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Semiparametric Regression Analysis of Mean
Residual Life with Censored Survival Data

Ying Qing Chen and Su-Chun Cheng

Abstract

As a function of time t, mean residual life is the remaining life expectancy of
a subject given survival up to t. The proportional mean residual life model, pro-
posed by Oakes & Dasu (1990), provides an alternative to the Cox proportional
hazards model to study the association between survival times and covariates. In
the presence of censoring, we develop semiparametric inference procedures for
the regression coefficients of the Oakes-Dasu model using martingale theory for
counting processes. We also present simulation studies and an application to the
Veterans’ Administration lung cancer data.



1 Introduction

Duration or time-to-event data have been studied in various research areas for decades. In

fields such as public health, industrial reliability, demography or actuarial science, it is often

of interest to analyse mean residual life as a function of time to characterise the stochastic

behaviour of survival over time. For a nonnegative survival time T with finite expectation,

the mean residual life at time t is

m(t) = E(T − t | T > t) for t ≥ 0.

To assess the covariate effects on mean residual life, we consider the proportional mean

residual life model proposed by Oakes & Dasu (1990):

m(t | Z) = m0(t) exp(βTZ), (1)

where m(· |Z) is the mean residual life corresponding to the p-vector covariate Z, m0(t) is

some unknown baseline mean residual life when Z = 0, and β is the regression parameter.

Here the superscript T denotes the transpose of a vector.

The proportional mean residual life model is closely related to the accelerated failure

time model (Kalbfleisch & Prentice, 1980):

log T = βTZ + e, (2)

where e is the random error variable with an unspecified distribution. To see the relationship,

let t = 0 in model (1), and then log E(T |Z) = log m(0 |Z) = log m0(0) + βTZ. Careful

choices of m0(t) in (1) and the distribution of e in (2) will lead to identical models. For

example, the two models coincide when the distribution of T is exponential, whereupon

m0(t) is a constant and e follows an extreme value distribution.

In general, there is no straightforward relationship between the proportional mean resid-

ual life model and the Cox proportional hazards model (Cox, 1972):

λ(t | Z) = λ0(t) exp(γTZ), (3)
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where λ(· |Z) is the hazard function of T , λ0(·) = λ(· |Z = 0), and γ is the regression parame-

ter. However, as noted in Dasu (1991) and Maguluri & Zhang (1994), the hazard functions

λ̃(· |Z) and λ̃0(·) of the forward recurrence times (Cox, 1962) in the renewal processes formed

by T ’s corresponding to Z and Z = 0, respectively, follow that

λ̃(t | Z) = λ̃0(t) exp(−βTZ).

Furthermore, Oakes & Dasu (1990, Theorem 2) showed that when a model satisfies both the

proportional hazards and the proportional mean residual life assumptions, its underlying

distributions then belong to the Hall-Wellner class of distributions with linear mean residual

life functions (Hall & Wellner, 1981). Note that both models (1) and (3) hold for exponential

distributions with γ = −β.

Previous work on mean residual life has focused on single-sample and two-sample cases.

The methods for these cases are proposed in the work of Oakes & Dasu (2003) and the

references therein. For regression analysis, Maguluri & Zhang (1994) used both the afore-

mentioned model-relationships to develop estimation procedures for β in (1), but their ap-

proaches were essentially for uncensored survival data. To accommodate censoring, one

straightforward approach is to apply the inverse-probability-of-censoring-weighted paradigm

by Robins & Rotnitzky (1992) to the estimating equations built on complete event times;

however, this would require estimating or modelling the distribution of censoring.

In this article, we employ martingale theory for counting processes to develop new in-

ference procedures for the regression analysis of model (1) with censored data. Our semi-

parametric approach mimics the Cox partial score function and retains similar appealing

properties. The resulting estimator for β resembles the maximum partial likelihood esti-

mator if the two classes of models coincide. Moreover, our estimator for the baseline mean

residual life function m0(·) takes a closed form. In §2 of this article, we elaborate and study

the proposed estimator for β and its efficiency. Numerical studies, including Monte Carlo

simulations and an analysis of data from the VA lung cancer trial, are summarised in §3.

Several relevant issues are discussed in §4. Technical proofs are collected in the Appendix.
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2 Inference Procedures

The maximum likelihood estimation procedures can be applied to model (1) in situations

when we have sufficient knowledge to specify the baseline mean residual life in some para-

metric forms, such as the Hall-Wellner family (Hall & Wellner, 1981). To gain modelling

flexibility, it is often more desirable not to assume particular forms for the underlying mean

residual life function. To that end, in this section we present semiparametric inference pro-

cedures to estimate the parameter of primary interest, β, in (1).

Let T and C be the failure time and potential censoring time, respectively. Conditional

on the p-vector covariate Z, T and C are assumed to be independent. The observed data set

consists of n independent triplets of (Xi, ∆i, Zi), where i = 1, . . . , n, Xi = min(Ti, Ci), and

∆i = I(Ti ≤ Ci). Here, I(·) is the indicator function, which is 1 if the condition is satisfied

and 0 otherwise. In addition, let Ni(t) = I(Xi ≤ t)∆i, Yi(t) = I(Xi ≥ t), and Λi(t) be the

cumulative hazard function of Ti. It follows from Corollary 1.4.1 in Fleming & Harrington

(1991) that

E {dNi(t) | Ft−; β∗, m∗(·)} = Yi(t)dΛi(t; β∗, m∗),

where Ft belongs to the right continuous filtration {Ft : t ≥ 0} defined by

Ft = σ{Ni(u), Yi(u+), Zi : 0 ≤ u ≤ t, i = 1, . . . , n},

and β∗ and m∗(·) are the true values of the parameters β and m0(·) in (1), respectively. If

we denote Mi(t; β, m0) = Ni(t) −
∫ t

0
Yi(s)dΛi(s; β, m0) for i = 1, . . . , n, then {Mi(t; β∗, m∗)}

are zero-mean Ft−martingales. Therefore it is natural to estimate β∗ and m∗ by estimating

equations parallel to the partial score equations:

n∑
i=1

{dNi(t) − Yi(t)dΛi(t; β, m0)} = 0, 0 ≤ t ≤ τ,

n∑
i=1

∫ τ

0

Zi {dNi(t) − Yi(t)dΛi(t; β, m0)} = 0.

(4)

To avoid a lengthy technical discussion on the tail behaviour of the limiting distribution, we

assume 0 < τ = inf{t : pr(X > t) = 0} < ∞, and it is used throughout the rest of the
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article. If necessary, Ying’s (1993) elegant treatment on the asymptotic properties beyond τ

can be adapted to our method. Note that m0(τ) = 0 under this assumption.

It is well known that the survival function of T given Z is

S(t | Z) = pr(T ≥ t | Z) =
m(0 | Z)

m(t | Z)
exp

{
−

∫ t

0

1

m(u | Z)
du

}
,

and consequently that m0(t)dΛi(t) = exp(−βTZi)dt + dm0(t) under model (1). Then analo-

gous to (4), the following estimating equations can be used to estimate (β∗, m∗):
n∑

i=1

[m0(t)dNi(t) − Yi(t) {exp(−βTZi)dt + dm0(t)}] = 0, 0 ≤ t ≤ τ, (5)

n∑
i=1

∫ τ

0

Zi [m0(t)dNi(t) − Yi(t) {exp(−βTZi)dt + dm0(t)}] = 0. (6)

As mentioned in §1, when a model satisfies both (1) and (3), its underlying distributions

then belong to the Hall-Wellner family, where m0(t) = a t + b, a > −1 and b > 0. In this

case, the proposed estimating equations (6) are asymptotically equivalent to the partial score

equations for β.

Following a simple algebraic manipulation, estimating equation (5) becomes

m0(t)dQ1(t) − dm0(t) = Q2(t; β)dt, 0 ≤ t ≤ τ, (7)

where dQ1(t) =
∑n

i=1 dNi(t)/
∑n

i=1 Yi(t) and Q2(t; β) =
∑n

i=1 Yi(t) exp(−βTZi)/
∑n

i=1 Yi(t).

An intriguing feature of equation (7) is that it is a first-order linear ordinary differential

equation in m0(t), and thus it has a closed-form solution

m̂0(t; β) =

[
exp

{
−

∫ t

0

dQ1(u)

}]−1 ∫ τ

t

exp

{
−

∫ u

0

dQ1(s)

}
Q2(u; β)du, (8)

given that the marginal mean residual life function is continuously differentiable on [0, τ ].

To obtain an estimator for β∗, we replace m0(t) and dm0(t) in (6) with m̂0(t; β) and

dm̂0(t; β) = m̂0(t; β)dQ1(t) − Q2(t; β)dt, respectively. Then it is straightforward to show

that the resulting equations (6) divided by n are algebraically equivalent to

U(β) =
1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

} {m̂0(t; β)dNi(t) − Yi(t) exp(−βTZi)dt} = 0, (9)
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where Z̄(t) =
∑n

i=1 Yi(t)Zi/
∑n

i=1 Yi(t). Let β̂ be the solution to equations (9). We show in

the Appendix that, under the specified regularity conditions, the random vector n1/2(β̂ −
β∗) converges weakly to a p-vector normal variable with mean zero and covariance matrix

A−1V A−1, where matrices A and V are given in (A·2) and (A·3), respectively. In addition,

A and V can be consistently estimated by their empirical counterparts

Â =
1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}⊗2
Yi(t) exp(−β̂TZi)dt,

and

V̂ =
1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}⊗2
Yi(t)m̂0(t; β̂)

{
exp(−β̂TZi)dt + dm̂0(t; β̂)

}
,

respectively, where v⊗2 denotes vvT for a vector v. Inferences for β∗ can then be made

through this large-sample distribution of β̂.

By the ad hoc nature of U(β), the estimator β̂ is not necessarily efficient although it

has properties such as consistency and asymptotic normality that can be used to make valid

inferences about β∗. To gain efficiency, one common remedy is to use the weighted version

of the estimating equations (5) and (6):

n∑
i=1

W (t) [m0(t)dNi(t) − Yi(t) {exp(−βTZi)dt + dm0(t)}] = 0, 0 ≤ t ≤ τ,

n∑
i=1

∫ ∞

0

W (t)Zi [m0(t)dNi(t) − Yi(t) {exp(−βTZi)dt + dm0(t)}] = 0,

where W (t) is an Ft-measurable weight function which converges uniformly to some deter-

ministic function w(t) almost surely. Let β̂w denote the resulting weighted estimator for β∗.

It is straightforward to derive the asymptotic variance of β̂w in the form of A−1
w VwA−1

w , where

matrices Aw and Vw are given in (A·4) and (A·5), respectively.

By applying the Cauchy-Schwarz inequality to A−1
w VwA−1

w , it follows that the optimal

weight is proportional to

w∗(t) =
exp(−βT

∗ Z)

m∗(t){exp(−βT

∗ Z) + m′
∗(t)}

, (10)
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which minimises the asymptotic variance of β̂w and reaches its Cramér-Rao bound, where

m′
∗(t) = dm∗(t)/dt. In fact, the partial derivative of the log full likelihood function with

respect to β is

−
n∑

i=1

∫ τ

0

exp(−βTZi)

m0(t){exp(−βTZi) + m′
0(t)}

Zi [m0(t)dNi(t) − Yi(t) {exp(−βTZi) + m′
0(t)} dt] .

(11)

This is an interesting, yet not surprising, coincidence between the optimal weight function

(10) and the coefficient in (11) because of the way that we mimic the partial likelihood score

equation in constructing our estimating equations. In the special case of the proportional

hazards model, under which m0(t) belongs to the Hall-Wellner family, m0(t)w∗(t) is constant

and independent of t as in the partial likelihood score equation.

3 Numerical Studies

Simulation studies were conducted to assess the finite-sample properties of the proposed

estimation procedures. We consider the sample size n being 100 or 200 with two covariates

Z = (Z1, Z2)
T for each of n subjects. The covariate Z1 is a Bernoulli random variable with

success probability 0.5 and Z2 is a uniform random variable on [0,1]. We choose m∗(t) =

t+1, which corresponds to the Pareto distribution with the baseline survival function being

(1 + t)−2. Failure times are generated according to model (1) where the true parameter is

selected to be (0, 0)T or (1, 1)T. Independent censoring times are generated from the uniform

distribution on [0, c], where the constant c is chosen to result in no censoring or, on average,

about 10% or 30% censored observations.

The simulation results are summarised in Table 1, with each entry calculated based on

1000 data sets. The results show that the estimates of β∗ are virtually unbiased and the

nominal 95% confidence intervals have proper coverage probabilities. By examining the

mean standard error estimates, we find that the weighted estimators tend to be much more

efficient than the unweighted ones, especially for uncensored data. This advantage, however,

is relatively small in the presence of censoring.
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We now apply model (1) to a data set from the well-known Veterans’ Administration

lung cancer trial (Prentice, 1973). This data set has been analysed by several authors such

as Pettitt (1984) and Cheng et al. (1995). To contrast with their results, we use the same

subgroup of 97 patients with no prior therapy. The response variable is the patients’ survival

times, which range from 1 to 587 days with 6 censored observations. The first covariate is

the performance status, on a scale from 0 to 100. The second one is the tumour type, which

has 4 levels (large, adeno, small, squamous) and is treated as categorical with the large type

being the reference group. In Table 2, we present estimates of the regression coefficients

using the unweighted estimation function U in (9) and its weighted version with weights in

the empirical form of (10). We also show the results using the proportional hazards model,

the proportional odds model, and the accelerated failure time model in Table 2.

Under the Cox model and the proportional odds model, the only nonsignificant estimate

is the one for comparing squamous and large tumour types in differentiating their associated

hazards and failure odds, respectively. However, from the viewpoint of evaluating the effects

of the tumour types on the mean residual life, using both the weighted and unweighted

estimating functions for the proportional mean residual life model, none of the compar-

isons against the large type is significant . This finding is consistent with the results using

the accelerated failure time model, which also yields nonsignificant tumour-type effects in

comparing the log-transformed overall survival times.

It is interesting that the estimates using the Oakes-Dasu model (1) are close in magnitude

to their counterparts under the Cox model (3), but have opposite signs. As noted in §1
and §2, this may suggest that models (1) and (3) coincide for this data set. Under this

coincidence, the baseline mean residual life would be linear and belong to the Hall-Wellner

family. Figure 1(a) plots the estimated baseline mean residual life and its lowess curve as of

a function of time t. The curve suggests a change point before and after which the behaviour

of the baseline mean residual life differs. The curve for the initial period [0, 150] is noticeably

flat, although the linear relationship appears strong for t > 150. Empirically we find that

7
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the parametric maximum likelihood procedure with m0(t) = a t+b, where a > −1 and b > 0,

almost always yields unstable estimators toward the boundary of the space of the parameters

a and b, except when m0(t) is predetermined.

Although the baseline mean residual life m0(t) may not be of primary interest in the

semiparametric proportional mean residual life model, there is a natural constraint on m0(t)

such that the mean conditional life m0(t) + t = E(T |T > t) should be monotonically non-

decreasing. As shown in Figure 1(b), this constraint appears satisfied in this example. To

check the adequacy of the proportionality in model (1), both the estimated marginal mean

residual life function, without adjusting for any of the covariates, and the estimated baseline

mean residual life are plotted in Figure 1(c). In log scale, their lowess curves appear to be

parallel to each other and their difference function appears constant. This may suggest a

reasonable goodness-of-fit of the proportionality assumption.

4 Discussion

There is an alternative way to derive m̂0(t; β) in (8). To this end, let FZ(·) and fZ(·) be

the marginal distribution and density functions of Z, respectively, and S(·) be the marginal

survival function of T . Under model (1),

m0(t)S(t|z) = exp(−βTz)m(t|z)S(t|z) = exp(−βTz)

∫ τ

t

S(u|z)du (12)

for any possible Z = z ∈ supp{z ∈ R
p; FZ}. Therefore, by the Bayes Theorem,

m0(t) =
1

S(t)

∫
z

m0(t)S(t | z)dFZ(z)

=
1

S(t)

∫
z

{
exp(−βTz)

∫ τ

t

S(u | z)du

}
dFZ(z)

=
1

S(t)

∫ τ

t

{∫
z

fZ(z | T ≥ u)S(u)

fZ(z)
exp(−βTz)dFZ(z)

}
du

=
1

S(t)

∫ τ

t

{
S(u)

∫
z

exp(−βTz)dFZ(z | T ≥ u)

}
du. (13)

Thus m̂0(t; β) in (8) can also result from substituting exp{− ∫ t

0
dQ1(u)} and Q2(u; β) for the

theoretical quantities S(t) and
∫

z
exp(−βTz)dFZ(z|T ≥ u) in (13), respectively. It follows

8
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that any corresponding consistent estimators for those two quantities may yield consistent

estimators for m0(t), given appropriate regularity conditions. If we write Q1(t) =
∫ t

0
dQ1(u),

then it is the Nelson-Aalen estimator for the marginal cumulative hazard function at t and

thus ŜNA(t) = exp{−Q1(t)}. As a result, (8) simply becomes

m̂0(t;β) = Ŝ−1
NA(t)

∫ τ

t

Ŝ−1
NA(u)Q2(u; β)du.

In the single-sample setting, Q2(t; β) is 1. Consequently, m̂0(t; β) reduces to the plug-in

estimator for m0(t) =
∫ τ

t
S(u)du/S(t) if S(t) is estimated by ŜNA(t).

The proposed inference procedures in §2 are not examined within the framework of

semiparametric efficiency bound calculation. To that end, one can follow the approach of

Lai & Ying (1992) to study the parametric subfamilies in the form of

m(t | Z) = m0(t){1 + αm̄0(t)} exp(βTZ),

where (α, β)T are unknown parameters and (m0(·), m̄0(·))T are completely specified functions.

Then, from the full likelihood of (α, β)T, the Fisher information matrix can be calculated

at α = 0 and β = β∗, and it leads to the semiparametric information bound for estimating

β∗. The complexity of such implementation is beyond the scope of this manuscript, and we

intend to investigate this problem in future research.

There remain other issues with regard to model (1) that require further study. For

example, as noted in §3, m(t) + t should be nondecreasing in t. Although the asymptotic

limit of m̂(t, β̂) is m∗(t) ≥ 0 provided that m∗(t) is proper, there is no guarantee that

the finite-sample estimator m̂(t, β̂) + t would maintain the necessary monotonicity, per se.

Our future work includes implementing algorithms such as the pooled-adjacent-violators to

obtain more reasonable estimates of m0(t). In addition, it is important to develop inference

procedures for predicting individual mean residual life and conditional life expectancy. We

also plan to develop objective analytical procedures for model checking or model selection

between the proportional mean residual life model and other popular models, such as the

accelerated failure time model and the proportional hazards model.

9
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Appendix

Asymptotics of Estimators

To establish the onward asymptotic properties, we assume the necessary regularity conditions

or analogous ones specified in Fleming & Harrington (1991, p. 289-90). In addition, we

assume the following conditions:

1. inf supp(F ) ≤ inf supp(G), where F (·) and G(·) are the distribution functions of T and

C, respectively,

2. there exists some constant, dZ > 0, such that pr{|Z| > dZ} = 0,

3. m∗(t) is continuously differentiable on [0, τ ].

Consistency of m̂0(t; β∗): Consider the functional D : m0 ∈ M0 �→ D(m0) ∈ D, where

D(m0)(t) =
1

n

n∑
i=1

∫ t

0

[m0(u)dNi(u) − Yi(u) {exp(−βT

∗ Zi)du + dm0(u)}] .

Here, M0 is the proper space for all the possible baseline mean residual life functions

equipped with a norm defined as ‖m1 − m2‖ = supt∈[0,τ ] |m1(t) − m2(t)|, m1, m2 ∈ M0,

and D = D(M0). Let m̂∗
0(t) denote m̂(t; β∗), and d1 = D(m0; m̂

∗
0 − m0)(t) denote

D(m̂∗
0)(t) − D(m0)(t) =

1

n

n∑
i=1

∫ t

0

[(m̂∗
0 − m0)(u)dNi(u) − Yi(u) {d(m̂∗

0 − m0)(u)}] .

Then d1 maps Md = {c(m̂∗
0 − m0) : m̂∗

0, m0 ∈ M0, c real} to Dd = {c(D(m̂∗
0) − D(m0)) :

D(m̂∗
0), D(m0) ∈ D, c real} (Serfling, 1980). For any fixed ε > 0, if ‖m1 − m2‖ > ε, then

‖D(m1) − D(m2)‖ is

sup
t∈[0,τ ]

∣∣∣∣∣ 1n
n∑

i=1

∫ t

0

[{m1(u) − m2(u)} dNi(u) − Yi(u)d {m1(u) − m2(u)}]
∣∣∣∣∣

= sup
t∈[0,τ ]

∣∣∣∣∣ 1n
n∑

i=1

[{m1(Xi) − m2(Xi)}∆iI(Xi < t) − {m1(t ∧ Xi) − m2(t ∧ Xi)}]
∣∣∣∣∣

= sup
t∈[0,τ ]

∣∣∣∣∣ 1n
n∑

i=1

{I(Xi > t) + I(Xi < t)(1 − ∆i)} {m1(t ∧ Xi) − m2(t ∧ Xi)}
∣∣∣∣∣ (A·1)

> cτ ε,

10
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for some constant cτ . As a result, the inverse mapping of d1,d
−1
1 : Dd → Md, is continuous

and hence bounded since ε is arbitrarily small. In addition, by the law of large numbers

and the continuity of m∗(t), we know that supt∈[0,τ ] |D(m̂∗
0)(t) − D(m∗)(t)| = supt∈[0,τ ] | −

D(m∗)(t)| → 0 almost surely. Therefore, m̂∗
0 is in an arbitrarily small neighbourhood of m∗

in M0 as n → ∞. It follows that m̂0(t; β∗) converges to m∗(t) almost surely.

Consistency of ∂U(β∗)/∂β: It follows from the law of large numbers and (12) that

∂m̂0(t, β∗)
∂β

=
−1

ŜNA(t)

∫ τ

t

ŜNA(u)

∑n
i=1 ZiYi(u) exp(−βT

∗ Zi)∑n
i=1 Yi(u)

du

=
−1

E{S(t|Z)}
∫ τ

t

E{S(u|Z)}
∫

z
z exp(−βT

∗ z)S∗(u|z)dFZ(z)

E{S∗(u|Z)} du + op(1)

=
−1

E{S(t|Z)}
∫

z

z exp(−βT

∗ z)

{∫ τ

t

S(u|z)du

}
dFZ(z) + op(1)

=
−1

E{S(t|Z)}
∫

z

z m∗(t)S(t|z)dFZ(z) + op(1)

= −m∗(t)µz(t) + op(1),

where FZ(·) and ŜNA(·) are defined in §4 respectively, S∗(t|Z) = pr(X ≥ t|Z), and µz(t) =

E{ZS∗(t|Z)}/E{S∗(t|Z)}. Note that µz(t) is the limit of Z̄(t) as n → ∞. Then, by differ-

entiating (9) with respect to β, we have

∂U(β∗)
∂β

=
1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

} {
∂m̂0(t, β∗)

∂β
dNi(t) + Yi(t) exp(−βT

∗ Zi)Zidt

}T

=
1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

} {−m∗(t)µT

z (t)} dMi(t; β∗, m∗)

+
1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

} {Zi − µz(t)}T Yi(t) exp(−βT

∗ Zi)dt + op(1)

= A + op(1),

where

A =

∫ τ

0

E
[{Z − µz(t)}⊗2 S∗(t | Z) exp(−βT

∗ Z)
]
dt. (A·2)
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Asymptotic normality of n1/2U(β∗): By the result in (A·1),

U(β∗) =
1

n

n∑
i=1

∫ τ

0

[{
Zi − Z̄(t)

} {m̂0(t; β∗)dNi(t) − Yi(t) exp(−βT

∗ Zi)dt}]

=
1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}
m∗(t)dMi(t)

+
1

n

n∑
i=1

{
Zi − Z̄(Xi)

} {m̂0(Xi; β∗) − m∗(Xi)} I(Xi < t)∆i + op(1)

=
1

n

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}
m∗(t)dMi(t) − 1

n

n∑
i=1

{
Zi − Z̄(Xi)

}
1
n

∑n
j=1 I(Xj > t)

1

n

n∑
j=1

∫ t

0

m∗(u)dMj(u) + op(1)

=
1

n

n∑
i=1

∫ τ

0

(
Zi − Z̄(t) − E[S(t|Z){Z − µz(t)}]

E{S(t|Z)}
)

m∗(t)dMi(t) + op(1).

Therefore n1/2U(β∗) is asymptotically normal with mean zero and variance-covariance matrix

V =

∫ τ

0

E
[{Z − µz(t)}⊗2 S∗(t|Z)m∗(t) {exp(−βT

∗ Z)dt + dm∗(t)}
]
. (A·3)

Similar to (A·2) and (A·3), we derive

Aw =

∫ τ

0

E
[
w(t) {Z − µz(t)}⊗2 S∗(t|Z) exp(−βT

∗ Z)
]
dt, (A·4)

and

Vw =

∫ τ

0

E
(
[w2(t) {Z − µz(t)}]⊗2 S∗(t|Z)m∗(t) {exp(−βT

∗ Z)dt + dm∗(t)}
)
. (A·5)

Consistency of β̂, m̂0(t; β̂), Â and V̂ . For an arbitrarily small neighbourhood of β∗ ∈ R
p,

denoted by R(β∗), U(·) maps it to an open connected set in R
p. In fact, since U(β∗) → 0

can extended to any β ∈ R(β∗) with stronger regularity conditions on uniform convergence,

β̂ would fall in the same neighbourhood with probability one given A is nonsingular. Hence

the consistency of β̂ is warranted. Using similar techniques, it is also true that m̂0(t; β̂) is

consistent. The consistency of Â and V̂ is straightforward following Taylor series expansions

of Â(β̂) and V̂ (β̂) around β∗. Furthermore, the asymptotic distribution of β̂ follows from a

Taylor series expansion of U(β̂) around β∗.
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Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York:

Wiley.

Ying, Z. (1993). A Large Sample Study of Rank Estimation for Censored Regression Data.

Ann. Statist. 21, 76-99.

14

http://biostats.bepress.com/ucbbiostat/paper146



T
ab

le
1:

S
u
m

m
ar

y
of

S
im

u
la

ti
on

S
tu

d
ie

s

β
∗

=
(0

,0
)T

β
∗

=
(1

,1
)T

Z
1

Z
2

Z
1

Z
2

C
en

s.
C

ov
.

M
ea

n
C

ov
.

M
ea

n
C

ov
.

M
ea

n
C

ov
.

M
ea

n
n

P
er

.
W

t.
B

ia
s

P
ro

b.
S

E
(β̂

)
B

ia
s

P
ro

b.
S

E
(β̂

)
B

ia
s

P
ro

b.
S

E
(β̂

)
B

ia
s

P
ro

b.
S

E
(β̂

)

10
0

0%
N

0.
01

0
0.

96
0

0.
12

9
0.

01
8

0.
95

2
0.

23
8

−0
.0

10
0.

94
4

0.
38

8
0.

03
2

0.
95

4
0.

63
3

10
0

0%
Y

0.
01

5
0.

95
1

0.
05

4
0.

01
3

0.
94

1
0.

10
7

−0
.0

12
0.

95
0

0.
15

5
0.

00
5

0.
94

8
0.

27
2

10
0

10
%

N
0.

02
7

0.
95

1
0.

13
4

−0
.0

22
0.

94
6

0.
24

6
0.

02
3

0.
94

9
0.

41
1

−0
.0

32
0.

95
2

0.
75

9

10
0

10
%

Y
0.

01
4

0.
95

5
0.

97
0

0.
01

3
0.

94
3

0.
19

3
0.

01
8

0.
94

7
0.

30
2

0.
03

7
0.

93
9

0.
66

3

10
0

30
%

N
0.

01
0

0.
94

8
0.

16
8

−0
.0

21
0.

95
3

0.
33

3
−0

.0
58

0.
96

1
0.

50
4

−0
.0

39
0.

94
4

0.
81

7

10
0

30
%

Y
−0

.0
22

0.
94

8
0.

16
3

−0
.0

22
0.

94
6

0.
32

6
0.

06
0

0.
94

8
0.

45
0

0.
02

9
0.

97
0

0.
62

5

20
0

0%
N

0.
00

4
0.

94
8

0.
09

7
−0

.0
13

0.
95

5
0.

14
6

−0
.0

05
0.

95
6

0.
34

8
−0

.0
07

0.
94

6
0.

57
1

20
0

0%
Y

−0
.0

15
0.

94
2

0.
03

5
0.

03
7

0.
95

1
0.

06
4

−0
.0

26
0.

95
1

0.
13

8
0.

02
0

0.
96

1
0.

16
1

20
0

10
%

N
−0

.0
37

0.
95

8
0.

10
1

0.
02

4
0.

94
4

0.
15

8
−0

.0
09

0.
95

7
0.

39
9

−0
.0

16
0.

95
2

0.
58

9

20
0

10
%

Y
−0

.0
46

0.
95

8
0.

05
7

−0
.0

17
0.

95
6

0.
08

9
−0

.0
19

0.
94

7
0.

28
7

−0
.0

26
0.

96
4

0.
47

5

20
0

30
%

N
0.

03
3

0.
95

7
0.

11
7

−0
.0

25
0.

96
1

0.
18

3
0.

02
0

0.
95

0
0.

42
7

−0
.0

64
0.

94
4

0.
67

0

20
0

30
%

Y
0.

07
8

0.
94

4
0.

06
8

0.
02

9
0.

94
9

0.
14

7
−0

.0
44

0.
94

8
0.

38
8

0.
02

7
0.

95
3

0.
56

1

15

Hosted by The Berkeley Electronic Press



Table 2: Estimates of regression coefficients for the lung cancer trial (Prentice, 1973)

Parameters Oakes-Dasu model (1) AFT† model (2) Cox model (3) Pettitt‡ model
Unweighted Weighted

Performance status 0.021(0.008)∗ 0.030(0.006) 0.022(0.005) −0.024(0.006) −0.055(0.010)

Tumour type

adeno vs large −0.821(0.549) −0.801(0.532) −0.839(0.302) 0.851(0.348) 1.302(0.554)

small vs large −0.556(0.544) −0.499(0.522) −0.521(0.284) 0.548(0.321) 1.438(0.520)

squamous vs large 0.143(0.721) 0.150(0.680) 0.175(0.307) −0.214(0.347) −0.177(0.593)

∗Estimated standard errors are given in parentheses;

†AFT model is the accelerated failure time model with the log-linear life-testing method;

‡Pettitt model is the proportional odds model with the marginal likelihood method.
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Figure 1: Estimated mean life functions from the lung cancer data
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