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A b s t r a c t .  Linear regression models with random coefficients express the idea 
that  each individual sampled may have a different linear response function. 
Technically speaking, random coefficient regression encompasses a rich variety 
of submodels. These include deconvolution or affine-mixture models as well as 
certain classical linear regression models that  have heteroscedastic errors, or 
errors-in-variables, or random effects. This paper studies minimum distance 
estimates for the coefficient distributions in a general, semiparametric, random 
coefficient regression model. The analysis yields goodness-of-fit tests for the 
semiparametric model, prediction regions for future responses, and confidence 
regions for the distribution of the random coefficients. 
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1. Introduction 

In a r a n d o m  coefficient linear regression model ,  the  response Yi of individual  
i is re lated to the  covariates X~ th rough  the linear equat ion 

(1.1) Yi = Ai + XiBi ,  1 <_ i <_ n, 

where the coefficients (Ai, Bi) are r a n d o m  elements.  For the  purposes  of this pa- 
per, Yi is a p × 1 r a n d o m  vector  of responses,  Xi  is a p × q r a n d o m  ma t r i x  of 
covariates,  and the  coefficients (Ai, Bi) are p × 1 and q x 1 r a n d o m  vectors  respec- 
tively. The  triples {(Ai, B~, Xi)}  are assumed i.i.d, and the coefficients (A~, Bd are 
independent  of the covariates Xi  for every i. The  dis t r ibut ions FAB of (Ai, Bi) and 
Fx  of Xi are unknown,  though  possibly res t r ic ted in ways t ha t  will be described 
later. Observed is the  sample  S,~ consisting of the n pairs  {(Y~, X~) : 1 < i < n}. 
The  initial goals are to es t imate  FAB and to test  the goodness-of-fit  of model  (1.1). 

The  regression model  jus t  described expresses three ideas abou t  the data .  
Firs t  is the  supposi t ion t ha t  the i - th  response Yi depends  l inearly on the  i - th  
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set of covariates Xi. Second is the notion that the coefficients (Ai, Bi) of the 
linear response function can vary with i. Third is the belief that S~ behaves 
like a simple random sample from a large population. The first two ideas are 
embodied by equation (1.1). The third idea is expressed by the i.i.d, assumption 
on {(~ ,  X~, A~, Bd}.  

Model (1.1) is equivalent mathematically to a multivariate linear regression 
model with random regressors and structured heteroscedastic errors. To see this, 
write Ai = a + Ai and Bi = b + / ) i  where a = EAi and b = EBi. The classical 
homoscedastic linear regression model then corresponds to the special case in which 
the distribution of B i is supported in one point. In the econometric literature, 
models like (1.1) have been used to analyze panel data (of. Hsiao (1986)) and to 
investigate heteroscedasticity (cf. Hildreth and Houck (1968), Goldfeld and Quandt 
(1972), Chapter 3, and Amemiya (1977)). Surveys of work on random coefficient 
regression models, on their autoregressive analogs, and on models combining both 
features are given by Raj and Ullah (1981), Chow (1983), Nicholls and Pagan 
(1985), and Newbold (1988). 

In the statistical literature, various submodels of (1.1) are well-established un- 
der several labels. When the distribution of Xi is supported on one known point, 
then (1.1) includes the random effects models of ANOVA (cf. Scheff~ (1959), Chap- 
ter 7) and the models studied in nonparametric deconvolution (cf. Fan (1991), van 
Es (1991)). Errors-in-variables linear regression (cf. Spiegelman (1979)) corre- 
sponds to a submodel in which the distribution of Bi is supported in one unknown 
point. When the {Xi : 1 < i < n} are not observed but have a known distribution, 
then (1.1) becomes an affine-mixture model. 

Much of this literature on model (1.1) seeks to estimate the first two moments 
of FAB, often under the additional assumption that Ai and Bi are independent 
or uncorrelated. Beran and Hall (1992) first treated nonparametric estimation 
of FAB. Under the assumption that Ai and /?i a re  independent scalar random 
variables, their paper gives consistent nonparametric estimators for the marginal 
coefficient distribution FA and FB. Because the construction requires estimating 
many moments of (Ai, Bi), it is difficult to extend their method to the multivariate 
model (1.1). The asymptotic distributions of their estimators are unknown. 

Beran and Millar (1991) introduced and studied a class of nonparametric min- 
imum distance estimators for FAB. Their estimation idea is to fit the distribution 
of (Y~, X~) under model (1.1) to the empirical distribution of the sample S~. The 
criterion of fit is the distance between these two distributions, measured in a met- 
ric for weak convergence. Under conditions that ensure the identifiability of FAB, 
such nonparametric minimum distance estimators are consistent for FAB. 

Particularly tractable are the metrics for weak convergence generated by L2 (Q) 
norms on characteristic functions, Q being any probability measure with full sup- 
port on R pq+;. For such Hilbertian distances and for FAB restricted to a certain 
parametric family of distributions (see Example 2 below), Beran and Millar (1991) 
established nl/2-consistency of the minimum distance estimator for FAB. This re- 
sult is the starting point for the semiparametric model and asymptotic distribution 
theory that are developed in the present paper. 

Consider the semiparametric version of model (1.1) in which the unknown 
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distribution Fx of Xi is unrestricted but the unknown distribution of (Ai, Bi) 
belongs to a parametric family 5CAB = {FAB(O) : 0 E (9}. Here O is an open 
subset in R k. Three examples illustrate the flexibility of such models: 

Example 1. FAB(O) is a discrete distribution supported on r distinct sites 
{si : 1 < i _< r} in I~ p+q. These sites are ordered by their first coordinates, 
with ties broken by second coordinate ordering, and so forth. The probability 
supported on each site s~ is 1/r. Here 0 = @1, s2 , . . . ,  s~) and the dimension of 0 
is k =  (p + q)r. 

Example 2. The support of FAB(0) is discrete as in Example 1. The prob- 
r - - 1  

ability supported on site si is now pi, where Pi > 0 and ~'-i 1 Pi < 1. Here 
0 = @l,s2, . . . ,s~,Pl , . . . ,P~-~) and the dimension of 0 is k = (p + q + 1)r - 1. 
This model was analyzed in Beran and Millar (1991). 

Example 3. )CAB is a canonical exponential family model indexed by 0. Here 
0 is the interior of the natural parameter space. 

The models of Examples 1 and 2 are rich enough to approximate a wide range 
of distributions for (Ai, Bi). These two models do not induce classically regular 
semiparametric models (1.1), in the sense of Begun st al. (1983), because the 
support of FAB(O) depends on 0. However, the model of Example 3 is classically 
regular in this sense. On the other hand, all three examples are regular from the 
viewpoint of the minimum distance procedures studied in this paper. 

Section 2 gives general conditions under which the minimum L2(Q)-distance 
estimator 0~ of 0 is asymptotically normal. Under these same conditions, the 
minimized distance between the empirical characteristic function of the sample S~ 
and the modelled characteristic function of (Y~, Xi) also has a limiting distribution. 
Both limiting distributions, especially the latter, are complicated analytically. For 
purposes of statistical inference, it is natural to consider bootstrap estimates of 
these and related sampling distributions. The theory in Section 2 implies the 
consistency of such semiparametric bootstrap distributions and of their quantiles. 

However, calculation of the minimum distance estimator 0~ requires a mini- 
mization over a k-dimensional parameter space, where k is typically not small (cf. 
Examples 1 and 2 above and the computational discussion in Beran and Millar 
(1991)). Thus, directly bootstrapping 0, several hundred times or more may not 
be practical. Subsection 3.1 suggests replacing the bootstrap recalculation 0~ of 

0~ with a tinearized approximation motivated by the asymptotics. Bootstrap dis- 
tributions based on this approximation retain the essential consistency property 
while being much easier to compute. 

Subsection 3.2 uses the linearized bootstrap to construct a goodness-of-fit 
test for the semiparametric random coefficient regression model and to construct 
confidence regions for the coefficient distribution FAS(O). In another direction, 
Subsection 3.2 also develops prediction regions for Yn+l, given X~+I = x and the 
learning sample S~. Section 4 proves the main results of the paper. 
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2. Minimum distance fits 

The main topics of this section are: the semiparametric random coefficient 
regression model; definition of the minimum distance estimator 0N and of the as- 
sociated minimized distance; and the asymptotic distributions of both statistics. 
Triangular array asymptotics are used throughout. This approach establishes the 
local uniformity of the weak convergence studied and thereby ensures the consis- 
tency of the natural semiparametric bootstrap estimates. 

2.1 The model and procedures 
To the basic structure of model (1.1) described in the first paragraph of the 

Introduction, we add the following elements: 
FAB(O) denotes the distribution of (A~,Bi) which belongs to a family 
FAB = {FAB(O) : 0 E O} of distributions on RP+q; 
The parameter space O is an open subset of Rk; 
F x  denotes the distribution of Xi, which is restricted to a family 5 x  of 
distributions on RPq; 
P(0, Fx)  denotes the distribution of (Y~, Xi) under model (1.1); 
P~ denotes the empirical distribution of the sample S~ = {(Yi, Xi) : 1 < 
i _< n}; 
Fx,7% denotes the empirical distribution of the {Xi; 1 < i < n}. 

The semiparametric random coefficient regression model asserts that the observ- 
able pairs {(Y~, Xi) : 1 < i < n}, which constitute the sample S~, are i.i.d., with 
common distribution belonging to the family {P(O, Fx)  : 0 E (9, F x  E ~ x } .  
Examples 1 to 3 in the Introduction illustrate the scope of this model. 

To define the Beran and Millar (1991) minimum distance estimates for 0 re- 
quires the characteristic functions of P~ and of P(O, Fx) .  The first of these, the 
empirical chf ~ ,  is given by 

7% 

(2.1) ~(~'  %) = n-1 E exp[/@, ~j} @ i<u, Xj}], 
j=l  

where t C R p, u E R pq and <-, .} denotes the inner product of appropriate dimen- 
sion. Let ~(0) denote the chf of FAB(O), 

(2.2) ~(t, V; 0) = Eexp[i(t ,  A} + i(v, B}], 

where t E R p, v E R q and (A, B) has distribution FAB(O). The chf of P(O, Fx)  is 
then ~(0, Fx) ,  defined by 

(2.3) ~(t, u; O, Fx)  = E{qo(t, X}t; O) exp[i<u, Xj}]}, 

where ~ E R p, u E 1~ pq, and Xj denotes the transpose of Xj ,  which has distribution 
Fx. 

Suppose P1 and P2 are any two distribution o n  R p+pq, with chf's (/)1 and V)2 
respectively. Let Q be a probability measure o n  J~P+Pq that has full support and 
let I1" II denote the L2(Q) norm on chf's: 

(2.4) II~il' = [J l~i,2dQ] 1/2 
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Then, the distance between distributions P1, P2 defined by II~-~ll metrizes weak 
convergence of probabilities on R p+pq. Moment-matching considerations suggest a 
choice of Q that puts most of its mass near the origin. However, this aspect is not 
important for the asymptotic theory in this paper. We say that 0~ is a minimum 
distance estimator of 0 if 

(2 .5)  I1~ - ~ ( < ,  Fx,~)ll = inf I1~ - ~(0,  Fx,~)II + o(~-*/2)-  
0~(9 

Let 

(2 .6)  Tn = )%1/2 inf  ]l@~- ~(0, Fx,~)ll 
0C(9 

denote the rescaled minimized distance between the empirical distribution and the 
fitted semiparametric model. Relatively large values of T~ are evidence that this 
semiparametric model does not fit the sample. Later, in Subsections 2.2 and 3.2, 
we will see how to quantify the phrase "relatively large". 

In definition (2.5), the distribution of Fx is estimated by the empirical distri- 
bution Fx,~. One can instead estimate the pair (0, Fx) by the minimum distance 
criterion. The additional computational complexity of this joint estimation is 
daunting, however. 

2.2 Asymptotic distributions 
The asymptotic distributions of 0~ and of the minimized distance T~ will 

be derived under certain regularity assumptions on the semiparametric model 
{P(O, Fx) : 0 E (9, Fx  E 5x} .  These assumptions are weak enough to include the 
three examples in the Introduction. Subsection 2.3 gives details on this point. In 
broad outline, the reasoning follows the minimum distance literature (cf. Pollard 
(1980) and references therein). Some additional argument is needed to handle 
the effects of estimating the infinite-dimensional nuisance parameter Fx by the 
empirical distribution Fx,~. 

Let (00, Fx,o) denote a fixed point in 19 × 9cx. We will require the following 
assumptions: 

A1 (strong identifiability). If I]%0(0, Fx) - ~(0o, Fx,o)ll --+ O, then 0 ~ 0o. 
A2 (norm differentiability). If Fx ~ Fx,o and 0 --+ 00, then there exists a 

k × 1 vector function To = 7(00, Fx,o), whose components belong to L2(Q), such 
that 

(2.7) IO - Ool -x  [1~(o, r x )  - ~ (oo ,  F x )  - 40 - 0o, ~o> Ii ~ o. 

A3 (nonsingularity). There exits a finite positive constant C such that 

(2 .s)  II (t, ~o> It ~ Gir l  

for every t E R k. 
Note that the hypothesis in A1 implies that Fx ~ Fx,0. Convenient sufficient 

conditions for A1 to A3 are the topic of Subsection 2.3. 
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To state the basic result in the asymptotic behavior of On and T~ requires 
a little more notation. For any sequence {On c 19} such that {nU2(O~ - 0o)} is 
bounded and for any sequence {FX,n E ~cX} such that F~C,n ~ FX,O, let 

(2.9) W n  ~- Ttl /2[@n - "O(On; F x , n ) ]  - n l / 2  [1/)(00, /~x,n)  - if)(00, faX,n)] .  

This is a complex-valued process whose realizations are elements of L2(Q). Let 

(2.10) {n = argmintcRk ltWn - (t, ~lo} II. 

By easy algebra, the unique minimizing value in (2.10) is 

(2.11) [n= If n(OoV'o)dQl-a f ~(~oW~)dQ, 
where ~0 denotes the coordinatewise complex conjugate of the vector function rl0 
and ~ denotes real part. The matrix inverse exists whenever A3 holds. 

PROPOSITION 2.1. Suppose that assumptions A1 to A3 are satisfied, that 
{nl/2(On - 00)} is bounded and that Fx,n ~ Fx,o. Then, under the sequence of 
models {P(On, Fx,~)},  

(2.12) nl/2(On - on) = ~n + op(1) 

and 

(2.13) T,~ = inf liWn - <t,~0)ll + Op(1) 
tCR k 

= I1% -(~n,'7o)ll + op(1). 

The proofs of this and all other Propositions appear in Section 4. To derive 
the asymptotic distributions of {nl/2(On - On)} and of {Tn} from Proposition 2.1, 
we need to consider the weak convergence of the processes {Wn}. Let {Z(y, x) : 
y E R p, x E R vq } be a gaussian process with mean zero and covariance structure 

(2.14) Cov[Z(y, ~), z(y', x'); = c ( y  A v', ~ A ~1) _ Co(y,  x )Co(y ' ,  x ' )  

where Go is the cdf of P(Oo, Fx,o) and x A x I denotes the vector of coordinatewise 
minima. Define the complex-valued process W0 = {W0(t, u) : t E R f,  u E R pq } by 

(2.15) Wo(t, 4) : f f  exp[i<~, y> + i<~, x>]dZ(v, x) 

- f / ~ ( t ,  ~'t; 0o) exp[i<~, x>]dZ(v, x). 

Under {P(0n, Fx,n)},  the processes {Wn} converge weakly, as random elements of 
L2(Q), to the process W0. This follows from the central limit theorem in L2(Q). 
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Let H~(O, Fx) denote £[n~/2(0~ - 0 )  ] P(O, Fx)] and let J~(O, Fx) denote 
£[T~ I P(O, Fx)]. Correspondingly, let 

(2.16) 

and 

(2.~r) 

{E/ 117 } H(Oo, Fx,o) = C ~(~o~;)dO Ta(~oWo)dC2 

J(Oo,Fx.o) = Z; ~ inf IIWo - (t,~0)ll}. 
' [ . ~ C R k  

Note that H(Oo, Fx,o) is a multivariate normal distribution with mean zero. On 
the other hand, J(Oo, Fx,0) can be represented as the distribution of the square 
root of a weighted sum of independent chi-squared random variables, the weights 
being functions of (00, Fx,o). 

PROPOSITION 2.2. Suppose that the assumptions for Proposition 2.1 hold. 
Then, under the sequence of models {P(On, Fx,n)}, 

(2.~s) 
H~(0~, Fx,~) ~ H(Oo, Fx,o), 
&(0n, fx,~) ~ J(Oo, Fx,o). 

Hence also 

in probability. 

Hn(0., Yx,n) ~ H(Oo, Fx,o), 

&(0n, $x,.~) ~ J(00, rx,o) 

The random probability measures H~(0n,/6X,n) and J~(0n, Fx,~) are the natu- 
ral semiparametric bootstrap estimates for the sampling distributions H~ (On, Fx,n) 
and J~(0n, Fx,~). By Proposition 2.2, these bootstrap estimates are consistent 
and so provide a basis for statistical inference concerning 0 or the semiparamet- 
ric random coefficient regression model itself. For instance, the goodness-of-fit 
test that rejects the assumed model whenever T~ exceeds the (1 - a)- th quart- 
tile of J~(0n,/?x,~) has asymptotic probability c~ of rejecting when the model is 
correct. Unfortunately, the calculation of the desired quantile by straightforward 
Monte Carlo methods is not easy because of the minimization step. Nor is it 
convenient to compute the (1 - a)- th quantile of the estimated asymptotic dis- 
tribution J(0n, Fix,s), which is an alternative asymptotically valid critical value 
for the test. Subsection 3.1 describes how these computational difficulties can be 
relieved through a linearized bootstrap algorithm. 

2.3 Checking assumptions 
Assumptions A1 to A3 on the model {P(0, Fx)  : 0 C O, Fx  E ~ x }  are 

abstract in character. The following discussion provides more concrete sufficient 
conditions under which these assumptions hold. 
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Sufficient conditions for A1. Suppose that JUAB consists of probabilities sup- 
ported on a fixed compact and that {x't : x E support (Fx,0)} contains a non- 
empty open set in R q for every t # 0 in R p. Then the hypothesis in A1 implies 

(2.19) FAB(0n) FAB(O0) 

by Proposition 2.2 of Beran and Millar (1991). The desired conclusion is now 
equivalent to strong identifiability of the parametric model 5CAB. 

Sufficient conditions for A2. Suppose that for every (t, u) E R p+pq and for 
every (0, Fx)  in a neighborhood of (00, Fx,o), the chf ~(t, u; 0, Fx )  has partial 
derivatives O?o,Fx (t, u) : 1 < j <_ k} with respect to 0; and that these partial 
derivatives are continuous in (0, Fx)  over a neighborhood of (00, Fx,0). Suppose 
as well that the convergence 0 ~ 00, Fx ~ Fx,o implies 

(2.20) II o,Fx,jkl b00,Fxo,jll < 1 j k. 

Then A2 holds with r]0 = {~?Oo,rx,o,j : 1 <_ j <_ k}. The proof rests upon the 
fundamental theorem of calculus and the Cauchy-Schwarz inequality. 

Equivalent condition for A3. Since 0 is finite dimensional, nonsingularity in 
the sense of A3 is equivalent to linear independence of the components of r]0 (cf. 
Pollard (1980)). 

We illustrate the usefulness of these sufficient conditions by applying them 
to Example 1 of the Introduction. The analysis for Examples 2 and 3 is not 
significantly harder. 

Example 1. (continued). Suppose for simplicity that p = q = 1, so that the 
sites in 0 = ( e l , . . . ,  s~) have the form sj = (aj, by), where aj and b 5 are real. Here, 
(2.3) reduces to 

r 

(2.21) 9(t ,  u; 0, Fx)  = r -1 E exp[itaj + ixtbj] exp(iux)dFx (x). 
j = l  

Suppose that f t2dQ(t)  is finite and #(Fx)  = f IxldFx(X) is finite and weakly 
continuous over all F x  E -7-2. The components of ~?O,Fx (t, u) are the k = 2r 
elements 

09(t,  U) 
[ it exp[itaj + ixtbj] exp(iux)dFx (x), r-1 

Oaj 
(2.22) d 

O~(t, U) 
- r -1 / ixt exp[itaj + ixtbj] exp( iux)drx  (x): 

Obj 

as j ranges from 1 to r. The sut~cient conditions for A2 hold by dominated 
convergence. 

Since FAB(O) puts mass 1/r on each of the distinct, partially ordered sites 
{sj : 1 <_ j <_ r}, the strong identifiability of the parametric model ~'AB is evident. 
Hence, A1 holds if the support of Fx,0 contains a non-empty open set and the sites 
{si} lie within a given compact. Finally, A3 holds because the partial derivatives 
(2.22) are linearly independent. 
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3. Statistical inference 

Using the asymptotic distributions or bootstrap distributions of Proposition 
2.2 is extremely computer-intensive. This section introduces a simpler linearized 
bootstrap algorithm for estimating sampling distributions of interest and then 
solves three inferential problems. These are: testing the fit of the semiparametric 
model {P(O, Fx)  : 0 E (9, Fx E 5rx}; devising a prediction region for Yn+l, given 
Xn+l = x and the learning sample S~; and constructing a confidence region for 
the distribution FAB (0) of the random coefficients. 

3.1 The linearized bootstrap 
Let S~ = {(Yi ,X~) : 1 < i < n} denote a bootstrap sample of size n 

drawn from the fitted random coefficient regression model. That  is, the con- 
ditional distribution £[(Yi*,X*) I Sn] is P(On, Fx,~) for every i and the pairs 
{(Y/*, X[)  : 1 < i < n} are conditionally independent, given Sn. Write F~ for the 
empirical chf of S~, F) ,  n for the empirical distribution of the {X[ : 1 < i < n}, 
and 0~ for the minimum distance estimator of 0, recalculated from S~. In other 
words, 0~ satisfies 

/ * * = * I (3.1) I1~o; - v(o~, FZ~)I I  inf I[~; - ~ ( 0 ,  FZ~)I~ + o(~</~)  • 
0E@ 

The two bootstrap distributions that were defined in Proposition 2.2 can be 
re-interpreted as conditional distributions: 

H~(On,Px,n) = ~[~1/~(0;  - 0n) I & ] ,  

( 3 . 2 )  Jn(On, Fx,n) = ~ [ 7tl/2 o~einf lifo; - ~(o, Fz~)II  I & ]  • 

It is these representations that justify the usual Monte Carlo approximations to 
the two bootstrap distributions. Yet, it is the difficulty of the minimization step 
that may render this direct Monte Carlo approach impractical. 

The asymptotic approximations established in Proposition 2.1 suggest the 
following simplification. By analogy.with (2.9), define the process 

(3.3) - *  * - 

This is close to but. not quite a bootstrapped version of W~. Let 77~ = ~70(t)~, ~'x,~) 
and let 

(3.4) ~; = 0n + ~-~/~  ~ ( ~ ' ~ ) d Q  r ~ ( ~  ~ )d0 .  

The statistic 0* is a linear approximation to 0* that is motivated by conclusion 
(2.12) of Proposition 2.1. The linearized bootstrap estimates for the sampling 
distributions H,~(On, Fx,,~) and J~(0~, Fx,n) are defined to be 

(3.5) 
J~(o~, f~x,n) ~b~/~ll~on -* = * - ¢(o,~, F~,,~)II] 
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by analogy with (3.2). Both of these distributions admit computationally easier 
Monte Carlo approximations than do H~(0~,/?x,~) and J~(0~, Fx,~). 

Proposition 3.1 below, which justifies the definitions (3.5), requires an addi- 
tional regularity property on the model {P(O, Fx)  : 0 E O, Fx E iFx}: 

A4 (norm continuity of the derivative). If Fx ~ Fx,0 and 0 --~ 00, then the 
components {~0,fx,j : 1 < j < h} of the derivative in A2 satisfy 

(3.6) [l~0,F~,j - ~0o,F~ o,5 [I ~ 0, 1 < j _< k. 

The sufficient conditions for A2 that are given in Subsection 2.3 imply A4, by 
Vitali's theorem. 

PROPOSITION 3.1. Suppose that the assumptions for Proposition 2.2 and as- 
sumption A4 hold. Then, under the sequence of models { P( O~, Fx,~)}, 

(3.7) 

zn probability. Moreover, 

(3.8) O* -- O; = Op(n -1 /2)  

under the joint distribution of (Sn, S~). 

The linearization of 0~ and the subsequent analysis of 0~ resemble, in logical 
structure, LeCam's (1969) study of one-step maximum likelihood estimates. Re- 
lated as well is the algorithm of Schucany and Wang (1991), who use essentially 
a one-step Newton-Raphson approximation in order to bootstrap estimators that 
are defined iteratively. 

3.2 Applications to inference 
We will now describe three statistical methods that illustrate the usefulness 

of Propositions 2.2 and 3.1. 
A. Testing model-fit. Does the semiparametric model {P(O, Fx)  : 0 C @, Fx E 

5 x }  fit the data? Let c~(a) denote the (1 - c~)-th quantile of the linearized 
bootstrap distribution ]n(0n, fix,n). Then the test which rejects whenever Tn 
exceeds c~(a) has asymptotic rejection probability a under the null hypothesis 
that the model is correct. This conclusion follows fl'om Propositions 2.2 and 3.1, 
by the reasoning for Theorem 2.1 and Example 1 in Beran (1986). The test statistic 
T~ can be replaced by n 1/2 I1~ -~(0~,  Fx,~)II, in view of (2.5) and (2.6). The test 
is consistent against all alternatives because T~ tends in probability to oc under 
each alternative, while c~(a) does not. 

B. Confidence sets for FAB(O). For the models of Examples 1 and 2 in the 
Introduction, the cdf of FAB(O) is not a differentiable function of 0. Natural 
confidence sets for FAB(O) can nevertheless be constructed in the following way: 
For Example 1, we devise simultaneous confidence boxes for the r sites on which 
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the uniform probabil i ty distr ibution FAB is supported.  For Example 2, we add to 
these confidence boxes simultaneous confidence intervals for the site probabili t ies 

Consider Example 1 with p = q = 1, so that  each suppor t  site si = (ai, bi) lies 
in R 2 and 0 = (a~.,bl,...,a,r,b~)" has dimension k = 2r. Let U = {4-e~ : 1 < i < 
k}, where the {ei} are the s tandard or thonormal  basis for R ~. Let K~,~(., O, Fx)  
denote the cdf of £[nl/2u'(O~ - O) I P(O, Fx)] and let K,.,(., O, Fx)  denote the cdf 
of Z:{max~cg K,,,,o [nl/2u '(On - O) 1 I P(O, Fx )  }. The linearized boots t rap  est imates 
for these two cdf 's  are 

(3.9) 

and 

( 3 . 1 o )  

respectively. 
Let 

R~(x,O~,f 'x ,~)  = P," ~maxR ,~rn l / 2u ' (O  * - ~)~)] I S~}  ~ uEU ~ L ~ n 

(3.11) = u .  

These critical values can be approximated by a one-stage resampling algorithm 
(see Beran (1988), Section 2.2). A simultaneous confidence set for the components  
of 0 is then 

(3.12) Cn ~- {0 E 0 : %'0 ~ 1£10 n - -  %-1/2dn,u((2 ) Vt t  E U},  

which is the intersection of the confidence half-spaces 

(3.13) Cn,u = {0 E 0 : %t'O > u'On -- U--1/2jn,u(O~)}. 

Geometrically, C~ consists of confidence boxes for the sites {(ai, bi)} in R 2, cen- 
tered at the es t imated site values {(~,~, D~,~)}; here the pair (an,i, D~,~) consists of 

components  2i -- 1 and 2i of 0n. The sides of these confidence boxes are parallel 
to the two coordinate axes of R 2. 

The point of construction (3.12) is twofold. First, under the assumptions for 
Proposi t ion 3.1, 

(3.14) lira P'~,Fx,,, [0n ~ G ]  = a.  
n - - - +  O O  

Second, the confidence set C~ is balanced in the sense that  

(3.15) 

for every u E U, the limit not depending on u. These two results follow from 
Theorem 4.1 in Beran (1988). 

Geometrically, (3.15) means that the four halfspaces Un,~ whose boundaries 
define the sides of the confidence box for site (ai, bi) each have the same asymptotic 
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probability of containing (ai, bi); and that these asymptotic probabilities do not 
depend on i. In this way, the r confidence boxes defined by C~ give a clear picture 
of the relative precisions with which we can estimate the sites {(at, b~)}. At the 
same time, the simultaneous coverage probability for 0 is asymptotically a. 

Confidence set C~ for 0 induces a confidence set D~ for FAB (0) through 

(3.16) D~ = {FAB(O) E 5AB : 0 E C~}. 

The correspondence between C~ and D~ is one-to-one. The foregoing discussion 
extends in an obvious way to Example 2. 

C. Prediction sets for Y,~+I. We turn to the question of predicting Y~+I under 
the model {P(O, Fx) : 0 E 0, Fx  E Jrx}, given X,~+~ = x and the learning sample 
S~. Suppose p = q = 1. For every real x, let Gx(., 0) denote the cdf of A~ + xBi 
under the semiparametric model. Let 

(3.17) 
Cx,U(a) = ax l [ (1  + Oz)/2, 0n] 

and define the prediction interval for Yn+l, given Xn+l = x, to be 

(3.18) D~,,~ = {y:  dx,L(a) < y < t~,u(a)}. 

The conditional coverage probability of Dx,~ for Y~+I, given Xn+ 1 = 33 and 
S~, is 

(3.19) CP(Dx,,~ I x, S~,O) = G~[c~,u(a),O] - Gx[Cx,L(a),O]. 

The coverage probability of Dx,~ for Y~+L, given X~+I = x, is 

(3.20) CP(Dx,n Ix,0) = Pr[Yn+l E Dx,n I Xn+l = x,O] 

= E[CP(D~,~ I x, Sn, 0)) 

the expectation being taken with respect to the distribution of the learning sample 

Suppose that the conditional cdf Gx(t, O) is continuous in t for every 0 E O 
and 0~ converges in probability to 00. Proposition 2.1 gives sufficient conditions 
for the latter. Then, as n increases, 

(3.21) CP(D~,~ I x, s . ,  0o) p ---+ 0~, 

CP(Dx,~ I x, Oo) ~ a 

for every support point of -Fx o. Indeed, if {0n} is any sequence converging to 00, 
then Gx(', 0n) converges weakly to Gx(., 00) because FAs(O~) ~ FAs(Oo) under 
assumption A2. The convergence is uniform in the first argument, by Polya's 
theorem. Thus 

(3.22) sup IGx(t, 0~) - Gx(t, oo)1 ~ o, 
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which implies 

(3.23) 
G~[~x,L(C~), 00] = (1 - c0/2 + op(1), 

Gx[~x,g(a), 00] = (1 + c~)/2 + Op(1) 

and therefore (3.21). 
An important assumption in this argument is the continuity of Gx (t, 0) in t. 

This condition does not hold in Examples 1 and 2 of the Introduction but does 
hold in Example 3 if FAB (0) has a Lebesgue density for every 0 C (9. In Examples 
1 and 2, not all coverage probabilities a are possible, because G~(-, 0) is a discrete 
distribution. This need not be a problem when the number of support sites is 
moderately large. 

It follows from the argument above that the prediction interval Dx,~ is 
probability-centered in the sense that both Pr[Y~+I > 5~,~(c~) [ Xn+ 1 = z ,  00] 

and Pr[Yn+ 1 < Cx,L(OZ) [ X n + l  = z, 00] converge to the common value (1 - a ) /2  
as sample size increases. The concept of a probability-centered prediction region 
can be extended to q-dimensional responses ~ + 1  by a projection-pursuit approach 
(Beran (1991), Example 2). 

4. Proofs 

The arguments for Propositions 2.1, 2.2 and 3.1 rest upon the following purely 
analytical result. In the statement below, ~ denotes the chf of £[(Y~, X~)], which is 
not required at this point to how a distribution within the semiparametric model 
{P(0, F x ) :  0 ~ O, Fx  ~ ~ x } .  

PROPOSITION 4.1. Suppose that assumptions A1 to A3 are satisfied and that 

(4.1) inf I1~ - ~(0 ,  Fx) l l  = 
0EO 

inf I1~ - ~(Oo, F x )  - (t,~0>lr 
t E R  k 

+ o(11~ - ~ ( 0 0 ,  F x ) I t ) .  

PROOF. The hypothesis on ~ implies that Fx ~ Fx,o and therefore I I ~ -  
~(00, Fx)ll ~ 0. Let N be any neighborhood of 00. By the triangle inequality, 

(4.2) inf I1~ - ~ (0 ,  Fx) l l  - rl~ - ~ ( 0 0 , F x ) l r  > inf II@(0, F x )  - ~ / (00 ,Fx) l l  O~N -- O~N 

- 211~ - ~ ( 0 o ,  F x )  II. 

By A1 and the convergence above, the right side of (4.2) is ultimately positive. 
Thus 

(4.3) inf [199 - @(0, Fx) l l  = inf 11~ - ~(0 ,  F ~ ) I I  
0EO OcN 

for all sufficiently small values of do = II~ - ~ ( 0 o ,  Fx,o)ll. 
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Let 

(4.4) 
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~o = V ( o ,  F x )  - ~ (Oo,  F x )  - (o - Oo, vo) .  

By A2, there exists a neighborhood No of 0o such tha t  H~oll ~ 2-1ci o 0ol if 
0 E No and do is sufficiently small. Here C is the positive, finite constant of 
assumption A3. By the triangle inequality and A3, 

(4.5) lip - ~(0, Fx)ll - lip - ~(0o, Fx)ll 

_> I1(O - Oo,,o)tl -Ilroll - 211~ - ~(Oo,Fx)ll 
>_ 2-1C10 - Ool - 21t~ - @(Oo,Fx)ll 

provided 0 E No and do is sufficiently small. 
Let d = I1~-~(0o,  Fx)ll .  The right side of (4.5) is strictly positive if 10-0ol > 

4d/C. Thus 

(4.6) inf II~- ~(O, Fx)II > inf I I~-  ~(O, Fx)II 
OCNo 10--Oo[<_4d/C 

for all sufficiently small do. In view of (4.3), (4.6), and the trivial reverse inequality, 

(4.7) inf I1~-~(O, Fx)II = inf I I F -  ~(0, Fx)II 
o~e IO Ool<_4d/c 

provided do is sufficiently small. 
Write 0 = 0o + t. From A2, 

(4.8) inf I I~ -~ (Oo+t ,  f x ) l l - -  inf H~-~(Oo,Fx)-(t,  rlo}l[+o(d) 
Itl<4d/C Itl<_4d/C 

as do ~ 0. This approximation and (4.7) yield 

(4.9) inf p - ~ ( O ,  Fx)ll = inf II~-~(0o, Fx)-(t,~o)tl+o(d) 
OEO Itl<_4d/C 

as do --+ 0. 
It remains only to show that  the infimum on the right side of (4.9) can be 

replaced by the infimum over all t E R k. Indeed, if Itl > 4d/C, then by A3 

(4.1o) I1~-~(Oo,  F x ) -  tt,,otll _> II(t,~olll-  I1~-  ¢(Oo,Fx)ll  
>_ Cl t l  - d > 3d 

_> inf I1~-  ~ ( 0 o , F x )  - <t,r]o>l]. 
tER k 

This completes the proof of Proposition 4.1. 

PROOF OF PROPOSITION 2.1. Consider the empirical process 

(4.11) Vn = nl/2[qSn - g)(0o, ?x,~)]- 
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From the definition (2.9) of Wn and A2, 

( 4 . 1 2 )  IIV~ - w ~  - ~ / ~ ( ( o ~  - oo) ,  ~o)II = o ( 1 ) .  

Since Wn ~ Wo, the random variables {llV~ll} are tight. Thus, by Proposition 4.1 
and (4.12), 

(4.13) T,~ --- n 1/2 inf II~n - ~ (0 ,  Px,~)II  
0EO 

= in f  IIV~ - (t,  ~o)11 + o p ( 1 )  
t 

= inf  IIWn - (t, ~o)11 + op(1)  
t 

as asserted in (2.13). 
Let 0n be any minimum distance estimator and let 

(4.14) Un = n l /2 l l@n - ~(On,  Fx,~)II.  

From (4.7) in the proof of Proposition 4.1, 0n = 0o + n - l ~ 2 & ,  where ultimately 
I&l -< 411V~ll/C. Equivalently, 0~ = 0N + n - 1 / 2 g n ,  where gn = & - n l / 2 ( O n  - 0o). 

Assume without loss of generality that  Wn ~ Wo (Skorokhod versions) and that  
n l / 2 ( O n  - 0o) ---' h (compactness). Then also V~ ~ Wo + (h, rio} and, by (4.13), 

(4.15) U~ ~ IlWo - (to, ~o)11 

where to is the unique value of t E R ~ that  minimizes IIWo - (~, 70)H- 
Now suppose that  gn - t n  74 0, for tn defined in (2.11). Since tn ~ to and I~nl 

is bounded asymptotically, assume without loss of generality (compactness) that  
gn --+ So ¢ to. Then, from (4.14) and A2, 

(4.16) Un = IIV~ - (h + so,~o)ll  + o ( 1 )  

-~ IlWo - ( s o , ~ o ) l l  

> [IWo - (to, wo)l]. 

The contradiction between (4.15) and (4.16) establishes (2.12). 

PROOF OF PROPOSITION 2.2. This follows from Proposition 2.1 and the 
weak convergence of the {Wn} to Wo, as random elements of L 2 ( Q ) .  

P R O O F  OF P R O P O S I T I O N  3.1. L e t  

(4.17) 

and let 

W n  = ~1 /2 [@n - ~(On,-FX,n)] -- T~l/2E?/)(0n~ Fx,n) -- ~(On, [?X,~) ]  
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where {r~ = r/0(0~, Fx,r~). Comparing (4.17) with (2.9) and using A2 shows that 

(4.19) ~=W~+Op(1) 

under {P(O,~, Fx,~)}. With the help of A4 and (2.12), the asymptotic approxima- 
tion 

(4.20) b =b +op(n-1/2) 

also holds under {P(O,~, Fx,,~)}. The desired conclusions are implied by (4.19), 
(4.20) and Propositions 2.1 and 2.2. 
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