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Semiparametric Latent Variable Regression

Models for Spatio-temporal Modeling of

Mobile Source Particles in the Greater Boston

Area

Alexandros Gryparis, Brent A. Coull, Joel Schwartz, and Helen H. Suh

Abstract

Traffic particle concentrations show considerable spatial variability within a metropoli-

tan area. We consider latent variable semiparametric regression models for model-

ing the spatial and temporal variability of black carbon and elemental carbon con-

centrations in the greater Boston area. Measurements of these pollutants, which

are markers of traffic particles, were obtained from several individual exposure

studies conducted at specific household locations as well as 15 ambient moni-

toring sites in the city. The models allow for both flexible, nonlinear effects of

covariates and for unexplained spatial and temporal variability in exposure. In

addition, the different individual exposure studies recorded different surrogates of

traffic particles, with some recording only outdoor concentrations of black or ele-

mental carbon, some recording indoor concentrations of black carbon, and others

recording both indoor and outdoor concentrations of black carbon. A joint model

for outdoor and indoor exposure that specifies a spatially varying latent variable

provides greater spatial coverage in the area of interest. We propose a penalised

spline formation of the model that relates to generalised kringing of the latent

traffic pollution variable and leads to a natural Bayesian Markov Chain Monte

Carlo algorithm for model fitting. We propose methods that allow us to control

the degress of freedom of the smoother in a Bayesian framework. Finally, we

present results from an analysis that applies the model to data from summer and

winter separately
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Summary. Traffic particle concentrations show considerable spatial variability within a metropolitan

area. We consider latent variable semiparametric regression models for modeling the spatial and tempo-

ral variability of black carbon and elemental carbon concentrations in the greater Boston area. Measure-

ments of these pollutants, which are markers of traffic particles, were obtained from several individual

exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the

area. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and

temporal variability in exposure. In addition, the different individual exposure studies recorded different

surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental

carbon, some recording indoor concentrations of black carbon, and others recording both indoor and

outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a

spatially varying latent variable provides greater spatial coverage in the area of interest. We propose

a penalised spline formulation of the model that relates to generalised kriging of the latent traffic pol-

lution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting.

We propose methods that allow us to control the degrees of freedom of the smoother in a Bayesian

framework. Finally, we present results from an analysis that applies the model to data from summer and

winter separately.
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1. Introduction

The potential health effects of ambient air pollution are a major public health issue that has received
a great deal of attention over the past several decades. Many studies in the USA, Europe and
elsewhere (Pope et al., 1995; Dominici et al., 2002; Gryparis et al., 2004) have shown that even
small increases in air pollution levels are associated with increased rates of mortality and morbidity.
Although the relative rates associated with the observed effects are small, exposure affects a large
population, making their public health impact substantial. Thus, in spite of improvements in air
quality in many developed countries, urban air pollution remains a major focus of public health
concern and regulatory activity.

Exposure assessment studies have shown that there exist important factors, such as different
traffic conditions, point sources of pollution, and urban building canyon effects, that induce spatial
variability in pollution levels within an urban environment. With the advent of Geographic Infor-
mation Systems (GIS)-based modeling, environmental epidemiologists have begun to focus on the
spatial variability in air pollution and its relationship with human health (Kunzli et al., 2005). Such
spatial analyses have several advantages over daily time series studies that assign exposure readings
from a central-site monitor to all study participants. First, spatial analyses do not assume that
exposure is constant over the region of interest, thereby avoiding exposure measurement error that
would otherwise lead to a loss of power. Second, it is now widely recognized that air particulates
are a complex mixture of multiple sources of pollution, with pollution from each source having a
distinct chemical profile. The National Research Council has made the assessment of source-specific
health effects a research priority (NRC 1998), and early epidemiologic (Laden et al., 2000) and tox-
icological results (Batalha et al., 2002; Wellenius et al., 2003) suggest that emissions from different
sources exhibit differing levels of toxicity. Because pollutants from different sources have different
spatial distributions, with regional pollutants (i.e. sulfates from coal-fired power plants) being more
homogeneous over space and local sources (i.e. black carbon from traffic emissions) demonstrating
higher spatial variability, incorporation of the spatial variability of local pollutants in a health effects
analysis helps separate health effects from different sources.
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2 Gryparis et al.

In this paper we propose semiparametric latent variable regression models for modeling multiple
surrogates of a single pollution source. The models are motivated by research studies at the Harvard
School of Public Health (HSPH) that measured black carbon (BC) and elemental carbon (EC)
concentrations, which are well-known to be markers of traffic pollution (Janssen et al., 1997), across
the Boston metropolitan area. Interest focuses on using such data to construct predictions of subject-
specific, short-term and long-term average pollution exposures from mobile sources for use in spatial
health effects analyses. The models, which combine attractive features of geoadditive models for
spatial data (Kammann and Wand, 2003) and latent variable models for multiple exposures (Budtz-
Jorgensen et al., 2003), allow for both flexible, nonlinear effects of covariates and for unexplained
spatial and temporal variability in exposure. We use a penalised spline formulation to specify
temporal and spatial correlations on the latent pollution variable, which is a form of generalised
kriging on this latent quantity (Ruppert et al., 2003; Chapter 13). Our penalised spline formulation
of the model leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting.

There now exists a large literature on spatio-temporal modeling of air pollution data in the
statistical literature. Berhane et al. (2004) and Li and Zidek (2004) outlined several strategies for
modeling spatial pollution levels for use in health effects studies. Berhane et al. (2004) described
efforts to jointly model different species of pollutants, such as NO2 and O3, using Bayesian ap-
proaches. Because computations in general spatio-temporal models are often intensive, interest has
focused on separable, over time and space, models (Gelfand et al., 2001). Guttorp et al. (1994)
modeled hourly ozone using a spatial covariance approach (Sampson and Guttorp, 1992), allowing
the parameters of the model to vary as a function of time of the day. Carroll et al. (1997) used a
spatially homogeneous and temporally stationary space-time model to study hourly ozone exposure
in Texas. These authors used an error structure in which the correlation in the residuals was a
nonlinear function of time and space. Carlin and Banerjee (2002) and Daniels et al. (2004) pro-
posed computationally efficient methods for conditionally specified models. Shaddick and Wakefield
(2002) used a hierarchical dynamic linear model to model data on four different pollutants measured
at eight monitoring sites in London. Their approach combines information on multiple pollutants
from multiple sites to provide predictions of pollution levels at locations where no measurements
have been taken. Smith et al. (2003) proposed a method of analyzing spatio-temporal data that
decomposes spatial-temporal data into deterministic nonparametric functions of time and space,
linear functions of other covariates, and a random component that is spatially but not temporally
correlated. These authors used the resulting model for spatial interpolation and for estimation of a
spatially dependent temporal average. Huerta et al. (2004) modeled hourly ozone concentrations in
Mexico City using a time-varying regression for air temperature. Kibria et al. (2002) developed a
multivariate spatial model for data that have a monotone pattern. They applied their methodology
to map particulate matter less than 2.5 microns (PM2.5) in Philadelphia during the period of May
1992 to September 1993.

Our models are similar to the Bayesian models of Shaddick and Wakefield (2002) and Berhane
et al. (2004), in that we consider spatio-temporal models of multiple pollutants measured daily at
multiple monitoring sites. However, these other authors considered multivariate normal formulations
with a general variance covariance matrix for the joint distribution of these pollutants at any given
time. In our setting, previous exposure assessments on the relationship between indoor and outdoor
BC levels as well as outdoor EC levels suggest a nonlinear latent variable formulation, as discussed
in Section 5. Because we build these models with an eye toward using predicted exposure to traffic
pollution in health effect analyses, this latent variable formulation has the advantage that it reduces
the dimensionality of the multiple surrogates, providing a single well-defined measure of exposure to
pollution from mobile sources. Another difference between the two approaches is that our formulation
allows one to easily incorporate nonlinear covariate effects into the model.

Arminger and Muthen (1998) presented a Bayesian structural equation model (SEM) with a
nonlinear measurement component. In their case the model includes quadratic forms and interactions
of the latent variables. Our model is more general, since it does not have to be polynomial in the
latent variables nor linear in the parameters. We assume conditional normal distributions for the log-
transformed readings of the air-pollutants, conjugate normal prior distributions for the coefficients
and conjugate inverse-gamma distributions for the variance components. Our results did not show
any discrepancies from the above assumptions, and model fit was satisfactory.

The structure of this paper is as follows. Section 2 describes the motivating data, and Section 3
presents the proposed nonlinear SEM. Section 4 describes our Bayesian approach to estimation and
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Semiparametric latent variable modeling of traffic exposure 3

inference. Section 5 presents the analysis of the air-pollution data from Boston, and is followed by
a concluding discussion in Section 6.

2. Description of the data

Outdoor monitoring data from mostly three Boston area monitoring studies were used to develop
our model. In two of these studies, BC, a surrogate measure of EC, was measured continuously using
aethalometers, while in the third study, EC concentrations were measured over 24 hour periods based
on particle collection on a quartz fiber filter and thermal optical reflectance (TOR) analysis. BC
concentrations measured using aethalometers have been shown to agree well with 24-h integrated
filter-based EC measurements using an internal empirically determined conversion factor (Allen et
al., 1999). Figure 1 shows the monitoring locations in the greater Boston area.

Hourly outdoor black carbon concentrations were obtained from a monitoring study designed to
examine spatial variability in traffic-related pollutant concentrations conducted by the Northeast
States for Coordinated Air Use Management (NESCAUM). In this study, outdoor BC concentra-
tions were measured at twelve sites located along a west-northwest line from downtown Boston,
generally away from large sources of local mobile source emissions. Five of these sites were located
in downtown Boston, one site in a rural community, and the remaining six sites in suburban com-
munities. The farthest site was located 35 km outside of Boston. In addition to the NESCAUM
monitors, outdoor BC concentrations were measured at two sites selected by Massachusetts Depart-
ment of Environmental Protection as well as on the roof of HSPH by the HSPH Department of
Environmental Health. Concentrations at these fifteen ambient monitoring sites were collected over
different time periods (Figure 2), with concentrations measured over the longest time periods at two
monitors (monitors 5 and 6, in Figure 2), from 1999 until the end of 2004. Monitoring data from
the remaining sites were collected for some months in 2003. Hourly data were aggregated into 24-h
concentrations to reduce the noise in the hourly measurements and to allow comparisons with other
data. In total, data from this study provided 6031 24-h observations over 2079 days.

Hourly outdoor/indoor BC concentrations were also measured as part of a NIEHS-funded study
of air pollution and heart rate variability (APAHRV) conducted at the HSPH beginning in 1999.
As part of this study, hourly BC concentrations were measured inside the homes of 45 subjects, and
simultaneously outside the homes of 30 of these subjects, using aethalometers. BC measurements
were made at each subject’s home over a 48-hour period, with most subjects having concentrations
measured over multiple 48-hour periods. Participants were selected based on their health status
and their residence location. This location was required to be within Interstate 495, which loops
around the greater Boston area. Outdoor BC concentrations were measured on 268 days, with
indoor concentrations measured on 318 days. On a small number of days, indoor concentrations
were measured at two homes. As with the NESCAUM data, hourly data from this study were
averaged over 24-h periods. Indoor BC concentrations from this study were included in our latent
variable model to enrich our spatial predictor with 15 more locations, obtain additional temporal
information (especially for years 1999 and 2000), and increase our predictive power.

Outdoor EC concentrations were obtained from an EPA-funded multi-pollutant exposure study
of sensitive individuals. As part of this study, 24-h (9am-9am) outdoor concentrations were measured
for numerous pollutants, including EC, at 23 homes located throughout metropolitan Boston. At
each home, measurements were collected for seven consecutive days in either or both winter and
summer 2000. Homes were selected for the study based on willingness to participate and resident’s
age or health profile. From this study, a total of 188 EC measurements from 23 different locations
on 61 days were included in the model.

Since outdoor measurements from individual exposure studies and ambient monitors both provide
measures of outdoor air pollution, we do not distinguish between them. Although Table 1 shows
some differences between particle levels from these different sources of information, this is likely due
to spatial and temporal heterogeneity in levels and the fact that different monitors were sampled at
different times. Hence we treat both ambient and outdoor readings as outdoor measurements, and
focus on 24-hour averages (9am-9am) of the available pollutants. The first three rows in Figure 2
show the aggregate data of different sites from the individual exposure studies, while the remaining
rows show the data from the ambient monitoring sites. Table 1 presents some descriptive statistics
of the BC and EC concentrations. As shown in Figure 1, most of the ambient monitors are located
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4 Gryparis et al.

in the main Boston area, while the outdoor monitors from APAHRV study are spread throughout
our study area. Air pollution levels are higher in the main Boston area on average and exhibit a
larger variability as shown in Table 1.

In addition to the pollution data, we obtained 24-hour integrated meteorological data from the
Boston Logan Airport. Moreover, for each given location we obtained spatial measures (such as the
amount of traffic activity in a particular area) and socioeconomic variables from the census, using
the ArcGIS 9 software. We used both sets of variables as covariates in our model. The covariates
that are included in our final model are (see Section 5 for details on model building):

• day of season (DOS): since we fit separate models for winter and summer, this variable is
defined from 1-184.

• indicator variables for year.

• indicator variables for day of the week.

• residuals of daily average apparent temperature (RDAAT): residuals from a generalised addi-
tive model of daily average apparent temperature (DAAT), defined as DAAT = −2.653+0.944∗
(daily average temperature) + 0.0153 ∗ (daily average dew point)2, regressed as a smooth
function of DOS. We select the smoothing parameter via generalised cross-validation.

• daily average wind speed (WS).

• cumulative average traffic density (CADT): GIS-based measures of cumulative traffic density
within 100 meters at a given location, obtained from ArcGIS 9 software, measured once for
each location.

• daily outdoor logBC readings from the central monitor at HSPH (HSPH logBC): we chose this
specific monitor because it is located in Boston metropolitan area, has been running regularly
since early 1999, and is an ongoing monitor. More importantly, plans exist to run this monitor
well into the future.

• longitude (long) and latitude (lat) at a given monitoring location.

• air conditioning use (AC): use of air-conditioning in the home, defined as ever or none (not
day-specific).

Extensive preliminary analyses did not identify any other variables as potential predictors.

3. Nonlinear Structural Equations Model

We use the available data described in Section 2 to model daily traffic particles in the greater
Boston area. Consider the p × 1 observation Y ij = (Yij,1, Yij,2, ..., Yij,p)

T available for location i,
i = 1, . . . , n, on day j, j = 1, . . . , Ji. The p different measurements Yij,k, k = 1, . . . , p, correspond
to the different markers that have been observed. We combine these markers in a SEM (Bollen,
1989) via an unobserved latent variable, which reduces the dimensionality of the data and gains
predictive efficiency. In our example, the different pollution markers are surrogates for a common
latent variable ηij representing particles from mobile sources. Extensions to more than one latent
variable are conceptually straightforward.

A typical SEM comprises two components, the measurement component and the structural com-
ponent. In the measurement component, the observed variables Y ij are considered manifestations
of a limited number of underlying latent variables. Typically this component is expressed as a lin-
ear factor analytic model, with a notable exception being the nonlinear formulations of Yalcin and
Amemiya (2001). The structural component relates the latent variables to one another as well as to
observed covariates.
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3.1. Measurement model

Following Yalcin and Amemiya (2001), we consider a nonlinear factor-analytic model. Motivated
by the Boston data and notational simplicity, we consider a univariate latent variable model of the
form:

Yij = g (Λi, ηij) + ǫY
ij , (1)

where ηij represents the unobservable latent variable (in our example, traffic particles at location i
on day j), and ǫY

ij is a p × 1 unobservable error vector with mean zero, p × p covariance matrix Σǫ

having diagonal elements σ2
Y,1, σ

2
Y,2, ..., σ

2
Y,p. Here, g (Λi, ηij) is a p-variate function of ηij indexed

by a matrix of factor loadings, Λi. We assume that the latent variable ηij and the errors ǫY
ij are

independent. In this formulation we allow the inter-relationships among the observed variables that
are not explained by the underlying common factor to be captured by the full residual covariance
matrix.

In the Boston application it is likely that the factor loadings vary across households, as homes with
air conditioning (AC) exhibit weaker associations between indoor-outdoor pollution concentrations
than homes without AC (Sarnat et al., 2000). Let ℑ represent the set of all Boston households. We
allow the factor loadings Λi to be a function of covariates, such that

vec(Λi) = XΛ
i ∆ + ǫΛ

i , i ∈ ℑ, (2)

where the bth component of ǫΛ
i has a mean zero normal distribution with variance σ2

Λ,b. In the above
equation, vec refers to stacking the columns of a matrix one under the other to form a single column.
We refer to equation (2) as the association model.

3.2. Structural model

We extend the nonlinear model of Yalcin and Amemiya (2001) by specifying a semiparametric re-
gression model for ηij . Specifically, we specify a geoadditive model (Kammann and Wand, 2003) for
the latent variable. This is a flexible approach, since a geoadditive model allows for smoothed but
otherwise unspecified functions of covariates along with spatial smoothing. Such models have been
used extensively in environmental epidemiology, adjusting for nonlinear effects of temporal, meteo-
rological and spatial patterns. In our example, traffic-related pollution is known to vary seasonally
and also to be influenced by meteorological factors, with these effects often being nonlinear. The
model is

ηij = WT
ijβ +

q
∑

l=1

fl(sl,ij) + h(geogij) + ǫη
ij , (3)

where fl(·), l = 1, 2, ..., q, is an unspecified smooth function reflecting the nonlinear effect of sl,ij

on ηij , geogij = (lati, longi), h is a bivariate smooth function of geography, and Wij contains
covariates having a linear effect on ηij . We assume that the errors ǫη

ij are independent normal

random variables with mean 0 and constant variance σ2
η.

We use a mixed model formulation of a penalised spline for all univariate nonparametric terms
fl(·) in (3). Specifically, we approximate each smooth function fl(·) by a linear combination of cubic
radial basis functions with random coefficients. Let N be the total number of observations and X l

be the N×1 vector containing covariate values sl,ij , for i = 1, . . . , n and j = 1, . . . , Ji. Let κl
1, ..., κ

l
Kl

be a set of Kl distinct knots which are placed within the range of the observed sl,ij values. We place
knots at the sample quantiles of the unique covariate values, up to a maximum 35 knots (Ruppert,
2002). Let f l denote a vector containing the values fl(sl,ij) for all i = 1, . . . , n, j = 1, . . . , Ji. The
mixed model formulation of a penalised spline model for fl is

fl = Xlβl + Zlul = Clwl,

where wl = (βl, ul
T )T , Cl = [Xl | Zl] with the matrix Zl defined as Zl

N×Kl

= Z̃l Ω
−1/2
l , where

Z̃l
N×Kl

=

(

|sl,ij − κl
k|

3

1≤k≤Kl

)

1≤i≤n,1≤j≤Ji

, Ωl
Kl×Kl

=

(

|κl
k′ − κl

k|
3

1≤k,k′≤Kl

)

.
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6 Gryparis et al.

Finally, we assume

[

ul

ǫη

]

∼ N

([

0

0

]

,

[

σ2
f,lIKl

0

0 σ2
ηIN

])

.

The variance ratio σ2
η/σ2

f,l acts as the smoothing parameter for fl(·). A small value of σ2
f,l leads to

a near-linear fit for fl(·), whereas a large value leads to overfitting.
We estimate the bivariate function h(·) of longitude and latitude using thin plate splines, an

extension of smoothing splines to multiple dimensions (Nychka, 2000). In the bivariate case, knots
κh

k , k = 1, . . . ,Kh, are placed at locations within the region of interest. Let S(·) denote the gen-
eralised covariance function S(r) = r2 log |r| and let h denote a vector with elements h(geogij),

i = 1, . . . , n, j = 1, . . . , Ji. Let Xsp be the N × 2 matrix with rth row containing the rth value of
geogij , i = 1, . . . , n, j = 1, . . . , Ji. A thin plate spline representation of h is

h = Xspβsp + Zspusp.

Here, usp ∼ N(0, σ2
spIn) and the matrix Zsp is defined as Zsp

N×Kh

= Z̃sp Ω−1/2
sp , where

Z̃sp
N×Kh

=

(

S(
∥

∥geogij − κh
k‖

)

1≤k≤Kh

)

1≤i≤n,1≤j≤Ji

and Ωsp
Kh×Kh

=

(

S(
∥

∥κh
k − κh

k′‖
)

1≤k,k′≤Kh

)

.

Taken together, the full geoadditive model (3) can be written as a single mixed model:

η = Xβ + Zu + ǫη = Cw + ǫη, (4)

where X = [1 | W | X1 | X2 | . . . | Xq | Xsp], Z = [Z1 | Z2 | . . . | Zq | Zsp], C = [X | Z] and

w = (βT , uT )T . In this formulation u = (u1
T , u2

T , ..., uq
T , usp

T )T , with

u ∼ N





















0
...
0

0











, Σu =











σ2
f,1IK1

0 . . . 0 0

. . .
...

0 0 · · · σ2
f,qIKq

0

0 0 · · · 0 σ2
spIn





















.

Therefore, our full nonlinear structural equations model is described by equations (1), (2) and (4).
A common convention in geoadditive models is to center the curve estimates about their means.

This results in coefficients that can be interpreted as effects about the mean. Moreover, this approach
improves mixing and convergence properties of the MCMC iterations. Let C = [1 | Cr] be a partition
of C into the intercept column and the remainder. We then work with

C̄ =
[

1 | (IN − (1/N)11T )Cr

]

, (5)

rather than C. This convention is adopted in our analysis in Section 5.

3.3. Identifiability

Identifiability is an important issue in latent variable modeling. In a linear model, a particular
lower-dimensional structure may be expressed using many equivalent parameterizations. To address
such issues, we use the errors-in-variables parametrization for a latent variable model (Joreskog,
1970; Joreskog and Sorbom, 1989; Yalcin and Amemiya, 2001). To achieve identifiability, this
parametrization places the constraints only on the loading matrix and leaves the distribution of
the factor unrestricted. In model (1), the factor ηij is identified on the same scale as one of the
components of Y ij and is measured with error by that component. We write Y ij = (Y ij,p−1, Yij,p)
for (p − 1) × 1 Y ij,p−1 and scalar Yij,p, and partition ǫY

ij = (ǫY
ij,p−1, ǫ

Y
ij,p) analogously. Then the

nonlinear model (1) can be written as:

Yij,p−1 = g (Λi, ηij) + ǫY
ij,p−1 (6)

Yij,p = ηij + ǫY
ij,p. (7)
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Semiparametric latent variable modeling of traffic exposure 7

All model parameters are fully identifiable in (6) and (7) when we have all readings at each
location and time point. In the case of missing data, the above model (with the introduction
of additional matrices that map the observed variables to the corresponding elements of η) still
produces consistent estimates, but larger standard errors, as long as we have enough measurements
for all possible pairs of the three traffic pollution markers. This is not the case in the Boston
air-pollution dataset, and we discuss this further in Section 5.

3.4. Degrees of freedom

Degrees of freedom (df ) are crucial for quantifying the amount of smoothing. In our full model
(4)-(7), we can easily calculate the overall df for the structural component of the model, despite
its nonlinear structure. Following standard degrees of freedom formulae for penalised spline models

(Ruppert et al., 2003), we have df = tr[C̄(C̄
T
C̄ + σ2

ηV
−1)−1C̄

T
], with

V =















Sβ 0 0 . . . 0 0

0 σ2
f,1IK1

0 . . . 0 0

. . .
...

0 0 0 · · · σ2
f,qIKq

0

0 0 0 · · · 0 σ2
spIn















,

where Sβ is the prior covariance matrix that corresponds to the vector β.
For these models, we define the df for a specific nonlinear component fl(sl,ij) similarly as the

trace of the matrix mapping observations to fitted values. Let C̄l be the partition of the columns of
the design matrix that corresponds to sl (as described in Section 3.2). Then the df associated with
this term can be shown to equal

dfl = tr[C̄l(C̄
T
l C̄l + σ2

ηVl
−1)−1C̄

T
l ], (8)

where Vl =

[

Sβ,l 0

0 σ2
f,lIKl

]

and Sβ,l is the prior variance for βl. Although this definition of df

arises from the mixed model framework, it matches the definition used for ridge regression formula-
tions of penalised splines (Ruppert et al., 2003).

4. Estimation and inference

We take a Bayesian approach to estimation and inference and assign prior distributions to the
parameters of interest. Although the joint distribution is analytically intractable, samples from this
distribution can be generated in a straightforward way using Markov chain Monte Carlo (MCMC)
methods (Gelfand and Smith, 1990). For the full conditional distributions of the parameters that
have closed forms, we use a Gibbs sampler to update the MCMC sampler. For the full conditionals
for which direct sampling is impossible, we update our MCMC using a Metropolis-Hastings step.
Once the chain has converged, we obtain a sample of the model parameters from their posterior
distributions. The resulting sample can be used for inference and predictive purposes. Section
4.1 and Appendix A outline prior specification, and Appendix B provides the forms of the full
conditionals necessary for the Boston model sampler, given our choices for the prior distributions.
R programs (R Development Core Team, 2006) for implementing MCMC sampling for the proposed
latent variable models are available from the first author upon request.

4.1. Prior specification

We take the prior distribution of β to be multivariate normal of the form β ∼ N(0,Sβ), for some
covariance matrix Sβ . It is common practice to take Sβ to be diagonal with very large entries,
corresponding to independent, non-informative but proper and conjugate priors on the entries of β.
For the covariance matrix Σǫ, we use a prior distribution motivated by the application, which we
discuss further in Section 5.

For the variance components σ2
f,l, l = 1, 2, ..., q, corresponding to the smoothing parameters for

the univariate smooth terms, we use inverse-Gamma distributions: σ2
f,l ∼ Inv−Gamma (αf,l, βf,l),
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8 Gryparis et al.

where the density function of such a distribution is p (x |α, β) = βα exp(−β/x) /[Γ(α) xα+1],
for α > 0, β > 0. Under the Bayesian framework, the df of the smooth functions, which are
directly related to the variance components σ2

f,l, are random variables. To restrict the df and avoid
undersmoothing or oversmoothing, we use the method of moments to specify the hyperparameters;
hence, we choose αf,l and βf,l so that the prior distribution of dfl is concentrated around the mean
df suggested from prior exposure studies. For instance, for each season, we use 3 df each for the
average seasonal trend, the residuals of apparent temperature, and wind speed, and 2 df each for
cumulative estimated average of traffic density. To do so, we define a joint prior distribution for
the variance components σ2

η and σ2
f,l as the product of a marginal prior for σ2

η and a prior for σ2
f,l

conditional on σ2
η:

[σ2
η, σ2

f,l] = [σ2
η][σ2

f,l|σ
2
η]. (9)

This conditional specification of the prior distribution for each σ2
f,l avoids oversmoothing. The

resulting full conditional distribution of σ2
η is no longer an inverse-Gamma, and to draw samples

from it we use the Metropolis-Hastings algorithm. The precise specification for the example is given
in Appendix A.

For the variance component of the bivariate spatial term h(·) we use a vague, but proper, inverse
gamma prior specification. Hence, we allow the posterior df for this term to be data-driven. In the
case that we want to restrict the df of the bivariate smooth term as well, we can use a conditional
specification of the joint prior distribution for σ2

η and σ2
sp analogous to that specified above for the

univariate smooth terms.
For the elements of Λi, we choose vague normal or lognormal prior distributions (as motivated

by the application), and for the elements of ∆, we choose vague normal priors. For the Boston data
application we discuss this further in Section 5.

5. Analysis of Boston data

As discussed in Section 2, the Boston air pollution data consists of outdoor and indoor measurements
of BC as well as outdoor measurements of EC. All of the measurements were averaged over 24
hour periods (9am-9am), and the analysis was performed on the daily level. We are interested in
the association between our latent variable, traffic generated particle pollution, and the observed
readings for the different markers of traffic particles. These measures come from our monitoring
network and possibly include measurement error.

Using the error-in-variables parametrization, we set the measured log-transformed outdoor BC
equal to the latent variable plus measurement error. We log-transformed the measured pollutant
concentrations to obtain a more symmetric distribution. Hence, the latent variable ηij is expressed
on the scale of the log-transformed outdoor BC.

Previous exposure assessment studies suggest that indoor levels of BC are primarily of outdoor
origin, with indoor sources of BC contributing a relatively small amount to overall levels (Brunekreef
et al., 1997). Thus, assuming no indoor sources of BC, a simple and intuitive conditional mean model
for the association between indoor and outdoor BC is E(BCI

ij |BCO

ij) = ζ BCO

ij , where BCI

ij and
BCO

ij are the indoor and outdoor BC concentration, respectively, and ζ is the penetration efficiency
of BC. Since our latent variable ηij is expressed as outdoor log BC at location i, day j, the above
relationship motivates a log - linear model for BCI

ij .
In contrast, exposure assessment studies (Allen et al., 1999) have shown a linear relationship

between outdoor BC and EC with non-zero intercept, e.g. ECij = (γ0 + γ1BCij)e
ǫY

ij,3 , where the
errors ǫY

ij,3 are normally distributed. This formulation takes into account the skewness of EC. Hence,
the overall measurement part of the model is:

Yij,1 = log BCO

ij = ηij + ǫY
ij,1 (10)

Yij,2 = log BCI

ij = α0i + α1ηij + ǫY
ij,2 (11)

Yij,3 = log ECO

ij = log(γ0 + γ1e
ηij ) + ǫY

ij,3, (12)

such that Λi = (α0i, α1, γ0, γ1) and the error terms ǫY
ij =

(

ǫY
ij,1, ǫY

ij,2, ǫY
ij,3

)T
are assumed to be

distributed as ǫY ∼ N (0, Σǫ).
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Semiparametric latent variable modeling of traffic exposure 9

Recent exposure assessment research shows that the penetration efficiency of particles depend
on properties of the building. For instance, Sarnat et al. (2000) showed that, as one would expect,
the use of air conditioning in the summertime weakens the association between indoor and outdoor
readings of a pollutant. Therefore, in order to avoid bias associated with assuming a common
penetration efficiency ζ, we add an additional level to our model that allows the association between
indoor and outdoor BC at a given location to depend on air conditioning use. This association
component of the model uses information from the houses that provide indoor BC data. We assume

α0i = δ0 + δ1ACi + ǫα
i , for i ∈ ℑ, where ǫα

i ∼ N(0, σ2
α0), (13)

and ACi is an indicator variable reflecting whether a household has air conditioning. Although this
variable may appear irrelevant for the winter period, it is possible that it reflects socioeconomic
information on a household and thus increases our predictive power.

Our final form of the structural component of our model for location i, day j is

ηij = WT
j β + f1(DOSj) + f2(RDAATj) + f3(WSj) + f4(CADTi) + h(geogij) + ǫη

ij , (14)

where the vector WT
j consists of the intercept term, indicator variables for day of the week, indicator

variables for year, and outdoor logBC readings from the HSPH monitor, for day j. We assume that
the errors ǫη

ij are independent normal random variables with mean 0 and constant variance σ2
η.

In penalised splines models, the number of knots is an important issue. In our analysis, we
tried different numbers of knots for the univariate smooth terms, keeping them as quantiles of the
observed distribution of the unique values. Multiple analyses showed that our models perform very
well with a small number of knots per smooth term (e.g. less than 10). Thus, for computational
efficiency, we used 8 knots for the average seasonal trend and 5 knots for the rest of the univariate
terms. We tried fitting the same models with much larger number of knots (e.g. 11 for CADT and
35 for each of the other terms), and changes in the results were negligible. For the bivariate smooth
term, since the number of monitors in our Boston dataset is not prohibitively large, we place a knot
at each location at which data were collected (i.e. Kh = n = 82 locations).

In Section 3.3 we noted that all model parameters are fully identifiable as long as we have
measurements for all possible pairs of the three traffic pollution markers. In the Boston data we
have joint measurements for outdoor and indoor BC in 10% of the monitoring locations. In contrast,
outdoor EC is measured in completely different locations. Thus, for the Boston data application,
our latent variable model is not identifiable. Due to the fact that the different pollution surrogates
are largely measured at different times and locations, model identifiability requires that we constrain
a subset of the parameters. We choose to set the latent variable variance component σ2

η to 0. This
simplification results in a model with a semiparametric specification for the mean of outdoor black
carbon, and uses data from other pollutants to improve estimation of this mean given an assumed
functional relationship between the means of these pollutants and that for outdoor BC. This model is
a spatio-temporal extension of self-modeling regression (SEMOR) (Coull and Staudenmayer, 2004),
where, instead of modeling a latent variable, we model the observed concentrations of a (possibly
nonlinear) function of some smooth function of time and space.

Moreover, since outdoor EC is measured in locations different from those for BC, the data cannot
inform us on the covariance between EC and the two forms of BC. Therefore we use the marginal
distribution of EC to obtain information for the mean surface of interest. A similar issue arises
for the indoor BC measures at homes for which we do not have outdoor BC. In this case, we use
the marginal distribution of indoor BC, rather than the conditional distribution of indoor BC given
outdoor BC. Hence, the likelihood can be written as

Π
i

Π
j

P (Y ij |ηij ,Λi,Σǫ) = Π
i

Π
j

P (Yij,1|ηij ,Λi, σ
2
Y,1)

ξ1,ij P (Yij,2|Yij,1, ηij ,Λi, σ
2
Y,1, σ

2
Y,2, ρ)ξ2,ij

P (Yij,2|ηij ,Λi, σ
2
Y,2)

ξ3,ij P (Yij,3|ηij ,Λi, σ
2
Y,3)

ξ4,ij ,

where the indicator ξ1,ij is equal to 1 for the subset of days and locations for which we have outdoor
measures and 0 otherwise, the indicator ξ2,ij is equal to 1 for the subset of days and locations for
which we have both outdoor and indoor observations at the same location and 0 otherwise, the
indicator ξ3,ij is equal to 1 for the subset of days and locations for which we have indoor measures
but no outdoor readings and 0 otherwise, the indicator ξ4,ij is equal to 1 for the subset of days and
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10 Gryparis et al.

locations for which we have EC measures and 0 otherwise, and ρ is the residual correlation between
outdoor and indoor measures of BC. This correlation parameter allows us to capture correlation
among simultaneously measured indoor and outdoor BC measures at a given location that is not
captured by the latent process ηij . This formulation implies a missing at random (MAR) mechanism
(Little and Rubin (1987)), which is reasonable since in our case missingness is induced by design.

For the prior specification for the covariance matrix Σǫ, since we do not have any information on
the covariance between outdoor EC and the two sources of BC, we use only the variance components
σ2

Y,1, σ
2
Y,2, σ

2
Y,3 and the residual correlation ρ between indoor and outdoor BC. For the variance

terms σ2
Y,1, σ

2
Y,2, σ

2
Y,3 we use inverse-Gamma prior distributions. Since we do not have any prior

information about the magnitude of these components, we choose hyperparameters that reflect this
and correspond to proper vague prior distributions. We use an inverse-Gamma prior distribution
for the variance component σ2

α0 from the association model as well. For the residual correlation
ρ between outdoor and indoor BC, we specify a normal prior distribution with large variance for
the Fisher’s transformation z(ρ) = 0.5 log 1+ρ

1−ρ . Moreover, we assume that the EC loadings γ0 and
γ1 have a multivariate lognormal prior distribution. This distributional assumption makes sense
physically, as these loadings must be positive. This is a standard assumption in related source
apportionment (or multiple receptor) models, in which a latent pollution source is constrained to
load positively on all surrogates. In fact, others have used truncated normal or lognormal priors in
Bayesian versions of these models (Park et al., 2001). In Appendix A we give the prior distributions
and all specific hyperparameter values used in the Boston analysis.

Note that the identifying assumption of setting σ2
η to 0 does not imply that only systematic

predictors induce correlation among traffic pollution surrogates. This is because any spatial or
temporal variation that cannot be explained by systematic covariates, but is captured by the non-
parametric smooth terms representing spatial and temporal correlation, also induces correlation
across components. In short, all terms in the semiparametric structural model define the latent
traffic variable, which in turn defines the correlation structure among traffic pollution surrogates.
Thus, this identifying assumption is not as restrictive as it may first seem.

Since we set the variance of the latent variable equal to 0 and work with a simplified model, the
definitions of df given in Section 3.4 no longer hold for this special case of the model. As a result, we
consider an alternative definition of df for this SEMOR formulation. We approximate the df using
formulas similar to (8), but applied to outdoor BC only. Hence, although we fit the SEMOR model
to data on all three different markers of particle concentrations, for the estimation of the df we use
only the results that correspond to outdoor BC. Since almost 90% of our data is outdoor BC, we
believe that this is a reasonable approximation. Hence we used σ2

Y,1 instead of σ2
η in the conditional

specification of the prior distribution in (9).

5.1. Results

To allow for more flexibility in our spatio-temporal models, we fit our model to data from two
different seasonal periods separately. We define the warm period from May through October, and
the rest of the months as the cold period. In what follows, we describe the results from the seasonal
models only.

For each model, we generate a chain of 600,000 iterations after discarding 100,000 iterations
as “burn-in”. We ran these chains using the hyperparameters given in Appendix A. Some of our
posterior results are summarized in Table 2. The estimates of the nonlinear terms f l from the
multivariate model are shown in Figure 3, for each season separately. Figure 4 shows the posterior
median predicted outdoor logBC on a grid of approximately 70,000 locations that belong to the
area of interest, for a chosen day for each season (December 26th, 2002 and June 26th, 2002). Both
plots show an elevated median predicted logBC surface for the main Boston area, as expected. This
is consistent with findings from previous exposure studies in the area. Spatial variability in BC
concentrations is different by season, likely due to differences in meteorological conditions in the two
seasons.

The results for the estimated degrees of freedom for each smooth term are summarized in Table
3. These results and Figure 3 suggest that a linear term for CADT might be adequate in our
application. To test this, the deviance information criterion (DIC) can be used. However, in our
application we prefer to keep the smooth function for CADT in our final model.
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Semiparametric latent variable modeling of traffic exposure 11

Table 2 presents the estimated posterior medians and corresponding 95% credible intervals from
the association model. The estimate for δ1 is non-significant for both seasons, and hence the use
of the air-conditioning is not a significant predictor in the models. This could be due to the small
number of observations, since information for this component comes only from the limited number
of houses that provided indoor data.

5.2. Validation

To assess the validity of our results, we checked different specifications of the prior hyperparam-
eters. The results were reasonably robust to even large changes in the specification of the prior
hyperparameters. Moreover, to the extent possible, we ensured that the chains converged prop-
erly by confirming the consistency of the results after starting from several configurations of widely
dispersed starting values.

Graphical convergence checks (plots not shown) for the estimated model parameters did not
reveal any problems and the chains for the parameters converged well. We also implemented more
formal tests of convergence, including diagnostic tests proposed by Geweke (1992), Raftery and Lewis
(1992) and Heidelberger and Welch (1983). A summary and a comparative review of these tests can
be found in Cowles and Carlin (2004). All of the above are implemented in CODA (Convergence
Diagnostics and Output Analysis) (Cowles and Carlin, 2004). The results of all of the above tests
and careful inspection of the chains did not provide any evidence against convergence for all our
parameters.

We checked the goodness-of-fit of our models by comparing observed summaries of the outdoor
data to their corrsponding posterior predictive distributions obtained from the model fit. It is
possible that there could be large tails in the log pollution readings. If so, a normal distribution for
these log readings might not adequately capture the extremes of the observed data. This would lead
to underestimation of the variability and oversmoothing of the data. As a result, we used posterior
predictive checks of the observed versus fitted quantiles of outdoor BC to investigate whether the
model adequately represents this aspect of the empirical data. Gelman et al. (2004, page 182) took
this same approach to ensure that a model adequately represented the maximum and minimum of
their data of interest. We simulated the posterior predictive distribution of the quantiles conditional
on the observed covariate pattern for each observation. Figure 5 shows the posterior predictive
distribution of the 0.1 and 0.9 log outdoor BC quantiles, and the corresponding observed quantiles.
As shown, the posterior predictive distributions cover the observed values adequately. Similarly,
we checked the posterior predictive distributions of the quantiles of the other two traffic markers,
and the results (not included here) were satisfactory. Also, we used the predictive posterior CDF
plots to assess goodness of fit (plots not included here). That is, we plotted the empirical CDF
of the outdoor BC readings along with the median of the posterior predictive CDF of the latent
variable and its 95% credible interval (CI). To calculate the posterior predictive CDF and its CI for
each parameter vector in a MCMC run, we simulated a BC outdoor concentration for each of the
monitoring sites, and for each available measurement. These plots showed that the model fits the
data quite well.

To check if our model captures the correlation between the different sources of BC, we drew
simulated values from the posterior predictive distribution of this correlation, and compared this
distribution to the observed value. Figure 6 shows a histogram of this posterior predictive distribu-
tion, along with the observed correlation. As shown, our model does quite well, with posterior mean
value 0.895 similar to the empirical value of 0.881.

6. Discussion

In this article we propose nonlinear latent variable semiparametric regression models for modeling
multiple surrogates of a single pollution source. Our models extend the nonlinear factor analysis
model of Yalcin and Amemiya (2001) to incorporate semiparametric regression through penalised
spline smoothing for the structural component of the model. The general form of model (1) can
be extended to more than one latent variable, if subject matter theory suggests such a model is
plausible.

We applied our models to air-pollution data from the greater Boston area, consisting of outdoor
BC and EC, as well as indoor BC concentrations. A joint model for the observed pollutants provided
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greater spatial coverage in the area of interest and was fit using a Bayesian MCMC algorithm.
Latent variable modeling is an efficient way to incorporate information from different markers and
construct individual predictions; it allows for measurement error in exposure and reduces the error
of the estimated exposure to traffic particles.

Due to the fact that the different pollution surrogates are largely measured at different times and
locations, model identifiability required that we constrain a subset of the parameters. We chose to
achieve model identifiability by constraining the variance of the latent traffic variable. This turns out
not to be an overly restrictive assumption, as a large part of the residual spatio-temporal variability
(i.e. not accounted for by systematic covariates) is captured in the nonparametric temporal and
spatial terms. That is, both systematic covariates and smooth temporal and smooth spatial trends
explain variation in the latent variable, and hence covariation among surrogates. The resulting model
is a spatio-temporal extension of self-modeling regression (SEMOR). By using this model, we are not
able to distinguish between surrogate measurement error and residual variability in a common latent
variable, which would have been the case otherwise. In this formulation, the correlation parameters
in the residual covariance matrix corresponding to BC and EC correlation drop out of the likelihood
under a MAR assumption.

We proposed joint priors to center smoothing parameters, such that they yield smooth estimates
with reasonable degrees of freedom. Specifically, we placed informative priors for these smoothing
parameters for the terms corresponding to DOS, RAADT, WS and CADT. We made this choice due
to apparent undersmoothing of these terms in preliminary single-pollutant models used to build our
structural model for η. Such bias towards undersmoothing has been noted in frequentist versions
of penalised spline models. For instance, Kauermann (2004) provided theoretical and empirical
arguments showing that, in finite samples, maximum likelihood estimation of smoothing parameters
in penalised spline models are biased towards undersmoothing, and it is now widely accepted that
one should not automatically accept smoothing parameter values estimated from the data (Ruppert
et al., 2003). Thus, the empirical undersmoothing we observed is not surprising. The fact that
we observed such empirical undersmoothing in preliminary, single pollutant fits leads us to believe
that this undersmoothing was not due to the imposed correlation structure among surrogates in
the multi-pollutant model. If one were to use these predictions as covariates in a health effects
analysis, it would be prudent to check sensitivity of results against the degrees of freedom used for
the smoothed terms, and the informative priors framework we have proposed allows us to do so.

To check whether the informative priors made a difference in our application, we compared
our results to those from models with unrestricted degrees of freedom. We found that restricting
the amount of smoothing does make a difference in our case study. Models with an unrestricted
amount of smoothing overfitted the data, and resulted in some extreme predictions. For example,
driven solely by an influential observation at the extreme of the observed distribution of CADT,
we estimated an inverse quadratic curve for CADT, that resulted in much lower predictions in
observations with high values for that variable. This affected about 300 predictions (out of more
than 70,000), for locations corresponding to major highways in the Boston area. This phenomenon
was avoided when we used our proposed informative priors.

In defining the degrees of freedom for the smooth terms for our Boston application, one could also
use an alternative definition; that of the effective number of parameters, pD, (Spiegelhalter et al.,
2002) for Bayesian hierarchical models. This measure, a Bayesian measure of model complexity, is
defined as the difference between the average Bayesian deviance and the Bayesian deviance estimated
at the mean of the posterior distribution of the parameters. For normal models, pD corresponds
to the trace of the ‘hat’ matrix projecting observations onto fitted values, which is the same as the
traditional definition of df. Spiegelhalter et al. (2002) used this measure to construct their proposed
Deviance Information Criterion (DIC) for model selection. In our application we found that the
estimated effective number of parameters was very similar to the median degrees of freedom for
outdoor BC only (Table 3), so the results based on pD are not presented.

Although we were not able to fit the most general latent variable model that we propose, we
believe that the full latent variable model can be useful in other cases. This is because we antici-
pate that several applications of the model will actually have all surrogates measured at common
locations and times. For instance, we are currently working on exposure studies in which different
element concentrations representing emissions from multiple pollution sources are being recorded
simultaneously in space and time. As a result, we anticipate using the full model formulation, and
hence believe it is important to document the model in its full generality.
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Our smoothing formulations over time and space are a form of generalised kriging. The model
specifies temporal and spatial correlation by specifying the underlying pollution levels are a smooth
function of space and time. See Kammann and Wand (2003) and Ruppert et al. (2003) for the close
connection between penalised splines and kriging. To verify that we have sufficiently modeled the
temporal correlation in the data, we checked for autocorrelation in the residuals from the different
monitors over space and time. We found that for most of the monitors such residual autocorrelation
was negligible, with only a single monitor exhibiting residual autocorrelation as high as 0.35, a
relatively small value for measurements taken on successive days.

We presented results from a model that assumed that the central HSPH monitor does equally
well in predicting exposures at all Boston locations. However, it may be possible, even likely, that
this association would vary spatially across Boston. We investigated two extensions to our model
that relax this assumption of constant association between a given BC level and that recorded by the
HSPH monitor. First, we fit a model that allows this association to vary as a function of Euclidean
distance from the monitor. However, it is likely that the strength of association between BC levels at
two different locations may depend on the similarities/differences between those locations, such as
type of roads and vehicles utilizing these roads, rather than distance. As a result, we also fit a model
that allows this association to vary smoothly as a function of location. This is a simple extension of
the geoadditive model, formally known as a geographically weighted regression (Fotheringham et al.,
2002). Both of these extended models did not fit significantly better than the constant association
model, with the variation in this association being only approximately 1-2% of the average value.
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8. Appendix A: Prior specification for Boston application

The prior distributions we used for our Boston application are:

β ∼ N(µβ ,Sβ)
α1 ∼ N(µα1, σ

2
α1)

log(γ) ∼ N(µγ ,Sγ)
δ ∼ N(µ∆,S∆)
z(ρ) ∼ N(zp, σ

2
z)

σ2
Y,1 ∼ InvGamma(αY,1, βY,1)

σ2
Y,2 ∼ InvGamma(αY,2, βY,2)

σ2
Y,3 ∼ InvGamma(αY,3, βY,3)

σ2
sp ∼ InvGamma(αsp, βsp)

σ2
α0 ∼ InvGamma(αα, βα)

σ2
f,l ∼ InvGamma(k2 + 2, k2+1

λl
σ2

Y,1)

The hyperparameters we used are:

µβ = 0, Sβ = 104I

µα1 = 1, σ2
α1 = 104

µγ = (−0.1, 1.1)T , Sγ = 104I2

µ∆ = (−0.5, 0)T , S∆ = 104I2

zp = .8, σ2
z = 1

αY,1 = αY,2 = αY,3 = αsp = αα = 0.01
βY,1 = βY,2 = βY,3 = βsp = βα = 0.01

The constants we used are:

k = 0.01
λ1 = 313, 026, 690 (winter) , 354, 332, 573 (summer)
λ2 = 603, 541 (winter) , 683, 222 (summer)
λ3 = 375, 838.3 (winter) , 318, 260.5 (summer)
λ4 = 4, 031, 708 (winter) , 1, 474, 552 (summer)

9. Appendix B: Sampling scheme

To fit the model described by equations (10)-(14) with the constraint σ2
η = 0, we use a Gibbs

sampler with Metropolis-Hastings (MH) steps. To test our algorithm we used simulated data.
For initial values as well as the variance of the proposal distributions for the MH steps, we use
preliminary results (when available) from initial fits using only outdoor BC measures. Let the
matrices C̄Y,1, C̄Y,2, C̄Y,3 correspond to the design matrices (as defined in (5)) of outdoor, indoor
BC and outdoor EC measures. Let n1, n2 and n3 be the numbers of outdoor, indoor BC and
outdoor EC measures respectively and nH be the number of the houses that provide indoor BC
data. Moreover let Y 1

n1×1
, Y 2

n2×1
and Y 3

n3×1
be the vectors containing the outdoor, indoor BC and

outdoor EC log-transformed readings respectively. The algorithm is:

0. Start with initial values σ2
Y,1

(0)
, σ2

Y,2
(0)

, σ2
Y,3

(0)
,w(0),α

(0)
0 = (α

(0)
01 , α

(0)
02 , . . . , α

(0)
0nH

), α
(0)
1 ,

γ(0) = (γ
(0)
0 , γ

(0)
1 ),σ2

α0
(0)

, δ(0) = (δ
(0)
0 , δ

(0)
1 ), ρ(0), σ2

sp
(0)

, σ2
f,l

(0)
, l = 1, ..., q.

1. Update w using random walk MH. For this component we use a normal proposal distribution
with variance τ1V w, where V w is the estimate of the covariance matrix of w obtained from initial
fits based on data on outdoor BC only, and τ1 is a scaling factor. Hence

(a) Generate wt from the normal distribution N
(

w(0), τ1V w

)

.
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(b) Accept trial wt element with probability

α(wt,w(0)) = min

{

1,
p(wt|Y 1,Y 2,Y 3,σ2

Y,1
(0)

,σ2
Y,2

(0)
,σ2

Y,3
(0)

,α
(0)
0 ,α

(0)
1 ,ρ(0),γ(0))

p(w(0)|Y 1,Y 2,Y 3,σ2
Y,1

(0),σ2
Y,2

(0),σ2
Y,3

(0),α
(0)
0 ,α

(0)
1 ,ρ(0),γ(0))

}

and set

w(1) = wt; otherwise stay at w(1) = w(0).

2. Generate α
(1)
0 ∼ N

(

µα0
(1),V α0

(1)
)

where

V α0
(1) =

(

KT A1Kσ−2
Y,2

(0)
+ KT A2Kσ−2

2

(0)
+ InH

σ−2
α

(0)
)−1

,

µα0
(1) = V α0

(1)

{

KT A1(Y 2 − α
(0)
1 C̄

T
Y,2w

(1))σ−2
Y,2

(0)
+ KT A2

[

Y 2 − α
(0)
1 C̄

T
Y,2w

(1) −

ρ(0)σY,2
(0)

σY,1
(0)

A3(Y 1 − C̄
T
Y,1w

(1))
]

σ−2
2

(0)
+ Xα(δ(0))T σ−2

α
(0)

}

,

where σ2
2
(0)

= σ2
Y,2

(0)
(1 − (ρ(0))2), δ(0) = (δ

(0)
0 , δ

(0)
1 )T , Xα is a nH × 2 matrix with ith row equal to

(1,0) if the ith residence corresponds to a house that did not have AC, and equal to (1,1) otherwise,
and K is a n2 × nH matrix with ijth element equal to 1 if the ith observation in the indoor dataset
corresponds to the jth residence, and 0 otherwise. A1 is a n2 × n2 matrix of 0’s, with ith diagonal
element equal to 1 if the corresponding outdoor observation is missing, A2 = In2

−A1, and A3 is a
n1 ×n1 matrix of 0’s, with ith diagonal element equal to 1 if the indoor measurement corresponding
to the outdoor measurement i, is observed.

3. Generate α
(1)
1 ∼ N

(

µα1
(1), Vα1

(1)
)

where

Vα1

(1) =
(

D(1)T
A1D

(1)σ−2
Y,2

(0)
+ D(1)T

A2D
(1)σ−2

2

(0)
+ σ−2

α1

(0)
)−1

and D(1) = C̄
T
Y,2w

(1),

µα1
(1) = Vα1

(1)

{

D(1)T
A1Y 2 σ−2

Y,2

(0)
+ D(1)T

A2

[

Y 2 − Kα
(0)
0 −

ρ(0)σY,2
(0)

σY,1
(0)

A3(Y 1 −

C̄
T
Y,1w

(1))
]

σ−2
2

(0)
+ σ−2

α1

(0)
}

.

4. Generate δ(1) ∼ N
(

µδ
(1),V δ

(1)
)

where

Vδ
(1) =

(

XT
αXασ−2

α
(0)

+ S−1
∆

)−1

, µδ
(1) = Vδ

(1)
(

XT
αα

(1)
0 σ−2

α
(0)

+ S−1
∆ µ∆

)

.

5. Update γ using random walk MH. We first updated log(γ) using a normal proposal distribution
with variance τ2V γ , where V γ is an estimate of the variance of γ from preliminary analysis and τ2

is a scaling factor. Then, we calculated γ. Hence

(a) Generate log γt from the normal distribution N
(

log(γ(0)), τ2V γ

)

, and then get γt

(b) Accept trial γt with probability

α

(

log(γt), log(γ(0))

)

= min

{

1,
p(log(γt)|Y 3,w(1),σ2

Y,3
(0)

,Sγ ,µγ)

p(log(γ(0))|Y 3,w(1),σ2
Y,3

(0),Sγ ,µγ)

}

and set γ(1) = γt; otherwise

stay at γ(1) = γ(0)

6. Generate σ2
α0

(1)
∼ Inv-Gamma

(

αα + 0.5nH , βα + 0.5
∥

∥

∥
α

(1)
0 − Xαδ(1)

∥

∥

∥

2
)

.

7. Update σ2
Y,1

(1)
using a random-walk MH. For this component we used an Inv−Gamma(α

(1)
Y,1, β

(1)
Y,1)

proposal distribution with α
(1)
Y,1, β

(1)
Y,1 corresponding to a mean value equal to σ2

Y,1
(0)

and variance
that is tuned by a parameter τ3.

(a) Generate σ2
Y,1

t
from the distribution Inv − Gamma(α

(1)
Y,1, β

(1)
Y,1).

(b) Accept trial σ2
Y,1

t
with probability

θ(σ2
Y,1

t
, σ2

Y,1
(0)

) = min

{

1,
p(σ2

Y,1
t
|w(1),Y 1, α

(1)
Y,1,β

(1)
Y,1,σ2

f,1
(0)

,...,σ2
f,4

(0)
)J(σ2

Y,1
(0)

|σ2
Y,1

t
)

p(σ2
Y,1

(0)|w(1),Y 1, α
(1)
Y,1,β

(1)
Y,1,σ2

f,1
(0),...,σ2

f,4
(0))J(σ2

Y,1
t|σ2

Y,1
(0))

}

, where J(a1|a2)
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is the jumping distribution from a2 to a1, and set σ2
Y,1

(1)
= σ2

Y,1
t
; otherwise stay at σ2

Y,1
(1)

=

σ2
Y,1

(0)

8. Update σ2
Y,2

(1)
using a random-walk MH. For this component we used an Inv−Gamma(α

(1)
Y,2, β

(1)
Y,2)

proposal distribution with α
(1)
Y,2, β

(1)
Y,2 corresponding to a mean value equal to σ2

Y,2
(0)

and variance
that is tuned by a parameter τ4.

(a) Generate σ2
Y,2

t
from the distribution Inv − Gamma(α

(1)
Y,2, β

(1)
Y,2).

(b) Accept trial σ2
Y,2

t
with probability

θ(σ2
Y,2

t
, σ2

Y,2
(0)

) = min

{

1,
p(σ2

Y,2
t
|σ2

Y,1
(1)

,w(1),Y 1,Y 2, α
(1)
Y,2,β

(1)
Y,2,α0

(1),α1
(1))J(σ2

Y,2
(0)

|σ2
Y,2

t
)

p(σ2
Y,2

(0)|σ2
Y,1

(1),w(1),Y 1,Y 2, α
(1)
Y,2,β

(1)
Y,2,α0

(1),α1
(1))J(σ2

Y,2
t|σ2

Y,2
(0))

}

, where

J(a1|a2) is the jumping distribution from a2 to a1, and set σ2
Y,2

(1)
= σ2

Y,2
t
; otherwise stay at

σ2
Y,2

(1)
= σ2

Y,2
(0)

9. Update ρ using random walk MH and Fisher’s transformation, with z(ρ) = 0.5 log 1+ρ
1−ρ . First

update z(ρ) using a normal proposal distribution with variance τ5. Then, calculate ρ = e2z(ρ)−1
e2z(ρ)+1

.
Hence

(a) Generate z(ρ)t from the normal distribution N
(

z(ρ)(0), τ5

)

,
(b) Accept trial z(ρ)t with probability

α

(

z(ρ)t, z(ρ)(0)
)

= min

{

1,
p(z(ρ)t|σ2

Y,1
(1)

,σ2
Y,2

(1)
,w(1),Y 1,Y 2,α0

(1),α1
(1),zp,σ2

z)

p(z(ρ)(0)|σ2
Y,1

(1),σ2
Y,2

(1),w(1),Y 1,Y 2,α0
(1),α1

(1),zp,σ2
z)

}

, and set ρ(1) =

ρt; otherwise stay at ρ(1) = ρ(0).

10. Generate the rest of the variance components:

σ2
Y,3

(1)
∼ Inv-Gamma

(

αY,3 + 0.5n3, βY,3 + 0.5
∥

∥

∥Y 3 − log
(

1n3
γ

(1)
0 + γ1 eC̄

T
Y,3w(1)

)∥

∥

∥

2
)

,

σ2
sp

(1)
∼ Inv-Gamma

(

αsp + 0.5Kh, βsp + 0.5
∥

∥

∥
u

(1)
sp

∥

∥

∥

2
)

, where u
(1)
sp is contained in w(1).

For l = 1, ..., q determine α
(1)
f,l , β

(1)
f,l using σ2

Y,1
(1)

and the estimated smoothing parameter λ̂l (the
latter can be obtained using the one-to-one correspondence between the df and the smoothing

parameter described in Wand (1999)). The α
(1)
f,l , β

(1)
f,l are such that the prior distribution for σ2

f,l
(1)

has mean equal to σ2
Y,1

(1)
/λ̂l and a predefined variance. Then generate:

σ2
f,l

(1)
∼ Inv-Gamma

(

α
(1)
f,l + 0.5Kl, β

(1)
f,l + 0.5

∥

∥

∥
u

(1)
l

∥

∥

∥

2
)

, where u
(1)
l is contained in w(1).

11. Repeat steps 1-10 until we obtain M samples σ2
Y,1

(m)
, σ2

Y,2
(m)

, σ2
Y,3

(m)
, ρ(m),w(m),α

(m)
0 ,

α
(m)
1 ,γ(m), δ(m), σ2

α0
(m)

, σ2
sp

(m)
, σ2

f,1
(m)

, . . . , σ2
f,4

(m)
, m = 1, . . . ,M}. The first B iterations are

discarded as pre-convergence burn-ins, and the last M − B iterations are considered as samples
generated from the joint posterior distribution of the latent variable and the model parameters and
are used for inference and prediction.

The final choice to be made in such algorithms is the tuning parameters τ1, τ2, τ3, τ4 and τ5.
Based on the theory and recommendations of Gelman et al. (2004), we control these scaling factors
during the MCMC iterations so that the overall acceptance rate is about 44% for single parameters,
and about 23% for multivariate parameters.
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Table 1. Summary statistics for the available pollutants (in µg/m3), by season

Winter Summer

Pollutant Obs. Mean Min. Max. S.D. Obs. Mean Min. Max. S.D.

Ambient BC 1889 0.64 0.03 4.50 0.64 2062 0.95 0.05 4.80 0.56
Outdoor BC (APAHRV) 115 0.63 0.04 2.49 0.45 153 0.55 0.08 2.52 0.39
Indoor BC (APAHRV) 150 0.47 0.05 1.62 0.33 168 0.54 0.06 2.33 0.37
Outdoor EC (EPA) 93 2.26 0.09 6.54 1.37 95 1.37 0.58 4.66 0.68

Table 2. Posterior medians and 95% CI for parameters from the multipollutant

model

Winter Summer

Parameter Median 2.5% 97.5% Median 2.5% 97.5%

Intercept -0.528 -0.543 -0.512 -0.267 -0.279 -0.256
Year 2000 0.194 0.089 0.289 0.170 0.031 0.307
Year 2001 0.331 0.226 0.428 0.103 -0.037 0.239
Year 2002 0.146 0.048 0.242 0.184 0.047 0.322
Year 2003 -0.017 -0.116 0.084 -0.066 -0.206 0.068
Year 2004 -0.545 -0.654 -0.438 -0.175 -0.319 -0.036
Monday 0.054 -0.002 0.108 0.135 0.087 0.181
Tuesday 0.049 -0.008 0.105 0.145 0.098 0.192
Wednesday 0.070 0.016 0.121 0.119 0.072 0.165
Thursday 0.048 -0.009 0.104 0.127 0.079 0.173
Friday 0.035 -0.020 0.088 0.101 0.054 0.146
Saturday -0.016 -0.071 0.039 0.003 -0.042 0.048
logBCHSPH 0.682 0.639 0.724 0.623 0.586 0.664
σ2

Y,1 0.110 0.103 0.117 0.075 0.071 0.080
σ2

Y,2 0.211 0.168 0.268 0.161 0.130 0.202
σ2

Y,3 0.302 0.225 0.413 0.111 0.083 0.155
δ0 -0.268 -0.421 -0.107 -0.138 -0.271 -0.008
δ1 -0.081 -0.248 0.082 -0.055 -0.197 0.087
α1 0.865 0.738 0.994 0.962 0.849 1.074
γ0 0.000 0.000 0.000 2.986 2.542 3.496
γ1 1.022 0.805 1.237 0.713 0.341 1.150
σ2

α0 5.6e-04 3.7e-04 9.4e-04 5.8e-04 3.8e-04 9.6e-04
ρ 0.334 0.215 0.435 0.449 0.349 0.542

Table 3. Posterior medians and 95% CI for the degrees of freedom of outdoor BC

from the multipollutant model

Winter Summer

Parameter Median 2.5% 97.5% Median 2.5% 97.5%

DOS 3.10 2.27 4.14 4.16 3.41 5.19
RAT 1.80 1.46 2.41 1.79 1.41 2.65
Wind speed 1.77 1.42 2.46 1.94 1.56 2.79
CADT 1.41 1.16 1.85 1.40 1.15 1.85
Spatial component 26.30 23.34 29.40 33.12 30.87 35.08
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Fig. 1. Plot of all the available monitors in the greater Boston area.
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Fig. 5. Histogram of the posterior predictive distribution of the median, the 0.1th quantile and the 0.9th quantile

of outdoor logBC for each of the two seasons. The vertical line in each plot corresponds to the observed

quantile.
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Fig. 6. Histogram of the posterior predictive distribution of the correlation between predicted outdoor and

indoor BC concentrations. The vertical line corresponds to the observed correlation.
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