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SUMMARY. We consider semiparametric regression for periodic longitudinal data. Parametric fixed effects 
are used to model the covariate effects and a periodic nonparametric smooth function is used to model the 
time effect. The within-subject correlation is modeled using subject-specific random effects and a random 
stochastic process with a periodic variance function. We use maximum penalized likelihood to estimate 
the regression coefficients and the periodic nonparametric time function, whose estimator is shown to be 
a periodic cubic smoothing spline. We use restricted maximum likelihood to simultaneously estimate the 
smoothing parameter and the variance components. We show that all model parameters can be easily ob- 
tained by fitting a linear mixed model. A common problem in the analysis of longitudinal data is to compare 
the time profiles of two groups, e g ,  between treatment and placebo. We develop a scaled chi-squared test 
for the equality of two nonparametric time functions. The proposed model and the test are illustrated by an- 
alyzing hormone data collected during two consecutive menstrual cycles and their performance is evaluated 
through simulations. 

KEY WORDS: Nonparametric regression; Penalized likelihood; Periodic smoothing spline; Restricted max- 
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1. Introduction 
In many longitudinal studies, it is of interest to model the time 
and covariate effects on an outcome variable. A common diffi- 
culty is that the time course is often too complicated to model 
parametrically. Examples include studies on growth (Don- 
nelly, Laird, and Ware, 1995), HIV research on CD4 counts 
(Zeger and Diggle, 1994), and hormone research (Zhang et 
al., 1998). Several authors have hence considered semipara- 
metric and nonparametric regression using kernel smoothing 
(Altman, 1991; Zeger and Diggle, 1994) and spline smoothing 
(Rice and Silverman, 1991; Zhang et al., 1998). Specifically, 
Zeger and Diggle (1994) and Zhang et al. (1998) proposed a 
semiparametric stochastic mixed model, which assumes para- 
metric covariate effects and a nonparametric time effect and 
accounts for the within-subject correlation using random ef- 
fects and a stochastic process. Unlike Zeger and Diggle (1994), 
a key feature of the Zhang et al. (1998) approach is that infer- 
ence for all model components can easily proceed in a unified 
linear mixed model framework. 

In some situations, especially in hormone research, non- 
parametric modeling of the time profile is further compli- 
cated by the fact that the data are collected periodically over 
time for each subject and both the mean and the variance of 
the outcome variable demonstrate periodic patterns. Another 
common problem in longitudinal data analysis is to compare 

the time profiles of two groups. For example, Sowers et al. 
(1998) conducted a longitudinal study to examine the effect of 
bone mineral density on reproductive hormone progesterone 
profiles. Urine samples were collected from 34 women with 
normal bone mineral density (controls) and 31 women with 
low bone mineral density (cases) on alternative days in two 
consecutive menstrual cycles. The investigators were inter- 
ested in estimating the time courses of progesterone for both 
controls and cases and testing whether the time courses are 
the same in the two groups. The covariates of interest included 
age and body mass index (BMI). 

It is meaningful biologically that the progesterone level 
changes periodically from one menstrual cycle to another. 
This view is supported by examining the raw data for both 
controls and cases (Figure la and 1b). Another feature of the 
data is that the variance of the progesterone level also changes 
periodically over time during the two consecutive menstrual 
cycles (Figure 2a and 2b). It is hence necessary to take into 
account these features when analyzing the progesterone data. 

For independent data, a periodic cubic smoothing spline 
has often been used for estimating a periodic function non- 
parametrically (Wahba, 1980; Eubank, 1988; Wang and 
Brown, 1996). The smoothing parafneter is often estimated 
by minimizing integrated mean squared error or by cross- 
validation. Several authors also considered testing the equality 
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Figure 1. Log progesterone levels plotted against the number qf days in two standard- 
ized menstrual cycles, with estimated population mean curve f ( t )  and 95% pointwise 
frequentist and Bayesian confidence intervals (GIs). ~ f ( t ) ;  - - - - frequentist GI; - - 
- Bayesian GI. The two plots are for (a) controls and (b) cases. 
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Figure 2. Sample variances of the log progesterone values calculated by grouping the 
data into 56 1-day intervals. The solid line is the estimated variance function curve ob- 
tained from fitting model (8). The two plots are for (a) controls and (b) case. 
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of two nonparametric functions for independent data. Hardle 
and Marron (1990) developed a test for comparing two func- 
tions that are the same up to a parametric transformation. 
Hall and Hart (1990) constructed a test statistic using the 
differences of the outcome variables of two groups by assum- 
ing they have the same design points and then applying a 
bootstrap test. Kulasekera (1995) used quasi-residuals to con- 
struct test statistics. Young and Bowman (1995) considered 
testing equality and parallelism of response curves from sev- 
eral groups. 

In this paper, we propose a periodic semiparametric sto- 
chastic mixed model for periodic longitudinal data, such as 
the progesterone data. We use parametric functions to model 
the covariate effects and a periodic smooth nonparametric 
function to model the underlying complex periodic time 
course. The within-subject covariance is modeled using a ran- 
dom intercept and a stochastic process with periodic vari- 
ance function. We use maximum penalized likelihood to es- 
timate the regression coefficients and the periodic nonpara- 
metric function. The penalty is chosen in such a way that the 
resulting estimator of the nonparametric function is a periodic 
cubic smoothing spline. This formulation enables us to adapt 
the estimation procedure of Zhang et al. (1998) by casting 
our periodic nonparametric regression problem in a modified 
linear mixed model framework. Specifically, we write a peri- 
odic cubic smoothing spline estimator as a linear combination 
of a fixed effect and random effects and treat the inverse of 

the smoothing parameter as an extra variance component. 
The linear mixed model formulation of a smoothing spline 
was also used by Brumback and Rice (1998), Verbyla (1995), 
Verbyla et a]. (1998), and Wang (1998a,b). The second objec- 
tive of this paper is to propose a scaled chi-squared test for 
testing the equality of two nonparametric time functions. We 
illustrate the proposed model and the test by analyzing the 
progesterone data and evaluating their performance through 
simulations. 

2. The Statistical Model 
We present in this section a periodic semiparametric stochas- 
tic mixed model for periodic longitudinal data. Let the data 
consist of m subjects with the zth subject having n, observa- 
tions over time. Suppose x3 ( i  = 1,. . . , m, j = 1,. . . ,ni) is 
the response for the ith subject at time point t,, and satisfies 

where is a p x 1 vector of regression coefficients associ- 
ated with the subject-level covariate vector xi; f ( t )  is a twice- 
differentiable periodic function with the period length equal to 
T ;  the bi - N(O,q5) are independent subject-specific random 
intercepts; the Ui ( t )  are independent and normally distributed 
mean-zero stochastic processes with periodic variance func- 
tion [ ( t )  and correlation function corr(Ui(t), Ui(s ) )  = ~ ( p ;  
t , s ) ,  where 0 5 p 5 1 is a correlation parameter; and the 
~ i j  - N(0, 0 2 )  are independent measurement errors. We fur- 
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ther assume that bi ,  Ui(t) and ~ i j  are mutually independent. 
For the sake of identifiability, we assume xTp does not con- 
tain an intercept. 

Compared to the semiparametric stochastic mixed model 
of Zeger and Diggle (1994) and Zhang et al. (1998), a key 
feature of model (1) is that both the nonparametric function 
f ( t )  and the variance function of Ui( t )  are constrained to be 
periodic functions. 

3. Estimation Procedure 
3.1 Some Notation 
Without loss of generality, we assume t , j  2 0 and min{tij} = 
0. Due to the periodicity of f(t) ,  we only need to estimate 
f ( t )  for t E [O,T). Let t” = ( ty , .  . . ,t:)rr (ty E [O,T)) be a 
vector of r ordered, distinct values of t$ = mod(tij,T) for 
i = 1,. . . , m, j = 1,. . . , ni, and let Ni be an ni x r incidence 
matrix for the ith subject connecting ti = (t i l , .  . . , tin,)T 
and to such that the ( j , l ) th  element of N, is one if t!j = te 
and zero otherwise ( j  = 1 , .  . . , ni, 1 = 1 , .  . . , r ) .  Denote Yi = 
( K l , . .  . , K n , ) T ,  Y = (Y:,.. . ,Y;)T, and X,N, Z,U,e  
similarly. We can write model (1) as 

Y = X p + N f + Z b + U + E ,  (2) 
where f = ( f ( t y ) , .  . . ,f(t:))T; b = (b1,. . . ,bm)T is 
distributed as N(O,D(4)), with D ( 4 )  = diag(4,. . . , 4 ) ;  
U = CUT,. . . , U z ) T  is distributed as N ( O , r ( E , p ) ) ,  
with r ( < , p )  = d iag ( r l ( t l , t l ) ,  . . . , r m ( t m 1 t m ) )  and the 
(j,j’)th element ( j , j ’  = 1 , .  . . ,ni)  of ri(ti,ti) being 
(E( t i j )E ( t23~) )1 /2~(~ ;  t i j , t+) ;  and E = ( E : , .  . . , E K ) ~  is 
distributed as N(0,a21), with I being an identity matrix of 
dimension n = Cy==, ni. 

3.2 The Penalized Likelihood 
Denote V = cov(Y). For given variance components 8 = 
(4 ,  tT, p ,  a2)T, the log-likelihood function of (p, f )  is, apart 
from a constant, 

l ( p ,  f ;  Y) : --loglVI--(Y-XP-Nf)TV-l(Y-XP-Nf). 

Since f ( t )  is a periodic nonparametric function, we consider 
the penalized log likelihood 

1 1 
2 2 

X 
2 [f”(t)l2dt = l ( p ,  f;Y) - -fTKf, (3) 

where X > 0 is a smoothing parameter controlling the balance 
between goodness-of-fit and smoothness and f(t) is a twice- 
differentiable function subject to the periodic constraints 
f (0)  = f ( T ) , f ’ ( O )  = f’(T),  and f”(0) = f”(T) .  The matrix 
K is a nonnegative definite periodic smoothing matrix defined 
in Appendix A. Note that matrix K defined herein differs 
from the conventional smoothing matrix given in Green and 
Silverman (1994, p. 12) in that it is constructed using the 
periodic constraints of f ( t )  and the modified knot vector to 
and has only one 0 eigenvalue. The proof of the eyuality 
in (3) is given in Appendix A. The maximizer ( P , f ( t ) )  of 
equation (3) is defined as the maximum penalized likelihood 
estimator (MPLE) and can be easily shown to  be a periodic 
cubic smoothing spline (Appendix A). 

Equation (3) has exactly the same form as equation (8) of 
Zhang et al. (1998) except that K now is a periodic smoothing 
matrix. Therefore, we can adapt their approach for inference 

on all model components in periodic model (1) within a 
unified framework by representing model ( 2 )  as a linear mixed 
model. 
3.3 Estimation of Model Components Using a Linear Mixed 

Following Zhang et al. (1998), we show in this section how 
to make inference within a linear mixed model framework 
on all model components of model (l), including the mean 
parameters p and f ,  the random intercept bi and the 
stochastic process Ui(t), and the smoothing parameter X and 
the variance components 0. 

From Appendix A, K has rank r - 1 and satisfies K1 = 0, 
where 1 is an r x 1 vector of ones. Similar to Green (1987) 
and Zhang et al. (1998), it can be shown that there exists 
an r x ( r  - 1) full rank matrix B such that f = 16 + Ba and 
fTKf = aTa for a scalar 6 and a vector a of dimension ( r -  1). 
Using the equality fTKf = ara, the penalized log likelihood 
(3) becomes 

Model Representation 

1 
- -(Y - 16 - Xp - NBa)TV-l(Y - 16 - Xp - NBa) 2 

I T  - -a  a, 
27 

where T = 1/X. It follows that the periodic semiparametric 
mixed model ( 2 )  can be written as a modified linear mixed 
model, 

Y = 16 + Xp +NBa + Zb + U + E ,  

where 1 is an n x  1 vector of ones, pr = (6, p‘)T are regression 
coefficients, br = (aT, bT, UT)T are mutually independent 
random effects with a distributed as N(0,7I) and (b,U) 
having the same distributions as those given in Section 3.1. 

Using the results of Zhang et al. (1998), one can easily show 
that the MPLEs (6,i) correspond to the linear combinations 
of the best linear unbiased predictors (BLUPs) ,& and a 
under the linear mixed model (4) with f = 18 + Ba. The 
estimators of the random effect bi and the stochastic process 
Ui(t) can also be obtained as BLUPs under the linear mixed 
model (4). The bias expressions of these MPLEs have the 
same form as given in Zhang et al. (1998). (For more details, 
see Zhang et al. [1998].) 

The standard errors of ( f i , f )  and (&,Ui(t))  can be 
calculated using either the frequentist or the Bayesian 
approach, where the frequentist standard errors are calculated 
by assuming the true f ( t )  is a fixed smooth function, while 
the Bayesian standard errors are calculated by assuming a 
flat prior for ,B and a periodic cubic smoothing spline prior 
for f ,  whose log density is -XfTKf/2, or, equivalently, a 
periodic improper integrated Wiener prior for f (Wahba, 
1980). We evaluate through simulations the performance of 
both standard errors in Section 6.1. 

Following Zhang et al. (1998), we simultaneously estimate 
the smoothing parameter and variance components using 
restricted maximum likelihood (REML) (Harville, 1977) 
under the mixed model representation (4) by treating both 
T = 1 / X  and 0 as variance components. (For more details and 
justification of REML estimation, see Zhang et al. [1998].) We 
evaluate through simulations the performance of the proposed 
estimation procedure in Section 6.1. 

(4) 
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4. The Global Test for Equality of Two 

A common problem in the analysis of longitudinal data is to 
compare the covariate-adjusted nonparametric time courses of 
two groups, as illustrated by the progesterone data introduced 
in Section 1. A simple method is to construct pointwise 
confidence intervals of the differences of the estimated 
nonparametric time functions of the two groups. However, 
it is often of interest to develop a global test for the equality 
of the two time functions. We hence consider in this section 
such a global test. 

4.1 The Global Test Statistic 
Suppose the two comparison groups consist of ml and m2 
subjects, respectively, and the outcome variable Y for group 
k ( k  = 1 , 2 )  satisfies the following model: 

Nonparametr ic  Functions 

where all model components have specifications similar to 
those given in model (1). A natural global measure of the 
difference between f l ( t )  and fz(t)  is 

J O  

To test the null hypothesis Ho: f l ( t )  = fz(t), we hence 
construct the test statistic 

where fk(t) ( k  = l , 2 )  is the MPLE of f k ( t )  obtained by 
separately fitting model (5) to the kth group data Y ( k ) .  A 
large value of S ( Y ( l ) , Y ( 2 ) )  would provide evidence against 
the null hypothesis Ho. However, the exact null distribution of 
S is difficult to evaluate. A simple approximation is proposed 
in the next section. 

Note that, unlike the test statistic considered by Hall and 
Hart (1990), the proposed test statistic S ( Y p ) ,  Y(2)) does 
not require the two comparison groups to have the same 
design points. It can also be extended to g > 2 groups 
by using the sum of the test statistics s(Y(k),Y(k+l)) for 
k = 1, . . . , g - 1. Another feature is that this test statistic and 
the test procedures proposed in the ensuing section can easily 
be extended to test the equivalence of two nonparametric 
functions in any subinterval of 10, T )  of interest. 

4.2 The Scaled Chi-Squared Test 
Denote by Ak the smoothing parameter and by 01, the 
variance components under model (5) for group k = 1,2. 
Using the results in Section 3.2 and Appendix A, it can be 
easily shown that, for given Ak and 06, there exists a vector 
function Ck(t) such that the MPLE fk(t) can be written as 
&(t)  = cT(t)Y(k) .  Let c( t )  = [cl(t)', - ~ ( t ) ~ ] ~  and Y(0) = 

[Y;),  Ys,lT. It follows that the test statistic S ( Y ( , ) ,  Y p ) )  
can be written as a quadratic function of the data Y(o) ,  

-r 

\ ,  

where C = 1: c( t )c( t )Tdt  and the integration is evaluated for 
each element of C. 

Equation (7) suggests that S ( Y ( , ) ,  Y(2)) follows a mixture 
of chi-squared distributions. We hence propose to use 
Satterthwaite's (1946) method to approximate the distribu- 
tion of S ( Y ( l ) , Y ( 2 1 )  under Ho: f l ( t )  = f 2 ( t )  by a scaled chi- 
squared distribution K&. Denote by Eo and VO the mean and 
covariance of Y(o)  under Ho. Then the mean e and variance $ 
of the test statistic S ( Y ( , ) ,  Y ( 2 ) )  under Ho can be calculated 
as 

e = ETCE" + tr(CVo), 

$ = 2tr(CVo)' + 4E:CVoCEo. 

In practice, e and $ are evaluated at the MPLEs of pk and f k  

and the REML estimates of Ak and 0k under Ho. Since CEO 
is negligible under Ho, e and $ can often be approximated 
by e M tr(CV0) and $ = 2tr(CV")'. Equating e and $ 
to the mean and the variance of R& gives R = $/(2e)  and 
v = 2e2/$. Denote xibs = S,b,/n. The pvalue of the test 
statistic S ( Y ( l l , Y ( 2 ) )  can be approximated by pvalue = 

To study the property of the approximation, one can 
easily see that ignoring CEO is equivalent to assuming 
that the biases in f l ( t )  and f 2 ( t )  cancel under H". For 
independent data with a single nonparametric function, 
Young and Bowman (1995) proposed a test statistic similar 
to S ( Y ( , ) ,  Y p ) ) ,  where they estimated the nonparametric 
functions using the kernel method. They showed that the 
biases in the estimated nonparametric functions canceled 
asymptotically under the null hypothesis when the Gasser- 
Miiller (1979) kernel estimator was used. 

For longitudinal data, when the two groups have the same 
values of (tz3, x,) and (0, A), the bias results in Zhang et al. 
(1998) show that the biases in the smoothing spline estimates 
f l ( t )  and f 2 ( t )  cancel under Ho. We hence have CEO = 0 
and can ignore CEO in calculating e and 4. When the tz3k 
differ between the two groups, using the equivalent kernel 
results of Silverman (1984) and the results of Young and 
Bowman (1995), we expect the biases in the smoothing spline 
estimates &(t)  and f2( t )  could also cancel asymptotically. In 
more general situations where the two groups have different 
values of ( tz3,  x,) and (0, A), we expect that the biases in 
f l ( t )  and f2 ( t )  could partially cancel out under Ho and CEO 
is negligible. Alternatively, bias correction techniques such as 
undersmoothing could be used to reduce the biases in f ~ ( t )  
and f 2 ( t )  when calculating S ( Y ( l ) , Y ( 2 ) ) .  

One can use higher moments in matching to improve 
the approximation of the distribution of the test statistic 
S(Y(1 ) ,  Y ( 2 ) )  (Young and Bowman, 1995). We illustrate this 
scaled chi-squared test by application to the progesterone data 
in Section 5 and evaluate its performance through simulations 
in Section 6.2. 

5.  Application t o  the Progesterone Data 
We applied the proposed periodic semiparametric stochastic 
mixed model in analyzing the progesterone data introduced in 
Section 1. Progesterone is a reproductive hormone responsible 
for normal fertility and menstrual cycling. The study sample 
consisted of 65 premenopausal women aged 29-46 years, 34 
with normal bone mass density (controls) and 31 with low 

Prob[x? > X : d  
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bone mass density (cases). Urine samples were collected 
and analyzed on alternative days during two consecutive 
menstrual cycles. The objectives of the study were to examine 
the time courses of the progesterone levels in a menstrual 
cycle for controls and cases and to compare the progesterone 
time courses between these two groups while accounting for 
the possible effects of age and body mass index (BMI). (See 
Sowers et al. [1998] for more details.) 

Controls had 23-42 observations over time, with an average 
of about 28 observations. Their menstrual cycle lengths 
ranged from 23 to 56 days, with an average of 28.5 days. 
Cases had 21-42 observations over time, with an average 
of 28.5 observations. Their menstrual cycle lengths ranged 
from 21 to 56 days, with an average of 28.8 days. To 
overcome the problem of unequal cycle lengths among the 
study participants, each woman’s menstrual length was 
standardized uniformly to a reference 28-day menstrual cycle 
(Sowers et al., 1998; Zhang et al., 1998). A log transformation 
was applied to the progesterone level to make the normality 
assumption more plausible. 

Figure la and l b  displays the log-transformed progesterone 
values in the two consecutive menstrual cycles for controls and 
cases, respectively. Figure 2a and 2b shows their empirical 
sample variances calculated by grouping the data into 56 1- 
day intervals. Note that, since urine samples were analyzed on 
alternative days, the observations within every 1-day interval 
came from different subjects and were hence independent. 
These figures suggest that both the mean and the variance 
of the progesterone level vary over time periodically from one 
menstrual cycle to another. 

Denote by Yij the j t h  log-transformed progesterone value 
measured on standardized day t i j  since the menstruation of 
the first cycle for the ith control (or case) and by AGEi and 
BMIi her age and body mass index, respectively. We fit the 
following periodic semiparametric stochastic mixed model for 
controls and cases separately: 

K3 = P1AGEi + PzBMIi + f ( t i j )  + bi + Ui(tij) + ~ i j ,  (8) 

where f ( t )  is a periodic function with the period length 
T equal to 28 days, the bi are independent random 
intercepts following N(O,4), the U i ( t )  are random mean- 
zero nonhomogeneous Ornstein-Uhlenbeck (NOU) processes 
modeling serial correlation, and the ~ i j  are independent 
measurement errors following N(0, 02). The NOU process 
Ui ( t )  has an exponentially decaying correlation coefficient 
corr(Ui(t),Ui(s)) = plt -SI .  To allow the variance of y Z j  to 
vary periodically over time, we assumed a periodic variance 
function of U z ( t )  as var(Ui(t)) = exp(((t)), where ( ( t )  is a 
periodic cubic spline with some fixed knots in [O,T]. (See 
Appendix B for the functional form of a periodic cubic spline.) 
After some exploration of [ ( t ) ,  we found that a periodic cubic 
spline with two equally spaced interior knots fit the empirical 
variances very well for both controls and cases. For the sake 
of computational stability and the ease of interpretation, 
time since first menstruation tij was divided by 10 and age 
and BMI were centered at the medians 37 years and 25 
kg/m2 and were divided by 100. Therefore, f ( t )  represents 
the progesterone profile for 37-year-old women with BMI = 
25 kg/m2 for controls (or cases). 

Figure la and I b  superimposes the MPLEs of f ( t )  and their 
pointwise 95% frequentist and Bayesian confidence intervals 
for controls and cases, respectively. A common feature of 
controls and cases is that the progesterone levels remain 
relatively low and stable in the first half of a menstrual 
cycle and increase markedly after ovulation. They reach a 
peak around the 23rd reference day and then decrease. A 
comparison of Figure la and l b  shows that controls have a 
much higher peak value than cases. This suggests that bone 
mineral density might affect the progesterone profile. 

Table 1 presents the estimates of the regression coefficients, 
the variance components, and the smoothing parameter for 
controls and cases separately. Note that the frequentist and 
Bayesian standard errors of the estimates of the regression 
coefficients are almost identical, which is consistent with the 
results of Zhang et al. (1998). The estimates of the coefficients 
t o ,  ti, and (2 of the log-variance function ((t) (see Appendix 
B for their definition) indicate that the variance of the 
progesterone level varies strongly over time. The estimated 
variance curves are superimposed in Figure 2a and 2b and 
agree very well with the empirical variances for both groups. 
These results suggest that controls and cases have variance 
functions of similar pattern. However, controls seem to have 
higher between-subjects variability and lower within-subject 
variability than cases. 

Figure 3 shows the difference of the MPLEs f ( t ) ’ s  between 
controls and cases and its 95% pointwise frequentist and 
Bayesian confidence intervals. The two progesterone profiles 
seem not statistically significantly different before ovulation. 
However, controls have significantly higher progesterone levels 
after ovulation. This again indicates the effect of bone mineral 
density on the progesterone profile. 

We used the scaled chi-squared test proposed in Section 
4 to test whether or not controls and cases have the same 
progesterone profile globally. The observed scaled chi-squared 
test statistic was 18.8 with 1.69 d.f., which strongly suggests 
that the controls and cases have significantly different overall 
progesterone profiles (p-value = 0.000). 

6. Simulation Studies 
6.1 Evaluation of the Estimation Procedure 
We conducted a simulation study to evaluate the performance 
of the MPLEs of the regression coefficients and the 
nonparametric function and the REML estimates of the 
smoothing parameter and the variance components in 
periodic semiparametric stochastic mixed models. The design 
of the simulation study was identical to that of the original 
progesterone data for controls. We generated data in two 
consecutive cycles from model (8),  where the true model 
parameters and f ( t )  were set equal to the estimates obtained 
from the analysis of the observed control data given in Table 
1 and Figure la.  Five hundred simulation data sets were 
generated. 

Table 2 gives the relative biases, empirical standard errors, 
and model-based frequentist and Bayesian standard errors of 
the parameter estimates. All estimates have minimal biases. 
The model-based standard errors of the parameter estimates 
agree very well with the empirical standard errors. The 
frequentist and Bayesian standard errors of the regression 
coefficient estimates are almost identical. Figure 4 shows that 
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Table 1 
Estimates of the regression coefficients, variance components, and 

smoothing parameter f o r  controls and cases an the progesterone data 

Controls Cases 

Parameter Estimate Bayesian SE F’requentist SE Estimate Bayesian SE Frequentist SE 

1.0428 

0.2563 
0.0706 

-1.3204 
-4.7935 

0.5945 
0.0985 
9.3669 

-2.2412 
1.9007 
2.3512 
0.0708 
0.0334 
0.1615 
0.7282 
0.5942 
0.0161 
4.9036 

1.9006 1.2381 

0.0914 
0.3571 

2.3512 - 1.6870 

-0.5333 
-2.7229 

1.8300 
0.0783 
3.6821 

1.9495 1.9494 
2.3650 2.3649 
0.0563 
0.0732 
0.1601 
0.4309 
0.3935 
0.0127 
2.2530 

the bias in the estimated nonparametric function f ( t )  is mini- 
mal. Figure 5 compares the pointwise model-based frequentist 
and Bayesian standard errors with the empirical standard er- 
rors. They both agree quite well with the empirical standard 
errors. Figure 6 compares the estimated pointwise coverage 
probabilities of the frequentist and Bayesian confidence inter- 
vals of f ( t ) .  The nominal coverage probability is 95%. Their 
overall performance is similar and the averages of the esti- 
mated frequentist and Bayesian coverage probabilities over 
time are 94.2 and 94.9%, respectively. These results are con- 
sistent with those given in Zhang et al. (1998). 

6.2 Evaluation of the Scaled Chi-Squared Test 
We conducted a separate simulation study to evaluate the 
performance of the scaled chi-squared test proposed in Section 
4.2 for testing the equality of two (periodic) nonparametric 
functions. The simulation design was the same as that of 
the progesterone data except that only the first menstrual 
cycle design was used for the sake of computational simplicity. 
The data Y were generated separately for controls and cases 
using model (8), where the true f ( t )  was set t o  be f d k ( t )  = 
(d/4)fk(t) + [l - ( d / . l ) ] f ( t ) ,  where d = 0,1,2,3,4 a:d Ic = 1 
for controls and Ic = 2 for cases. Here f l ( t )  and f 2 ( t )  are 
estimated f ( t )  for controls and cases, respectively, from the 
real data and f ( t )  is the estimated common f ( t )  by pooling 

0 4 8 12 16 20 24 28 
a 

Days in standardized menstrual cycle 

Figure 3. The difference between two estimated population 
mean curves f ( t ) ’ s  for controls and cases of the progesterone 
study and its 95% pointwise frequentist and Bayesian 
confidence intervals (CIS). ~ Difference of f ( t ) ’ s ;  - - - - 
frequentist CI; - - - Bayesian CI. 

the two group data assuming f l ( t )  = f 2 ( t ) .  The other true 
model parameters were set to be their estimates given in 
Table 1. 

The size of the scaled chi-squared test was studied using the 
data generated with d = 0 and using 1000 simulated data sets. 
The power of the test was studied by setting d = 1,2,3,4 and 
using 500 simulated data sets. Table 3 reports the empirical 
size and power. The observed size of the test is very close 
to the nominal value. As the difference between the two 
nonparametric functions becomes larger, the power of the test 
increases. These results show that the scaled chi-squared test 
performs very well in terms of both size and power. 

7. Discussion 
In this paper, we proposed a semiparametric stochastic mixed 
model for periodic longitudinal data. Maximum penalized 

Table 2 
Relative biases and standard error estimates f r o m  simulation 

study of 500 replications based on the model f o r  controls 

Model-based 
Model Relative Empirical Model-based frequentist 

parameter bias SE Bayesian SE SE 

-0.0841 
P2 0.0461 

P 0.0651 
4 -0.0266 

ELI 0.0112 
El 0.0111 

cr2 -0.0101 
E2 0.0070 

1.8968 
2.3386 
0.0692 
0.0352 
0.1770 
0.7551 
0.6262 
0.0168 

1.8610 1.8610 
2.3021 2.3021 
0.0689 
0.0337 
0.1640 
0.7366 
0.5997 
0.0163 

Table 3 
Emparzcal saze and power of the scaled 

chz-squared test based o n  500 replacatrons 

Power Size” 
d = O  d = l  d = 2  d = 3  d = 4  

0.052 0.194 0.442 0.770 0.964 
a Nominal size is 0.05 and 1000 replications were used. 
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Days in standardized menstrual cycle 

Figure 4. Empirical biases in the estimated nonparametric 
function f ( t )  based on 500 replications using the design of 
controls. 

likelihood (MPL) is used to estimate the regression coeffi- 
cients and the nonparametric function. Restricted maximum 
likelihood (REML) is used to estimate the smoothing 
parameter and the variance components simultaneously. A 
key feature of this approach is that all model components can 
be easily estimated by fitting a modified linear mixed model. 
Our simulation study results show that MPL and REML 
estimation performs well. 

We applied the periodic semiparametric mixed model to 
the analysis of the progesterone data. The choice of this 
periodic model is natural, given the scientific knowledge of 
how hormone level changes in each cycle and the features 
of the data. Compared to the results obtained by using 
a uonperiodic model in Zhang et al. (1998), the values of 
the estimated periodic nonparametric function have smaller 
biases and variances at t = 0 and t = T(28) ,  the two 
boundary points of the nonparametric function in Zhang et 
al. (1998). This is because these two points are no longer 
boundary points of the periodic nonparametric function in 
our periodic model. Therefore, better inference can be made 
on the periodic nonparametric function in the neighborhood 
of these two points. 

We proposed in this paper a scaled chi-squared test for 
the equality of two nonparametric functions. Our simulation 
study results show that this simple scaled chi-squared test 
performs well. We studied in special cases the impact of the 
biases in the estimated nonparametric functions on the test 
statistic. However, its asymptotic property under the general 
semiparametric model (1) still requires further research. 

0 4 8 12 16 20 24 28 

Days In standardized menstrual cycle 

Figure 5.  Empirical, frequentist, and Bayesian pointwise 
standard errors of the estimated nonparametric time functions 
f ( t )  based on 500 replications. - empirical SE; - - - - 
frequentist SE; - - - Bayesian SE. 

0.991 I 

0.911 , , , , , , . . 1 
.- c 0 4 8 12 16 20 24 28 
1;1 

Days in standardized menstrual cycle 

Figure 6. Estimated pointwise frequentist and Bayesian 
95% coverage probabilities of the values of the true fixed 
function f ( t )  based on 500 replications. ~ Nominal level 
(95%); - - - - frequentist; - - - Bayesian. 

We estimated in this paper the nonparametric time 
function using a periodic smoothing spline. Alternatively, 
one can use the kernel method to estimate f(t). However, if 
kernel estimation is used, one cannot cast the semiparametric 
model (1) within a unified linear mixed model framework. 
The subsequent inference for the other model parameters, 
especially the variance components, might be difficult. 
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RESUMB 
On considere la regression semi-pafamktrique pour des don- 
nkes longitudinales pkriodiques. On utilise un modkle para- 
mktrique a effets fixes pour dkcrire les effets des covariables 
et une fonction pkriodique non-paramktrique lisske pour 
dkcrire l’effet du temps. La corrklation intra-sujet est dkcrite 
par un modele alkatoire spkcifique au sujet combink B un 
processus stochastique avec variance pkriodique. L’estimation 
simultanke du parametre de lissage et des composantes de la 
variance est rkaliske par maximum de vraisemblance restreint. 
Nous montrons que tous les parametres du modkles sont aisk- 
ment obtenus avec l’ajustement d’un modkle linkaire mixte. 
Un problkme courant dans l’analyse de donnkes longitudinales 
est la comparaison inter-groupe de profils, par exemple entre 
un groupe placebo et un groupe traitement. On dkveloppe un 
test de forme Khi Deux pour la comparaison de deux fonctions 
du temps non-paramktriques. Le modele proposk et le test 
sont illustrks en analysant des donnkes de dosage d’hormone 
rkalisk au  cours de d e w  cycles menstruels conskcutifs, leur 
performance est kvaluke B l’aide de simulations. 
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APPENDIX A 

Proof of Ji’[f’’(t)l2dt = fTKf for a Periodic 
Cubic Smoothing Spline f ( t )  

Let tr+l = T ,  f i  = f (te), yl = f ” ( t e )  for 1 = 1,. . . , r + 1, and 
hl = tF+l - tF for 1 = 1,. . . , T .  Following Green and Silverman 
(1994), we have 

0 

L T I f ” ( t ) ] ’ d t  = f ’ ( t ) f”( t ) lc  - f”’(t) f ’ ( t )d t  ./cT 
r 

The periodicity of f ( t )  implies fi = fr+l and y1 = yr+l. It 

f = ( f l , . . . r f r ) T , a n d Q =  {923}isanr~rsymmetricmatrix 
of rank ( r  - 1) whose nonzero elements q2,7 are 

follows that J:[f”(t)l2dt = yTQf, where y = (71,. . . , yT )  T , 

1 
411 = -hT1 - h, , 
41r = 4 T l  = hF1, 

QZZ = -h;-1 - hC1, 1 

-1 
91-1,1 = 91,Z-1 = hl-1 ( 1  = 2 , .  . . , r ) .  

Using the results of Green and Silverman (1994, p. 24), 
we can show that y and f are related by Ry = Qf ,  where 
R = {rZII}  is an r x r positive definite matrix whose nonzero 
elements ry are 

1 
T i 1  = ?(hi + h T ) ,  
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We hence have J;[f”(t)l2dt = f‘rKf, with K = QR-lQ. 
Note the rank of the periodic smoothing matrix K is r - 1 
instead of r - 2 ,  which is the rank of conventional smoothing 
matrix K defined by Green and Silverman (1994). 

APPENDIX B 

Functional Form of a Periodic Cubic 
Spline with Fixed Interior Knots 

We here derive the functional form of a periodic cubic spline 
with fixed interior knots that is used in Section 5. Suppose 
0 < tl < . . . < t k  < T are k interior knots in [0, TI. Then a 
periodic cubic spline ( ( t )  with these knots is 

k 

( ( t )  = ( 0  + a1t + a2t2 + a3t3 + c ( j  (t - t j ) 3 + ,  
j=l 

where a+ denotes the positive part of a and ( ( t )  needs to 

satisfy the periodic constraints ( ( 0 )  = ((T),(’(O) = (’(T),  
and [”(O) = (”(T). Some algebra shows that the resulting 
periodic cubic spline ( ( t )  for t E [0, T ]  takes the form 

k 

j=1 

where s j ( t )  = a j t  + bjt2 + cjt3 + (t - t j ) : ,  whose coefficients 
a j ,  bj ,  and cj are 

T(T - t j )  3(T - t j ) 2  (T - t j ) 3  
- 

+ 2  T ’  
3(T - t j ) 2  

a .  - - 
2 3 -  

3(T - t j )  - 
2 2T ’ bj = 

T - t j  

c j  = T. 
A periodic cubic spline is obtained by replicating [ ( t )  ( t  E 
[0, TI) periodically outside [0, TI. 


