are obtained.

4. LIKELIHOOD ANALYSIS OF CASE STUDY

Maximum likelihood is given its proper place as
a standard approach under MAR, which nevertheless
suffers from the risk of misspecification, since more
model elements need to be specified. However, in many
settings it is sufficient to specify the joint distribution
of (Y1, Y2|X1,X2,Z) or of (Y1,X2, Y2|X1,Z), rather
than of V = (X1, Y1,X2, Y2,Z) in full. Such a speci-
fication may not be unreasonably difficult in practice,
and mild departures from MAR are likely not to distort
the inferences terribly much. While this may sound a
bit pragmatic, the same is true when it comes to prac-
tical implementation of the methods laid out in the
article; see, for example, Section 5 on practical im-
plementation, where a pragmatic view is offered, in
line with standard modeler practice. Thus, arguably the
likelihood approach could be added to the tool kit for
the analysis of pretest–posttest designs, together with
the methodology advocated by the authors. In fact,
when considered jointly, a reasonable route to sensi-
tivity analysis unfolds. The choice between methods
is driven by a judgment between sensitivity and effi-
ciency, which can vary from problem to problem. Such
a pragmatic attitude is more fruitful than sticking, at all
cost and based on principle, to a single mode of analy-
sis. This debate is reminiscent of the Bayesian versus
frequentist argument, where a comparable shift from a
dogmatic to a pragmatic standpoint has been observed.
It is therefore nice that the theory laid out here encom-
passes both fully parametric and semiparametric mod-
els, as detailed in Section 2.2.

To supplement the analyses in Table 1 of the manu-
script, our Table 1 presents the results of four likeli-
hood-based longitudinal analyses. For comparison’s
sake, a completers-only analysis complements the
analyses by including all profiles, complete and in-

TABLE 1
Treatment effect estimates for 96±5 week CD4 counts for

ACTG 175, based on a longitudinal analysis of the CD4 profiles

Data Baseline CD4 Estimate SE

CC Unadjusted 50.75 11.08
CC Adjusted 61.59 15.39
All profiles Unadjusted 59.18 9.98
All profiles Adjusted 61.14 8.71

NOTE. The analysis includes either the completers only or all avail-
able subjects. The treatment effect is based on the difference at
96±5 weeks, adjusted either for covariates or for covariates with,
in addition, the baseline CD4 measurement.

complete. The CD4 profile, made up of the three avail-
able CD4 measurements (baseline, 20±5 weeks, 96±5
weeks), is modeled in terms of treatment, CD8 and
the same baseline covariates as in Section 1.1. The ef-
fect of the baseline covariates is allowed to differ with
measurement occasion. Practically, a trivariate normal
model—a special case of a linear mixed-effects model
(Verbeke and Molenberghs, 2000) with unstructured
variance–covariance matrix—is assumed.

Based on this model, the treatment effect at week
96±5 can be considered directly (termed Unadjusted
in Table 1, i.e., only covariate adjusted) or after fur-
ther conditioning the final CD4 measurement on CD40,
which is very easy using standard multivariate normal
results. This analysis is termed Adjusted in Table 1,
and the corresponding standard error is obtained from
the delta method. Note that the estimate of the adjusted
analysis, using all profiles, is relatively small compared
to all other analyses, which is to be expected. The stan-
dard errors from the complete case analyses are high,
a concern that augments concern about the method’s
inconsistency.

5. CONCLUDING REMARKS

Thus, to conclude, the paper convincingly restates
that we should forget about the CC t test and other
popular methods, shows that IWCC is consistent but
inefficient and that the newly proposed method per-
forms best. Using the expectation of Y2 given other
information, in the proper way indicated in the paper,
increases efficiency. In this regard, double robustness
does not need to be seen as something magic or ex-
travagant, but rather as a carefully picked set of es-
timating equations that leads to increased efficiency
and a decreased risk for an inconsistent result. The au-
thors rightfully refer to this as “estimators for practical
use with good properties.” In addition, a full likelihood
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analysis is possible, but one has to be aware of the mis-
specification risk. In fact, all “good” methods are based
on using information from baseline measurements and
covariates, from intermediate covariates as well as in-
termediate measurement occasions. The (regression)
models that capture such information, either to formu-
late weights, or in a longitudinal or multivariate model

in a likelihood context, need to be specified sufficiently
correctly.

Through their methodological developments, but in
particular also through the illustration with ACTG 175,
the authors have shown that correct methods, while
not completely trivial, are more than feasible in prac-
tice.

Comment
Joseph L. Schafer and Joseph D. Y. Kang

We would like to thank the authors for a well writ-
ten and thoughtful article. They have given us a clear
explanation of the theory of Robins, Rotnitzky and
Zhao, especially with regard to considerations of effi-
ciency and double robustness. We also appreciate their
willingness to share their data, which has allowed us
to evaluate the performance of their new method and
compare it to some parametric alternatives.

The crux of the problem is as follows. The parameter
of interest, β , is an aspect of the conditional distribu-
tion of Y2 given Z and Y1, but missingness for Y2 is
related not only to (Z,Y1) but also to X = (X1,X2).
Simple procedures like the t test and ANCOVA may
be biased because they fail to account for the depen-
dence of R on X. Even if the X variables were not
related to R, we would still want to make use of them
to improve efficiency because of their ability to pre-
dict the missing values of Y2. Variables that are not
really of interest except for the fact that they are poten-
tially correlated with missingness and/or missing out-
comes have sometimes been called auxiliary variables
(Collins, Schafer and Kam, 2001; Allison, 2002).

How can we use the auxiliary variables? One way
is simply to condition on them in the analysis. Un-
der MAR, good estimates of the distribution of Y2
given Y1, Z and X are available from the complete
cases. For a randomized study, however, condition-
ing on the postrandomization outcomes X2 hinders us
from making causal inferences about the effect of the
treatment. Simple weighting methods such as IWCC
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of Statistics and The Methodology Center, Pennsyl-
vania State University, University Park, Pennsylva-
nia 16802, USA (e-mail: jls@stat.psu.edu, dyk109@
psu.edu).

model the relationships between the auxiliary vari-
ables and the response propensities. Parametric ap-
proaches based on maximizing the incomplete-data
log-likelihood (Little and Rubin, 2002) or multiple im-
putation (Rubin, 1987) explicitly model the relation-
ships between X and Y2. The new method presented in
this article models both sets of relationships, but then
allows one of these two models to be wrong through
the interesting feature of double robustness. The new
method is similar in flavor to classical model-assisted
procedures for sample surveys, such as ratio and re-
gression estimation; those procedures are most effi-
cient when the underlying model is approximately true
but retain their unbiasedness regardless.

While examining these data, we found that the ap-
parent bias in the t-test and ANCOVA estimators is
due largely to one variable: off-treatment status. Sub-
jects who went off treatment were six times more likely
on the odds scale to have missing values for Y2 than
those who did not. In the control group, the average
CD4 count at 96±5 weeks for those who went off
treatment was 64 points lower than for those who re-
mained on treatment. In the treament group, the corre-
sponding difference was 110. We are not entirely sure
what the off-treatment status variable means, but it ap-
pears to measure the subjects’ compliance with the as-
signed regimen. Thus we need to emphasize that the
parameter β measures the causal effect of intention to
treat (ITT), not the effect of the treatment actually re-
ceived. This study provides an excellent example of
how dropout is often strongly related to noncompliance
and how neglecting to account for that relationship can
bias the usual ITT estimators (Frangakis and Rubin,
1999). At the same time, it suggests that some alterna-
tives to the ITT effect are worth investigating.

The authors’ new method is a big improvement over
IWCC, which can never perform very well because it
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makes use of X only through its association with R,
ignoring the direct relationships between X and Y2. In
fact, the inefficiency of IWCC worsens as the potential
for bias grows. As the correlation between X and R

becomes stronger, IWCC assigns greater weight to
the shrinking pool of respondents whose X values
most closely resemble those of the nonrespondents.
The IWCC can remove nonresponse bias related to X,
but in terms of efficiency it tends to break down when
bias corrections are needed most.

One issue that we will address is how the new
method compares to parametric alternatives. A para-
metric approach does not need to model the full joint
distribution of (X1, Y1,X2, Y2,Z). With multiple im-
putation (MI), we only need to build a reasonable
model for Y2 given X1, Y1, X2 and Z. The compu-
tations for MI are simple. Suppose, for example, that
we are willing to assume for imputation purposes that
Y2i ∼ N(UT

i η, ξ), where Ui is a vector of covariates
derived from X1i , Y1i , X2i and Zi . First, we would
compute the least-squares estimate η̂ based on the com-
plete cases. Next, we would draw

ξ∗ =
(∑

i

Ri(Y2i − UT
i η̂)2

)/
V,

where V denotes a random χ2 variate with degrees of
freedom

∑
i Ri − dim(Ui); next, draw η∗ from a nor-

mal distribution centered at η̂ with covariance

ξ∗
(∑

i

RiUiU
T
i

)−1

.

Finally, draw Y ∗
2i ∼ N(UT

i η∗, ξ∗) for all cases that
have Ri = 0. Repeating the procedure a small number
of times (e.g., ten) produces answers that are reason-
ably efficient. In practice, the regressors in Ui need to
be chosen thoughtfully based on analysis of the com-
plete cases. The assumption of normality is less cru-
cial, because post-imputation analyses like the t test
or ANCOVA are not highly sensitive to distributional
shape and because this assumption affects only the im-
puted values of Y2 rather than the entire sample. Many
alternatives to normality are available, such as apply-
ing a transformation to Y2i , bootstrap resampling of the
empirical residuals (Y2i −UT

i η∗) in the final step of the
imputation or switching to a generalized linear model.

Using the authors’ data, we imputed the missing
values of Y2 under a normal regression model even
though this variable is clearly nonnormal. We used
the same mean structure that the authors assumed for
E(Y2|X1, Y1,X2,Z). That is, we fit separate linear

models to the treatment and control groups with effects
for weight, HIV symptoms, prior antiretroviral ther-
apy, Karnofsky score, off-treatment status, and linear
and quadratic effects for CD4 and CD8 at baseline and
20±5 weeks. We generated ten imputations, computed
the t-test and ANCOVA estimators for each imputed
data set, and combined the results by Rubin’s (1987)
well-known method for scalar estimands. Estimates
from the t test and ANCOVA were 57.86 and 57.22,
respectively, with standard errors of 9.48 and 9.62—
nearly identical to those from the new method.

We also ran simulations to see how the methods per-
form over repeated sampling from an artificial popula-
tion that mimics the observed data but does not corre-
spond exactly to our imputation model or the models
used by the authors to compute the π̂ ’s and êq ’s. We
created samples in the following way. First, we boot-
strapped (X1, Y1), drawing these variables from their
joint empirical distribution. Next, we set Z = 1 with
probability 0.75 for each subject, and Z = 0 otherwise.
Then we generated (X2, Y2,R) given (X1, Y1,Z) from
a sequence of regressions with coefficients chosen to
closely resemble estimates from the original sample.
Details of these regressions are shown in our Table 1.
Note in particular the large effects of off-treatment sta-
tus on Y2 and R. By repeated simulation of very large
samples (n = 106), we found that the actual treatment
effect in this population is β ≈ 53.7.

For the simulation, we drew 1000 samples of size
n = 2139, and computed estimates and standard er-
rors by the paired t test, ANCOVA, IWCC, the new
method and MI. We were not exactly sure how the au-
thors computed the standard error for IWCC; we could
not reproduce their value from the original data, so we
decided to omit it. For MI, we imputed the missing val-
ues ten times and analyzed the imputed data sets by the
paired t test and ANCOVA. The results from these two
methods were nearly identical, so we report only those
from ANCOVA.

Results from this simulation are summarized in our
Table 2. Not surprisingly, the simple paired t-test
and ANCOVA estimators are substantially biased.
The IWCC, the new method and the MI have no dis-
cernible bias even though the underlying models are
slightly misspecified. The new method has greater ef-
ficiency [lower root mean squared error (RMSE)] than
IWCC. The MI estimator is slightly less efficient than
the new method, with about 1.5% greater RMSE, but
its efficiency can be improved by increasing the num-
ber of imputations. Nominal 95% confidence intervals,
computed as the estimate plus or minus 1.96 standard
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TABLE 1
Population model used in simulations

X1, Y1:
(wt,HIV,Karn,prior,CD40,CD80) ∼ empirical distribution

Z|X1, Y1:
Z ∼ Bernoulli(0.75)

X2, Y2,R|X1, Y1,Z = 0:√
CD420 ∼ Normal with mean 6.3 − 1.2 prior + 0.80

√
CD40 − 0.23 3√CD80, variance = 7.3

3√CD820 ∼ Normal with mean 1.59 + 0.19 prior − 0.18
√

CD40 + 0.81 3√CD80 + 0.186
√

CD420, variance = 0.63
log(P (offtrt = 1)/P (offtrt = 0)) = 6.9 − 0.56prior − 0.043Karn − 0.07 3√CD80 + 0.09 3√CD820 − 0.03

√
CD40 − 0.136

√
CD420√

CD496 ∼ Normal with mean 0.43
√

CD40 − 0.30 3√CD80 + 0.75
√

CD420 − 0.30 3√CD80 − 1.3offtrt, variance = 16.6
log(P (R = 1)/P (R = 0)) = 1.4 − 2.2offtrt

X2, Y2,R|X1, Y1,Z = 1:√
CD420 ∼ Normal with mean 6.2 − 0.48HIV − 1.1prior + 0.034Karn + 0.65

√
CD40 − 0.16 3√CD80, variance = 8.9

3√CD820 ∼ Normal with mean 1.79 + 0.003wt + 0.14HIV + 0.15prior − 0.15
√

CD40 + 0.75 3√CD80 + 0.15
√

CD420, variance = 0.66
log(P (offtrt = 1)/P (offtrt = 0)) = 4.6 − 0.33prior − 0.027Karn − 0.19 3√CD80 + 0.19 3√CD820 + 0.01

√
CD40 − 0.136

√
CD420√

CD496 ∼ Normal with mean −6.4 + 0.02wt + 0.06Karn + 0.25
√

CD40 + 0.25 3√CD80 + 0.82
√

CD420 − 0.60 3√CD80
− 2.5offtrt, variance = 12.7

log(P (R = 1)/P (R = 0)) = −1.0 + 0.4HIV + 0.03Karn + 0.08 3√CD80 − 0.10 3√CD820 − 0.05
√

CD40 + 0.02
√

CD420 − 1.9offtrt

errors, have actual coverage close to 95% for both the
new method and MI. On average, the MI intervals are
a bit wider than the new method’s, due again to the fact
that we are using only ten imputations.

The next question we considered is how the new
method and MI respond to greater degrees of model
misspecification. For the new method we removed
the important off-treatment (offtrt) status variable first
from the computation of the π̂ ’s, then from the êq ’s,
then from both. For MI we removed this variable from
the imputation model. The performance of the modi-
fied procedures is summarized in our Table 3. When
offtrt is removed from the π̂ model or the êq model
alone, the new method still performs quite well, show-
ing that the double robustness property works as it
should. When offtrt is removed from both, the new
method is biased, and MI without offtrt is biased to
about the same degree. These biases are enough to drop
the simulated coverage of the intervals to about 90%,
which corresponds to a doubling of the Type 1 error
rate in a 0.05-level test.

TABLE 2
Results from samples of size n = 2139 for average estimate (true
β ≈ 53.7), root mean squared error, percent coverage of nominal

95% interval and average interval width

t test ANCOVA IWCC New MI

Avg 62.9 61.5 53.7 53.8 53.9
RMSE 13.9 12.9 11.5 10.2 10.4
Coverage 83.4 87.3 — 93.0 95.8
Width 79.1 80.3 — 75.2 84.8

In some respects, this example is different from those
we have typically seen in the social and behavioral sci-
ences, because the treatment effect is large and highly
significant regardless of what we do. The signal-to-
noise ratio is so large that the biases in the naive meth-
ods that do not use the auxiliary variables (t test and
ANCOVA) amount to a standard error or more. In our
experience it is a bit unusual to find auxiliary variables
that are correlated with the missingness indicator R to
the degree exhibited in these data by the variable offtrt.
Even if such variables are present, we have found that
they usually do not interact with the covariates of in-
terest (in this case, Z and Y1) and the response (Y2)
strongly enough to seriously degrade the performance
of intervals and tests, except in situations with unusu-
ally large n and very high power. In situations with less
power, the real advantage in using auxiliary variables
is not to reduce bias, but to increase efficiency. For ex-

TABLE 3
Results from samples of size n = 2139 with the off-treatment status

variable removed from missing-data procedures

New∗ New† New∗† MI†

Avg 53.9 53.8 58.6 59.2
RMSE 10.2 10.2 10.8 11.3
Coverage 91.9 93.9 89.9 90.4
Width 71.4 76.7 74.0 78.0

NOTE. New∗ removes it from computation of π̂ ’s; New† removes it
from computation of êq ’s; New∗† removes it from computation of
both π̂ ’s and êq ’s; and MI† removes it from the imputation model.
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ample, when subjects drop out of a longitudinal study,
intermediate measurements can be quite valuable for
predicting missing endpoints even if the dropout is
completely at random.

To see how the methods perform in a situation with
more noise, we repeated our simulation with a reduced
sample size of n = 400; this leaves us with an average
of 100 subjects in the control group and 300 in the com-
bined treatment groups at baseline. Under these condi-
tions the power of an ordinary 0.05-level paired t test
with no dropout is about 85%, which seems plausible
for a randomized trial. The results from this new simu-
lation are summarized in our Table 4. The paired-t and
ANCOVA estimators are just as biased as they were
with n = 2139 in absolute terms, but these biases are
now less consequential because the standard errors are
larger. The new method still has essentially no bias, but
it is less efficient than the “naive” methods and its cov-
erage has begun to suffer. In this situation the expected
number of respondents in the control and treatment
groups is about 60 and 185, respectively. One might
think that samples of this size are large enough for a
robust comparison of two means, but the asymptotic
approximations of the new method seem to require
samples larger than those to which we are ordinarily
accustomed. With samples of n = 400, the MI method
still works well. This is consistent with what we have
found in other simulations—although technically a

TABLE 4
Results from samples of size n = 400

t test ANCOVA IWCC New MI

Avg 61.6 60.2 52.5 52.5 52.6
RMSE 24.9 24.5 29.8 26.8 25.4
Coverage 92.3 93.8 — 90.7 96.8
Width 183 186 — 180 218

large-sample procedure, it can work very well with
moderate or small n (e.g., Graham and Schafer, 1999).

In summary, this new method requires a plausi-
ble model for either the response propensities or the
X − Y2 relationships, and it will be most efficient when
the latter is approximately true. Multiple imputation
needs a plausible model for the X − Y2 relationships
to have low bias and high efficiency. Either way, mod-
eling of E(Y2|X1, Y1,X2,R) is a good idea and should
not be done haphazardly. The new method requires us
to fit three sets of regressions, whereas MI requires one
set of regressions plus simulation of random variates.
The new method also requires the samples to be rather
large. Under the right conditions the new method per-
forms beautifully and we can wholeheartedly recom-
mend it.
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INTRODUCTION

We thank all of the discussants for their thoughtful
and insightful comments. We very much enjoyed read-
ing all of the discussions and we have learned a great
deal more about the interrelationships among differ-
ent perspectives on missing data problems from them.
While all discussions touch on some common themes,
each one also raises some different, important issues.
Accordingly, we respond to the discussants’ comments
in turn, focusing mostly on several of these issues. The
relative length and extent of our responses to each dis-
cussion by no means reflect the relative importance of
the comments.

RESPONSE TO AN AND LITTLE

An and Little take the position that one may appeal
to existing principles of regression modeling (PSM)
as the basis for methods for pretest–posttest analysis,
with or without data MAR. We do not disagree that
methods based on regression modeling are a useful ap-
proach to these and more general problems. However,
we believe that the distinction between the methods
that emerge from application of the semiparametric
theory of Robins, Rotnitzky and Zhao (1994, RRZ)
and PSM methods is less profound than the debates in
the literature, which tend to feature “schools” (in the
words of Molenberghs) that advocate one approach or
another and imply a sort of mutual exclusivity of the
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methods, would suggest. Our perspective is that ap-
pealing to the semiparametric theory can in fact high-
light and clarify formally the interrelationships among
methods. Indeed, the semiparametric theory character-
izes the class of all consistent (RAL) estimators for β ,
including the efficient one within this class. Accord-
ingly, we expect that many standard “nice” estimators
may be represented as members of this class. Thus, we
believe it is fruitful and instructive to view all methods
from the perspective of this theory, a theme we high-
light throughout.

An and Little have very nicely summarized in the
case where there are no intervening covariates X2 what
can be expected via a PSM approach both with and
without missing data. As they point out, under ran-
domization methods for estimation of β = E(Y2|Z =
1) − E(Y2|Z = 0) based on least squares (LS) fitting
of a (parametric) regression model for E(Y2|X1, Y1,Z)

will yield consistent inference even if the model is in-
correct. Although this can be deduced from consider-
ing the regression model directly, it also can be seen
to follow from the semiparametric theory of influence
functions. For example, if we assume

E(Y2|X1, Y1,Z) = α0 + α1Y1 + α2X1 + βZ,(1)

the usual ANCOVA approach supplemented by adjust-
ment for additional baseline covariates, the LS esti-
mator for β in (1) may be shown to have influence
function in the class given in (3) of our paper and,
hence, is consistent for β = E(Y2|Z = 1) − E(Y2|
Z = 0) even if (1) does not correspond to the true re-
gression relationship.

When Y2 is MAR and there are no intervening
covariates X2, An and Little remind us that the in-
complete cases do not contain information on the re-
gression E(Y2|X1, Y1,Z), so if our interest is on the
regression relationship only, we may base inference on
the complete cases. However, the quantity of interest,
β = E(Y2|Z = 1) − E(Y2|Z = 0), which may be de-
rived from this regression, also depends on the distrib-
ution of (X1, Y1,Z), which must be deduced from all
the data, as also noted by Brumback and Brumback.
Hence, a potential pitfall is that an incorrect regression
model for the complete cases can lead to bias, a point
to which An and Little allude and one we feel is worth
demonstrating explicitly. For simplicity, assume no ad-
ditional covariates X1 and that Y1 is binary. Suppose
we postulate

E(Y2|Y1,Z) = α∗
0 + α∗

1Y1 + βZ(2)

and propose to estimate β via the LS estimator for β

in (2). Suppose in truth

E(Y2|Y1,Z) = α0 + α1Y1 + γZ + κZY1,(3)

which implies that β = E(Y2|Z = 1) − E(Y2|Z =
0) = γ + κρ, where ρ = P(Y1 = 1|Z) = P(Y1 = 1) by
randomization. Suppose further that P(R = 1|Y1, Y2,

Z) = P(R = 1|Y1) (the MAR assumption, with miss-
ingness dependent on Y1 nondifferentially by treatment
group) and that P(R = 1|Y1 = y) = πy , y = 0,1. Then
it is straightforward to show that the LS estimator for β

in (2) based on the complete cases only converges in
probability under the true relationship (3) not to the
quantity of interest, β = γ + κρ, but to

γ + κ

{
ρπ1

π0(1 − ρ) + π1ρ

}
.

That is, the LS estimator based on the incorrect
model (2) estimates a quantity that differs from that of
interest by an amount that has to do with the difference
between the population proportion ρ = P(Y1 = 1) and
(ρπ1)/{π0(1−ρ)+π1ρ} = P(Y1 = 1|R = 1), the pro-
portion among complete cases. Thus, this estimator
fails to incorporate required information on Y1 from
the entire population, leading to inconsistency. This ex-
ample highlights that a potential price of a pure PSM
approach is inconsistent inference. From the view of
the semiparametric theory, as such an estimator is in-
consistent, it is not a member of the class of all (con-
sistent) RAL estimators; hence it would not emerge as
a candidate for inference on β .

As An and Little discuss clearly, when missing-
ness depends on intervening covariates, it is neces-
sary to incorporate the information on them from the
incomplete cases, but it is not appropriate to sim-
ply include these covariates in a regression model
for the outcome. They note that the general paramet-
ric PSM approach may be implemented by obtaining
imputed/predicted missing responses êq(1)i based on
a model for E(Y2|X1, Y1,X2,Z) = E(Y2|X1, Y1,X2,

Z,R = 1) (so using complete cases only) and carrying
out a regression analysis to estimate β under a model
for E(Y2|X1, Y1,Z) (which may in fact be incorrect as
above), substituting the imputed values for the missing
responses. For example, for the single mean µ

(1)
2 and a

linear model for E(Y2|X1, Y1,X2,Z = 1), the estima-
tor is

µ̂
(1)
2 = n−1

{
n∑

i=1

RiY2i +
n∑

i=1

(1 − Ri)̂eq(1)i

}
.(4)
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Regression imputation or multiple imputation (dis-
cussed by Schafer and Kang) may be used to obtain
the êq(1)i . They note that this requires E(Y2|X1, Y1,

X2,Z) be correctly specified, raising concern over the
potential for bias associated with an incorrect paramet-
ric model. As An and Little point out, nonparametric
regression may address this concern at the expense of
being subject to the “curse of dimensionality,” leading
them to propose the propensity spline prediction (PSP)
method (Little and An, 2004), in which the imputation
is based on, roughly, a model of the form, in the case
of µ

(1)
2 , which we focus on here, E{Y2|π(X1, Y1,X2,

Z = 1),A}, where A is a function of (X1, Y1,X2)

and this is estimated using splines. Brumback and
Brumback also discuss regression on the propensity π

as a means of reducing dimensionality.
To illuminate the connection between PSP and the

class of RAL estimators derived in our paper, we
reiterate that our proposed estimators follow from
making no assumptions on the joint distribution of
(X1, Y1,X2, Y2,Z) beyond independence of (X1, Y1)

and Z along with an assumption on the form of, for ex-
ample, in the case of µ

(1)
2 , π(1)(X1, Y1,X2). Although

in this case correct modeling of E(Y2|X1, Y1,Z = 1)

and E(Y2|X1, Y1,X2,Z = 1) serves to enhance effi-
ciency, no assumptions on these regression relation-
ships are required and, as long as the assumption
on π(1) is correct, consistency is obtained regard-
less of whether the regressions are modeled correctly.
In the PSP approach, An and Little make an assump-
tion on π(1)(X1, Y1,X2) but make no assumptions on
regression relationships such as E{Y2|π(X1, Y1,X2,

Z = 1),A}, instead modeling these nonparametrically.
Thus, PSP is derived under the same conditions as the
estimators in our paper. Accordingly, if PSP estimators
are RAL, they must have influence functions in the
class of influence functions given by the RRZ theory
and hence must be in the resulting class of estimators.

In a simple special case where there is only one vari-
able, we can show easily that the PSP estimator has in-
fluence in the class that corresponds to consistent RAL
estimators. Suppose we consider just the data for one
treatment group, have only (Y1, Y2), and focus on es-
timation of E(Y2) = µ2. Assume P(R = 1|Y1, Y2) =
P(R = 1|Y1) = π(Y1) is known and discrete, taking on
values π1, . . . , πK , say. Under these conditions the nat-
ural nonparametric estimator for E{Y2i |π(Y1i ) = πj }
is

Êj =
∑

i : π(Y1i )=πj
RiY2i∑

i : π(Y1i )=πj
Ri

,

yielding the estimator for µ2 found by substituting
in (4) êq(1)i = Êj if π(Y1i ) = πj , which reduces
to µ̂2 = n−1 ∑K

j=1 rj Êj , rj = ∑n
i=1 I {π(Y1i ) = πj }.

This may be rewritten as

n−1

[
K∑

j=1

∑
i : π(Y1i )=πj

{
Ri(Y2i − Êj )

πj

+ Êj

}]

= n−1
n∑

i=1

[
Ri{Y2i − êq(1)i}

π(Y1i )
+ êq(1)i

]
(5)

= n−1
n∑

i=1

[
RiY2i

π(Y1i )
− Ri − π(Y1i )

π(Y1i )
êq(1)i

]
.

The first term in the second expression in (5) is the
“calibration” correction to which An and Little refer
(which in fact equals 0 in this simple example, but need
not in general). This estimator has influence function

R(Y2 − µ2)

π(Y1)
− R − π(Y1)

π(Y1)
E{Y2|π(Y1)},

which is of the form of those following from the RRZ
semiparametric theory for estimators for a single mean.
Thus, we may conclude immediately that µ̂2 is con-
sistent for µ2 and asymptotically normal with asymp-
totic variance that may be deduced from the influence
function.

It is important to recognize that this influence func-
tion and those corresponding to PSP estimators in more
general settings belong to the class of influence func-
tions for semiparametric RAL estimators because a
nonparametrically consistent estimator for, in this case,
E{Y2|π(Y1)} is used. If a parametric model were used
here, this would impose additional assumptions beyond
those of a semiparametric model. By working directly
with the class of influence functions indicated by the
theory, for example, in the simple example

R(Y2 − µ2)

π(Y1)
− R − π(Y1)

π(Y1)
g(Y1),

one has greater latitude to choose g(Y1) to develop con-
sistent estimators.

In the general setup of our paper, whether the semi-
parametric efficient estimator may be represented as
a PSP estimator or, equivalently, whether a PSP es-
timator may be shown to have the efficient influence
function, is not readily clear and would be interesting
to establish. An and Little contend that PSP addresses
the curse of dimensionality, but this is only true when
the propensity π is correctly specified; indeed, to spec-
ify π correctly also involves a curse. When π(1) is cor-
rectly modeled, basing inference instead on the class
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of estimators in our paper ensures that the analyst does
not have to worry about the curse in the sense that,
while the construction of the PSP estimators requires
that regression relationships be modeled nonparamet-
rically for consistency, the form and double robustness
property of our estimators ensure consistency even if
regression relationships are represented by incorrect
models.

Viewing the PSP approach as a way to implement
estimators in the class following from the RRZ the-
ory, then we wonder whether it may in fact have some
pleasing empirical properties. Estimators in the class,
whose form incorporates inverse weighting explicitly,
can be numerically unstable when some cases have as-
sociated small values of π(1). The PSP representation
may lessen this effect, as suggested by the comment
of An and Little that PSP “obviates the need for” the
calibration correction.

Overall, however, it is notable that our estimators
have a simple closed form that requires only that the
analyst carry out familiar modeling exercises. More-
over, because the influence functions of our estimators
are readily available, calculation of closed form stan-
dard errors via the sandwich method is immediate.

An and Little express surprise at our statements
that there is no general consensus on appropriate ap-
proaches to pretest–posttest analysis, particularly in the
face of missing data, and that some of the approaches
they discuss are often not used by practitioners. We
agree that many practitioners are well aware of the
issues raised by An and Little and are indeed basing
their inferences on sound and sophisticated principles.
Our experience in the clinical trial, pharmaceutical and
regulatory settings, however, more closely mirrors that
of Molenberghs. Statistical sections of study protocols
that propose complete case (CC) analyses are com-
monplace in our experience; for example, the protocol
for a recent HIV study states that the primary analy-
sis will be based on “change in CD4+ cell count from
baseline” to the regular follow-up visit at 32 months
(so based on the unfortunately named paired t-test
method) and that “. . . patients who are lost to follow-
up will not contribute to this comparison.” In our col-
laborations, we have routinely witnessed debates over
whether methods based on change scores (posttest–
pretest) or ANCOVA should be used (a point addressed
by Brumback and Brumback), whether failure of the
response to follow a normal distribution will bias re-
sults, whether adjustment for additional baseline co-
variates should even be undertaken and whether CC
or last observation carried forward (LOCF) is the more

appropriate approach to handling missing follow-up re-
sponses.

Overall, we believe that semiparametric theory can
shed considerable insight on this and other problems,
and can suggest not only estimators that may be al-
ternatively motivated from a PSM perspective, but also
provide a formal framework in which to view these and
many other nice estimators. Through the lens of this
theory, one can observe that many seemingly disparate
approaches share common themes.

RESPONSE TO BRUMBACK AND BRUMBACK

Brumback and Brumback first emphasize an im-
portant point that has been the source of some mis-
conception among practitioners, namely, that basing a
pretest–posttest analysis on change scores is not the
same as basing it on a method that performs a regres-
sion adjustment for Y1. In doing so, they make an in-
teresting connection between this phenomenon, known
as Lord’s paradox, and the celebrated Simpson para-
dox, which has to do with difficulties with confound-
ing that arise in, for instance, epidemiological studies,
highlighting the link between causal inference and in-
ference under MAR.

Brumback and Brumback bring up an intriguing al-
ternative approach, which they discuss in the context
of estimation of µ

(1)
2 and the special case of no miss-

ing data, no baseline or intervening covariates (X1,X2)

and binary Y1. In general, from (3) and (4) of our paper,
the SPEE for µ

(1)
2 is

µ̂
(1)
2 = n−1

n∑
i=1

{
ZiY2i − (Zi − δ̂)̂eh(1)i

}
,(6)

where δ̂ = n1/n and êh(1)i is the predicted value for i

based on an estimator for E(Y2i |Y1i ,Zi = 1). In the
particular case where Y1 is binary, as Brumback and
Brumback point out, the obvious estimators are Y 20 for
E(Y2|Y1 = 0,Z = 1) and Y 21 for E(Y2|Y1 = 1,Z = 1).
Brumback and Brumback contend that the SPEE in this
setting is given by

µ̃
(1)
2 = n−1

1

n∑
i=1

ZiY2i = m0Y 20/n1 + m1Y 21/n1,

which weights the estimators for E(Y2|Y1 = y,Z = 1),
y = 0,1, by within-treatment proportions w0 = m0/n1
and w1 = m1/n1. However, substituting Y 20 and Y 21
in (6) followed by algebra shows that the SPEE is in
fact given by

µ̂
(1)
2 = r0Y 20/n + r1Y 21/n,(7)
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where r0 = ∑n
i=1(1 − Y1i ) and r1 = ∑n

i=1 Y1i , which
weights by overall proportions. A similar expression
obtains for µ

(0)
2 . We highlight this to emphasize the

important point that, even though we focus here on the
mean for the single treatment group with Z = 1, the
SPEE gains efficiency by exploiting the information
from both treatment groups.

This issue aside, Brumback and Brumback raise an
interesting possibility, that of a so-called compromise
estimator (CE) based on shrinkage ideas. The version
given in the discussion could likely be modified to ex-
ploit information from both treatments. When τ 2 is
known, the expression for the CE has smaller vari-
ance than (7), which is the sample mean for Z = 1 if
τ 2 > 0 and has variance equal to that of (7) if τ 2 = 0.
As τ 2 would be unlikely to be known in practice but
evidently was taken as such in the MSE comparisons
presented by the authors [the “estimate” of τ 2 is the
variance of the chosen values of E(Y2|Y1 = 0,Z = 1)

and E(Y2|Y1 = 1,Z = 1), which would not be known
in practice], we do not have a sense of the extent to
which the need to estimate τ 2 would impact practical
performance of the CE relative to (7) [or (6)] of this re-
joinder. We conjecture that the CE (with τ 2 estimated
realistically from the data) may be a superefficient es-
timator and hence is not regular; accordingly, it is ex-
cluded from the class of RAL estimators for µ

(1)
2 to

which the influence functions in (3) of our paper cor-
respond. Nonetheless, this is not to say that it may not
have desirable properties. The CE with τ 2 estimated
is an intriguing idea that we believe deserves further
study.

Turning to the issue of handling intervening co-
variates X2 when Y2 is MAR, ignoring for simplic-
ity X1, Y1 and from a perspective similar to that taken
by An and Little, Brumback and Brumback demon-
strate that µ

(1)
2 = E(Y2|Z = 1) (and similarly µ

(0)
2 )

may be estimated by averaging E(Y2|X2,Z = 1,

R = 1) over the distribution of X2|Z = 1, that is, over
the entire population, not just among those with Y2
missing. They then propose a PSM approach based on
regression modeling on the propensity score in a spirit
similar to that of An and Little, with the additional
twist of using the shrinkage-based CE for the regres-
sion modeling. However, this approach is not equiva-
lent to the PSP of An and Little, because Brumback and
Brumback base inference on their equations (3) and (4)
rather than an equation like our (4) in this rejoinder,
and we are uncertain as to how they implemented esti-
mation of the regression relationships (i.e., parametric
or nonparametric modeling).

Brumback and Brumback end by posing several
questions. First, they question why we focus on an
intent-to-treat estimand. We do not disagree that an
analysis focused on treatment efficacy would be of in-
terest. However, our emphasis on intent-to-treat reflects
that this would be the standard analysis in the clini-
cal trial, pharmaceutical and regulatory setting. In the
event where noncompliance in fact leads to missing-
ness (e.g., dropout), this view may be interpreted as
focusing on the estimand that would be of interest if
there were no missing data, and the analysis may then
be interpreted as attempting to estimate this quantity in
the unfortunate circumstance that dropout did occur.

We are not entirely clear as to the motivation for
the second point raised by Brumback and Brumback.
In general, if one factorizes a likelihood in terms of
W |V and V , the component that corresponds to V is
orthogonal to the first term in the sense that parameters
are variation independent, and then all resulting influ-
ence functions for estimators for a parameter in the first
term have influence functions that satisfy the condition
E{ϕ(W)|V }. Under these conditions, we would indeed
recommend a conditional analysis.

Finally, Brumback and Brumback ask about our
practical recommendation to include covariates in the
regression models involved in computation of the pro-
posed estimator. Mathematically, including covariates
should increase efficiency, which can be appreciated
from a geometric perspective, because the influence
function can be viewed as a projection onto a lin-
ear space spanned by the covariates. As the size of
that space increases, the projection becomes smaller
and hence has smaller variance. However, Brumback
and Brumback raise the important point that there is a
threshold in practical problems above which including
additional, potentially unnecessary covariates in the
models will lead to instability in smaller sample sizes
(a point raised also by Schafer and Kang). An interest-
ing question for future research is the rate at which one
should increase model complexity relative to sample
size. Brumback and Brumback end by posing several
intriguing questions for future research, which we can-
not hope to address in this limited space.

RESPONSE TO MOLENBERGHS

We agree wholeheartedly with virtually all of
Molenberghs’ comments. He has presented with con-
siderably more eloquence than we could hope to
achieve our position on handling missing data in prac-
tice, in general, and the pretest–posttest problem, in
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particular. He emphasizes that the continued, erroneous
use of CC and LOCF analyses is likely in part a con-
sequence of the existence of competing “schools” in
the literature, a point with which we concur, and he
provides compelling arguments to support our position
that viewing methods pragmatically from the perspec-
tive of semiparametric theory can lead to considerable
insight.

Molenberghs explicitly discusses likelihood analy-
sis, which we did not emphasize in our paper, pro-
viding yet another complementary perspective. He
correctly points out that our implication that likelihood
methods require specification of the full joint distribu-
tion of (X1, Y1,X2, Y2,Z) is an overstatement; indeed,
only aspects of this distribution must be specified (but
must be specified correctly). In fact, one way to con-
trast our approach based on the RRZ theory to that of
maximum likelihood is alluded to by Molenberghs. As
we noted in our response to An and Little, the semi-
parametric RRZ theory takes the point of view that
one is willing to make assumptions on the probabili-
ties of observing Y2 but not on regression relationships
for Y2, an approach that leads to the double robustness
property if one characterizes the regression relation-
ships correctly and to consistent inference regardless.
In a maximum likelihood approach, one instead makes
assumptions on regression relationships such as those
noted by Molenberghs, and in fact need not even make
any assumptions on the π(c)(X1, Y1,X2), c = 0,1.
However, this comes at a price, because the regres-
sion relationships need to be specified, in the words of
Molenberghs, “sufficiently correctly” to achieve unbi-
ased inference.

RESPONSE TO SCHAFER AND KANG

Schafer and Kang provide illuminating and help-
ful perspectives on several issues. Like Brumback and
Brumback, they also raise the point of our focus on the
intent-to-treat estimand and provide an excellent dis-
cussion of the biases that can arise when noncompli-
ance is related to dropout. Schafer and Kang also make
the connection between the semiparametric methods
we discuss and methods in the sample survey literature,
which are, in fact, based on the same ideas, but which
evolved from an entirely different perspective. Schafer
and Kang also offer a very useful and intuitive explana-
tion of the suboptimal performance of the IWCC esti-
mator relative to that of the proposed estimators based
on the efficient influence function.

A welcome contribution by Schafer and Kang is the
extensive set of simulation studies they present based

on the ACTG 175 scenario that compares the proposed
approach not only to popular estimators directly, but
to one version (ANCOVA) where the missing Y2 were
filled in via multiple imputation (MI). In doing so,
they note in the same spirit as Molenberghs’ remark
on maximum likelihood that the latter approach does
not require full specification of the joint distribution of
(X1, Y1,X2, Y2,Z), which the remark in our paper er-
roneously suggested. The simulations illustrate several
important points. Under ideal conditions (e.g., correct
modeling), the proposed method based on the efficient
influence function and the MI method achieve similar
performance, with perhaps a slight edge to the pro-
posed method, which echoes Molenberghs’ view that
under a pragmatic approach all “good” methods should
yield similar inferences. Further simulations exhibit
convincingly both the double robustness property and
the potential for bias of the proposed approach when
both π(c) and regression relationships for Y2 are mod-
eled incorrectly, and of the MI approach when the im-
putation model is incorrectly specified.

Schafer and Kang also report on a simulation that
addresses the spirit of the comment by Brumback and
Brumback regarding performance in smaller samples.
The simulations with n = 400 demonstrate a potential
pitfall of the proposed methods, namely, that practical
performance can be degraded when model complex-
ity is fairly high and sample size is not too large. This
prompts us to issue a cautionary note that the operat-
ing characteristics of inverse-weighted methods in this
setting, not only for the pretest–posttest problem, but
when applied in other problems, need to be better un-
derstood. We conjecture that this is of particular con-
cern when some of the π(c) are very small. As noted
above, the PSP approach to implementing estimators
in this class advocated by An and Little may offer bet-
ter practical performance.

CLOSING COMMENTS

We would again like to offer a strong vote of thanks
to all the discussants. Their incisive comments have en-
hanced tremendously the message and utility for prac-
titioners we hope to achieve with this paper and raised
many issues for further research.

In closing, we would like to bring up one additional
issue that did not arise in any of the discussions. All
the methods discussed here rely on the validity of the
MAR assumption. In settings where Y2 is missing ex-
clusively due to dropout, the analyst may feel confident
adopting this assumption when sufficient information
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on reasons for dropout (e.g., X1, X2) is available. One
situation in which the MAR assumption would be sus-
pect is in the case where Y2 is missing due to the in-
tervening death of a subject, where missingness due to
death may be related to underlying disease state. More
fundamentally, this scenario raises the philosophical is-
sue of what a reasonable question of interest regarding
the response really is. In the setting of ACTG 175, for
example, where Y1 and Y2 are CD4 count, it is natural
to ask the meaning of CD4 count if a subject has died.
If death is due to HIV, then it is not clear what CD4
count at a subsequent time represents, whereas, in con-
trast, one may still envision CD4 postdeath for a sub-
ject who, for example, died due to accidental causes. In
the former case, one might argue that, as diminishing
CD4 is strongly associated with poor prognosis with
presumably no detectable CD4 count corresponding to
complete annihilation of the immune system, taking
CD4 as equal to 0 for subjects whose death is clearly
related to HIV might be a biologically defensible so-
lution. Nonetheless, this seems somewhat unsatisfac-
tory and may not be applicable in other situations. In
ACTG 175, of the 739 subjects missing Y2, only 49
in fact died prior to 96 weeks. Accordingly, we took
the pragmatic view that ignoring this inconvenient fea-
ture would not detract too much from asking a ques-
tion about CD4 at 96±5 weeks for the vast majority of
subjects who did not die. In general, the analyst needs
to think carefully about the implications of death and
come to a satisfactory resolution on interpretation of
the effect of interest on a case-by-case basis.

We end by reiterating that we do not wish to suggest
that the proposed methods should supplant all others as
the methods of choice for pretest–posttest analysis. Our
objective for the paper was to demystify the RRZ the-
ory for practitioners and demonstrate how the theory
lends insight into the structure of the problem and the
interrelationships among approaches. Pragmatic data-
analytic techniques applied in any of the approaches
should lead to correct and relatively efficient inference,
a point we believe the RRZ theory helps to solidify.
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