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Abstract

We propose a family of regression models to adjust for nonrandom dropouts in the analysis of
longitudinal outcomes with fully observed covariates. The approach conceptually focuses on
generalized linear models with random effects. A novel formulation of a shared random effects
model is presented and shown to provide a dropout selection parameter with a meaningful
interpretation. The proposed semiparametric and parametric models are made part of a sensitivity
analysis to delineate the range of inferences consistent with observed data. Concerns about model
identifiability are addressed by fixing some model parameters to construct functional estimators
that are used as the basis of a global sensitivity test for parameter contrasts. Our simulation studies
demonstrate a large reduction of bias for the semiparametric model relatively to the parametric
model at times where the dropout rate is high or the dropout model is misspecified. The
methodology’s practical utility is illustrated in a data analysis.
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1. Introduction

Proper handling of missing data and dropouts in particular is critical in statistical analyses of
longitudinal studies. It is well documented that improper handling of missing values may
lead to misleading inferences (see, for example, Little and Rubin, 1987; Scharfstein et al.,
1999; Rotnitzky et al., 2001; Kenward et al., 2001; and Hogan et al., 2004). Proper treatment
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of missing data in statistical analysis depends primarily on the underlying missingness
mechanism for which Little and Rubin (1987) provide a helpful terminology. Data are
classified as missing completely at random (MCAR), missing at random (MAR) and missing
not at random (MNAR), if missingness is allowed to depend on (1) none of the outcomes,
(2) the observed outcomes only, and (3) unobserved outcomes as well, respectively. From a
modelling standpoint, most statistical approaches for handling missing data rely on the
stronger MCAR or the less restrictive MAR assumptions (Hogan et al., 2004). Examples of
such models in the context of longitudinal data are the generalized estimating equations-
GEE models in their original formulation (Liang and Zeger, 1986) for the MCAR
mechanism, and both the weighted GEE-based (Robins et al., 1995) and likelihood-based
models (e.g., Laird and Ware, 1982) for the MAR mechanism. These models are commonly
employed in practical data analytic settings, owing to their conceptual simplicity and ease of
implementation. They are also known to generate valid inferences under the associated
missing data mechanisms (Verbeke and Molenberghs, 2000). However, when the
missingness mechanism depends on the unobserved outcomes, these procedures are known
to produce biased inferences. To overcome this difficulty, Diggle and Kenward (1994) and
Molenberghs et al. (1997) among others have proposed a model that incorporates both the
information from the measurement process and the missing data process into a unified
estimating function. This has provoked a large debate about the role for such models in
understanding the true data generating mechanism. The original enthusiasm was followed by
skepticism about the strong and untestable assumptions on which this type of models rests
(Verbeke et al., 2001). Despite these limitations, more researchers recognize that these
models should not be rejected but should be made part of a sensitivity analysis. Next to this
issue, models that incorporate the measurement and dropout processes are usually not
identifiable from observed data (see, for example, Troxel et al., 1998; Scharfstein et al.,
1999; and Kenward et al., 2001). One then has to impose quantitative restrictions to recover
identifiability. Conventional restrictions result from considering a minimal set of
parameters, called sensitivity parameters, conditional upon which the remaining parameters
are assumed identifiable. This method therefore produces a range of models which forms the
basis of sensitivity analysis (Vach and Blettner, 1995). Over the years, numerous authors
have proposed a local sensitivity approach to assess the impacts of uncertainties on
inferences when the data are partially observed (Copas and Eguchi, 2001; Verbeke et al.,
2001; Troxel et al., 2002; and Todem et al., 2006). The idea stems from assessing the effects
of small perturbations of the MAR model in the direction of MNAR models. Where such
methods have appeared in the literature, the sensitivity of identifiable parameters with
respect to some fixed parameters is estimated via partial derivatives calculated in the
neighborhood of a specified solution, typically at the MAR location. This local approach is
important but a limitation is that only selected values of the sensitivity parameters are
considered. In practice, it is often impossible to know the true value of the sensitivity
parameters, making the global analysis conducted across all values of the sensitivity
parameters the most conservative analytic strategy. Another limitation is that inference
regarding the identifiable model parameters is ad hoc, ignoring that multiple tests are
conducted and that the assumed values of the sensitivity parameters may be incorrect.

We consider a class of likelihood models for the measurement and dropout processes.
Specifically, we formulate a generalized linear mixed effects model to describe the joint
distribution of the measurement outcomes in time and then extend this basic model to allow
for nonrandom dropouts. A novel formulation of a shared random effects model is
introduced to capture the dropout dependence on the outcome process. Two forms of
sensitivity analysis are considered. A qualitative sensitivity analysis is conducted to address
concerns about the unverifiable nature of any working MNAR model using observed data.
Specifically, we consider a nonparametric distribution as well as a fully parametric
distribution for the random effects. Another line of sensitivity, essentially quantitative, is
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performed to address concerns about model identifiability. We profile the model across a
fixed parameter to delineate the range of inferences consistent with observed data. We
propose a supremum test to conservatively evaluate the sensitivity of some parameter
contrasts across all plausible values of the sensitivity parameter. This is particularly
important when the quantity being tested does not increase or decrease monotonically as the
sensitivity parameters are increased or decreased. Under monotonocity, it is only necessary
to perform the tests at the limits of the sensitivity parameter space. However, in practice,
missing data models are often quite complicated and it may not be clear whether
monotonicity holds. In these set-ups, the analysis should be undertaken globally across all
values of the sensitivity parameter.

The rest of this article is organized as follows. In section 2, we develop a class of shared
latent variable models for longitudinal data with nonrandom dropouts, and discuss some key
features of the models with related theoretical and asymptotic results. In Section 3, we
propose a global sensitivity test based on a supremum hypothesis to assess simultaneously
any perturbations of the MAR model in the direction of MNAR models. An illustration of
the methodology using a psychiatric dataset is given in section 4. Section 5 presents a
simulation study. Some remaining issues are discussed in section 6.

2. Shared latent variable models

2.1. Setup and notations

For each subject i = 1, ⋯, n, there are q underlying outcomes represented by the vector Yi(
= (Yi(t1), ⋯, Yi(tq))′, measured respectively at discrete time points in the set = {t1, ⋯, tq},
where t1 < t2 < ⋯ < tq. These outcomes, however, are not always fully observed and
therefore are coupled with a missingness indicator vector Ri(  = (Ri(t1), ⋯, Ri(tq))′, where
Ri(t) = 1 if Yi(t) is unobserved and 0 if otherwise. For a monotone missing data process, Ri(
has the property that Ri(s) = 0 whenever Ri(t) = 0 for s ≤ t and Ri(s) = 1 whenever Ri(t) = 1
for s ≥ t. It is then intuitive to represent the series of indicators {Ri(t) : t ∈  for subject i by
the random variable Di = 1 + ∑t∈ (1 − Ri(t)). We assume that for all i, pr(Di ≥ 2) = 1 which
implies that all subjects are present at first time point. The random variable Di then takes
values 2, ⋯, q + 1, with q + 1 being the realized value for a complete sequence.

2.2. Model formulation

We use a shared random parameter bi coupled with the conditional independence
assumption to specify the joint distribution of the measurement outcome and dropout
response for subject i, denoted by ℒ(Yi( , Di) = ∫ ℒ(Yi( |bi)ℒ(Di|bi)dℒ(bi). In this
formulation, the generic label ℒ(u) denotes the law of u and ℒ(u|v) the conditional law of u
given v.

The law of Yi(  for fixed bi could be very general, but we restrict our formulation to the

conditional independence assumption . The conditional law
for the time point outcome is assumed to be generated from a generalized linear model with
random effects. Specifically, we assume that the conditional mean µ i(t) = E{Yi(t)|bi, xi(t)} of
an hypothetical (observed or unobserved) response Yi(t) at time point t for subject i is
modeled as,

(1)

where β = (β0, ⋯, βp−1)′ is the slope vector associated with covariates xi(t) of dimension p ×
1 and g(․) is a monotone, differentiable and invertible function. The function g(․) is assumed
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known and is typically chosen to be the identity function for continuous outcomes, whereas
for binary outcomes, the logit link is the natural choice.

To specify the law ℒ(Di|bi), we assume that there exists an observed covariate zi(tj) that
describes the discrete dropout hazard hi(tj) = pr(Di = j|Di ≥ j, bi, zi(tj)) at timepoint tj.
Specifically, we consider the hazard model given by,

(2)

where ε(zi(t)) is a function of the covariate zi(t) of dimension r with associated coefficient α,
and δ is the slope associated with ϕ(bi), ϕ(․) being a map from ℛ to the unit length open
interval (0, 1). One simple example of the function ϕ(․) is the nondecreasing function, ϕ(bi)
= (1 + e−ϖ(bi))−1, where ϖ(․) is also a nondecreasing function. When bi has an infinite
support, we have limbi→−∞ ϖ(bi) = −∞ and limbi−∞ ϖ(bi) = ∞, with suitable
modifications when bi has a finite support. Any such function ϖ(․) that meets the conditions
above defines a function ϕ(․) and vice versa. Expressing ϖ(․) in terms of ϕ(․) is
straightforward and given by, ϖ(bi) = log {ϕ(bi)/(1 − ϕ(bi))} and is referred to as the logit
function associated with ϕ(․).

Finally, to complete the model formulation, the law of the random variable bi denoted ℒb =
ℒ(bi) can be assumed parametric or left completely unspecified with a discrete support. That
is,

(3)

where τ2 is the unknown variance and ζm) is the Dirac measure placing point mass πm at

the single point ζm, with . These random effects distributions are viewed as a
sensitivity analysis to address distribution misspecification. An advantage of the discrete law
is that we do not introduce possibly inappropriate and unverifiable assumptions about the
distribution of random effects. With the maximum number of identifiable latent classes, the
mixing distribution may be interpreted as a nonparametric distribution (Laird, 1978). The
discreteness of this law forces the random effect bi to be one of the M unknown latent
points, ζ1, ⋯, ζM. An important difference with the parametric model is that each subject
does not have her own intercept in a latent class model. Instead, it is assumed that each
subject belongs to one of the M latent classes and that each latent class has its own intercept.
In practice, the number M is increased until the model fit no longer improves.

In the proposed model, the random effects term bi is shared between the measurement
outcome and the dropout process. This idea of using a shared latent variable model for
modelling longitudinal outcomes subject to nonrandom dropouts is not new (see, for
example, Wu and Carroll, 1988; Albert and Follmann, 2000; and Ten Have et al., 2002). A
more recent illustration of this methodology is given by Beunckens et al. (2008). These
authors have proposed a latent class model for incomplete longitudinal gaussian data viewed
as a candidate model in their sensitivity analysis. Our extension of this technique is the
introduction of the monotonic transformation ϕ(․) on the unobserved latent variable, which
gives several attractive features to the dropout model. The constraint on the transformation
is similar to that imposed by Rosenbaum (2002, page 107) on the unobserved covariate used
to explain the hidden bias in assigning different treatments to subjects with same observed
covariates. Our constraint may be seen as a restriction on the scale of the transformed
unobserved latent variable, a restriction needed for δ to have a meaningful interpretation. It
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can be shown that the odds ratio of dropout hazard for two subjects with the same observed
covariates for the dropout model is at most exp{|δ|}. For a sketch of the proof, we consider
two subjects i and i′ who have the same observed covariates with respect to the dropout
model, say zi(t) = zi′(t) (or ε(zi(t)) = ε(zi′(t))) at time point t. It can easily be shown (proof
given in Appendix) that the odds ratio of dropout hazard between subjects i and i′ is given
by,

In other words, two subjects with the same observed covariates for the dropout model differ
in their odds of dropout hazard by a factor that involves the parameter δ and the difference
in their transformed unobserved covariates ϕ(bi) − ϕ(bi′). Giving the constraint imposed on
the function ϕ(․), it follows that the ratio above is bounded as follows,

Hence, for δ = 0 we have a dropout at random mechanism where two subjects with same
observed dropout covariates have equal dropout hazard odds. When δ = log(3), two subjects
with same observed dropout covariates could differ in their instantaneous dropout odds by a
factor as much as 3.

2.3. Model identifiability

It is well known that nonrandom dropout models are typically not identifiable from observed
data (see, for example, Scharfstein et al., 1999; and Kenward et al., 2001). Both simulation-
based studies and analysis of actual data show that nonrandom models often have likelihood
functions with flat surfaces and/or with multiple modes. We study some implications of
these identifiability concerns for the shared parameter model. For this, let

 be the laws of the random effects b for complete and
incomplete data subjects, respectively. Here, we have suppressed the subject index for
simplicity. The law ℒb of the random effects can be written as,

(4)

where pd = P(D ≤ q). If many independent copies of the indicator variable I(D ≤ q) are
available, pd can be estimated very well. Although the random effects are not observed, the

law  can also be well estimated using the law of Y(  among completers. It can been
shown, using a simple probability argument, that

. The law ℒ(Y( |D > q) is easily
identifiable from observed data. The law ℒ(b|Y( , D > q) is also identifiable using the
fundamental assumption of conditional independence of measurement responses given
random effects. A typical estimate of ℒ(b|Y( , D > q) is the nonparametric maximum
likelihood estimate, a discrete distribution with at most n − nd support points, nd = ∑i I(Di ≤
q) being the number of dropout subjects (Lindsay, 1983; and Davidian and Giltinan, 1998).
The unidentifiable component of the model is clearly

, the law of b for dropout subjects, as the
law ℒ(Y( |D ≤ q) is unidentifiable from observed data. The theorem below gives some
implications of this nonidentifiability in a setup where q = 2.
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THEOREM 1. Assume that the study has only two planned time points, q = 2, and that the

laws pd and  are all known. The fact that the law  is not identifiable translates into α0,
the intercept of the hazard model, and δ being related by the deterministic relationship,

(5)

Here, the integration  is with respect to the Lebesgue measure on the real line for the
normal latent variable and to the counting measure for the discrete nonparametric
distribution. The proof of this theorem (given in Appendix) is similar to that of Freedman
(1999) in the context of dropout selection models. When q > 2, from our experience the joint
model is often at best weakly identifiable especially when M gets large. Such
overspecification of the model can be managed in a more general way by considering a
minimal set of parameters, conditional upon which the other parameters are estimable. It is
important, however, to realize that the choice of the sensitivity parameter is non-unique and
can be a difficult task (Kenward et al., 2001). In general, sensitivity parameters are chosen
from parameters that are not of primary interest. Ideally, the choice should be closely linked
to the substantive problem under analysis. A natural choice for the sensitivity parameter in
our joint model is δ, the parameter that measures the extent of nonrandomness of the dropout
process.

2.4. Functional semiparametric inferences via EM algorithm

Let ψ = (β′, α′, ζ′, π′)′ be the identifiable parameter vector of the semiparametric model, with
ζ = (ζ1, ⋯, ζM)′ and π = (π2, ⋯, πM)′. Since M free parameters are considered for ζ, no
overall intercept is allowed in the vector β for the model in (1) to ensure identifiability. The
maximum likelihood estimate (MLE) of the parameter vector ψ can be obtained by means of
the EM algorithm introduced by Dempster, Rubin and Laird (1977), since direct
maximization of integrated likelihood is difficult.

We denote by Yi( i), where i = {t1, ⋯, tDi−1}, the collection of all observed outcomes for
subject i and by Yi(ℳi), where ℳi = {tDi, ⋯, tq} for Di ≤ q, the collection of all missing
random outcomes. We also denote by xi( i) and zi( i), respectively the collection of all fixed
effects covariates for the measurement process and dropout hazard. Define the indicator
random variables for the class membership as follows: im = 1 if the ith subject belongs to
the mth class and 0 if otherwise. It follows from this definition that E( im) = πm. We
consider the complete data ( i, Yi( i), Di), where i = ( i1, ⋯, iM)′ and the observed data
Wi = {Yi( i), Di, zi( i), xi( i)}. Unlike other EM algorithms for non-response models, our
approach does not involve the missing component Yi(ℳi) when Di ≤ q. Indeed, by assuming
that the possibly incomplete random vector Yi(  and the dropout variable Di are conditional
independent given the latent variable, the integration of the conditional likelihood with
respect to the law of missing data results in a closed form.

We denote by ℓ( i, Yi( i), Di) the contribution of subject i to the complete data likelihood
function. Suppose that the current estimate, at step a, of the parameter vector is ψ(a)(δ) for a
fixed δ. The E-step of the EM algorithm involves computing the expectation of the complete
data log-likelihood given observed data and the current estimate for a fixed δ. The
contribution of subject i to this conditional expectation is given by,
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Here πim(ψ(a)(δ)) = E { im|Wi, δ, ψ(a)(δ)} is the posterior probability for the ith subject to
belong to the mth latent class and given by,

The term fY (Yi(t)|ζm, xi( i), ψ) is the time point conditional density of the measurement
process. The quantity fD(Di|ζm, zi( i), δ, ψ) = [∏t∈ i (1 − hi|m(t))] {hi|m(tDi)}

I(Di≤q), with
hi|m(t) = {1 + exp(−ε(zi(t))α − δ ϕ(ζm))}−1 and setting hi|m(t1) = 0 and hi|m(tq+1) = 1, is the
dropout probability when the ith subject belongs to class m. In the M-step of the algorithm,
identifiable model parameters are updated so that the expected log-likelihood is maximized.

An update of the parameter πm, is given by . Maximization of
the expected complete likelihood with respect to β can be done using standard algorithms for
the maximum likelihood estimation of generalized linear models.

An important issue to be confronted is the choice of M, the number of random effects classes
in the discrete model in (3). It is well known that this number is not an interior point of a
convex space, which rules out the use of the likelihood ratio approach (McLachlan and Peel,
2000). To reduce complexity, together with δ we held M fixed for each model and used
goodness-of-fit tools such as the Bayesian information criterion to select the appropriate
number of classes (see, for example, Beunckens et al., 2008).

2.5. Asymptotic behaviors of the estimator of ψ
We now study the asymptotic behavior of the estimator of ψ when δ the parameter which
describes the degree of selection bias in the model is predetermined. First, we show that it is
necessarily for δ to be bounded, otherwise the marginal log-likelihood function diverges.

THEOREM 2. We assume that 0 < infi,t |ε(zi(t))α| ≤ supi,t |ε(zi(t))α| < ∞. When δ → ∞, the
profile log −likelihood log ℓ(ψ, δ) → −∞ and a finite maximizer does not exist.

Here ℓ(ψ, δ) denotes the likelihood function for a fixed δ. Note here that the assumptions of
the theorem are also verified under the stronger condition of a compact space for the
parameter vector α and bounded associated transformed covariates. The theorem result
(proof given in Appendix) also holds for the expected complete data log-likelihood given
observed data and the current estimate for a fixed δ. This result implies that when δ is
unbounded, a finite MLE of ψ does not exist. This suggests that the parameter space of δ
needs to be bounded. In other words, one needs to assume that δ ∈ ℋ, a bounded set.
Without any loss of generality we will restrict ℋ to the closed interval [0, Δ], with 0 ≤ Δ <
∞. In practice, subject matter expert should be consulted to decide on the choice of the
largest plausible value of δ. From a technical standpoint, this choice should be
computationally feasible. This limiting result is different from that of Scharfstein et al.
(1999) where the parameters of interest converge to fixed values as the sensitivity parameter
becomes infinitely large.
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Let δ0 be the true value of δ from the joint model. If δ0 is known, the MLE of ψ0 (the true
value of ψ) denoted ψ̂(δ0) can be obtained by maximizing the profile likelihood with δ fixed
at the true value δ0. As the sample size n gets large, the maximum likelihood theory (see for
example, Casella and Berger, 1990) ensures that, ψ̂(δ0) is consistent for ψ0, that is ψ̂(δ0) →p

ψ0, and , with Σ0 being the associated asymptotic variance-
covariance matrix. Under a misspecified dropout process, i.e. δ ≠ δ0, and for a large n, we
have ψ̂(δ) →p ψ* (δ), with ψ*(δ) not necessarily equal to ψ0. Moreover, the profile score
functions are roughly quadratic in the neighborhood of ψ*(δ) for fixed δ and the limiting

distribution of  is 0, Σ*(δ)), with Σ*(δ) being the asymptotic variance-
covariance matrix. These pointwise weak convergence results are supported by the theory on
empirical processes (see for example van der Vaart and Wellner, 2000). They can be made
uniform across the space of δ under certain smoothness conditions (see details in Appendix).
As the covariance function Σ*(δ) characterizing the limiting distribution of ψ̂(δ) is quite
complicated, the bootstrap may be used to calculate the asymptotic standard errors of
parameter estimates from a misspecified model (Efron and Tibshirani, 1993). The bootstrap
is especially useful when simultaneous inference about ψ*(δ) for δ ∈ ℋ is of interest and
cannot be carried out analytically. In the next section, we discuss a global sensitivity
analysis in which inferences are conducted simultaneously across the range of δ.

3. Global sensitivity tests

We consider the contrast Cψ, where C is an l × (p + r) matrix which defines a general
framework for estimating single and multiple linear combinations of model parameters. As
an example, in the special case of evaluating the effect of the jth covariate, one takes C to be
a 1 × (p + r) vector with a one in the jth position and zeros elsewhere. Suppose we are
interested in assessing the sensitivity of the contrast Cψ*(δ) relative to Cψ*(0) across all
values of δ. Formally, this global sensitivity hypothesis can be formulated as follows,

where ‖․‖ represents the Euclidean norm. This hypothesis can be used to assess any
perturbation of the MAR model in the direction of the MNAR models. When the supremum
hypothesis is not rejected say at 5% significance level it can be concluded that there is no
evidence from observed data to reject ‖Cψ*(δ0) − Cψ*(0)‖ = 0. This follows from the trivial
inequality,

In this case, Cψ̂(0) can be used to make rigorous inferences about Cψ*(δ0). However, when
the supremum hypothesis is rejected, a sensitivity analysis is then carried out to identify
values of δ for which the hypotheses ‖Cψ*(δ) − Cψ*(0)‖ = 0 are rejected. Our global
analysis then asks how would inferences about the contrasts Cψ*(δ) − Cψ*(0) be altered by
nonrandom dropouts of a magnitude defined by δ?

The supremum test can easily be performed using a nonparametric bootstrap approach. Let 0
< γ < 1, the hypothesis H0 is rejected at level γ when the observed test value is greater than
the (1 − γ) percentile of the bootstrap samples of the test statistic Tsup = supδ∈ℋ ‖Cψ̂(δ) −
Cψ̂(0)‖ under the null hypothesis. In the special case of estimating the effect of a one-

dimensional covariate say Cψ = β1, simultaneous confidence intervals of 

across all values of δ can be used to evaluate the sensitivity hypothesis. Let ,
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s = 1, ⋯, S, be bootstrap samples of β̂1 (δ) and β̂1(0), respectively. A simultaneous

confidence interval for , for all δ ∈ ℋ, takes the form

where ϑ ̃γ is the (1 − γ)th empirical percentile of

. When H0 is rejected, the interval (infδ∈ℋ β̂1(δ),
supδ∈ℋ β̂1(δ)) gives the minimum and the maximum sizes of the estimate of β1 over all
values of the selection bias due to dropouts (see, for example, Kenward et al., 2001). This
interval due to dropout uncertainty can be extended to incorporate uncertainty due to
sampling imprecision by computing a lower and an upper confidence bound for

, respectively.

4. Analysis of psychiatric data

The Fluvoxamine (a serotonin reuptake inhibitor) trial is a multi-center non-comparative
study, designed to reflect clinical practice closely with out-patients diagnosed with
depression, obsessive-compulsive disorder or panic disorder. Accumulated experience in
controlled trials has shown that Fluvoxamine is as effective as conventional tricyclic
antidepressant drugs, and more effective than placebo in the treatment of depression (for a
review, see Burton, 1991). However, many patients suffering from depression have
concomitant morbidity associated with this condition. It was then decided to set up a post-
marketing pharmaco-vigilance trial to study more accurately the profile of Fluvoxamine in
ambulatory clinical psychiatric practice. A total of 315 patients with a diagnosis of either
depression or obsessive-compulsive or panic disorder were enrolled in the study. All
subjects were treated with Fluvoxamine in doses ranging from 100 to 300 mg/day and
underwent clinical evaluations at baseline, 2, 4, 8 and 12 weeks. One primary endpoint
comprised the side effects of the drug recorded on an ordinal scale. A side effect occurs if
new symptoms appear. Several patient’s baseline characteristics such as sex, age, initial
severity of the disease on a 1 to 7 scale, and duration of the mental illness were recorded.
One key objective of the study was to assess the within-subject evolution of side effects over
time adjusted for baseline covariates. In particular, the drug company was interested in
describing the side effects’ profile for each study participants for a possible change in doses.
A full description of the study is given by Molenberghs and Lesaffre (1994), Lesaffre et al.
(1996) and Kenward et al. (1994).

Out of 315 patients, 224 patients had a full-sequence data resulting from the fact that 14
subjects were not observed after recruitment, 31, 26, and 18 patients dropped out,
respectively, after the first, second and third visit and 2 patients had a non-monotone
missing pattern. As our analysis focuses only on dropouts, we ignore the 2 cases that had a
non-monotone missing pattern and ignore all 14 patients who dropped out before the first
visit. Compared to the start of the study, a reduction of side effects is depicted throughout
the study for both the completers and the non-completers (see Figure 1). Specifically, about
54% of patients who complete the study had some side effects at 2 months compared to 66%
for subjects who were present at 2 months but dropped out before the next visit. At 4
months, these numbers were 44% for completers compared to 62% for noncompleters and at
8 months, 35% for completers compared to 44% for noncompleters. It is clear that study
noncompleters are likely to be doing poorly with respect to side effects. This makes the
MNAR process a plausible missingness mechanism. Therefore, a naive reasoning that
ignores this selection process may lead to an incorrect and over optimistic conclusion. A
question then emerges. How do side effects evolve over time accounting for this potentially
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nonrandom dropout mechanism? To answer this question, we consider the shared latent
variable model described in section 2 to assess the effect of time on the outcome variable for
various values of the parameter which measures the extent of nonrandomness of the dropout
process.

Our analysis of the within-subject evolution (captured by time effects) is based on a
dichotomized version (presence/absence) of side effects. Considering an ordinal outcome
rather than binary would only add unnecessary complexity to the analysis. For this, we
consider a simple Bernoulli model for which the conditional mean is given by,

where Yi(t) = 1 if new symptoms occur and 0 if otherwise, and β is the slope vector
associated with the design covariate vector xi(t). The vector xi(t) contains the linear time
variable and the baseline variables (sex, age at enrolment, initial severity of the disease on a
1 to 7 scale, and duration of the mental illness at enrolment). We extend the proposed model
to account for nonrandom dropouts as follows,

where α is the slope associated with xi(t) and ϕ(bi) = 1/(1 + e−bi). Here the function ϖ(․) is
set to identity.

We are interested in the parameter vector β, specifically the slope parameter say β1 of the
linear time variable. We attempted to fit the parametric and the semiparametric models to
the data without fixing δ but the computations were unstable, especially for large M.
Multiple starting values were tried. In some cases, the algorithm diverged, while in cases
were it did converge, multiple local maxima were obtained for the full likelihood. This
suggests that these models are at best weakly identified for our data. To address these
identifiability concerns, we then fixed δ and performed the supremum test described in
section 3 to assess sensitivity of the parameter β1 across all values of δ, under the parametric

and the semiparametric models. For this, we computed estimates of  and
associated 95% simultaneous confidence intervals across all values of δ ∈ ℋ. These
estimates and associated 95% simultaneous confidence intervals are graphically represented
in Figures 2(a) and 2(b), respectively for the semiparametric and the parametric working
models. These graphs are obtained by solving the profile score equations for fixed values of
δ on a grid and mid-points estimators are then interpolated via smoothing. The 95% critical
points (.14 and .26 for the semiparametric and parametric models, respectively) to compute
the simultaneous confidence intervals were obtained using 1000 bootstrap samples.
Simultaneous confidence intervals do not contain 0 for δ ≤ 40 under the semiparametric
model and for δ ≤ 30 under the parametric model. Hence, unless the true odds ratio of
dropout hazard for two subjects with same fixed covariates is larger than exp(40) and
exp(30) for the semiparametric and parametric models respectively, the linear time effect
appears to be relatively stable under any perturbations of the MAR model in the direction of
MNAR models. The evidence from our investigation speaks against dropout being at
random in the Fluvoxamine data, but the sensitivity analysis results suggest that the adjusted
slope of time effects are not much influenced by δ in light of sampling variations. The MAR
model is therefore preferable for its relative simplicity. From a clinical standpoint, our MAR
analysis suggests that the intensity of side effects declines with time. For each unit increase
in time, the estimated adjusted odds for not showing some side effects can increase by a
factor (95% confidence interval in parentheses) of 2.071(1.648, 2.603) for the
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semiparametric model and 2.109(1.671, 2.662) for the parametric model. This example
illustrates how a global approach can be used to assess sensitivity of parameters of primary
interest when some model characteristics are potentially unidentifiable from observed data.
Moreover, it also illustrates how a sensitivity analysis can be conducted on the random
effects distribution for model misspecification.

5. Simulations

In this section we report results of a numerical study conducted to evaluate the small sample
performance of the functional estimators proposed in this paper when the dropout process is
nonrandom. The simulations were conducted so to roughly approximate the binary outcomes
from the Fluvoxamine study. In each Monte Carlo iteration, we simulated a sample of 100
subjects with four potential measurement time points (q = 4). The measurement outcomes
were simulated using the Bernoulli model, fY (Yi(t)|bi, xi(t)) = µ i(t)

Yi(t){1 − µ i(t)}
1−Yi(t),

where µ i(t) = {1 + exp(−1 + xi(t) − bi)}
−1, with xi(t) = t taking values in the set {1, 2, 3, 4}.

To keep the simulation simple, the dropout observations were generated using a time
independent dropout hazard model given by, log {hi(t)/(1 − hi(t))} = α0 + δ0/(1 + e−bi). This
simplified assumption may be seen as too restrictive as missingness is typically related to
things which happen as the study is ongoing. Throughout the simulations, we also fixed δ0 =
1. We produced 20% and 50% dropout rates by setting the values of α0 to 2.094 and .855,
respectively. Two different distributions with a variance of 4.025 for the random effects bi

were considered: a Gaussian distribution, ℒb ~ 0, 4.025) and a bimodal mixture of two

Gaussian distributions, . This process was repeated for 250
Monte Carlo replications. Our working measurement model is the Bernoulli model with the
conditional mean,

(6)

The working dropout model is also given by,

(7)

where ϕ(bi) = 1/(1+e−bi). Both the semiparametric and the parametric models were then
assessed for various values of δ ∈ [0, 40]. In particular, we used the percentage bias relative
to the truth and mean squared errors (MSEs) for the slope β1 of the time covariate.

Figure 3 shows the results of this simulation study when the measurement and dropout data
are generated from a shared normal random effects model. Overall, higher dropout rates
increase the bias as well as the MSEs of the estimates for both working models. Note
however that these differences recede when δ is close to the true value δ0 = 1 and the two
working models have similar performances in terms of bias and MSEs. However, for
moderate to large deviations of δ from δ0 = 1, the normal random effects approach gives
higher values of percent bias and MSEs when the dropout rate is about 50%.

Also displayed in Figure 4 are simulation results from a Monte Carlo study where the
measurement and dropout data are generated from a shared bimodal random effects model.
As expected, higher dropout rates increase the bias as well as the MSEs of the two working
models. We notice however that, even at the true value δ0 = 1, a wrongly assumed normal
random effects model gives a slightly higher percent bias compared to the semiparametric
model. This finding suggests that the misspecification of the random effects distribution by a
parametric model will typically yield biased estimates even at the true value δ0. This is not
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uncommon in the literature (See, for example, Tao et al., 1999). Note however that, this
problem recedes when MSEs are compared. This is probably due to an increased variability
which dominates the MSEs in the semiparametric model. When the dropout rate is high and
δ is much larger than δ0 = 1, this relative advantage of the normal random effects model in
reducing the MSEs vanishes. In this case, the MSEs appear to be dominated by the bias.

While the ability to model the dropout hazard using the shared random effects approach is
computationally convenient, we carried out a simulation to evaluate the estimation of β1

when miss-modelling hi(t) with a shared random effects when the truth is actually a logistic
model of the current possibly unobserved response Yi(t). Specifically, we simulate the
measurement binary outcomes by reconsidering the Bernoulli model with the conditional
mean µ i(t) = {1 + exp(−1 + xi(t) − bi)}

−1, but dropout data are simulated using the process,

This selection model is similar to that of Diggle and Kenward (1994), and Molenberghs et
al. (1997). We set α0 to 2.094 and .855, which yield about 20% and 50% dropout rates,
respectively. Our working joint model is given by (6) and (7). The results of this numerical
investigation are displayed in Figures 5 and 6. It is clear that for normal random effects
imposed on the mean of the measurement process and for a 20% dropout rate, both the
parametric and the semiparametric models give small bias and small MSEs regardless of the
values taken by δ. However, for a dropout rate of about 50%, the two methods yield large
bias and large MSEs. Moreover, the bias and MSEs from the semiparametric model are
lower compared to those of the parametric model for large values of δ, although the two
models are indistinguishable for small values of δ. These findings remain unchanged when a
bimodal random effects is imposed on the mean of the measurement process, except that for
a high dropout rate, the semiparametric model gives smaller bias and smaller MSEs for all
values of δ.

These simulation studies strongly indicate that routine modelling is not appropriate in the
missing data context and sensitivity analysis should become much more customary.
Especially, when substantial amounts of subjects drop out prematurely from the study, the
only analysis that matters is the sensitivity analysis.

6. Discussion

We have proposed a class of semiparametric non-response models which requires the
analyst to specify the joint distribution of the responses and the missing data mechanism.
This class of models is made part of a sensitivity analysis to delineate the range of
inferences consistent with observed data. Two types of sensitivity analyses are conducted.
The first sensitivity analysis is performed on the grounds that the parametric form of the
random effects distribution may be misspecified. This is done by relaxing the random effects
parametric distribution to assume a discrete distribution with M support points. In certain
situations, one may want to assume fully parametric random effects distributions, for
instance, because they yield a more parsimonious description of the heterogeneity among
subjects. For MNAR models, however, these parametric distributions must be cautiously
interpreted because of their inability to be validated using observed data. Another line of
sensitivity analysis results from the fact that the proposed models, both parametric and
semiparametric, appear to be weakly identifiable for our data. The identifiability issue
becomes acute as M the number of classes in the semiparametric models gets large. To
address these identifiability concerns, we profile the likelihood function across a fixed
sensitivity parameter. We discuss a global approach using a supremum test to assess
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sensitivity of parameter contrasts resulting from a deviation of the MAR model in the
direction of MNAR models. This approach can be used to quickly check if an hypothesis is
rejected regardless of any misspecification of the sensitivity parameter. The methodology is
therefore especially useful in situations where a worst case analysis is needed. In practice,
MNAR models are often quite complicated and it may not be clear what is the true data
generating mechanism. In these set-ups, a global sensitivity analysis appears to be the most
conservative data analytic strategy.

An important question related to our working method is whether we actually believe in the
shared parameter model or whether we merely use it as a device to accommodate potentially
non-random dropouts. This question arises very often in practice where the researcher is
confronted with the choice of a plausible dropout model. In this study, we have used random
effects, that adequately describe a subject’s response profile, to tie the dropout process to the
measurement process. Although we have considered the simple case of a random intercept
model, the method can easily be extended to incorporate a random slope with respect to time
to account for each subject’s deviation from the average linear trend. We have also assumed
a linear relationship between the log-odds of dropout hazard and the observed and the
unobserved covariates, but this is not necessary. For example, nonlinear relations and terms
involving interactions between these covariates could be used with a suitable modification
of the function ϕ(․). Other model formulations and extensions are possible but the choice of
any working model should be closely linked to the substantive problem under analysis.
Another important issue is the choice of Δ. Our recommendation is that a group of experts
should help identify a plausible and meaningful value of Δ. Of course, from a practical
viewpoint, the chosen value should be computationally feasible. The dropout selection
process is therefore said to be insensitive if only extreme and implausible values of the
sensitivity parameter are required to alter inferences.
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Appendix

Appendix A

Proof of the result that  for any real δ under the
condition that zi(t) = zi′(t)

The proof of this result is straightforward and relies entirely on the constraint imposed on
ϕ(․). If one assumes the covariate-response model in (1) and that 0 < ϕ(bi), ϕ(bi′) < 1, it can
readily be shown that |ϕ(bi) − ϕ(bi′)| < 1. Under the condition that zi(t) = zi′(t), this then leads

to the result that  for δ > 0 and that  for δ =
0. We then have the desired result for δ ≥ 0. For δ ≤ 0, we have,

, which is the desired result.
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Appendix B

Proof of Theorem 1

We prove that the intercept of the dropout process has a deterministic relationship with the
parameter δ as given by (5). First, it is clear that the integral on the right of (5) is finite as

 is a probability and ϕ(․) is bounded. We can assume without any loss of generality that

the measures  have same support. If both distributions do not have the same
support, a common support can be defined as the union of individual supports, where no
mass is placed on points outside of the support of individual measures. Let B be any subset
of this common support, we have,

where the last equality is due to (4). We therefore have,

We then have,

(8)

Note that under the assumption that no subject drops out at the first timepoint, we have pr(D
≥ 2) = 1 as q = 2. This then gives pr(D > 2|b, z(t2)) = 1 − pr(D = 2|D ≥ 2, b, z(t2)) = h(t2)
from the definition of the hazard function. From the hazard model in 2, we have,

Replacing this expression in equation 8 and a basic algebra give,

Let us denote by αj, j = 0, ⋯, r − 1 the slope coefficient associated with the jth component
ε(zi(t2))j of the covariate vector ε(zi(t2)) for subject i at timepoint t. Here zi(t2)0 = 1
represents the covariate for the intercept term α0 in the hazard model. Assume that the

function ε(․) centers all covariates z, that is ∑i ε(zi(t2))j = 0, for j = 1, ⋯ r − 1. Because  is

a law, we have , and then,
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By multiplying the above expression over all subjects, we then get,

Finally, given that ∑i ε(zi(t2))j = 0, for j = 1, ⋯ r − 1 the expression in (5) holds. Hence, for
a fixed δ, the equation in (5) can be used to compute α0, which we denote α0(δ) to highlight
this dependence. In particular, for δ = 0 the intercept term α0 takes the value α0 = log{(1 −
pd)/pd}, when q = 2.

Appendix C

Proof of Theorem 2

We recall that the probability of dropping out is given by,

It is clear that when δ gets large and supi,t |ε(zi(t))α| is bounded, the dropout hazard hi(t) =
{1+exp(−ε(zi(t))α − δ ϕ(bi))}

−1 converges to 1 as ϕ(bi) > 0. Hence, fD(Di|bi, zi(t), δ)
converges to 0 when 2 < Di ≤ q + 1 and to 1 only when Di = 2.

Let denote by , respectively, the contribution of noncompleter i and a completer j to

the likelihood. This then gives , where

noncompleters appear first in the dataset after a proper rearrangement. Let  be the number

of subjects who dropped out right after the baseline, that is . After a proper
rearrangement of the subgroup of noncompleters in the dataset, we have for dropout
subjects,

where  are respectively the likelihood contribution of a subject who
drops out at the second time point and after the second time point. It is clear that when δ →

∞, we have  and,

Then, the marginal log-likelihood for dropout subjects , when δ → ∞.
Similarly for subjects with complete data, the marginal log-likelihood

Todem et al. Page 15

Stat Neerl. Author manuscript; available in PMC 2011 January 20.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



, when δ → ∞. Hence, for large values of δ, the log of the
marginal likelihood given by,

It can also be shown that the expectation of the complete log-likelihood given observed data
and the current parameter estimate ψ(a)(δ) for fixed δ also diverges.

Appendix D

Uniform consistency and weak convergence of ψ̂(δ), 0 ≤ δ ≤ Δ

Let Ψ denote the parameter space for ψ. We denote by l(ψ, δ, Wi) the contribution of subject
i to the log-likelihood function. Define

, and D ̃ψ(ψ, δ) = E{g(ψ, δ, W1}. For any given δ ≤ Δ, let ψ̂(δ)
denote the solution to S(ψ, δ) = 0, i.e. S(ψ̂(δ), δ) = 0, and define ψ*(δ) = argmaxψ∈Ψ E{l(ψ,
δ, W1)}. Define 1 = {s(ψ, δ, Wi) : ψ ∈ Ψ, δ ≤ Δ} and 2 = {g(ψ, δ, Wi) : ψ ∈ Ψ, δ ≤ Δ}.

Assume that Ψ is compact and ψ*(δ) is an interior point in Ψ for any δ ≤ Δ. In addition,
assume the following regularity conditions:

C1.The function classes, 1 and 2, are pointwise measurable and satisfy the uniform
entropy condition; see van der Vaart and Wellner (2000) for the definitions. For
example, functions which are uniformly bounded and uniformly Lipschitz of order >
{dim(ψ)+dim(δ)}/2 suffice the above conditions, where dim(·) denotes the
dimension of a vector.

C2.infψ∈Ψ,δ≤Δ eigmin{−D ̃ψ(ψ, δ)} > 0, where eigmin(·) denotes the minimum
eigenvalue of a matrix.

Condition C1 implies that 1 and 2 are Donsker and hence Glivenko-Cantelli (van der
Vaart and Wellner, 2000). Therefore,

(A1)

where ‖ · ‖ denotes the Euclidean norm. The definitions of ψ̂(δ) and ψ*(δ) imply that

(A2)

where ψ̌(δ) is on the line segment between ψ*(δ) and ψ̂(δ), and supδ≤Δ ‖ν2,n(δ)‖ →P 0. By
C2, there exists an positive number κ0 not depending on δ such that
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The uniform consistency of ψ̂(δ) to ψ*(δ) follows from supδ≤Δ ‖ν2,n(δ)‖ →P 0.

Based on the uniform consistency of ψ̂(δ) and (A1–2), applying the Taylor expansion to S(ψ̂
(δ), δ) around {ψ*(δ), δ} gives that

(A3)

where ≈ denotes asymptotic equivalence uniformly in δ ≤ Δ.

Because C1 implies that 1 is Donsker and because C2 implies that  is

uniformly bounded for δ ≤ Δ, the function class  is
Donsker. This permits the application of a functional central limit theory to establish the
weak convergence of ψ̂(δ).

These general results for any δ ≤ Δ also establishes asymptotic results of ψ̂(δ0), where δ =
δ0.
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Fig. 1.

Log odds of side effects across time for completers and dropouts
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Fig. 2.

Estimates and simultaneous 95% confidence intervals of  across values of the
sensitivity parameter in the range 0 ≤ δ ≤ 40 assuming (a) a semiparametric model and (b) a
parametric model
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Fig. 3.

Percent bias and MSEs of parameter β1 as a function of the sensitivity parameter δ with true
measurement model µ i(t) = {1 + exp(−1 + xi(t) − bi)}

−1, true dropout process hi(t) = {1 +
exp(−α0 − ϕ(bi))}

−1, with α0 = 2.094 (20% dropouts) and α0 = .855 (50% dropouts) and true
shared random effects ℒb ~ (0, 4.025)
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Fig. 4.

Percent bias and MSEs of parameter β1 as a function of the sensitivity parameter δ with true
measurement model µ i(t) = {1 + exp(−1 + xi(t) − bi)}

−1, true dropout process hi(t) = {1 +
exp(−α0 − ϕ(bi))}

−1, with α0 = 2.094 (20% dropouts) and α0 = .855 (50% dropouts) and true

shared bimodal random effects 
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Fig. 5.

Percent bias and MSEs of parameter β1 as a function of the sensitivity parameter δ with true
measurement model µ i(t) = {1 + exp(−1 + xi(t) − bi)}

−1, true dropout process hi(t) = {1 +
exp(−α0 − Yi(t))}

−1, with α0 = 2.094 (20% dropouts) and α0 = .855 (50% dropouts) and true
unshared random effects ℒb ~ 0, 4.025)
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Fig. 6.

Percent bias and MSEs of parameter β1 as a function of the sensitivity parameter δ with true
measurement model µ i(t) = {1 + exp(−1 + xi(t) − bi)}

−1, true dropout process hi(t) = {1 +
exp(−α0 − Yi(t))}

−1, with α0 = 2.094 (20% dropouts) and α0 = .855 (50% dropouts) and true

unshared bimodal random effects 
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