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1 Introduction

Intensive agricultural activities generate negative externalities that are be-
coming increasingly significant over time and space. This phenomenon is
reflected in growing concerns about the impacts of intensive livestock farm-
ing in rural areas, with populations becoming denser and more urbanized.
Agricultural economists have attempted to quantify such effects, using he-
donic models of house prices. In such a framework, negative external effects
from agriculture (pollution) are measured by relevant indicators that are
assumed to be inversely related to house prices. Then, by estimating the
first-order derivatives of the hedonic price function with respect to the pol-
lution indicators, we obtain estimates of the implicit prices of these environ-
mental attributes and, indirectly, an estimate of the consumers’ willingness
to pay to avoid these nuisances (or disamenities). Although well grounded
theoretically, the hedonic price model, when implemented empirically, has
raised several problems associated with the identification of the parameters
in the underlying structural model. In reality, the nature of the relationship
between house prices and the various associated attributes is complex and
nonlinear, so it would be better represented by nonparametric models rather
than the classical parametric specifications (Ekeland et al., 2004).

The aim of this paper is to investigate the performance of various non-
and semi-parametric specifications in a conventional hedonic price model.
While most of the literature has concentrated on the parametric specifica-
tions of the hedonic price model, some recent studies have assessed the ad-

vantages of some non- and semi-parametric methods.? Comparative studies

2See Bontemps et al. (2006) for an extensive list of references.



suggest that these latter methods fit the data better than parametric speci-
fications. In the present study, we propose a twofold approach to research in
this field. First, we consider four different specifications (fully nonparametric,
nonparametric additive, single-index and parametric). Second, we compare
the performances of the three restricted specifications (nonparametric addi-
tive, single-index and parametric) with a more general fully nonparametric
specification. Thus, our work differs from previous studies by considering the
fully nonparametric model as the benchmark, and then performing tests to
compare the different specifications against this benchmark.

The empirical application reported here concerns a set of transaction
prices for residential houses sold during 1996 and 1997 in Brittany, which
is the leading French region for a number of livestock and plant products.
Agriculture in this region has two main impacts on the environment. First,
the activities of intensive livestock units lead to harmful effects on the envi-
ronment in various forms, such as the production of unpleasant odors and the
release/emission of nitrates that pollute the soil, affect water quality and seep
into the groundwater. The second effect of agriculture on the environment
concerns the degradation of the rural landscape resulting from intensive agri-
cultural practices and activities. In our study, these two effects are assessed
by two aggregate environmental indicators: livestock nitrogen emissions per
hectare of arable land in rural districts where the residential houses are lo-

cated,® and the proportion of permanent grassland converted into cultivated

3In studies analyzing this problem, impacts of agricultural pollution (e.g. intensive
livestock operations) on house prices are measured using a proximity index reflecting the
distance between residential houses and the sites of agricultural pollution (Palmquist al.,

1997; Herriges et al., 2005; Ready and Abdalla, 2005). As explained furthering Section 4,



grassland.*

As in other hedonic price models, we specify the prices of residential
houses not only in terms of their physical characteristics and the environ-
mental indicators, but also variables representing the economic structure of
the rural districts where the residential houses are located.® We choose a par-
tially linear specification, in which all the explanatory variables, apart from

the two environmental indicators, are incorporated linearly into the hedonic

this approach cannot be adopted due to the lack of relevant information on the localization

of house sales and the sources of agricultural pollution.
4The essential and traditional feature of the Brittany countryside is "bocage" which is

a rural landscape made up of (often small) parcels of land bordered by hedgerows. Perma-
nent grassland is associated with extensive systems that are more respectful of hedgerows,
soil and water quality, hence favoring the maintenance of the "bocage" landscape in Brit-
tany (Le Goffe, 2000). On the other hand, cultivated grassland (consisting of temporary
pastures and artificial meadows) is associated with more intensive agricultural activities
which require larger parcels of land and hence the elimination of hedgerows. In addition,
it has negative effects on soil and water quality, resulting in a degradation of the environ-
ment. Armed with these observations, the use of the proportion of permanent grassland
converted into cultivated grassland as an indicator of the degradation of rural landscape

is well justified.
>The four empirical house price models reported in this article are consistent with the

two-stage hedonic model framework developed by Rosen (1974). However, unlike Rosen
model, they do not allow in a second stage for a recovery of the consumers’ willingness
to pay (WTP) functions for environmental nuisances. The reason for this stems from the
fact that we do not have at our disposal socio-economic data on each house buyer, hence
preventing us from identifying structural parameters (buyers’ tastes and habits) that are
needed to estimate the WTP functions in the second stage. Given these considerations, the
four estimated house price models should be viewed as first-stage hedonic price models from

which hedonic price gradients or implicit prices for environmental nuisances are derived.



price function. The two pollution indicators are included in the hedonic price
function in a nonparametric or semiparametric way using the three nonlinear
specifications mentioned above. This choice is driven by practical reasons,
since many housing characteristics are discrete variables and our empirical
objective is to measure the impact of environmental factors on residential
housing prices by focusing on possible nonlinearities. Moreover, as shown
further below, the specification tests used here involve specifications with
only two explanatory variables.

The empirical strategy used here to define the housing price model con-
sists of a general-to-specific specification search involving three stages. In
the first stage, the parameters involved in the linear part of the hedonic
price models are estimated using Robinson’s (1988) partially linear model ap-
proach. In the second stage, all four specifications of the nonlinear component
of the hedonic price function are determined using the estimated residuals
of the first-stage estimation procedure. Finally, we perform recent specifica-
tion tests in order to compare the nonparametric additive, single-index and
parametric specifications with the more general specification, which is fully
nonparametric.

The specification tests only select the nonparametric additive specifica-
tion. Implicit prices for pollution reduction are then computed for this se-
lected model specification using a procedure for estimating derivatives for
additive separable models. Moreover, we find that pollution resulting from
intensive livestock farming in rural districts is a more crucial environmen-
tal issue than "pollution" due to the degradation of the rural landscape,

although both have a significant but nonlinear effect on residential housing



prices.

The paper is organized as follows: Semiparametric house price models are
defined in Section 2, the general-to-specific specification search procedure is
described in Section 3 and the data are presented in Section 4, while the
results of the proposed models are examined and discussed in Section 5. The
conclusion highlights the main findings of this empirical exercise. All the
technical details involved in the computation of the various estimators and
test statistics used in this paper, are fully described in a companion working

paper (Bontemps et al., 2006).

2 Semiparametric house price models

In this section, we discuss the different specifications for a hedonic residential
house price model. This model can be defined as follows. Following Rosen
(1974), assume that each residential house can be regarded by economic
agents as a “bundle” of different amounts of a vector expressing the various
characteristics. All these characteristics are observed by economic agents
when making their choices. In the following, we assume that econometri-
cians only observe some of these characteristics, denoted here by a vector
X, when considering J characteristics of the house and its surroundings (e.g.
number of rooms, state of repair, age of house, population of the rural dis-
trict, stock of existing houses, etc.). We use a vector Z when considering L
environmental characteristics defining the impacts of agricultural pollution.

The hedonic price function specifies how the price of a house, denoted by Y,



varies according to the different characteristics, i.e.
Y =m(X, Z¢) (1)

where ¢ is the vector of house characteristics not observed by the econome-
trician. For simplicity, we assume that this vector is one-dimensional. We
also assume that £ enters as an additive term in the hedonic price function

as in Bajari and Benkard (2005) and Bajari and Kahn (2005), i.e.
Y =m(X,Z)+¢ (2)

Only recently, Ekeland, Heckman and Nesheim (2004) showed that the
identification problems highlighted in the hedonic price literature mainly
arise from the linearization strategies commonly used for simplifying the es-
timation procedure. These authors stressed that the hedonic price model is
generically nonlinear. In the same way, Bajari and Benkard (2005) consid-
ered the identification of hedonic price models in cases where some product
characteristics are not observed by the econometrician. Using the results of
Matzkin (2003), they showed that, given data on a single market, the hedonic
price function and the distribution of the unobserved product characteristic
can be nonparametrically identified if the unobserved characteristic is inde-
pendent of the observed characteristics. Thus, the hedonic price function
may have a general non-additive structure, and it would seem appropriate to
consider nonparametric regression estimators as natural candidates for esti-
mating the hedonic price function (2). But, unfortunately, we would face in
such a procedure the well-known "curse of dimensionality" problem, given
that the vectors X and Z may involve a large number of characteristics. In-

deed, unconstrained nonparametric estimates of the unknown function m(-)
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deteriorate rapidly as J + L increases. Hence, it is necessary to impose re-
strictions on m(-). One possibility is to allow m(-) to be nonparametric only
in a subset of regressors and specifying a parametric form for the remaining
regressors, as proposed by Robinson (1988). Since many housing characteris-
tics are discrete variables, and since the main advantage of this study hinges
on measuring the impact of environmental factors on house prices, we thus

assume a partially linear specification given by
Y=0X+m(Z)+¢ (3)

Equation (3) represents the conceptual model estimated empirically in the
present study using parametric and nonparametric estimation procedures.

For this purpose, we propose the following four empirical model specifica-

tions:
Specification of m(z) Resulting model specification
Nonparametric specification Partially linear and nonparametric model
m(z) =m(z1, -, 21) Y=0X+m(Z, --,Z)+&  (M1)
Additive specification Partially linear and additive model
m(z) = i, gi(=) Y =X+ a(Z) +¢ (M2)
Single index specification Partially linear and single index model
m(z) = G(v'z) V=0X+G2Z)+¢ (M3)
Parametric specification Fully parametric model
m(z) =~z Y=0X++yZ+¢ (M4)

These four empirical models differ from each other according to the way
in which the function m(z) is defined. Although model M4 is similar to a
typical linear regression, the other model specifications (M1, M2 and M3)

8



include non- and semi-parametric components.®

3  Specification search procedure

To estimate these four empirical models, we need to devise a method able to
estimate the 3 coefficients and the function m. To achieve this, we follow a
three-stage estimation procedure. In the first stage, we estimate the linear
part of the proposed specifications using Robinson’s (1988) procedure, where
the function m(-) is left unspecified. In the second stage, we estimate this
function using the four empirical specifications, with ¥ — B’X representing the
dependent variable and B being the first-stage estimated value of 3. In the
third stage, we perform specification tests aimed at selecting an appropriate

specification of the function m(-).

3.1 Estimating the linear part of the hedonic price func-
tion

The first stage yielding an estimate of (3 is justified because, if we subtract

the conditional expectation value relative to z on both sides of (3), we obtain:

Y= B(Y|Z =2)=0/(X - B(X|Z =2)) +¢ (4)

6Many other additive model specifications could be adopted to represent m(z). Thus, a
quadratic or higher polynomial function could be used in the case of the parametric model
specification M4. The formalization of M2 could be enriched by incorporating interaction
terms. To restrict the scope of this paper, we do not investigate more "generalized" model

specifications and leave this aspect for future research.



Let (Y;, X;, Z;)", be an independently and identically distributed (i.i.d.)

sample. Then the estimation procedure can be described as follows:

1. Regress both Y; and X; on Z; nonparametrically, which generates the
following residuals Y; = V;i—E(Y|Z = Z)) and X; = X,—E(X|Z = Z)),

2. then perform OLS on these residuals to obtain /ﬁ\, which is an estimate

of B in (4).

Robinson (1988) showed that, under regularity conditions, this procedure
yields a /n-consistent and asymptotically normal estimator for (3, and that
a consistent estimator can be determined of its limiting covariance matrix.
We use local polynomial estimators of E(Y|Z = z) and E(X|Z = z) (see
Fan and Gijbels, 1996). Indeed, this estimator possesses a number of desir-
able theoretical and practical properties compared with other nonparametric
methods, including the widely applied Nadaraya-Watson kernel estimator.
Automatic bandwidth selection criteria, such as plug-in or cross-validation,
can be used to choose the vector of bandwidths for estimating F(Y|Z = z)
and E(X|Z = z). In the following, we apply the cross-validation criterion
recently proposed by Kondo and Lee (2003). We define a set of bandwidths
hj =a o; n‘;r_lL, j=1,..., L, where o; denotes the standard deviation of the

7-th variable, and then minimize
1 ~ o~
h) =~ Y; — 3'X;)?
CV(h) =~ E (Y; - 5'X,) (5)

with respect to the coefficient a (bear in mind that 172-, )?2-, and Bare functions

of h).
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3.2 Estimating the nonlinear part of the hedonic price

function

Our next task consists of estimating the nonlinear part of the hedonic price
function m(-). Since m(z) = E(Y — /X |Z = z), we estimate this nonlinear
part by regressing the residual W =Y — /ﬁ\X on the vector Z according to
the specifications M1, M2 and M3. We now consider how to derive estimates

of these models.

3.2.1 Fully nonparametric model (M1)

This model is used as a benchmark for assessing the ability of the proposed
specifications M2 to M4 to reflect the nonlinear part of the hedonic price
function. The function m(-) is estimated using the second stage of Robinson’s
procedure based on a nonparametric regression of W on Z, leading to an
estimate of m(z) = E(W|Z = z). We use a local polynomial estimator (see

above) as a nonparametric estimator of m(-).

3.2.2 Additive model (M2)

The additive model is based on the assumption that

m(z) =m(z,---,,2L) :C+Zgz(zl) (6)

where ¢ is a constant term, and ¢;(.), I = 1,..., L, is a set of L unknown
functions satisfying the identifiability condition that E[g,(z;)] = 0, for every
l.

Additive models can be estimated using a procedure based on "marginal

integration" proposed by Linton and Nielsen (1995) in the case L = 2, and
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extended to higher dimensions by Tjgstheim and Auestad (1995) and Chen
et al. (1996). The idea behind this estimator is quite straightforward. In the

case of additivity, there exists functions g; and m_; such that
m(Z)=m(Z;,Z_1) = g(Z) + m_(Z_) (7)

where Z_; is the vector Z without the component Z;, and the marginal
impact of Z; corresponds exactly to the additive component g;. The marginal

integration estimator is then defined noting that

~—

Ey  im(z,Z-)] = /m(zl,zl) w_1(zy) dz_y (8

— [ o) + moa(a)] sl do
= By la(a) +mi(Z0)]

= q(x)+c

where ¢_; denotes the marginal density of Z_;. So marginal integration with
respect to this density yields the function ¢; up to a constant that can be
easily estimated by the sample average over the observations W; which we
denote by ¢. We estimate the left hand side of equation (8) by replacing the
expectation by a sample average and the unknown multidimensional regres-
sion function m by a local polynomial pre-smoother. This method can be
applied to estimate all components ¢; in equation (6), and finally the regres-
sion function m is estimated by summing up the estimator ¢ of ¢ with the

estimates g;, [ = 1,..., L.
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3.2.3 Single-index model (M3)

A single-index model is based on the assumption that all the information
conveyed by the independent variables can be summarized into a single index
~'Z, where v is a vector of unknown coefficients, linked to the endogenous

variable through an unknown link function G(-), given by

m(z) = G(v'2) (9)

The main idea underlying these models is to avoid the curse of dimen-
stonality by reducing the dimension of the regressors’ space to one through
the index. However, there is a drawback in terms of identification since equa-
tion (9) is equivalent to m(z) = G*(k+9(7'z)), for any arbitrary value of the
location parameter x and the scale parameter § # 0 and function G* defined
by the relation G*(k + 0v) = G(v) for all v in the support of 4'z. Thus some
normalizations are required. Location normalisation is achieved by requir-
ing the vector Z to contain no constant component. Scale normalization is
achieved by setting the v coefficient of one component of the vector Z to one.

As Z only has continuous components, a Density Weighted Average Deriva-
tive estimator (DWADE) can be used to directly estimate v without solving
any optimization problem (see Powell et al., 1989). This estimator is based
on the fact that ~ is proportional to E[%}/Z) go(Z)} up to a multiplicative

term, where ¢(+) denotes the unknown density function of Z.” With suitable

assumptions on the function G(-) and the density function ¢(-), integration

"This density is taken into account in the expectation value to avoid the usual random

denominator problem involved in nonparametric kernel estimation.
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by parts yields:

B[22 )= ]y 22 <w>

Thus ~ can be estimated up to scale by the following estimator :

2~ Op(Z;
VDWADEZ—E;Y; g(Z ) (11)

where we replace in (10) the expectation by the sample average over the
observations and the derivative d¢(Z;)/0Z by a nonparametric estimate.
We use the derivative of the usual leave-one-out Parzen-Rosenblatt estimator
as an estimator of this derivative, with higher-order kernels as proposed by
Powell et al. (1989). Under conditions involving the use of such kernels, it can
be shown that vpwapp is an asymptotically normal distributed consistent

estimator of ~.

3.3 Specification tests

As stated in the introduction, one of the contributions of this study is to
adopt recent specification tests for the various empirical specifications M2,
M3 and M4 of the function m(-) and compare them with the most general

benchmark model M1.

3.3.1 Additive vs. nonparametric

Gozalo and Linton (2001) develop several kernel-based consistent tests of
the hypothesis of addivity in nonparametric regression. Their framework
allows for a very general additive structure involving discrete covariates and

parameters to be estimated. Hereafter, we test the simple null hypothesis H
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where it is assumed that m(Z) = ¢ + 3.1, gi(Z;). Among the various tests
proposed by Gozalo and Linton (2001), we implement the following one:

~ 1 -

T2 = thL ZZ Kij U; Uy 7T(ZZ')7T(Z]'), (12)

)

where h denotes the bandwidth involved in the estimation of the fully non-
parametric specification (the unrestricted one), the weights K;; are defined
as K;; = K((Z; — Z;)/h) where K(.) is a multivariate kernel function, wu;
are the residuals from the estimation of the restricted specification, i.e. the
additive model, and 7(-) is a trimming function ensuring that the density
of the vector Z at a given point is bounded from zero. This test has some
analogy with the Lagrange Multiplier test of classical statistics as it looks for
a correlation between restricted residuals.

Gozalo and Linton show that, after performing only a scale adjustment,
the test statistic 75 becomes asymptotically standard normal. Specifically,
under the null hypothesis that the nonparametric additive model is correctly

specified, it can be shown that
nh*? 7 ~ N(0,Va,)

where V5, denotes the variance of the test statistic whose empirical counter-

part ‘72,,1 can be computed as:

_ 2 o
Van = —p ) K at gt w(Z)w ()
i

3.3.2 Single index vs. nonparametric

To test the single-index specification of the regression function m(z), we use

the procedure proposed by Fan and Li (1996). This is based on the null
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hypothesis Hy that m(z) = G(7'2), for some v € RL and some unknown
real-valued function against the general alternative that H, is not true. The
test is based on the quantity v = W —G(7Z). Indeed, under Hy, E[v|Z] = 0.
Then, consider the statistic I = E[vE[v|Z]]. This statistic is used because,
by the law of iterative expectations, we observe that I° = E[E[v|Z]*] > 0,
with equality holding if and only if Hy is true. If observations v; and E(v;|Z;)
were available, we could use the sample analogue (1/n) ), v, E(v;]Z;) as an
estimator of this statistic. To get a feasible test statistic, we need to estimate
v; and E(v;|Z;). To overcome the random denominator problem in the kernel
estimation of this conditional expectation, a density-weighted version of the
test statistic given by Elv;f(Y'Z:)E{vifv'Z:)|Z;} v(Z;)] where f(.) denotes
the density of v'Z and ¢(.) the density of the vector Z, is estimated. Its

expression is given by:
1= 350, (5 5 (2) (G Soa® B (729) Ky) - (13)

where 7; = W, — @(’y’Zi) are the single index residuals, fh:(t) is a kernel
estimator of the density function f(¢) of v'Z, and K;; = K((¥'Z; —7'Z;)/h)
with K(-) a kernel function. Under the null hypothesis and with suitable
conditions on the two bandwidths A, and h, it can be shown that the test

statistic whose expression is given by

L/2 7c
Te — % (14)
e

is asymptotically distributed as N (0, 1).
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3.3.3 Parametric vs. nonparametric

We are now concerned with testing a parametric model of the function m(.)
against a nonparametric alternative. Recently, Horowitz and Spokoiny (2001)
developed a test that is used here. Specifically, we test the null hypothesis,
Hy, that m(-) belongs to some parametric family, i.e. there exists some
vector of parameters 7 such that m(-) = M(-,7), where M(-,-) is known,
against the alternative, H; in which there is no such . The test is based
on the distance Si(y) between the kernel estimation of m(-) and the kernel-
smoothed estimation of the parametric regression M(-, ).

n

S0 = 3 (Z0) = W(Z7)) (15)

i=1

where M, (Z;,~) = > i Wil Zi, Z;)M(Z;,v) is the kernel-smoothed para-
metric estimator with kernel weight Wj,(-,-). The test statistic, 7%, is com-
puted with a rate-optimal and adaptative bandwidth based on a set of band-

width values h in some set H,,, and is then centred and studentized:

~-N,
T* = maxheHn% (16)

Vh

where ]/VZ and X//Z denote estimates of the mean and variance of Sj,(7v), re-
spectively. Horowitz and Spokoiny (2001) show that the parametric model
is correctly specified under the null hypothesis, and that the statistic 7™ is
asymptotically and normally distributed.
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4 Data

The variables used in the hedonic regression analysis fall into three broad
categories: (i) the price and the physical attributes of the residential houses,
(i) the characteristics of the surrounding rural district, and (74) the environ-
mental nuisances. Observations on the first category of variables were taken
from the real estate database (known as MIN) maintained by the Associa-
tion of French Notaries.® This database provides a detailed description of all
house sales in France, including sale prices, physical attributes of houses and
adjacent lot sizes. Taxes and various fees linked to house sales are incorpo-
rated into the computation of the prices actually paid by the buyers. This
latter variable is denoted PRICE. Four physical characteristics of the house
and the adjacent lot are used in the empirical analysis: Age of the house
(AGE), state of repair (REPAIR), number of rooms (ROOMS), and lot size
(LOT).

The second category of explanatory variables comprises the characteris-
tics of the surrounding districts, which are expressed by four indicators. The
first variable is the population of the district (POP). The second indicator is
the average taxable family income (AVINC).? The MIN database enables us

to determine for each district the proportion of vacant houses (VACANT).

8 MIN stands for "Marché Immobilier des Notaires". It is important to note that this
database does not contain at all any information on the socio-economic situation of the

buyers. Hence, we do not have at our disposal data on the disposable income of the buyers.
9The observations concerning POP and AVINC were obtained from the French Census,

INSEE, which is a governmental body collecting and producing socio-economic statistical
information for France. INSEE stands for "Institut National de la Statistique et des Etudes

Economiques".
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The fourth explanatory variable in this category (denoted by COUNTY) is a
dummy variable indicating whether or not the surrounding district is located
in the department of Ille et Vilaine.'°

To assess the consumer’s willingness to pay for environmental nuisances
generated by agriculture, we would require not only personal and confidential
information on consumers’ views on such issues, but also detailed information
on the location of livestock farmholdings in relation to consumers’ residen-
tial houses. Collecting such quantitative information is so sensitive that it
is impossible to undertake suitable surveys to generate the relevant data.!!
Agricultural pollution is thus measured by the following two aggregate indica-
tors.'? The first indicator (NITRO) is the amount of nitrogen emissions from
livestock farming per hectare of arable land in the rural district where the
residential house is located. The second indicator considered here (TMEAD)
is the proportion of permanent grassland converted into cultivated grassland.
A high value associated with this variable would indicate a degradation of

the rural landscape.?

0The Brittany region is composed of four departments, Ille et Vilaine being the least

rural and the most urbanized.
Indeed, for reasons of confidentiality, the MIN database does not provide detailed

information on the exact location of (residential) house sales. As a result, it is impossible
to locate neighbouring livestock farms that are the source of agricultural pollution. To
collect such information would have required undertaking a lengthy and extensive survey

on residential house sales in Brittany for the period under study.
12Gample observations for these two variables were provided by the Regional Branch of

the French Ministry of Agriculture, Fisheries and Forestry.
3The two indicators - NITRO and TMEAD - are interrelated in the sense that they

could also capture "common" environmental influences that are difficult to isolate. A good

example of such a phenomenon could be the fact that pasture land could support cattle,
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Table 1 gives a description of all these variables. We also present in Figure
1 the results of the nonparametric estimation of the joint density of these two

indicators. This joint density appears to be single-peaked.

[Insert Table 1 and Figure 1 here]

5 Empirical results

In hedonic price models, we specify the (logarithm of) prices of residential
houses as a function of their physical characteristics, not only the two envi-
ronmental indicators but also variables representing the economic structure
of rural districts where the residential houses are located. As stated above,
all the explanatory variables (AGE, REPAIR, ROOMS, LOT, COUNTY,
VACANT, POP and AVINC) apart from the two environmental indicators
(TMEAD and NITRO) are incorporated into the hedonic price models in a
linear fashion. This makes up the linear part of the hedonic price function.
The two pollution indicators are involved in the hedonic price function in a
nonparametric or semiparametric way, thus forming the nonlinear part of the
model.

In the following, we report the results of the three steps involved in the

thereby leading to the increases in the emission of nitrogen. Although such "common"
environmental influences may exist, they tend not to be harmful to the environment and
even are relatively small compared to the pollution impacts of intensive livestock operations
that are the major contributors of agricultural pollution in Brittany. As a result, we do
not have investigated this matter further and explicitly assume that the impacts of these
two environment indicators on the price of houses are independent or separable from each

other.
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specification search procedure presented in the previous section. At the end
of the section, we compute the implicit prices for pollution reduction in the

case of the selected model specification.

5.1 Linear part

Table 2 reports the estimates of the 5 parameters involved in the linear part
of the first stage estimation. We selected the bandwidth used for estimating
the conditional expectation values in equation (4) using Kondo and Lee’s
(2003) cross-validation criterion. All the estimated parameters belonging to
the linear part of the housing price models are statistically significant and
have the expected signs and magnitudes.'* Examining first the influence of
the physical characteristics of the houses on prices, we note that a variation of
one year in the age of a house yields, all other things being equal, a reduction
of 0.2% of its sale price. Undertaking major renovations on a residential
house in Brittany leads to a 36% appreciation in its price, everything else
being held constant. A larger number of rooms or a bigger lot size are
factors contributing to an increase in the value of a house. Explanatory
variables characterizing the district where the houses are located have signs
that conform to our expectations. Hence, the price of any house located in
the districts of the most urbanised county of Brittany (Ille-et-Vilaine) will
exhibit an average price increase of 9.1%. By contrast, residential houses

located in districts with higher housing vacancy rates will show lower prices,

4Since the prices of houses are expressed in a logarithmic form, we could interpret the
estimated coefficients as the percentage variation in the house price resulting from one

unit change in the explanatory variables.
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while opposite effects take place in districts that are either more populated

or have households with higher average incomes.
[Insert Table 2 here]

The second-stage parameter estimates of model M4 reported in Table 2
show that the environmental indicators have the expected effects on house
prices. The estimated coefficients of the indicators are statistically significant
and negative. Thus, a single percent point increase in the proportion of
permanent pasture converted into tillable land results in a 0.3% decline in
the price of houses. A similar interpretation could be made for the effects of

(livestock) nitrogen emissions on property values.

5.2 Nonlinear part of the hedonic price function

As in any empirical study of nonparametric models, we report the role and
importance of nonlinearities by means of graphical analysis. Hence, we use
Figure 2 to develop the estimated response surfaces linking housing prices to
the two pollution indicators for the four specifications of the function m(z).
We restrict the representation of these curves to an area with high values
of the joint distribution for the environmental variables z; and 2z, 7.e. with
values of TMEAD and NITRO belonging to the 20 — 45% and 0 — 50kg/ha

intervals respectively.!®

[Insert Figure 2 here]

15We defined a rectangle such that only very small values of the joint density of TMEAD
and NITRO fall outside its area.

22



A visual inspection of the four estimated surfaces provides a first impres-
sion of the responses of house prices to the two environmental indicators in
terms of shape and steepness of the curve. As expected, all the surfaces
exhibit a decrease in the house price with increasing values of environmen-
tal indicators. While the M2 specification closely resembles the benchmark
M1, the fully parametric and single-index specifications of the hedonic price
function (M3 and M4) seem unable to represent all the features of our data.

Therefore, we need specification tests to go beyond this eyeball analysis.

5.3 Specification tests

Each specification test presented in section 3 was performed to compare a
restricted specification with the more general nonparametric model M1. All
these tests require a choice of bandwidths. In the absence of practical guide-
lines for the choice of these parameters, we perform, for each specification
test, a sensitivity analysis of the test statistics for the bandwidths. A detailed

description of these analysis is given in Bontemps et al. (2006).
[Insert Table 3 here]

Table 3 summarizes the results of the specification tests. These results
show that the nonparametric additive specification (M2) is clearly not re-
jected, in contrast to the two others (M3 and M4). This result is consistent
with the informal graphical findings that the parametric and single-index
specifications fail to reflect important nonlinear features of the data, while

the nonparametric additive specification fits the data satisfactorily.
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5.4 Implicit prices

Based on the specification test diagnosis given above, we report here the
implicit prices (IP) for pollution reduction estimated by the nonparametric
additive model (M2). These computed values are derived using Severance-
Losin and Sperlich’s (1999) estimator. This estimator can be motivated
in the same way the marginal integration estimators of the functions g(.),

7 =1,..., L, are, by noting that

By, {%jl)} _ / %ﬁjl) oi(z0) (17)

_ B [dgz(zz)]

le

dgi(z)
le

An estimate of the derivative dg;(z;)/dz is thus obtained by estimating the

left hand side of equation (17), i.e. by replacing the expectation by a sam-
ple average and the unknown derivative function Om(z;, Z_;)/0z by a local
polynomial pre-smoother.

Figures 3a and 3b report the mean implicit price function expressed as a

percentage of the corresponding housing prices.'6

[Insert Figures 3.a and 3.b here]

The two Figures reveal that the relationships between implicit prices and

the pollution indicators are highly nonlinear for specific ranges of values taken

16Tt is important to note that IP estimates presented in Figures 3 are computed as-
suming the following units of measurement for the environmental indicators: TMEAD:
10% and NITRO: 100 kg/ha. Thus, parameter estimates presented in Table 2 associ-
ated with TMEAD and NITRO should be interpreted bearing in mind these new units of

measurement.
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by 21 and z5. Up to a certain threshold that is significantly different from zero,
the derivative of the hedonic price function with respect to the "landscape
degradation" indicator TMEAD is rather small relative to average observed
house prices. Nevertheless, the hedonic price function derivative exhibits
a marked and sharp decline when the proportion of cultivated grassland
increases from 20 to 40%. Then, the implicit prices tend to flatten out when
this indicator rises to values greater than 40%. In addition, Figure 3.a clearly
show changes in the degree of curvature of the relationship between IP and
"landscape degradation".

On the other hand, a different pattern seems to emerge for IP estimates
associated with livestock nitrogen emissions (NITRO). An examination of
Figure 3.b reveals that the relationship between the mean IP function and
NITRO is steep and convex for small values of nitrogen emissions until it
reaches 80 kg per hectare of arable land. Then, the mean IP function for
nitrogen emissions tends towards an asymptotic value that is equal to 7% of
the residential house prices.

It is interesting to compare these IP estimates from the nonparametric
additive model specification with similar estimates from a parametric speci-
fication. If we perform this exercise with the model specifications (M2) and
(M4) assessed in this study, we note that the IP estimates obtained with
the two model specifications are comparable and very similar for large values
of the two environmental indicators. For instance, in the case of the land-
scape degradation indicator, the IP estimates obtained with model M4 are
constant and equal to 3% of the house price (assuming a 10 percent change

in the proportion of cultivated grassland). On the other hand, the estimate
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obtained with model M2 is equal to 3.5% when TMEAD is greater than 50%.
Similar conclusions can be proposed in the case of IP for livestock nitrogen

emissions.

6 Concluding remarks

The main objective of this paper is to show the relevance of semiparamet-
ric models in studying the relationship between agricultural pollution and
property values. For this purpose, semiparametric hedonic price models are
estimated in an intensive livestock farming region of France to study the in-
fluences of landscape degradation and livestock nitrogen emissions on house
prices. Using appropriate specification tests, we conclude that a nonparamet-
ric additive expression is the most appropriate model to explain the nonlinear
relationships between property values and agricultural pollution. Estimates
of the implicit prices for agricultural pollution seem reasonable and compat-
ible with a priori expectations, being in conformity with estimates obtained
using a parametric (semi-log) model specification.

The application of these various nonparametric models to an agricultural-
related hedonic pricing case appears as a promising approach to represent
complex nonlinearities. However, it is still too early to give a definitive ap-
praisal of its merits. We require further research and applications to other
agriculture-related situations. Along these lines, it would be fruitful to anal-
yse the role of positive and negative agricultural amenities in a common
(semiparametric) model framework (Ready and Abdalla, 2005). In such a

way, we could compare this approach with a more conventional parametric
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model. Moreover, this common framework could be further refined by tak-
ing into account recent advances in nonparametric econometric estimation.
These could then be used in hedonic price models to overcome problems
such as the curse of dimensionality, the existence of discrete (dummy) vari-

ables, the need for more general non-linear functional expressions and spatial

considerations that are crucial in predicting house prices.'”.
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Figure 1 : Joint iso-density curves for the two environmental variables (zy, 2)
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Figure 3.a : IP for landscape degradation - Additive model M2.

(expressed as a percentage of house prices)
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Figure 3.b : IP for livestock nitrogen emission - Additive model M2
(expressed as a percentage of house prices) )
Note: In both Figures, dots represent IP estimated for each observation of the

data sample
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Table 2: First stage parameter estimates and fully parametric model (M4)

parameter estimates

Linear part of models M1 to M4

Variable Estimated value Standard error
First stage Age -0.002 0.0002
estimates Repair 0.359 0.0174

Rooms 0.140 0.0057

Lot 0.029 0.0028

County 0.091 0.0169

Vacant -0.017 0.0032

Pop 0.016 0.0074

Avinc 0.050 0.0061

Fully parametric model (M4) parameter estimates

Variable Estimated value Standard error
Second stage Constant 0.889 0.0253
estimates Tmead -0.003 0.0007

Nitro -0.0006 0.0001
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Table 3: A summary of the specification tests results

Hy: Test Statistic p-value
Nonparametric additive specification (M2) Ty = 0.049 0.480
Single index specification (M3) T. = 3.342 0.001
Parametric specification (M4) T* = 6.107 0.006

Note: We report the least favorable case for the statistic 7o and 7. using the sensitivity analysis
provided in appendix C of Bontemps et al (2006). The p-values are either the asymptotic

or bootstrapped ones
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