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Semiparametric Normal Transformation
Models for Spatially Correlated Survival Data

Yi Li and Xihong Lin

Abstract

There is an emerging interest in modeling spatially correlated survival data in
biomedical and epidemiological studies. In this paper, we propose a new class of
semiparametric normal transformation models for right censored spatially corre-
lated survival data. This class of models assumes that survival outcomes marginally
follow a Cox proportional hazard model with unspecified baseline hazard, and
their joint distribution is obtained by transforming survival outcomes to normal
random variables, whose joint distribution is assumed to be multivariate normal
with a spatial correlation structure. A key feature of the class of semiparametric
normal transformation models is that it provides a rich class of spatial survival
models where regression coefficients have population average interpretation and
the spatial dependence of survival times is conveniently modeled using the trans-
formed variables by flexible normal random fields. We study the relationship
of the spatial correlation structure of the transformed normal variables and the
dependence measures of the original survival times. Direct nonparametric max-
imum likelihood estimation in such models is practically prohibited due to the
high dimensional intractable integration of the likelihood function and the infi-
nite dimensional nuisance baseline hazard parameter. We hence develop a class
of spatial semiparametric estimating equations, which conveniently estimate the
population-level regression coefficients and the dependence parameters simulta-
neously. We study the asymptotic properties of the proposed estimators, and show
that they are consistent and asymptotically normal. The proposed method is illus-
trated with an analysis of data from the East Boston Ashma Study and its perfor-
mance is evaluated using simulations.
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1 Introduction

Biomedical and epidemiological studies have spawned an increasing interest and practical need

in developing statistical methods for modeling time-to-event data that are subject to spatial

dependence. Our motivating example, the East Boston Asthma Study (EBAS) conducted by

the Channing Laboratory of Harvard Medical School, aimed at understanding etiology of rising

prevalence and morbidity of childhood asthma and the disproportionate burden among urban

minority children. Subjects were enrolled at community health clinics in the east Boston area,

and questionnaire data, documenting ages at onset of childhood asthma and other environmental

factors, were collected during regularly scheduled visits. Apart from the basic demographic data,

residential addresses were geocoded for each study subject so that the latitudes and longitudes

were available. Residents of East Boston are mainly relatively low income working families.

Children residing in this area have similar social economical backgrounds and are often exposed

to similar physical and social environments. These environmental factors are important triggers

of asthma but are often diÆcult to measure in practice. Ages at onset of asthma of the children

in this study were hence likely to be subject to spatial correlation. The statistical challenge is to

identify signi�cant risk factors associated with age at onset of childhood asthma while taking the

possible spatial correlation into account.

Prevailing modeling techniques, such as marginal models (see, e.g. Wei, Lin and Weissfeld,

1989; Prentice and Cai, 1992) and frailty models (see, e.g. Murphy, 1995; Parner, 1998; Oakes,

1989), have been successfully developed for handling clustered survival data, where individuals are

grouped into independent clusters. In a marginal survival model, survival outcomes are assumed to

marginally follow a Cox proportional hazard model while the within-cluster correlation is regarded

as a nuisance parameter. In contrast, a frailty model directly models the within-cluster correlation

using random e�ects or frailties, and regression coeÆcients typically do not have a population-

average interpretation (Kalbeisch and Prentice (p.306, 2002)). There has been, however, virtually

no literature on modeling spatially correlated survival data, where both population-level regression

coeÆcients and spatial dependence parameters are of interest.

Over the past two decades, spatial statistical methods have been well established for normally

distributed data (Cressie, 1993; Haining, et al., 1989) and discrete data (Journel, 1983; Cressie,

1993; Carlin and Louis, 1996; Diggle et al., 1998). Statistical models for such uncensored data are

often fully parameterized, and inference procedures are based on maximum likelihood (Clayton
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and Kaldor, 1987; Cressie, 1993), penalized maximum likelihood (Breslow and Clayton, 1993)

and Markov chain Monte Carlo (Besag, York, Mollie, 1991; Waller et al., 1997).

Little work however has been done for modeling survival data that are subject to spatial corre-

lation. We are interested in developing a semiparametric likelihood model for spatially correlated

survival outcomes, where observations marginally follow the Cox proportional hazard model and

regression coeÆcients have a population level interpretation and their joint distribution can be

speci�ed using a likelihood function that allows for exible spatial correlation structures. It is

however not straightforward to extend the existing models used for clustered survival data to spa-

tial survival data with these features. Speci�cally, for clustered survival data, a semiparametric

model that allows regression coeÆcients to have a population level interpretation can be speci�ed

using a Copula model (Oakes, 1989) or a frailty model with a positive-stable frailty distribution

(Hougaard, 1986). Such models only allow for a simple constant correlation structure, and are

diÆcult to be extended to allow for a exible spatial correlation. For example, it is very diÆcult

to specify a multivariate positive-stable frailty distribution in frailty models. Hence one needs to

seek an alternative route to specify a semiparametric likelihood model that allows for regression

coeÆcients to have a marginal interpretation and to allow for a exible spatial correlation struc-

ture. From the Bayesian perspective of conditional modeling, Banerjee and Carlin (2003) and

Banerjee, Carlin, and Gelfand (Ch 9, 2004) considered hierarchical frailty spatial survival models.

But, regression coeÆcients in their models do not have a population-level interpretation.

In contrast to the existing methodology, we develop in this article a semiparametric normal

transformation model for spatial survival data, where observations marginally follow a Cox pro-

portional hazard model and their joint distribution is speci�ed by transforming observations into

normally distributed variables and assuming a multivariate normal distribution for the resulting

transformed variables. A key feature of this model is that it provides a rich class of models

where regression coeÆcients have a population-level interpretation and the spatial dependence of

survival times is conveniently modeled using exible normal random �elds. We investigate the

relationship of the spatial correlation of the transformed normal variables and the dependence

measures of the original survival times. As in the conventional Cox model, the baseline hazard

function is left unspeci�ed and is regarded as nuisance in semiparametric normal transformation

models. In view of the high-dimensional integration of the likelihood function and the in�nite
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dimensional baseline hazard, we develop an estimation procedure for regression coeÆcients and

spatial dependence parameters using unbiased spatial semiparametric estimating equations, in a

similar spirit to the composite likelihood approach in parametric settings (Lindsay, 1988; Heagerty

and Lele, 1998). Recently Parner (2001) applied the composite likelihood approach to clustered

survival data under a fully parameterized survival model.

The rest of the article is structured as follows. In Section 2 we introduce a semiparametric

normal transformation model for spatially correlated survival data. In Section 3 we study the

dependence measures of survival times under this model. We develop in Section 4 spatial semi-

parametric estimating equations for regression coeÆcients and spatial correlation parameters, and

study the asymptotic properties for the resulting estimators. In Section 5 we evaluate via simula-

tions the �nite sample performance of the proposed method. We apply the proposed method to

the analysis of data from the East Boston Asthma Study in Section 6, followed by discussions in

Section 7.

2 The Semiparametric Normal Transformation Spatial Survival

Model

2.1 The Model

Consider in a spatial region of interest a total of m subjects who are followed up to failure or

being censored, whichever comes �rst. For individual i (i = 1; � � � ;m), we observe a r � 1 vector

of covariates Zi, and an observed event time Xi = min(Ti; Ci) and a non-censoring indicator

Æi = I(Ti � Ci), where Ti and Ci are underlying true survival time and censoring time respectively,

and I(�) is an indicator function. We assume independent censoring, i.e., the censoring times Ci

are independent of the survival times Ti given the observed covariates, and the distributions of Ci

do not involve parameters of the true survival time model. We also assume the maximum follow-

up time is � > 0. The covariates Zi are assumed to be a predictable time-dependent process.

Each individual's geographic location ai (e.g. latitude and longitude) is also documented.

Our model speci�es that the survival time Ti marginally follows the Cox proportional hazard

model

�ftjZi(�)g = �0(t)e
�
0

Zi(t) (1)

where � is a regression coeÆcient vector and �0(t) is an unspeci�ed baseline hazard function.
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The marginal model refers to the assumption that the hazard function (1) is with respect to each

individual's own �ltration, Fi;t = �fI(Xi � s; Æ = 1); I(Xi � s);Zi(s); 0 � s � tg, the sigma �eld
generated by the survival and covariate information up to time t. The regression coeÆcients �

hence have a population-level interpretation.

We are interested in specifying a spatial joint likelihood model for T1; � � � ; Tm that allows Ti to

marginally follow the Cox model (1) and allows for a exible spatial correlation structure among

the Ti's. Denote by �i(t) =
R t
0
�i(sjZi)ds the cumulative hazard and �0(t) =

R t
0
�0(s)ds the

cumulative baseline hazard. Then �i(Ti) marginally follows a unit exponential distribution, and

its probit-type transformation

T �i = ��1
n
1� e��i(Ti)

o
(2)

follows the standard normal distribution marginally, where �(�) is the cumulative distribution

function of the standard normal distribution. We can then conveniently impose a spatial structure

on the underlying random �elds of T� = fT �i ; i = 1; : : : ;mg within the traditional Gaussian

geostatistical framework. Hence such a normal transformation of the cumulative hazard provides

a general framework to construct a exible joint likelihood model for spatial survival data by

preserving the Cox proportional hazards model for each individual marginally. This also provides

a convenient way to generate spatially correlated survival data whose marginal distributions follow

the Cox model.

Speci�cally, we assume T� to be a Gaussian random �eld, a special case of the Gibbs �eld

(Winkler, 1995), such that T� follows a joint multivariate normal distribution as

T� = fT �i ; i = 1; : : : ;mg � N(0;�); (3)

where � is a positive de�nite matrix with diagonal elements being 1. Denote by �ij the (i; j)th

element of �. We assume that the correlation �ij between a pair of normalized survival times, say

T �i and T �j , depends on their geographic locations ai and aj , i.e.

corr(T �i ; T
�
j ) = �ij = �ij(ai;aj) (4)

for i 6= j (i; j = 1; : : : ;m), where �ij 2 (�1; 1). Generally a parametric model is assumed for

�ij , which depends on a parameter vector � as �ij(�). We discuss common choices of models for

�ij(�) in Section 2.2.

4
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Under non-informative censoring, the likelihood function for the unknown parameters f�0(�);�;�g,
based on the observed data (Xi; Æi;Zi); i = 1; : : : ;m, is

(�1)Æ1+:::+Æm @Æ1+:::+Æm

@tÆ11 : : : @tÆmm

Z 1

��1f1�e��m(tm)g
: : :

Z 1

��1f1�e��1(t1)g
 (x1; : : : ; xm;�)dx1 : : : dxm (5)

evaluated at (X1; : : : ;Xm), where  (x1; : : : ; xm;�) is the density function for an m-dimensional

normal distribution with mean 0 and variance �. A direct application of maximal likelihood

estimation procedure is very diÆcult, if not infeasible, because of the high dimensionality of the

intractable integral involved in the likelihood function and the in�nite dimensionality of the nui-

sance baseline hazard �0(�). As an alternative, we will explore a spatial semiparametric estimating

equation approach to draw inference in Section 4.

2.2 Speci�cations of the Spatial Correlation of the Transformed Times T�

Since the transformed times T� are normally distributed, a rich class of models can be used to

model the spatial dependence by specifying a parametric model for �ij . For instance, we may

parameterize �ij(�) = �(dij ;�), an isotropic correlation function which decays as the Euclidean

distance dij between two individuals increases. A widely adopted choice for the correlation func-

tion is the Mat�ern function

�(d;�) =
�1

2�3�1�(�3)
(2�2

p
�3d)

�3K�3(2�2
p
�3d); (6)

where � = (�1; �2; �3), �1 is a scale parameter and corresponds to the `partial sill' as described

in Waller and Gotway (2004, p.279), �2 measures the correlation decay with the distance and

�3 is a smoothness parameter, �(�) is the conventional Gamma function, K�3(�) is the modi-

�ed Bessel function of the second kind of order �3 (see, e.g. Abramowitz and Stegun, 1965).

This spatial correlation model is rather general, special cases including the exponential function

�(d;�) = �1 exp(�d�2) when the smoothness parameter �3 = 0:5, and the \Gaussian" correlation

function �(d;�) = �1 expf�d2�22g when �3 ! 1 (see, e.g., Waller and Gotway, 2004, p. 279).

In all these formulations, we require 0 � �1 � 1 and �2; �3 � 0. Note that such spatial depen-

dence models distinguish local and global spatial e�ects, where �1 measures local correlation (i.e.

�1 = limd!0+ �(d;�) ), while �2 controls the spatial decay over the distance. The smoothness

parameter �3 characterizes the behavior of the correlation function near the origin, but its esti-

mation is diÆcult as it requires dense space data and may even run into identi�ability problems.
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Stein (1999) has argued that data can not distinguish between �3 = 2 and �3 > 2. Hence we

follow the strategy adopted by common spatial software (e.g, geoR) by �xing �3 to estimate the

other parameters and performing a sensitivity analysis by varying �3 in data analysis.

3 Dependence Measures of the Original Survival Times T

The correlation coeÆcient �ij conveniently speci�es the spatial correlation of the normally trans-

formed survival times T �i and T �j via the conventional spatial correlation structure. It is of

substantial interest to understand how such a correlation of the transformed times T �i and T �j

implies for the dependence structure of the original survival times Ti and Tj , i.e., how the de-

pendence between the original survival times Ti and Tj depends on �ij . Two types of bivariate

dependence are commonly used to describe multivariate survival times: local dependence and

global dependence (Hougaard, 2000). We investigate in this section these dependence measures

under the semiparametric transformation model.

3.1 The Local Time Dependence Measure: The Cross Ratio Function

Let T1 and T2 be arbitrary bivariate survival times. A common local dependence measure of T1

and T2 is the cross ratio de�ned as follows (Kalbeisch and Prentice, 2002)

c12(t1; t2) =
�1(t1jT2 = t2)

�1(t1jT2 � t2)
=
�2(t2jT1 = t1)

�2(t2jT1 � t1)
;

where �(�j�) denotes the conditional hazard function for a pair of survival times, e.g. (T1; T2).

More speci�cally,

�1(t1jt2) = lim
dt#0

(dt)�1P (t1 < T1 � t1 + dtjT1 > t1; T2 = t2):

The cross ratio c12(t1; t2) measures the dependence of T1 and T2 at the time point (t1; t2). If

c12(t1; t2) = 1, T1 and T2 are independent at (t1; t2). If c12(t1; t2) > 1, T1 and T2 are positively

correlated at (t1; t2), and vise versa. If c12(t1; t2) is a constant, (T1; T2) follows the Clayton model

(Clayton, 1978).

Under the general spatial model (4) for the transformed survival times T �i , we are interested

in investigating how the cross ratio of any arbitrary survival time pairs Ti and Tj depends on

their marginal survival functions and the spatial correlation �ij of the transformed survival times

6
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T �i and T �j . Speci�cally under (4), one can easily calculate the joint tail probability function for

the normally transformed survival time pair (T �i ; T
�
j ) as

	(z1; z2; �ij) = P (T �i > z1; T
�
j > z2; �ij) =

Z 1

z1

Z 1

z2

�2fdx1; dx2; �ijg;

where �2(�; �;�) is the CDF for a bivariate normal vector with mean (0; 0) and covariance matrix�
1 �

� 1

�
: If follows that the bivariate survival function for the original survival time pair (Ti; Tj)

is

Sij(t1; t2; �ij) = P (Ti > t1; Tj > t2; �ij) = 	[��1fFi(t1)g;��1fFj(t2)g; �ij ] (7)

where Fi(�); Fj(�) are the marginal CDFs of Ti and Tj respectively.
Equation (7) shows that the joint bivariate survival function is a functional of two marginal

distributions. It follows that model (7) belongs to the common Copula family (Hougaard, 1986).

In particular, when �ij = 0, (7) becomes f1�Fi(t1)gf1�Fj(t2)g, corresponding to the independent
case. One can easily show that the bivariate survival function (7) approaches the upper Frechet

bound minf1�Fi(t1); 1�Fj(t2)g as �ij ! 1�, the independent case when �ij ! 0, and the lower

Frechet bound maxf1� Fi(t1)� Fj(t2); 0g as �ij ! �1+.
Using the Cholesky decomposition and variable transformation, we can rewrite the two-

dimensional integral in (7) as

Sij(t1; t2; �ij) = 1� Fi(t1)�
Z 1

��1fFi(t1)g

�

(
��1fFj(t2)g � �ijy

(1� �2ij)
1=2

)
d�(y):

Some calculations show that the cross ratio function is given by the survival functions

cij(t1; t2) =
�i(t1jTj = t2)

�i(t1jTj � t2)
=

@2

@t1@t2
Sij(t1; t2; �ij)� Sij(t1; t2; �ij)

@
@t1
Sij(t1; t2; �ij)� @

@t2
Sij(t1; t2; �ij)

where standard calculus gives

@

@t1
Sij(t1; t2; �ij) = �F (1)

i (t1)

"
1� �

(
��1fFj(t2)g � �ij�

�1fFi(t1)
(1� �2ij)

�1=2

)#

@

@t2
Sij(t1; t2; �ij) = �F (1)

j (t2)

"
1� �

(
��1fFi(t1)g � �ij�

�1fFj(t2)
(1� �2ij)

�1=2

)#

and

@2

@t1@t2
Sij(t1; t2; �ij) =

F
(1)
i (t1)F

(1)
j (t2)

(1� �2ij)
1=2�[��1fFj(t2)g]

�

"
��1fFj(t2)g � �ij�

�1fFi(t1)g
(1� �2ij)

1=2

#
:
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Here �(�) is the density function of a standard normal random variable, and for an arbitrary

function H(�), H(1)(�) denotes the �rst derivative. These results show that the cross ratio is

fully determined by the marginal survival functions and �ij , the correlation of the corresponding

normally transformed variables T �i and T �j .

To numerically illustrate the functional dependence of the cross ratio cij(t1; t2) on the spatial

correlation coeÆcient of the transformed survival times �ij , Figure 1 shows the cross ratio curve

as a function of �ij when the marginal survival functions are assumed to be exponential one.

One can see that the cross ratio cij(t1; t2) is a nonlinear monotone increasing function of �ij . As

�ij ! 0, cij(t1; t2)! 1, indicating independence of Ti and Tj .

3.2 The Global Time Dependence Measures

An alternative measure of the dependence of an arbitrary pair of the original bivariate survival

time is based on global measures, which measure the overall dependence of a pair of individuals

over the entire lifespan by integrating over time. Kendall's � and Spearman's � are the commonly

used global dependence measures. Both are based on concordance and discordance, and hence do

not depend on the parametric forms of baseline hazard functions. They lie in [�1; 1], where the
value 1 corresponds to perfect concordance and the value -1 corresponds to complete discordance.

They hence are parallel to the classical correlation coeÆcient. However, as a global dependence

measure, they are not informative about how the correlation varies with times.

Consider a Copula function C(u1; u2) such that P (T1 > t1; T2 > t2) = CfF1(t1); F2(t2)g, for a
pair of nonnegative random variables T1 and T2 where Fi(�) is the marginal CDF of Ti (i = 1; 2).

Kendall's � and Spearman's � are de�ned as (Kalbeisch and Prentice, 2002)

� = 4

Z 1

0

Z 1

0

C(u1; u2)C(du1; du2)� 1

and

� = 12

Z 1

0

Z 1

0

C(u1; u2)du1du2 � 3;

respectively.

As shown in Section 2.2, the bivariate survival function of Ti and Tj under the semiparametric

normal transformation model belongs to the Copula family. We hence can easily use equation (7)

to calculate the relationships between the Kendall's � and Spearman's � of the original survival

8
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times Ti and Tj and the spatial correlation �ij of the transformed time T �i and T �j as

�(�ij) = 4

Z 1

�1

Z 1

�1

	(z1; z2; �ij)�2(dz1; dz2; �ij)� 1

and

�(�ij) = 12

Z 1

�1

Z 1

�1

	(z1; z2; �ij)�(dz1)�(dz2)� 3;

where 	(�);�2(�) are de�ned in (7). Hence Kendall's � and Spearman's � are uniquely determined

by the marginal survival survival functions of Ti and Tj and the spatial correlation coeÆcient �ij

of the transformed times T �i and T �j . Although the expressions of �(�ij) and �(�ij) do not have

closed forms, both can be easily evaluated numerically. Note that both �(�ij) and �(�ij) approach

to 0 as �ij ! 0, approach to 1 as �ij increases to 1, and approach -1 as �ij decreases to �1.

4 The Semiparametric Estimation Procedure

The likelihood function in (5) involves a high dimensional integration, and the dimension of

the required integration is the same as the sample size. In view of the numerical diÆculties

of directly maximizing the likelihood function, we consider spatial semiparametric estimating

equations constructed using the �rst two moments of individual survival times and all pairs of

survival times to estimate the regression coeÆcients � and the spatial correlation parameters �

in �ij(�).

4.1 The Martingale Covariance Rate Function

We �rst derive the martingale covariance rate function under the semiparametric normal trans-

formation model (2)-(3). De�ne the counting process Ni(t) = I(Xi � t; Æi = 1) and the at-

risk process Yi(t) = I(Xi � t). We de�ne a martingale, which is adapted to the �ltration

Fi;t = �(Ni(s); Yi(s);Zi(s); 0 � s < t), as

Mi(t) = Ni(t)�
Z t

0

Yi(s)e
�
0

Zi(s)d�0(s):

To relate the correlation parameters� to the counting processes, one needs to consider the joint

counting process of two individuals. De�ne the conditional martingale covariance rate function for

the joint counting process of two individuals, a multi-dimensional generalization of the conditional

hazard function, as (Prentice and Cai, 1992)

Ai;j(dt1; dt2) = EfMi(dt1)Mj(dt2)jTi > t1; Tj > t2g:

9
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Then we have

EfMi(t1)Mj(t2)�
Z t1

0

Z t2

0

Yi(s1)Yj(s2)Ai;j(ds1; ds2)g = 0:

Denote by ~Sij(v1; v2) the joint survival function of �i(Ti) and �j(Tj), the exponential trans-

formations of the original survival times. Then

~Sij(v1; v2; �ij) = Pf�i(Ti) > v1;�j(Tj) > v2; �ijg = Sijf��1i (v1);�
�1
j (v2); �ijg; (8)

where Sij(�) is de�ned in (7). Following Prentice and Cai (1992), one can show that the covariance

rate can be written as

Ai;j(dt1; dt2; �ij) = A0f�i(t1);�j(t2); �ijg�i(dt1)�j(dt2);

where

A0(v1; v2; �) =

�
@2

@v1@v2
~Sij(v1; v2; �) + ~Sij(v1; v2; �)

+
@

@v1
~Sij(v1; v2; �) +

@

@v2
~Sij(v1; v2; �)

��
~Sij(v1; v2; �):

As a special case, A0(v1; v2; � = 0) � 0. A �rst order approximation to A0(v1; v2; �) when � is

near 0 is given in the Appendix. It is also shown in the Appendix that as � ! 0+, A0(v1; v2; �)

converges to 0 uniformly at the same rate as that when (v1; v2) lies in a compact set.

4.2 The Semiparametric Estimating equations

We simultaneously estimate the regression coeÆcients � (an r � 1 vector) and the correlation

parameters � (a q � 1 vector) by considering the �rst two moments of the martingale vector

(M1; : : : ;Mm). In particular, for a pre-determined constant � > 0 such that it is within the

support of the observed failure time, i.e P (� < Ci ^ Ti) > 0 (in practice � is usually the study

duration), we consider the following unbiased estimating functions for� = f�;�g for an arbitrary
pair of two individuals, indexed by u and v:

� if u = v,

Uu;u(�) =

� R �
0
Zu(s)W(u;u)(s)dMu(s)

vuufM2
u(�)�

R �
0
Yu(s)d�u(s)g

�

where W(u;u)(s) (a scalar) and vuu (a length-q vector) are non-random weights.
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� if u 6= v,

Uu;v(�) =

� R �
0
Zu;v(s)W(u;v)(s)dMu;v(s)

vuvfMu(�)Mv(�)�Auvg

�

where Zu;v(s) = fZu(s);Zv(s)g, dMu;v(s) = fdMu(s); dMv(s)g0, andW(u;v)(s) = fw(u;v)
ij g2�2

and vuv (a length-q vector) are non-random weights and

Auv =

Z �

0

Z �

0

Yu(s)Yv(t)A0f�u(s);�v(t); �uvgd�u(s)d�v(t)

=

Z �u(Xu^�)

0

Z �v(Xv^�)

0

A0ft1; t2; �uvgdt1dt2:

We show in the Appendix that Auv, the covariance of martingales, decay to 0 at the same

rate as the spatial correlation parameter �uv. We also provide in the Appendix a �rst order

approximation to Auv when �uv is small.

It can be easily shown that Uu;v is an unbiased estimating function, since EfUu;v(�0)g = 0;

where the expectation is taken under the true �0 = (�0;�0) and the true cumulative hazard

function �0(�). Note that the �rst component of Uu;v, which is the estimating equation for �,

is unbiased even when the spatial correlation structure is misspeci�ed. Hence the regression

coeÆcient estimator b� is robust to misspeci�cation of the spatial correlation structure.

It is however not immediately computable as �0(t) in the estimating equations is unknown.

A natural alternative is to substitute it with the Breslow estimator

�̂0(t) =

Z t

0

Pm
i=1 dNi(s)Pm

i=1 Yi(s)e
�
0

Zi(s)
:

As a result, the parameters of interest � = (�;�) are estimated by solving the following

estimating equations, which are constructed by weightedly pooling individual martingale residuals

and weightedly pooling all pairs of martingale residuals respectively

Gm = m�1
X
u�v

Ûu;v(�) = 0: (9)

Note that bU(�) is used to reect that �0(t) is estimated by �̂0(t).

Using the matrix notation, we can express (9) conveniently as

m�1

" R �
0
Z(s)WdM̂(s)

M̂
0
(�)V1M̂(�)� tr(VjÂ)

#
= 0; (10)
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where j = 1; � � � ; q,W andVj are weight matrices, M̂ = (M̂1; : : : ; M̂n)
0, Z(s) = fZ1(s); : : : ;Zn(s)g0,

Â is an n� n matrix whose uv-th (u 6= v) entry is Âuv obtained from Auv with �0(t) replaced by

�̂0(t), and Âuu =
R �
0
Yu(s)d�̂u(s).

The weight matricesW and V1; : : : ;Vq are introduced to improve eÆciency and convergence

of the estimator of � and �. In particular, to specify W, following Cai and Prentice (1997) in

clustered survival data we can specify W as (D�1=2AD�1=2)�1, the inverse of the correlation

matrix of the martingale vector M(�), where D = diag(A11; : : : ; Amm). In the absence of spatial

dependence, W is an identity matrix and hence the �rst set of equations of (10) is reduced

to the ordinary partial likelihood score equation for regression coeÆcients �. To specify Vj

(j = 1; : : : ; q), one could assume Vj = A�1(@A=@�j)A
�1. Under this speci�cation, the second

set of estimating equations in (10) resembles the score equations of the variance components � if

the `response' M̂ followed a multivariate normal distribution N(0;A) (Cressie, 1993, p483).

For numerical considerations, a modi�cation of the spatial estimating equation (10) is given

by adding a penalty term,

G�
m(�) = Gm(�)� 1

m

�

where 
 is a positive de�nite matrix, acting like a penalty term. This penalized version of the

spatial estimating equation (10) can be motivated from the perspective of ridge regression or

from Bayesian perspectives by putting a Gaussian prior N(0;
�1) on �, and results in stabilized

variance component estimates of � for example, for moderate sample sizes, and is likely to force

the resulting estimates to lie in the interior of the parameter space (Heagerty and Lele, 1998).

Therefore in our simulations, especially when the sample size is not large, we consider using a

small penalty, 
 = !I, where 0 < ! < 1, to ensure numerical stability. Note as the sample size

m goes to 1, we have 1
m
�! 0. Therefore Gm(�) and G�

m(�) are asymptotically equivalent,

and therefore the large sample results of the original and penalized estimating equations are

equivalent.

4.3 Asymptotic Properties and Variance Estimation

We study in this section the asymptotic properties of the estimators proposed in Section 4.2,

and propose a �nite sample covariance estimate. Under the regularity conditions listed in the

Appendix, the estimators obtained by solving Gm(�) = 0 exist and are consistent for the true
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values of �0 = (�0;�0) and that n1=2f�̂ � �0g is asymptotic normal with mean zero and a

covariance matrix which can be easily estimated using a sandwich estimator. The results are

formally stated in Proposition 1.

Proposition 1 Assume the true �0 is an interior point of an compact set, say, B � A 2 Rr+q,

where r is the dimension of � and q is the dimension of �. Under the regularity conditions 1-5

in the Appendix, when m is suÆciently large, the estimating equation Gm(�) = 0 has a unique

solution in a neighborhood of �0 with probability tending to 1 and the resulting estimator �̂ is

consistent for �0. Furthermore,
p
mf�(2)g�1=2�f(�̂; �̂)0 � (�0;�0)

0g d! Nf0; Ig, where I is an
identity matrix whose dimension is equal to that of �0, and

� =
1

m

X
u�v

E

�
@

@�
Uu;v(�)

�

�(2) =
1

m2

X
u1�v1

X
u2�v2

EfUu1;v1(�0)Uu2;v2(�0)g:

It follows that the covariance of �̂ can be estimated in �nite samples by

I�1m = b��1 b�(2)
nb��1

o0
(11)

where b� and b�(2)
are estimated by replacing Uuv(�) by Ûuv(�) and evaluated at b�0.

Although each E
n
Ûu1;v2(�0)Û

0
u2;v2(�0)

o
could be evaluated numerically, the total number of

these calculations would be prohibitive, especially when the sample sizem is large. To numerically

approximate b�(2)
, we explore the resampling techniques of Carlstein (1986) and Sherman (1996).

Speci�cally, under the assumption that asymptotically

m� E
�
GmG

0
m

	
! �1;

we can estimate �1 by averaging K randomly chosen subsets of size mj (j = 1; � � � ;K) from the

m subjects as

b�1 = K�1
KX
j=1

mj

nbGmj

bG0

mj

o
;

where bGmj
is obtained by substituting � with b� in Gmj

. The mj is often chosen to be propor-

tional to m so as to capture the spatial covariance structure. In our later simulations we chose

mj to be roughly 1/5 of the total population. Given the estimates b�1 and b�, the covariance
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of b� can be estimated by b��1
[1=m � b�1](b��1

)0. For the covariance estimate of the penalized

estimator obtained by solving G�
m(�) = 0, b� is replaced by b� � 1

m
. A similar procedure was

adopted by Heagerty and Lele (1998) for analyzing spatial binary data.

5 Simulation Study

We performed a simulation study to evaluate the �nite sample performance of the proposed

methods. The locations of subjects were sampled uniformly over region [0;m]2, where m is the

number of subjects. The survival times T were generated marginally under the hazard model

�(t) = expf�1Z1 + �2Z2 + �3Z3g

and models (2) and (3), where Z1 and Z2 were generated independently from the uniform distri-

bution over [�2; 2] and Z3 was generated as a binary variable taking 0 or 1 with equal probability.

The spatial dependence between two arbitrary individuals, i and j was speci�ed by the Mat�ern

function (6), where dij = jai � aj j, ai = (xi; yi) are the two dimensional coordinates for subject i

and j � j is the Euclidean distance. In particular, we �rst generated the T �ij using the multivariate

normal model (3) under the Mat�ern covariance matrix, and then transformed the T �ij back to

the original survival time scale to obtain Tij using the equation (2) and the above marginal Cox

model.

We set the true value �1 = 1, �2 = 0:5, �3 = 0:5, �1 = 0:5 and �2 = 2:5. We varied �3 in

(6) to be 0.5 and 1. Censoring times cij were generated as independent uniform random variables

on [0; 1] and [0; 2], resulting in 70% and 50% censoring, respectively. For each set of parameters,

we considered the number of subjects (m) to be 100 and 200. We also considered m = 400 with

�3 = 0:5 and 70% censoring. In our calculations, we set the penalty parameter to be ! = 0:1. As

indicated in the previous section, this penalty term was introduced to increase numerical stability

by forcing the estimate to be in the interior of the parameter space.

A total of 500 simulated data sets were generated for each con�guration, and averages of the

point estimates and their standard errors were calculated, along with the coverage rates of the

corresponding 95% con�dence intervals. The results are summarized in Table 1. These results

show that our estimator performed well in �nite samples. The �nite sample biases of the regression

coeÆcient estimates � were negligible, and the standard error estimates agreed well with their
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empirical counterparts, though the coverage rates were a little below the nominal level. For the

spatial correlation parameters, the performance of the estimator of �1 was very good and similar

to that of �. The estimate of �2 had slightly more bias and its estimated SE underestimated its

true SE, resulting in a worse coverage probability. This indicates �2 is more diÆcult to estimate

for small samples. As the sample size increased, the biases decreased and all the estimates quickly

approached the true values, the estimated and empirical SEs became very close and the coverage

rates became closer to the nominal level. Figure 2 depicts the estimated density plots of the

parameter estimates when m = 200; �3 = 0:5 and the censoring proportion=70%. They indicated

that the estimates were approximately normally distributed in �nite samples. These empirical

results support our asymptotic �ndings.

To assess the robustness of the model with respect to the parameterization of the spatial

dependence, we conducted an additional simulation study by intentionally misspecifying the cor-

relation model (4) in our calculations. Speci�cally, using the same parameter con�gurations as

above with m = 100 and censoring proportion=70%, we generated the survival data with the

spatial dependence speci�ed by the `spherical' correlation

�(d) = 0:5(1� 3d

4
+
d3

8
)I(d � 2):

but assumed the Mat�ern correlation (6) in our estimation. Although the estimates of the spatial

dependence parameters were biased due to the misspeci�cation of the spatial correlation structure,

the estimates of the regression coeÆcients were still close to the true values. The averages of the

point estimates were 0:9950; 0:5232 and 0:5028 respectively, which were close to the true values.

These results support our theoretical �ndings.

6 Analysis of the East Boston Asthma Data

We applied the proposed method to analyze the East Boston Asthma data introduced in Section 1.

For our analysis, we focused on assessing how the familial history of asthma may have attributed

to disparity in disease burden. In particular, the investigator was interested in the relationship

between the Low Respiratory Index (LRI) in the �rst year of life, ranging from 0 to 16, with high

values indicating worse respiratory functioning, and age at onset of childhood asthma, controlling

for maternal asthma status (MEVAST), which was coded as 1=ever had asthma and 0=never

had asthma, and log-transformed maternal cotinine levels (LOGMCOT). Such an investigation
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would help the investigator to better understand the natural history of asthma and its associated

risk factors and to develop future intervention programs.

Subjects were enrolled at community health clinics throughout the east Boston area, and

questionnaire data were collected during regularly scheduled well-baby visits, so that the ages

at onset of asthma could be identi�ed. Residential addresses were recorded and geocoded. The

geographic distance was calculated in the unit of kilometer. A total of 606 subjects with complete

information on latitude and longitude were included in the analysis, with 74 events observed at

the end of the study. The median followup was 5 years. East Boston is a residential area of

relatively low income working families. Participants in this study were largely white and hispanic

children, aging from infancy to 6 years old. Asthma is a disease strongly a�ected environmental

triggers. Since the children had similar backgrounds and living environment and were exposed

with similar unmeasured similar physical and social environments, their ages at onset of asthma

were likely to be subject to spatial correlation.

We considered the spatial semiparametric normal transformation model and assumed the age

at onset of asthma marginally followed the Cox model

�(t) = �0(t) expf�L � LRI + �M �MEVAST + �C � LOGMCOTg: (12)

We assumed the Mat�ern model (6) for the spatial dependence. We estimated the regression

coeÆcients and the correlation parameters using the spatial semiparametric estimating equation

approach proposed in Section 4.2, and calculated the associated standard error estimates (11).

For checking the robustness of the method, we also varied the smoothness parameter �3 in (6) to

be 0.5, 1 and 1.5.

As the East Boston Asthma Study was conducted in a �xed region, to examine the performance

of the variance estimator in (11), which was developed under the increasing-domain-asymptotic,

we also calculated the variance using a `delete-a-block' jackknife method (see, e.g. Kott (1998)).

Speci�cally, we divided the samples into B nonoverlapping blocks based on their geographic

proximity and then formed B jackknife replicates, where each replicate was formed by deleting

one of the blocks from the entire sample. For each replicate we computed the estimates based

on the semiparametric estimating equations developed in Section 4.2 and obtained the jackknife
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variance as

varjackknife =
B � 1

B

BX
j=1

(�̂j � �̂)(�̂j � �̂)0 (13)

where �̂j was the estimate produced from the jackknife replicate with the j-th `group' deleted

and �̂ was the estimate based on the entire population. We chose B = 40, which appeared

large enough to render a reasonably good measure of variability. This jackknife scheme, in a

similar spirit of a subsampling scheme proposed by Carlstein (1986, 1988), treated each block

approximately independent and seemed plausible for this data set, especially in the presence of

weak spatial dependence. Loh and Stein (2004) termed this scheme as the splitting method and

found it work even better than more complicated block-bootstrapping methods (e.g. Kunsch,

1989; Liu and Singh, 1992; Politis and Romano, 1992; Bulhmann and Kunsch, 1995). Other

advanced resampling schemes for spatial data are also available, e.g double-subsampling method

(Lahiri et al., 1999; Zhu and Morgan, 2004) and linear estimating equation Jackkni�ng (Lele,

1991), but are subject to much more computational burden compared with the simple jackknife

scheme we used.

The results are presented in Table 2, with the large sample standard errors (SEa) computed

using the method described in Section 4.3 and the Jackknife standard errors (SEj) computed

using (13). The estimates of the regression coeÆcients and their standard errors were almost

constant with various choices of the smoothness parameter �3 and indicated that the regression

coeÆcient estimates were not sensitive to the choice of �3 in this data set. The standard errors

obtained from the large sample approximation and the Jackknife method were reasonably similar.

Low respiratory index was highly signi�cantly associated with the age at onset of asthma, e.g.

b�L = 0:3121 (SEa = 0:0440; SEj = 0:0357) when �3 = 0:5; b�L = 0:3118 (SEa = 0:0430; SEj =

0:0369) when �3 = 1:0; b�L = 0:3124 (SEa = 0:0432; SEj = 0:0349) when �3 = 1:5, indicating that

a child with a poor respiratory functioning was more likely to develop asthma, after controlling for

maternal asthma, maternal cotinine levels and accounting for the spatial variation. No signi�cant

association was found between ages at onset of asthma and maternal asthma and cotinine levels.

The estimates of the spatial dependence parameters, �1 and �2 varied slightly with the choices of

�3. The scale parameter �1 corresponds to the partial sill (Waller and Gotway, 2004, p.279) and

measures the correlation between subjects in close geographic proximity. Our analysis showed

that such a correlation is small. The parameter �2 measures global spatial decay of dependence
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with the spatial distance (measured in kilometers). For example, when �3 = 0:5, i.e., under the

exponential model, �2 = 2:2977 means the correlation decays by 1� exp(�2:2977� 1)
:
= 90% for

every one kilometer increase in distance. As pointed out by a reviewer, the value of �2 should be

interpreted with caution as its interpretation depends on the unit of distance.

7 Discussion

We have proposed in this paper a semiparametric normal transformation model for spatial sur-

vival data. Although statistical methods for clustered survival data and non-censored spatial data

have been well developed, little literature is available for modeling censored spatial survival data.

However, direct extensions of models for clustered survival data to censored spatial survival data

are diÆcult to be used to construct a semiparametric likelihood to allow each survival outcome

to marginally follow the Cox proportional hazard model. An attractive feature of our semipara-

metric normal transformation models is that they provide a general semiparametric likelihood

framework to generate censored spatial survival data with a exible spatial correlation structure

and individual observations marginally following the Cox proportional hazard model. Hence such

models provide an elegant connection between classical spatial models for normal continuous spa-

tial outcomes and the traditional Cox model for censored survival data, and allow the regression

coeÆcients to have marginal interpretations. To our knowledge, this paper is a �rst attempt to

develop such semiparametric marginal models for spatial survival data.

In view of the intractable high dimensional integration required by maximum likelihood es-

timation and the presence of the in�nite dimensional nuisance baseline hazard parameter in the

likelihood function, we develop a class of spatial semiparametric estimating equations using indi-

vidual and pair-wise survival times. The proposed method is computationally easy and is shown

to yield consistent and asymptotically normal estimators and yield the regression coeÆcient esti-

mator that is robust to misspeci�cation of the correlation structure. Our simulation study shows

that the proposed method performs well in �nite samples.

The estimating equation for the spatial correlation parameter � mimics the normal-likelihood

score equation for martingale residuals. It would be of interest to develop quasi-likelihood type

estimating equations to improve the eÆciency of the estimator of � as it characterizes the un-

derlying spatial dependence, which is sometimes of practical interest. Such a quasi-likelihood
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type estimating equation for � however would involve third and fourth order moments of the

martingale residuals Muv(s), whose computation can be diÆcult. It would be of future research

interest to investigate the eÆciency loss of the proposed estimator of � relative to such a more

complicated quasi-likelihood estimator.

Although rather computationally demanding, it might be feasible to develop a full nonpara-

metric maximum likelihood estimator of the regression coeÆcient estimator � and the spatial

correlation parameter � based on the semiparametric normal transformation likelihood (5) with

the baseline hazard estimated nonparametrically by a step function with jumps at distinct failure

times. For example, an EM type analysis under (5) might be possible by viewing the censoring-

prone survival times as missing values. It would be of future research interest to study the

theoretical properties of such nonparametric maximum likelihood estimators and compare the ef-

�ciency and robustness of the spatial semiparametric estimating equation based estimators in this

paper with the nonparametric maximum likelihood estimators. It is likely that the nonparametric

maximum likelihood estimators of the regression coeÆcients might be sensitive to the misspeci�-

cation of the spatial correlation structure, while the spatial semiparametric estimating equation

based estimators are robust to such misspeci�cations. On the other hand, if the semiparametric

normal transformation model is a true model, the spatial semiparametric estimating equation

based estimators might be less eÆcient than the nonparametric maximum likelihood estimators.

More future research is needed.

We have focused in this paper on normal transformation models assuming a marginal Cox pro-

portional hazard model in view of the popularity of the Cox model in health sciences research and

the attractive interpretation of regression coeÆcients. We may extend the normal transformation

model to the accelerated failure time models which specify

log Ti = ��0Zi + �i; i = 1; : : : ;m

where �i follows an unspeci�ed distribution. This model is equal to, marginally, Ti � S0(t exp(�
0Zi));

where S0(t) is an unspeci�ed survival function. Then we de�ne the normal transformation as

T �i = ��1f1� S0(Ti exp(�
0Zi))g: Hence T �i follows the standard normal distribution marginally.

We can then conveniently impose a spatial structure on the underlying random �elds of T� =

fT �i ; i = 1; : : : ;mg within the traditional Gaussian geostatistical framework as described in Sec-

tion 2. However further research is needed for drawing inference based on this new class of models
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as the proposed Martingale-based estimating equations in Section 4.2 are not directly available to

�t this model, especially in the presence of unknown baseline survival function S0(�). Rank-based
procedure along the line of Jin et al. (2003) may need to be adopted. We will pursue this idea in

a separate paper.
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Appendix: Technical Details

A.1: A �rst order expansion of the Martingale Covariance Rate function

Following Moran (1983) and Kotz et al. (2000, eq (45.89)), some algebra show that when � is

suÆciently small, one can approximate the following bivariate tail probability

	(z1; z2; �) =

Z 1

z1

Z 1

z2

�2(dx1; dx2; �);

by

	(z1; z2; �) = f1� �(z1)gf1� �(z2)g+ ��(z1)�(z2) + o(�)

where �(�) and �(�) are the CDF and density function for a standard normal distribution respec-

tively, and o(�) holds uniformly with respect to (z1; z2) in any bounded set. Then

@

@z1
	(z1; z2; �) = � [�(z1)f1� �(z2)g+ �z1�(z1)�(z2)] + o(�);

@

@z2
	(z1; z2; �) = � [�(z2)f1� �(z1)g+ �z2�(z1)�(z2)] + o(�)

and
@2

@z1@z2
	(z1; z2; �) = �(z1)�(z2) + �z1z2�(z1)�(z2) + o(�): (A. 1)

Using a Copula representation and a �rst order Taylor expansion, Sungur (1990) also derived (A.

1) for approximating the standard bivariate normal density function.

Hence, from equations (7) and (8), we can approximate ~Sij(t1; t2; �), the joint survival function

of the exponential transformations of the original survival times, by

~Sij(t1; t2; �) = 	f��1(1� e�t1);��1(1� e�t1); �g = e�(t1+t2) + ��(x1)�(x2) + o(�)

where xk = ��1(1� e�tk) (k = 1; 2); o(�) holds uniformly for (t1; t2) 2 [�1;M1]� [�2;M2] for any

0 < �k < Mk <1, k = 1; 2. Then, by the chain rule,

@

@t1
~Sij(t1; t2; �) =

@

@x1
	(x1; x2; �)

dx1

dt1
= �e�(t1+t2) � �x1e

�t1�(x2) + o(�);

@

@t2
~Sij(t1; t2; �) = �e�(t1+t2) � �x2e

�t2�(x1) + o(�);

and
@2

@t1@t2
~Sij(t1; t2; �) = e�(t1+t2) + �x1x2 + o(�);
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Then it follows that the martingale covariance function is

A0(t1; t2; �) = �fet1�(x1)� x1gfet2�(x2)� x2g+ o(�);

Again o(�) holds uniformly for (t1; t2) 2 [�1;M1]� [�2;M2].

Hence, for any �1 < M1 <1, �2 < M2 <1, writing the double integral
R �1
0

R �2
0

asZ �1

0

Z �2

0

=

Z �1

�1

Z �2

�2

+

Z �1

�1

Z �2

0

+

Z �1

0

Z �2

0

+

Z �1

0

Z �2

�2

;

we have Z �1

0

Z �2

0

��1jA0(t1; t2; �)� �(et1�(x1)� x1)(e
t2�(x2)� x2)jdt1dt2

�
Z �1

�1

Z �2

�2

��1jA0(t1; t2; �)� �(et1�(x1)� x1)(e
t2�(x2)� x2)jdt1dt2

+

Z �1

�1

Z �2

0

��1jA0(t1; t2; �)jdt1dt2 +
Z �1

�1

jet1�(x1)� x1)jdt1
Z �2

0

jet2�(x2)� x2)jdt2

+

Z �1

0

Z �2

0

��1jA0(t1; t2; �)jdt1dt2 +
Z �1

0

jet1�(x1)� x1)jdt1
Z �2

0

jet2�(x2)� x2)jdt1dt2

+

Z �1

0

Z �2

�2

��1jA0(t1; t2; �)jdt1dt2 +
Z �1

0

jet1�(x1)� x1)jdt1
Z �2

�2

jet2�(x2)� x2)jdt2:

It can be shown that A0(t1; t2; �) is integrable over any �nite rectangle [0; �1]�[0; �2] and etk�(xk)�
xk (k = 1; 2) are integrable over any �nite interval [0; �k]. Therefore, using �-Æ-type arguments

one can show all the above components converge to 0 as � ! 0. HenceZ �1

0

Z �2

0

A0(t1; t2; �)dt1dt2 = �

Z �1

0

fet1�(x1)� x1gdt1
Z �2

0

fet2�(x2)� x2gdt2 + o(�):

Furthermore, integration by parts yields for k = 1; 2,Z �k

0

fetk�(xk)� xkgdtk = �k�
�1(1� e��k)� e�k�f��1(1� e��k)g

+

Z ��1(1�e��k )

�1

�
logf1� �(x)g � x�(x)

1� �(x)

�
dx:

Hence, when the spatial dependence is weak, one shall be able to approximate the two-dimensional

integral of the martingale covariance by the product of two univariate integrals, which greatly

facilitates computation. This result also indicates that the covariance between two martingales

decay to 0 at the same rate as the spatial correlation parameter �, warranting the large sample

theory.
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A.2: Regularity Conditions

For the asymptotic properties of the estimator, we assume that the spatial domain is increasing

regularly in the sense of Guyon (1995). That is, we consider increasing-domain asymptotics,

wherein the domain Dm � R2 is a sequence of increasing domains over which the data are

collected. Let jDmj be the associated cardinalities and assume that there exists an a > 0 and mn

a strictly increasing sequence of integers such that

X
n�1

najDmn
j�1 <1;

and X
n�1

� jDmn+1=Dmn
j

jDmn
j

�2

<1:

Another commonly used asymptotic framework in spatial statistics is in-�ll asymptotics, which

has been found most useful when considering the asymptotics of kriging. Since we are mainly

concerned with the asymptotic behavior of the estimates of the population-level regression pa-

rameters as well as correlation parameters, we have adopted the increasing-domain asymptotics

in the following derivations. In practice, increasing-domain asymptotics are appropriate when the

spatial domain of interest is extendable, and new observations are added beyond existing ones,

generating an expanding surface.

Next state the other suÆcient regularity conditions which warrant the large sample theory on

a random �eld.

1. (Stability) Denote by s(k)(�; t) = EfYj(t)Z
kj (t)e�
0

Zj(t)g for k = 0; 1; 2, Assume these

functions exist and are bounded in B� [0; �). In particular, s(0)(�; t) is bounded away from

0. Moreover,

sup
(�;t)2B�[0;�)

jS(k)(�; t)� s(k)(�; t)j p! 0

for k = 0; 1; : : : ; 3.

We assume all the covariates Zi are uniformly bounded and that the weight functions,

W(i;j)(t), are chosen such that there exist (bounded) functions sw
(k)
ij (�; t); i; j = 1; 2; which

satisfy, for k = 0; 1,

sup
(�;t)2B�[0;� ]

����
����m�1

X
i�j

Zi(t)w
(i;j)
11 (t)Yi(t)e

�Zi(t) 
 Zki (t)� sw
(k)
11 (�; t)

����
���� p! 0;
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sup
(�;t)2B�[0;� ]

����
����m�1

X
i�j

Zi(t)w
(i;j)
12 (t)Yj(t)e

�Zj(t) 
 Zkj (t)� sw
(k)
12 (�; t)

����
���� p! 0;

sup
(�;t)2B�[0;� ]

����
����m�1

X
i�j

Zj(t)w
(i;j)
21 (t)Yi(t)e

�Zi(t) 
 Zki (t)� sw
(k)
21 (�; t)

����
���� p! 0;

sup
(�;t)2B�[0;� ]

����
����m�1

X
i�j

Zj(t)w
(i;j)
22 (t)Yj(t)e

�Zj(t) 
 Zkj (t)� sw
(k)
22 (�; t)

����
���� p! 0:

Here for two column vectors, say, a and b, a
 b = ab0.

2. (Boundness) Assume the covariate processes Zi(�) and weights w
(uv)
ij (�);vij are uniformly

bounded. In addition, �0(�) <1 for � <1.

3. (Di�erentiability) Assume that the covariance function A0 is at least twice di�erentiable.

4. (Positive De�niteness of the Information) Assume matrix � = (�ij)2�2, has positive eigen-

values, where

�11 =
2X

p=1

2X
q=1

Z �

0

(
sw(1)

pq (�0; t)� sw(0)
pq (�0; t)


s(1)(�0; t)

s(0)(�0; t)

)
d�0(t);

�12 = 0;

�21 =

Z �

0

lim
m!1

m�1
X
i�j

vij 

"(
Zi(t)�

s(1)(�0; t)

s(0)(�0; t)

)
Yi(t)e

�
0

0Zi(t)fMj(Xj ^ �) +A
(100)
ij g

+

Z �

0

(
Zj(t)�

s(1)(�0; t)

s(0)(�0; t)

)
Yj(t)e

�
0

0Zj(t)fMi(Xi ^ �) +A
(010)
ij g

#
d�0(t);

�22 = lim
m!1

m�1
X
i>j

vij 
A(001)
ij ;

for i = j

A
(100)
ii = A

(010)
ii = 0;

for i 6= j

A
(100)
ij =

Z �i(�^Xi)

0

Z �j(�^Xj)

0

A
(100)
0 fs1; s2; �ij(�0)gds1ds2

A
(010)
ij =

Z �i(�^Xi)

0

Z �j(�^Xj)

0

A
(010)
0 fs1; s2; �ij(�0)gds1ds2

and

A
(001)
ij =

Z �i(�^Xi)

0

Z �j(�^Xj)

0

A
(010)
0 fs1; s2; �ij(�0)g

@

@�
�ij(�0)ds1ds2:

28

Hosted by The Berkeley Electronic Press



Here, �i(t) =
R t
0
e�

0

0Zi(s)d�0(s), A
(100)
0 (u; v; �) = @

@uA0(u; v; �)A
(010)
0 (u; v; �) = @

@vA0(u; v; �).

and A
(001)
0 (u; v; �) = @

@�A0(u; v; �). All the limits above are the probabilistic limits (provided

existence) when m!1.

5. At �0, supi;j E(Ûi;jÛ
0
i;j) < 1 and �(2) = mE(GmG

0
m) is bounded below by a positive

de�nite matrix and supm�
(2) <1.

A.3: Proof of Proposition 1

We �rst apply the Inverse Function Theorem (see, e.g. Foutz, 1977) to prove consistency. Specif-

ically we need to check the three suÆcient conditions based on a straightforward extension of

Foutz (1977), namely (1) asymptotic unbiasedness of the estimating equation, i.e. Gm(�0)
p! 0;

(2) existence, continuity and uniform convergence of the partial derivatives of the estimating

equations in a neighborhood of the true parameters, i.e. (@=@�)Gm(�) converges uniformly in

a neighborhood of �0; and (3) the negative de�niteness of the the partial derivatives of the es-

timating equations at the true values, i.e. (@=@�)Gm(�0) converges in probability to a matrix

with strictly negative eigenvalues. Rewrite Gm(�) = fÛ(1)
1 + Û

(1)
2 + Û

(1)
3 + Û

(1)
4 ; Û(2)g0, where

Û
(1)
1 = m�1

X
u�v

Z �

0

Zu(t)w
(uv)
11 (t)dM̂u(t); Û

(1)
2 = m�1

P
u�v

R �
0
Zu(t)w

(uv)
12 (t)dM̂v(t);

Û
(1)
3 = m�1

X
u�v

Z �

0

Zv(t)w
(uv)
21 (t)dM̂u(t); Û

(1)
4 = m�1

P
u�v

R �
0
Zv(t)w

(uv)
22 (t)dM̂v(t);

and

Û(2) = m�1
X
u�v

vuvfM̂u(�)M̂v(�)� Âuvg

where Âuv is as de�ned in (10).

We next show Gm(�0)! 0 in probability. Consider Û
(1)
1 (�0), with �0(t) substituted by its

Breslow estimator,

Û
(1)
1 = m�1

X
u�v

Z �

0

Zu(t)w
(uv)
11 (t)dMu(t)�m�1

X
u�v

Z
Zu(t)Yu(t)e

�
0

Zu(t)w
(uv)
11 (t)

Pm
i=1 dMi(t)Pm

i=1 Yi(t)e
�
0

0Zi(t)

=
1

m

mX
i=1

Z �

0

8<
:Zi(t)f

X
j�i

w
(ij)
11 (t)g � sw

(0)
11 (t)

s(0)(t)

9=
; dMi(t) (A. 2)

� 1

m

mX
i=1

Z �

0

1

s(0)(t)

8<
:m�1

X
u�v

Zu(t)Yu(t)e
�
0

0Zu(t)w
(uv)
11 (t)� sw

(0)
11 (�0; t)

9=
; dMi (A. 3)
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� 1

m

mX
i=1

Z
sw

(0)
11 (t)

"
(m�1

mX
i=1

Yu(t)e
�
0

0Zu(t))�1 � fs(0)(t)g�1
#
dMi(t) (A. 4)

� 1

m

mX
i=1

Z �

0

fm�1
X
u�v

Zu(t)Yu(t)e
�
0

0Zu(t)w
(uv)
11 (t)� sw

(0)
11 (t)g

�
"
(m�1

mX
i=1

Yu(t)e
�
0

0Zu(t))�1 � fs(0)(t)g�1
#
dMi(t) (A. 5)

where Mi(u) = Ni(u) �
R u
0
Yi(u) exp(�

0
0Zi)d�0(t), a martingale with respect to the �ltration

generated by each individual's own survival status and covariate processes. By condition 2, the

integrand in each summand of (A. 2) is bounded and predictable with respect to each individual's

own �ltration. Therefore, each summand in (A. 2) is a locally square integrable martingale with

respect to each individual's own �ltration (Fleming and Harrington, chap. 3, 1991). That is,

(A. 2) is a sum of mean 0 random variables. With the assumed dependence structure, (A. 2)

satis�es �-mixing condition. Hence, by the law of large number for dependent random variables

(Billingsly, chap.5, 1995), (A. 2) converges to 0 in probability. In addition,

����
���� 1m

mX
i=1

Z
1

s(0)(t)

8<
:m�1

X
u�v

Zu(t)Yu(t)e
�
0

Zu(t)w
(uv)
11 (t)� sw

(0)
11 (�; t)

9=
; dMi

����
����

�
Z

1

s(0)(t)

����
����m�1

X
u�v

Zu(t)Yu(t)e
�
0

Zu(t)w
(uv)
11 (t)� sw

(0)
11 (�; t)

����
����
�
1

m

X
(dNi(t) + e�

0

0Zi(t)d�0(t)

�

� 1 + �0(�)e
j�0j sup jZi(t)j

inffs(0)(t)g sup

����
����m�1

X
u�v

Zu(t)Yu(t)e
�
0

Zu(t)w
(uv)
11 (t)� sw

(0)
11 (�; t)

����
����

By condition 2 that the Zi(�) are uniformly bounded and �0(�) < 1 and condition 1 of the

uniform convergence ofm�1
P

u�v Zu(t)Yu(t)e
�
0

Zu(t)w
(uv)
11 (t), (A. 3) converges to 0 in probability.

Similarly, both (A. 4) and (A. 5) converge to 0 in probability. Using the exact argument, one

can show that Û
(1)
2 ; Û

(1)
3 ; Û

(1)
4 all converge to 0 in probability. One can also show that Û (2) is

asymptotically equivalent to

U (2) =
1

m

X
u�v

�
Mu(�)Mv(�)�

Z �

0

Z �

0

Yu(s)Yv(t)A0f�u(s);�v(t)gd�u(s)d�v(t)

�
;

which also converges to 0 in probability under the mixing condition by using the Chebyshev

inequality. Therefore, we conclude that Gm(�0) converges to 0 in probability.

For any �xed m, the continuity of @Gm(�)=@� in � follows from the smoothness assumption

of the covariance rate function A0(�). We then consider the large sample behavior for @Gm(�)=@�
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in a small neighborhood of �0. First, taking the derivative of Û
(1)
1 with respect to � yields

� 1

m

mX
i=1

Z �

0

2
4m�1

P
u�v Zu(t)Yu(t)e

�
0

Zu(t) 
 Zu(t)
m�1

Pm
j=1 Yj(t)e

�
0

Zj(t)
(A. 6)

�
(m�1

P
u�v Zu(t)Yu(t)e

�
0

Zu(t))
 (m�1
Pm

j=1 Yj(t)Zj(t)e
�
0

Zj(t))

(m�1
Pm

j=1 Yj(t)e
�
0

Zj(t))2

3
5 dNi(t)

= � 1

m

mX
i=1

Z �

0

2
4m�1

P
u�v Zu(t)Yu(t)e

�
0

Zu(t) 
 Zu(t)
m�1

Pm
j=1 Yj(t)e

�
0

Zj(t)
� sw

(1)
11 (�; t)

s(0)(�; t)

3
5 dNi(t) (A. 7)

+
1

m

mX
i=1

Z �

0

2
4(m�1

P
u�v Zu(t)Yu(t)e

�
0

Zu(t))
 (m�1
Pm

j=1 Yj(t)Zj(t)e
�
0

Zj(t))

(m�1
Pm

j=1 Yj(t)e
�
0

Zj(t))2

�sw
(0)
11 (�; t)
 s(1)(�; t)

fs(0)(�; t)g2

#
dNi(t) (A. 8)

� 1

m

XZ �

0

(
sw

(1)
11 (�; t)

s(0)(�; t)
� sw

(0)
11 (�; t)
 s(1)(�; t)

fs(0)(�; t)g2

)
dMi(t) (A. 9)

�
Z �

0

(
sw

(1)
11 (�; t)

s(0)(�; t)
� sw

(0)
11 (�; t)
 s(1)(�; t)

fs(0)(�; t)g2

)(
1

m

X
i

Yi(t)e
�
0

0Zi(t) � s(0)(�0; t)

)
d�0(t)

(A. 10)

�
Z �

0

(
sw

(1)
11 (�; t)

s(0)(�; t)
� sw

(0)
11 (�; t)
 s(1)(�; t)

fs(0)(�; t)g2

)
s(0)(�0; t)d�0(t): (A. 11)

Note that (A. 7) is bounded by

Z �

0

����
����m

�1
P

u�v Zu(t)Yu(t)e
�
0

Zu(t) 
 Zu(t)
m�1

Pm
j=1 Yj(t)e

�
0

Zj(t)
� sw

(1)
11 (�; t)

s(0)(�; t)

����
���� 1m

mX
i=1

dNi(t)

� sup

����
����m

�1
P

u�v Zu(t)Yu(t)e
�
0

Zu(t) 
 Zu(t)
m�1

Pm
j=1 Yj(t)e

�
0

Zj(t)
� sw

(1)
11 (�; t)

s(0)(�; t)

����
����:

Condition 2 ensures that

m�1
P

u�v Zu(t)Yu(t)e
�
0

Zu(t) 
 Zu(t)
m�1

Pm
j=1 Yj(t)e

�
0

Zj(t)

p! sw
(1)
11 (�; t)

s(0)(�; t)

uniformly in a neighborhood of �0. Hence (A. 7) converges to 0 uniformly in a neighborhood of

�0. Similarly, (A. 8) converges to 0 uniformly in a neighborhood of �0. That (A. 9) converges

to 0 uniformly follows from that each summand in (A. 9) is a locally square integrable martingale

with respect to each individual's own �ltration, and with the assumed dependence structure, (A.
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9) satis�es the �-mixing condition. In addition, (A. 10) converges to 0 by conditions 1 and 2.

Hence, @Û
(1)
1 =@� converges uniformly to (A. 11) in a neighborhood of �0.

In particular, at �0,

@
Û
(1)
1

@�
!
Z �

0

(
sw

(2)
11 (�0; t)� sw

(0)
11 (�0; t)


s(1)(�0; t)

s(0)(�0; t)

)
d�0(t)

in probability.

The same arguments show that @Û
(1)
2 =@�, @Û

(1)
3 =@�, and @Û

(1)
4 =@� converge uniformly to

Z �

0

(
sw

(1)
12 (�; t)

s(0)(�; t)
� sw

(0)
12 (�; t)
 s(1)(�; t)

fs(0)(�; t)g2

)
s(0)(�0; t)d�0(t);

Z �

0

(
sw

(1)
21 (�; t)

s(0)(�; t)
� sw

(0)
21 (�; t)
 s(1)(�; t)

fs(0)(�; t)g2

)
s(0)(�0; t)d�0(t);

Z �

0

(
sw

(1)
22 (�; t)

s(0)(�; t)
� sw

(0)
22 (�; t)
 s(1)(�; t)

fs(0)(�; t)g2

)
s(0)(�0; t)d�0(t);

respectively, in a neighborhood of�0. Hence, in particular, at�0, the (1; 1)th block of @Gm(�)=@�

converges to ��11. Similarly, we can show that other blocks of @Gm(�)=@� converges uniformly

at �0 to ��, which has negative eigenvalues by condition 4. Thus it follows from the Inverse

Function Theorem (Foutz, 1977) that, when n is suÆciently large, in a neighborhood of �0, there

exists a unique sequence of �̂ = (�̂; �̂)0 such that Gm(�̂) = 0 with probability going to 1 and

�̂
p! �0 = (�00;�

0
0)
0.

We now consider the asymptotic normality of �̂. A Taylor expansion of Gm(�̂) at the true

value �0 gives

�pm
�
@

@�
Gm(�

�)

�
(�̂��0) =

p
mGm(�0);

where �� is on the segment between �0 and �̂. With condition 5 and the assumed spatial

dependence, a central limit theorem (Guyon, chap. 3, 1995) applies to the sequence of Gm(�0)

such that
p
mf�(2)g�1=2Gm(�0)! N(0; I)

in distribution. Note that @Gm(�
�)=@� converges to �� in probability. Application of the

Slusky theorem gives
p
mf�(2)g�1=2�(�̂��0)! N(0; I)

in distribution.
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Table 1: Simulation results based on 500 runs. Estimates were calculated using the spatial
semiparametric estimating equation method assuming the Mat�ern correlation structure with 70%
and 50% censoring proportions. The true parameters are �1 = 1; �2 = �3 = 0:5; �1 = 0:5; �2 = 2:5.
Both the empirical (SEe) and estimated standard errors (SEa) are reported, along with the 95%
coverage probabilities.
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Sample Size �3 censoring Parameter Estimate SEe SEa cov prob

100 0.5 70% �1 0.9909 0.2491 0.2456 91.5%
�2 0.5068 0.2138 0.1933 99.0%

�3 0.5044 0.2149 0.1916 92.6%
�1 0.4789 0.1827 0.1915 89.2%
�2 2.0555 0.9275 0.7994 73.0%

0.5 50% �1 0.9920 0.1971 0.2033 92.9%
�2 0.5134 0.1731 0.1628 92.5%
�3 0.4831 0.1702 0.1548 90.4%
�1 0.4656 0.1520 0.1533 90.8%
�2 2.1292 0.9958 0.8916 79.0%

1 70% �1 0.9836 0.2511 0.2467 90.3%
�2 0.5112 0.2127 0.1897 89.1%
�3 0.5113 0.2066 0.1936 91.5%
�1 0.4767 0.1814 0.1935 90.6%
�2 2.3043 0.9685 0.7941 71.9%

1 50% �1 1.007 0.2052 0.2114 91.2%
�2 0.5139 0.1845 0.1659 90.6%
�3 0.4986 0.1699 0.1566 91.2%
�1 0.4796 0.1539 0.1507 88.0%
�2 2.358 1.0239 0.8176 74.3%

200 0.5 70% �1 0.9869 0.1556 0.1702 94.7%
�2 0.4940 0.1341 0.1312 92.8%
�3 0.4882 0.1421 0.1323 92.8%
�1 0.4902 0.1400 0.1397 92.2%
�2 2.3575 1.0620 0.9496 80.4%

0.5 50% �1 0.9819 0.1300 0.1441 95.1%
�2 0.4951 0.1133 0.1100 93.8%
�3 0.4792 0.1223 0.1100 90.2%
�1 0.4990 0.1011 0.1094 92.2%
�2 2.4218 0.9966 0.8051 82.4%

1 70% �1 0.9993 0.1740 0.1688 91.9%
�2 0.4909 0.1387 0.1245 92.3%
�3 0.4960 0.1303 0.1296 92.5%
�1 0.5118 0.1395 0.1380 90.0%
�2 2.6356 1.1288 0.9811 80.1%

1 50% �1 0.9838 0.1437 0.1395 92.1%
�2 0.4830 0.1204 0.1066 90.2%
�3 0.4803 0.1174 0.1076 90.2%
�1 0.5136 0.1113 0.1042 92.7%
�2 2.5033 1.0106 0.7608 84.1%

400 0.5 70% �1 0.9616 0.1055 0.1285 94.0%
�2 0.4960 0.1040 0.1032 96.0%
�3 0.5083 0.0970 0.0990 94.0%
�1 0.5077 0.1093 0.0963 94.2%
�2 2.4439 1.2866 1.0205 90.4%
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Table 2: Results of analysis of the East Boston Asthma Study under the normal transformation
model assuming the Mat�ern correlation and the marginal Cox model. Estimates were calculated
by the spatial semiparametric estimating equation method and the large sample standard errors
(SEa) were computed using the method described in Section 4.3 and the Jackknife standard errors
(SEj) were computed using the formulation (13) in Section 6.

�3 = 0:5 �3 = 1 �3 = 1:5
Parameters Estimate SEa SEj Estimate SEa SEj Estimate SEa SEj

�L 0.3121 0.0440 0.0357 0.3118 0.0430 0.0369 0.3124 0.0432 0.0349
�M 0.2662 0.3314 0.3222 0.2644 0.3289 0.3309 0.2676 0.3283 0.3340
�C 0.0294 0.1394 0.1235 0.02521 0.1270 0.1063 0.0277 0.1288 0.1083
�1 1.68E-3 9.8E-3 0.0127 0.74E-3 5.0E-3 7.1E-3 0.72E-3 5.5E-3 4.8E-3
�2 2.2977 4.974 3.708 2.1917 4.7945 4.1988 1.8886 6.5005 5.01617
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Figure 2: The empirical density plots of the model parameter estimates from the simulation study
when m = 200; �3 = 0:5 and censoring proportion =50%
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