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Semiparametric Regression of
Multi-Dimensional Genetic Pathway Data:
Least Squares Kernel Machines and Linear

Mixed Models

Dawei Liu, Xihong Lin, and Debashis Ghosh

Abstract

SUMMARY. We consider a semiparametric regression model that relates a nor-
mal outcome to covariates and a genetic pathway, where the covariate effects are
modeled parametrically and the pathway effect of multiple gene expressions is
modeled parametrically or nonparametrically using least squares kernel machines
(LSKMs). This unified framework allows a flexible function for the joint effect
of multiple genes within a pathway by specifying a kernel function and allows for
the possibility that each gene expression effect might be nonlinear and the genes
within the same pathway are likely to interact with each other in a complicated
way. This semiparametric model also makes it possible to test for the overall
genetic pathway effect. We show that the LSKM semiparametric regression can
be formulated using a linear mixed model. Estimation and inference hence can
proceed within the linear mixed model framework using standard mixed model
software. Both the regression coefficients of the covariate effects and the LSKM
estimator of the genetic pathway effect can be obtained using the Best Linear
Unbiased Predictor(BLUP)in the corresponding linear mixed model formulation.
The smoothing parameter and the kernel parameter can be estimated as variance
components using Restricted Maximum Likelihood(REML). A score test is de-
veloped to test for the genetic pathway effect. Model/variable selection within
the LSKM framework is discussed. The methods are illustrated using a prostate
cancer data set and evaluated using simulations.
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1 Introduction

Analysis of microarray data has been mainly focused on detection of individually signifi-

cantly expressed genes (Efron et al., 2001; Tusher, et al, 2001). This approach has some

major limitations: (1) long list of individually significant genes without a single encom-

passing theme is difficult to interpret; (2) cellular processes often affect sets of genes and

individually highly ranked genes are often downstream genes, so moderate changes in many

genes may give more insight into biological mechanisms than dramatic change in a single

gene (Mootha et al., 2003); (3) individually highly ranked genes can be poorly annotated and

are often not reproducible across studies (Fortunel et al., 2003). Researchers have now be-

come more interested in knowledge-based studies on gene sets, e.g. genetic pathways, which

are more biologically interpretable and reproducible (Goeman et al, 2005; Subramanian et

al., 2005).

A data example motivating the proposed research is the data from the Michigan prostate

cancer study (Dhanasekaran et al., 2001). Prostate Specific antigen (PSA) has been rou-

tinely used as a biomarker for screening prostate cancer. Recently there have been signifi-

cant breakthroughs in the effort of finding candidate genes related to prostate cancer. The

early results of Dhanasekaran et al.(2001) indicate that certain functional genetic pathways

seemed dysregulated in prostate cancer relative to non-cancerous tissues. One is interested

in studying the genetic pathway effects on PSA after adjusting for effects of clinical and

demographic covariates. Due to the complicated unknown relationships between genes and

PSA, we propose a flexible framework to model the genetic pathway effect parametrically

or nonparametrically.

There is a vast literature on multi-dimensional nonparametric modeling. Methods such as

multivariate kernel smoothing (Wand and Jones, 1995), projection pursuit regression (Fried-

man and Stuetzle, 1981), multivariate adaptive regression splines (MARS) (Friedman, 1991),
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are usually computationally expensive. Popular spline-based methods include Generalized

Additive Models (GAMs) (Hastie and Tibshirani, 1990), thin-plate splines (Wahba, 1990;

Green and Silverman, 1994), penalized regression splines (Ruppert et al., 2004), and smooth-

ing spline ANOVA (Gu, 2002). These methods require the specification of the smoothness

condition of an unknown function using differentiability conditions, which is much more

involved and awkward in multi-dimensional settings.

In the past decade, the kernel machine method has been developed in machine learn-

ing as a powerful learning technique for multi-dimensional data (Vapnik, 1998; Schölkopf

and Smola, 2002; Suykens et al., 2002; Rasmussen and Williams, 2006). Popular exam-

ples of kernel machine methods include support vector machine (SVM) (Vapnik, 1998) and

Bayesian Gaussian process (Rasmussen and Williams, 2006). In the context of function ap-

proximation, kernel machine methods and spline-based methods share a similar theoretical

foundation, but their model-fitting philosophies are different. Kernel machine methods start

with a kernel function which implicitly determines the smoothness property of the unknown

function. By contrast, spline-based methods start with the smoothness conditions of the

unknown function and a corresponding kernel function can usually be derived from these

conditions (Wahba, 1990). Kernel machine methods hence greatly simplify specification of

a nonparametric model, especially for multi-dimensional data.

In this paper, we propose a semiparametric model for covariate and genetic pathway

effects on a continuous outcome (e.g., PSA), where covariates effects are modeled para-

metrically and genetic pathway effect is modeled parametrically or nonparametrically using

least squares kernel machine (LSKM). We establish a connection between LSKM and linear

mixed models, and show that the LSKM estimator of the regression coefficients and the

pathway effect can be obtained by fitting a linear mixed model. This connection provides a

unified framework for inference of parameters in models with multi-dimensional covariates,
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including the regression coefficients, the nonparametric function, and smoothing parameters.

Our work extends the connection between univariate smoothing splines and linear mixed

models (Speed, 1991; Wang, 1998; Zhang et al., 1998) to multivariate smoothing with an

arbitrary kernel function. We also propose a score test to test for the nonparametric genetic

pathway effect, and a model/variable selection method within the LSKM framework.

The rest of the paper is organized as follows. In Section 2, we present the semiparametric

model for Gaussian outcomes. In Section 3, we describe the LSKM method. In Section 4,

we establish a connection between LSKMs and linear mixed models and propose a score

test for testing for the genetic pathway effect. We discuss the variable selection problem in

LSKM in Section 5. The performance of the proposed method is evaluated by simulations

in Section 7, and is illustrated using the prostate cancer microarray data in Section 6. The

paper ends with discussions in Section 8.

2 Semiparametric Model for Multi-Dimensional Data

2.1 The Model

Suppose the data consist of n subjects. For subject i (i = 1, · · · , n), yi is a normally

distributed continuous outcome, xi is a q × 1 vector of clinical covariates and zi is a p × 1

vector of gene expressions within a pathway. We assume an intercept is included in xi. The

outcome yi depends on xi and zi through the following partial linear model

yi = xT
i β + h(zi) + ei, (1)

where β is a q × 1 vector of regression coefficients, h(zi) is an unknown centered smooth

function, and the errors ei are assumed to be independent and follow N(0, σ2).

Model (1) models covariate effects parametrically and the pathway effect parametrically

or nonparametrically. When h(·) = 0, (1) reduces to the standard linear regression model.

When xi = 1, it reduces to least squares kernel machine regression (Suykens et al., 2002).
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2.2 Specifications of a Function Space of h(z) Using a Kernel

We assume the nonparametric function h(z) lies in a function space HK generated by a

positive definite kernel function K(·, ·). From Mercer’s Theorem (Cristianini and Shawer-

Taylor, 2000), under some regularity conditions, a kernel function K(·, ·) implicitly specifies

a unique function space spanned by a particular set of orthogonal basis functions (fea-

tures) {φj(z)}J
j=1. In other words, any h(z) ∈ HK can be represented using a set of bases

as h(z) =
∑J

j=1 ωjφj(z) = φ(z)T ω (the primal representation), where ω is a vector of

coefficients. Equivalently, h(z) can also be represented using a kernel function K(·, ·) as

h(z) =
∑L

l=1 αlK(z∗
l , z; ρ) (the dual representation), for some integer L, some constants αl

and some {z∗
1, · · · , z∗

L} ∈ Rp. For a multi-dimensional z, it is more convenient to spec-

ify h(z) using the dual representation, since explicit basis functions or features might be

complicated to specify, and the number of features might be high or even infinite.

Two popular kernel functions and the corresponding function spaces are as follows: (1)

The dth Polynomial Kernel: K(z1, z2) = (zT
1 z2 + ρ)d, where ρ and d are tuning parame-

ters. The dth polynomial kernel generates the function space HK spanned by all possible

dth order monomials of the components of z. For example, if d = 1, the first polynomial

kernel generates the linear function space with basis functions {φj(z)} = {z1, · · · , zp}. If

d = 2, the second polynomial kernel corresponds the quadratic function space with basis

functions {φj(z)} = {zk, zkzk′} (k, k′ = 1, · · · , p), i.e., the main effects, all two way in-

teractions and quadratic main effects of the zk’s. (2) The Gaussian Kernel: K(z1, z2) =

exp{−||z1 −z2||
2/ρ}, where ||z1 −z2||

2 =
∑p

k=1(z1k − z2k)
2. The Gaussian kernel generates

the function space spanned by radial basis functions. See Buhmann(2003) for their math-

ematical properties and desirable features. Examples of other choices of kernel functions

include the sigmoid and neural network kernels, and the B-spline kernel (Schölkopf and

Smola, 2002). The choice of a kernel function determines which function space one would
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like to use to approximate h(z).

3 Least Squares Kernel Machine Estimation in the

Semiparametric Model

Assume h(·) ∈ HK , the function space generated by a kernel function K(·, ·). Estimation of

β and h(·) in (1) proceeds by maximizing the scaled penalized likelihood function

J(h, β, e) = −
1

2

n∑

i=1

{
yi − xi

T β − h(zi)
}2

−
1

2
λ‖h‖2

HK
, (2)

where λ is a tuning parameter which controls the tradeoff between goodness of fit and

complexity of the model. When λ = 0, the model interpolates the gene expression data,

whereas when λ = ∞, the model reduces to a simple linear model without h(·).

By the Representer Theorem (Kimeldorf and Wahba, 1970), the general solution for the

nonparametric function h(·) in (2) can be expressed as

h(·) =

n∑

i=1

αiK(·, zi), (3)

where α = (α1, · · · , αn)T are unknown parameters. Substituting (3) back into (2) we have

J(β, α) = −
1

2

n∑

i=1

{
yi − xi

T β −
n∑

j=1

αjK(zi, zj)

}2

−
1

2
λαT Kα, (4)

where K is an n × n matrix whose (i, j)th element is K(zi, zj). Differentiating J(β, α)

with respect to β and α, some calculations give

β̂ =
{
XT (I + λ−1K)−1X

}−1
XT (I + λ−1K)−1y (5)

α̂ = λ−1(I + λ−1K)−1(y − Xβ̂), (6)

where X = (xT
1 , · · · , xT

n )T and y = (y1, · · · , yn)T . Plugging (6) into (3), we have that the

function h(·) evaluated at the design points (z1, · · · , zn)T is estimated as

ĥ = Kα̂ = λ−1K(I + λ−1K)−1(y − Xβ̂). (7)
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Using (3) and (6), ĥ(·) at an arbitrary z is

ĥ(z) = λ−1{K(z, z1), · · · , K(z, zn)}(I + λ−1K)−1(y − Xβ̂) (8)

Equivalently, if h(z) = φ(z)T ω, where {φj(z)} are orthogonal basis functions, the corre-

sponding LSKM regression coefficients ω̂ are

ω̂(z) = λ−1{φ(z1), · · · , φ(zn)}(I + λ−1K)−1(y − Xβ̂). (9)

The kernel function K(·, ·) usually depends on an unknown parameter ρ, such as the

scale parameter in Gaussian kernel. Inference on β̂, ĥ(z) depends on λ, ρ and the residual

variance σ2, which need to be estimated. Cross-validation can be used to estimate λ,

however, its computation is often intensive. Little literature is available on systematic

estimation of ρ and σ2. In the machine learning literature, ρ is often pre-set at some fixed

values. Further, estimation of σ2 needs to properly account for the loss of degrees of freedom

from estimating β and h(·). Hence it is desirable to develop a systematic method to estimate

these parameters simultaneously. We accomplish this by establishing a connection between

LSKM and linear mixed models.

4 Least Squares Kernel Machines (LSKMs) and

Linear Mixed Models

4.1 Connection Between LSKMs and Linear Mixed Models

Linear mixed models have commonly been used for analyzing longitudinal and hierarchical

data (Harville, 1977; Laird and Ware, 1982). A connection between smoothing splines and

linear mixed models has been established (Speed, 1989; Zhang et al., 1998; Wang 1998). We

show here that the LSKM estimator in model (1) corresponds to the BLUP estimator from

a linear mixed model, and the regularization parameters (τ, ρ) and the residual variance σ2

can be treated as variance components and estimated simultaneously using REML.
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To see this connection, simple calculations show that β̂ and ĥ from equations (5) and

(7) can be equivalently obtained from the equations

[
XT R−1X XT R−1

R−1X R−1 + (τK)−1

] [
β

h

]
=

[
XT R−1y

R−1y

]
, (10)

where R = σ2I and τ = λ−1σ2. Equation (10) corresponds exactly to the normal equation

of the linear mixed model

y = Xβ + h + e, (11)

where β is a q×1 vector of regression coefficients, h is an n×1 vector of random effects with

distribution N(0, τK), and e ∼ N(0, σ2I). A comparison of (11) with model (1) indicates

that they have exactly the same form except that h is now treated as random effects. It

follows that the BLUPs of the regression coefficients β̂ and the random effects ĥ under the

linear mixed model (11) correspond to the LSKM estimator given in Section 3. In fact, one

can easily see that the regression coefficient estimator β̂ in (5) is the weighted least squares

estimator under the linear mixed model representation (11) using the marginal covariance

of y under (11) as V = σ2I + τK, i.e., β̂ = (XT V −1X)−1XT V −1y.

The linear mixed model representation of the LSKM in the semiparametric model (1)

can also be considered as a Bayesian Gaussian process regression (Schölkopf and Smola,

2002). Note that this Bayesian correspondence is finite-dimensional (Wahba, 1990; Green

and Silverman, 1994). It is not strictly equivalent to a continuous Bayesian Gaussian process

(Rasmussen and Willianms, 2006), since the finite-dimensional representation of h(·) does

not lead to a coherent Bayesian model (Green and Silverman, 1994; Tipping, 2001; Sollich,

2002; Chakraborty et al., 2005). A modification using a signed (Borel) measure is needed

and is given in Pillai at al. (2006). To see the Bayesian representation, we can treat

{h(z)} as a random vector with a Gaussian process (GP) prior, with mean 0 and covariance

cov{h(z1), h(z2)} = τK(z1, z2). Note that the positive-definiteness of the kernel function
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K(·, ·) ensures it is a proper covariance function. Now we assume

y|(β, h(z)) ∼ N{xT β + h(z), σ2}, h(·) ∼ GP{0, τK(·, ·)}, β ∝ 1.

One can easily see that under this Bayesian model, the semiparametric model (1) becomes

the linear mixed model representation (11). This connection extends the connection be-

tween scalar smoothing splines and mixed models and their Bayesian formulations (Zhang

et al., 1998; Wang 1998) to multi-dimensional regression problems under the kernel machine

framework.

The covariances of β̂ and ĥ(·) can be calculated in two ways. The first approach is to

treat the true h(·) as a fixed unknown function and the variance of yi as σ2. Using (5) and

(7), the covariances of β̂ and ĥ(·) are

covF (β̂) = σ2(XT V −1X)−1XV −1V −1X(XT V −1X)−1 (12)

covF (ĥ) = σ2(τK)P 2(τK) (13)

covF{ĥ(z)} = σ2(τKT
z )P 2(τKz) for arbitrary z,

where P = V −1 − V −1X(XT V −1X)−1XT V −1 and Kz = {K(z, z1), · · · , K(z, zn)}T for

an arbitrary z. We term these covariances as frequentist covariances.

The second approach is to use the linear mixed model representation (11) and treat the

true h(·) as a random function following the mean zero Gaussian process with covariance

τK(·, ·). The covariances of β̂ and ĥ(·) can then be calculated as a by-product of the

covariance of the fixed and random effects of the linear mixed model (11) and are

covB(β̂) = (XT V −1X)−1 (14)

covB(ĥ) = cov(ĥ − h) = τK − (τK)P (τK) (15)

covB{ĥ(z)} = cov{ĥ(z) − h(z)} = τK(z, z) − (τKz)P (τKz).

We term these covariances as Bayesian covariances.
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4.2 Estimation of the Regularization Parameters and the

Residual Variance

We discuss in this section estimation of the regularization parameter τ , the residual variance

σ2 and the scale parameter ρ in K(·, ·). Using the mixed model representation of LSKM,

we propose to estimate (τ, ρ, σ2) simultaneously by treating them as variance components

in the linear mixed model (11) and estimating them using REML.

Specifically, the REML under the linear mixed model (11) can be written as

`R(σ2, τ, ρ) = −
1

2
log |V (θ)| −

1

2
log |XT V −1(θ)X| −

1

2
(y − Xβ)T V −1(θ)(y − Xβ), (16)

where θ = (τ, ρ, σ2)T . The score equations of (τ, ρ, σ2) are

−
1

2
tr(KP ) +

1

2
(y − Xβ̂)T V −1KV −1(y − Xβ̂) = 0,

−
1

2
tr

{
τ
∂K

∂ρ
P

}
+

1

2
(y − Xβ̂)T V −1

(
τ
∂K

∂ρ

)
V −1(y − Xβ̂) = 0,

−
1

2
tr(P ) +

1

2
(y − Xβ̂)T V −1V −1(y − Xβ̂) = 0, (17)

where P = V −1 − V −1X(XT V −1X)−1XT V −1. Let A denote the hat matrix so that

XT β̂ + ĥ = Ay. Using the identities V −1(y − Xβ) = {σ2}−1(y − XT β̂ − ĥ) and

P = {σ2}−1(I − A) (Harville, 1977), one can show using equation (17) that σ̂2 = {n −

tr(A)}−1
∑n

i=1{yi−xT
i β̂−ĥ(zi)}

2. Hence tr(A) represents the loss of degrees of freedom from

estimating β and h(·) when estimating σ2. The covariance of θ̂ = (τ̂ , ρ̂, σ̂2) can be estimated

using the information matrix of the REML likelihood Iθlθl′
= 1

2
tr

{
P

∂V (θ)
∂θl

P
∂V (θ)

∂θ
l′

}
.

4.3 Test for the Nonparametric Function

Since we are interested in the effect of a whole genetic pathway rather than individual genes,

it is of significant practical interest to test H0 : h(z) = 0. In the PSA microarray exam-

ple, this tests for a genetic pathway effect on PSA controlling for the effects of covariates.

Assuming h(z) ∈ Hk, one can easily see from the linear mixed model representation (11)
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that H0 : h(z) = 0 is equivalent to testing the variance component τ as H0 : τ = 0 vs

H1 : τ > 0. Note the null hypothesis places τ on the boundary of the parameter space.

Since the kernel matrix K is not block diagonal, unlike the standard case considered by Self

and Liang (1987), the likelihood ratio for H0 : τ = 0 does not following a mixture χ2
0 and

χ2
1. We consider a score test in this paper.

Zhang and Lin (2002) proposed a score test for H0 : τ = 0 to compare a polynomial

model with a smoothing spline. Unlike the smoothing spline case, a general kernel function

K(·, ·) in LSKM might depend on an unknown scale parameter ρ. However, for smoothing

splines, K(·, ·) does not depend on any unknown parameter. One can easily see from the

linear mixed model (11) that under H0 : τ = 0, the kernel matrix K disappears, and hence

the scale parameter ρ disappears and becomes inestimable.

Davies (1987) studied the problem of a parameter disappearing under H0 and proposed

a score test by treating the score statistic as a Gaussian process indexed by the nuisance

parameter and then obtaining an upper bound to approximate the p-value of the score

test. This approach however does not work for our setting due to the unboundedness of the

parameter space.

We here propose to test for H0 : τ = 0 using the score test by fixing ρ and varying

its value and examining sensitivity of the score test for H0 : τ = 0 with respect to ρ.

The REML version of the score statistic of τ under H0 : τ = 0 is can be written as

Qτ (β̂, σ̂2, ρ) − tr{P 0K(ρ)}, where β̂ and σ̂2 are the MLEs of β and σ2 under the linear

model yi = xiβ + ei, the model under H0, P 0 = I − X(XT X)−1X, and

Qτ (β, σ2, ρ) =
1

2σ2
(y − Xβ)T K(ρ)(y − Xβ),

which is a quadratic function of y and follows a mixture of chi-squares under H0.

Following Zhang and Lin (2002), for each fixed ρ, we use the Satterthwaite method

to approximate the distribution of Qτ (·; ρ) by a scaled chi-square distribution κχ2
ν , where

10
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the scale parameter κ and the degrees of freedom ν are calculated by equating the mean

and variance of Qτ (·; ρ) and those of κχ2
ν . Specifically, one can show that κ = Ĩττ/2ẽ and

ν̃ = 2ẽ2/Ĩττ , where Ĩττ = Iττ−Iτσ2I−1
σ2σ2I

T
τσ2 , Iττ = tr(P 0K(ρ))2/2, Iτσ2 = tr(P 0K(ρ)P 0)/2,

and Iσ2σ2 = tr(P 2
0)/2. ẽ = tr(P 0K)/2. Computation of the proposed score test is quite

simple, since one only needs to fit the simple linear model yi = xT
i β + ei. We evaluate the

performance of the score test using simulations.

5 Model Selection within the Kernel Machine

Framework

The kernel machine method requires a kernel function to be explicitly specified. Section

2.2 provides wide choices of kernel functions. A question of substantial interest is which

kernel function to choose. This kernel selection problem has much broader implications.

We consider two types of kernel selection problems. The first is to choose between different

parametric and nonparametric models with different smoothness properties. The second

problem involves variable selection.

As stated in Section 2.2, a kernel function fully specifies a function space HK where the

unknown function h(·) resides. Hence this function space determines the type of models used

to fit h(·). For example, a dth degree polynomial kernel specifies a parametric model with

dth order monomials; the kernel K(s, u) =
∫ 1

0
(s− t)+(t− u)+dt specifies a cubic smoothing

spline model (Wahba, 1990); and the Gaussian kernel assumes an infinitely smooth function.

It is therefore clear that model selection within the kernel machine framework is in fact a

special case of kernel selection.

Variable selection can also be treated as a kernel selection problem within the kernel

machine framework. For example, let zp be a p-dimensional vector and zp′ a p′ dimensional

sub-vector of zp with p′ < p. Then two kinds of kernel functions can be specified: one based
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on zp and another one based on zp′. The unknown function can then be fitted separately

based on each kernel. If the fitted curves are not “far away” from each other, then the

model using zp′ provides an equally good but more parsimonious fit than that using zp.

This demonstrates that variable selection is also a special case of kernel selection.

These discussions show that model selection is a very interesting and important topic

within the kernel machine framework. However, little work has been done in this area.

We propose AIC and BIC as kernel selection criteria within the kernel machine framework.

Equations (5) and (7) show that the estimated response ŷ can be expressed as ŷ = Ay,

where A = (I + λ−1K)−1
[
λ−1K + X

{
XT (I + λ−1K)−1X

]−1
XT (I + λ−1K)−1

]
is the

LSKM smoothing matrix. Let r = trace(A) be the degree-of-freedom of the kernel machine

smoother A. We define the least squares kernel machine(KM) AIC and BIC as

KM AIC = n log(RSS) + 2r,

KM BIC = n log(RSS) + r log(n),

where RSS = (y− ŷ)T (y− ŷ). Models with smaller KM AIC/KM BIC values are preferred.

6 Application to the Prostate Cancer Genetic

Pathway Data

We applied the proposed semiparametric model to the analysis of prostate cancer genetic

pathway data described in Section 1. The data set contained 59 patients who were clinically

diagnosed with local or advanced prostate cancer. The objective of the study was to evaluate

whether a genetic pathway has an overall effect on PSA after adjusting for covariates. We

focus in this paper on the cell growth pathway, which contains 5 genes. The outcome

was pre-surgery PSA level. A log transformation was performed to make the normality

assumption plausible. Two covariates included age and Gleason score, a well established

histological grading system for prostate cancer.
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The semiparametric model (1) provides a convenient framework to evaluate the effect of

the cell growth pathway on PSA by allowing for complicated interactions among the genes

within the pathway. Specifically, we consider the model

log(PSA) = β0 + β1age + β2gleason + h(gene1, . . . , gene5) + e, (18)

where h(·) is a nonparametric function and e ∼ N(0, σ2). We fit this model using the LSKM

method via the linear mixed model representation (11) and using the Gaussian kernel in

estimating h(·). Under the linear mixed model representation, we estimated (β0, β1, β2) and

h(·) using BLUPs, and estimated the smoothing parameter τ , the kernel parameter ρ and

the residual variance σ2 simultaneously using REML. The results are presented in Table 1,

indicating Gleason score was highly significant, while age was not.

We tested for the cell growth pathway effect on PSA, H0 : h(z) = 0 vs H1 : h(z) ∈ HK

using the score test described in Section 4.3. Table 1 gives the score test statistics and

p-values for a range of ρ values. The p-values are not sensitive to the choice of ρ and range

from 0.0007 to 0.0085, suggesting a strong cell growth pathway effect on PSA.

Even though the five genes are believed to function together biologically, it is of interest

to investigate whether there are a small number of relatively important genes in the cell

growth pathway that most affect PSA. We investigate this problem using the proposed

variable selection method. An all-possible-subset selection procedure of genes was performed

using the Gaussian kernel. The kernel machine AIC and BIC proposed in Section 5 were

used as the model selection criteria. The result shows that that the model with the lowest

AIC and BIC values is the one containing genes FGF2 and IGFBP1. The detailed results

are given in Web Table 1 in the Supplementary Materials. These two genes can be studied

further in laboratory settings to explore their detailed relationship with PSA.
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7 Simulation Studies

7.1 Simulation Study for the Parameter Estimates

We conducted a simulation study to evaluate the performance of the proposed LSKM es-

timation method for the semiparametric model (1) by fitting the linear mixed model (11).

We considered the following model

yi = xi + h(zi1, · · · , zip) + ei, (19)

where ei ∼ N(0, 1). To allow for xi and (zi1, · · · , zip) to be correlated, xi was generated as

xi = 3 cos(zi1)+2ui with ui being independent of zi1 and following N(0, 1), zij (j = 1, · · · , p)

were generated from Uniform(0, 1). The nonparametric function h(·) was allowed to have

a complex form with nonlinear functions of the z’s and interactions among the z’s. In our

simulations, we first fit the model using the same set of z’s as that in the true model. In

practice, without advanced knowledge, the true set of z’s is often unknown and the set of z’s

that is used might be larger than the true set and contains some noisy z’s that are irrelevant

to the outcome y. To mimic such a scenario, in the second set of simulations, we added

some noisy z’s in the set of z’s and fit (19).

We considered four configurations by varying n (the sample size) and p (the number of

covariates z’s). For each setting, only the Gaussian kernel is used and 300 simulations were

run.

Setting 1: n = 60, p = 5, true h(z) = 10 cos(z1)−15z2
2+10 exp(−z3)z4−8 sin(z5) cos(z3)+

20z1z5. Fit the model with the five true z’s. This setting mimics the PSA data.

Setting 2: n = 100, p = 8, h(·) is the same as setting 1. Fit the model (19) by including

3 additional irrelevant z6, z7, z8 besides the true z1, · · · , z5.

Setting 3: n = 200, p = 10, true h(z1, . . . , z10) = 10 cos(z1) − 15z2
2 + 10 exp(−z3)z4 −

8 sin(z5) cos(z3) + 20z1z5 + 9z6 sin(z7) − 8 cos(z6)z7 + 20z8 sin(z9) sin(z10) − 15z3
8 − 10z8z9 −
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exp(z10) cos(z10). Fit the model assuming these 10 true z’s are used.

Setting 4: n = 300, p = 15, h(·) is the same as that in setting 3. Fit the model with

additional 5 irrelevant noisy predictors z11, . . . , z15 besides the true z1, · · · , z10.

The point estimate results are presented in Table 2. Since it is difficult to graphically

display the fitted value of h(·) as a function of z, we summarized the goodness of fit of h(·)

in the following way. For each simulation data set, we regressed the true h on the fitted ĥ,

both evaluated at the design points. We then empirically summarized the goodness of fit

of ĥ(·) by reporting the average intercepts, slopes and R2’s obtained from these regressions

over the 300 simulations. If the intercept from this regression is close to zero and the slope

is close to one and R2 is close to one, it would provide empirical evidence that the estimated

high-dimensional function h(·) is close to the true manifold.

The results in Table 2 show that, when the true set of z’s was included in fitting h(·) and

all the model parameters {β, h(·), τ, ρ, σ2} were estimated simultaneously, the least squares

kernel machine method via the mixed model framework performed well in estimating β, h(·)

and σ2. However, if the scale parameter ρ in the Gaussian kernel was fixed, which is often

done in traditional machine learning, the model estimators could be subject to considerable

bias, especially for the estimate of σ2. When ρ was fixed at values close to the estimated

one, the bias was small. Since in practice, ρ is unknown, our results suggest it is useful to

estimate the scale parameter ρ using the data. When extra irrelevant covariates z’s besides

the true set of z’s were used in fitting h(·), the proposed method still performed well if all

model parameters were estimated.

Table 3 compares the estimated standard errors of β̂ using the frequentist method (12)

and the Bayesian method (14) with the empirical ones. The results show that both the

frequentist and the Bayesian standard error estimates were close to their empirical counter-

parts. Table 3 also compares the estimated standard errors of ĥ (including intercept) using
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the frequentist method (13) and the Bayesian method (15) with the empirical standard er-

rors. For the ease of presentation, for each setting, we averaged the SE estimates across all

the grid points and presented these averages. The results show that when the scale param-

eter ρ was estimated, both the frequentist and the Bayesian standard error estimates were

close to their empirical counterparts. When the scale parameter was fixed, the Bayesian and

frequentist SEs were still close but could be quite different from the empirical SEs. These

results further indicate that it is useful to estimate the scale parameter ρ in practice.

7.2 The Simulation Study for the Score Test

We next conducted a simulation study to evaluate the performance of the proposed variance

component score test for H0 : h(·) = 0 vs H1 : h(·) ∈ Hk. The true model is the same as (19),

where x and z’s were generated in the same way as that in Section 6.1 and h(z) = ah1(z),

h1(z) = 2 cos(z1) − 3z2
2 + 2e−z3z4 − 1.6 sin(z5) cos(z3) + 4z1z5 and a = 0, 0.2, 0.4, 0.6, 0.8, 1.

We studied the size of the test by generating data under a = 0, and studied the power by

increasing a. The kernel parameter ρ was fixed at a wide range of values: 0.5, 1, 5, 10,

25, 50, 100, 200. The sample size was 60, mimicing the PSA data example. For the size

calculations, the number of simulations was 2000; whereas for the power calculations, the

number of runs was 1000.

Table 4 reports the empirical size (a = 0) and power (a > 0) of the variance component

score test for H0. The results show that the size of the test was very close to the nominal

value 0.05 and was not sensitive to the choice of the scale parameter ρ. As a increased,

the power quickly approached 1. The power was not much affected by the value of ρ if a

moderate ρ was specified, but was more affected if a large value of ρ was specified.
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7.3 The Simulation Study for Kernel Selection

A simulation study was also conducted to assess the performance of kernel selection using

the kernel machine AIC and BIC criteria. The true model we considered is

y = x + 10 cos(z1) + 3z2
2 + exp(z3/3)z4 + 8 cos(z5) + z5z2z1 + e,

where e ∼ N(0, 1), x was generated as x = 3 cos(z1)+2u with u being independent of z1. All

u and zj (j = 1, · · · , 5) were generated from N(0, 1). The sample size was 50, and the number

of runs was 300. Three types of kernel functions were used in the simulation: the Gaussian

kernel K(u, v) = exp(−‖u−v‖2/ρ), the second degree polynomial kernel K(u, v) = (uT v+

1)2, and the first degree polynomial kernel that corresponds to ridge regression K(u, v) =

uT v. For each simulated data set, the AIC and the BIC were calculated based on the model

with three different kernels.

The mean AIC and BIC across 300 simulations for the Gaussian kernel are 190.79 (51.31)

and 284.21 (50.21) respectively (the numbers within parenthesis are standard deviations),

those for the second degree polynomial kernel are 269.07 (10.00) and 308.91 (9.58) respec-

tively, and those for the ridge regression are 363.67 (2.63) and 371.61(2.51) respectively.

The AIC and BIC values from each simulated data set are plotted in Figures 1 and 2. These

results show that the kernel machine AIC and BIC of the model with Gaussian kernel are

the smallest, whereas those of ridge regression are the largest. Hence the Gaussian kernel

is preferred to both the second degree polynomial kernel and the ridge regression kernel,

which is desired in light of the complicated functional forms of the x’s.

8 Discussion

In this paper, we have developed the LSKM method for semiparametric regression with

Gaussian outcomes, where we model the covariate effects parametrically and the genetic

pathway effect parametrically or nonparametrically. The kernel machine method does not
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require an explicit analytical specification of the smoothness conditions on the nonparamet-

ric function and unifies the model building procedure in both one- and multiple-dimensional

settings. Therefore it is a more general and flexible method for multi-dimensional smoothing.

A key contribution of this paper is that we have established a close connection between

kernel machine methods and linear mixed models and all the model parameters can be es-

timated within the unified linear mixed model framework. This mixed model connection

greatly facilitates the estimation and inference for multi-dimensional nonparametric regres-

sions and can be easily implemented using familiar statistical software such as SAS PROC

MIXED or Splus NLME.

We proposed a score test for the genetic pathway effect. This can be easily implemented

using existing software. Although it requires fixing the scale parameter ρ, our results show

that the test is not sensitive to the choice of ρ and has good performance. Alternatively,

a Bayesian approach, such as the one proposed by Chen and Dunson (2003), might be

used. This method has the advantage that there is no need to fix the scale parameter by

proper prior specifications. However, its theoretical properties are unknown. It is of further

research interest to study the performance of this Bayesian method and to develop better

frequentist methods of testing τ in the kernel machine setting.

Kernel selection within the kernel machine framework is an important and complicated

problem. It includes model selection and variable selection as special cases. In this paper we

propose to use kernel machine AIC/BIC as kernel selection criteria. Our simulation results

show AIC/BIC performs well. Further research is still needed to examine their theoretical

properties in detail before they can be adopted as a universal criteria.

We have considered in this paper a single nonparametric function of high-dimensional

covariates. One could generate the proposed semiparametric model to incorporate multiple

high-dimensional nonparametric functions. For example, if one is interested in modeling
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multiple genetic pathway effects, one could consider an semiparametric additive model

y = XT β + h1(z1) + · · ·+ hm(zm) + e,

where zj (j = 1, · · · ) denotes a pj × 1 vector of genes in the jth pathway and hj(·) denotes

the nonparametric function associated with the jth genetic pathway.

Machine learning is an emerging area of research in statistics. The field has experi-

enced a rapid development in the past decade mainly by computer scientists dealing with

high-dimensional data. It has shown increasing promises and wide applications in biomed-

ical research, especially in bioinformatics. These techniques however are somewhat dis-

connected with well established biostatistical methods. Our effort of establishing a close

connection between least squares kernel machines and linear mixed models is an attempt to

build a bridge between kernel machines which are familiar to computer scientists but less

familiar to biostatisticians. This connection opens a door for adopting other well estab-

lished statistical techniques used in mixed models, such as Bayesian approaches, to handle

multi-dimensional data via the machine learning framework. It also opens a new research

direction for model/variable selection methods within the kernel machine framework. Such

an interface is still in its infancy and has a lot of room for further developments.

Supplementary Materials

The kernel machine AIC and BIC estimates of models containing all the subsets of genes in

the cell growth pathway for the analysis of the prostate cancer data are given in Web Table

1 at the Biometrics website http://www.tibs.org/biometrics.

Acknowledgement

Liu and Lin’s research was supported by a grant from the National Cancer Institute (CA–

76404). Ghosh’s research was supported by a grant from the National Institute of Health

19
http://biostats.bepress.com/umichbiostat/paper64



(GM072007). We thank the Associate Editor and three reviewers for their helpful comments,

that have improved the paper.

References

Buhmann, M.D. (2003). Radial Basis Functions. Cambridge: Cambridge University Press.

Chakraborty, S., Ghosh, M., and Mallick, B.K. (2005). Bayesian non-linear regression for
large p, small n problems.

Chen, Z. and Dunson, D.B. (2003). Random effects selection in linear mixed models. Bio-
metrics 59, 762–769.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines.
Cambridge: Cambridge University Press.

Davies, R.B. (1987). Hypothesis testing when a nuisance parameter is present only under
the alternative. Biometrika 74, 33–43.

Dhanasekaran, S.M., Barrette, T.R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K.,
Pienta, K.J., Rubin, M.A., and Chinnaiyan, A.M. (2001). Delineation of prognostic
biomarkers in prostate cancer. Nature 412, 822–826.

Dudoit, S., Fridyland, J.F. and Speed, T.P. (2002). Comparison of discrimination methods
for tumor classification based on microarray data. Journal of the American Statistical
Association 97, 77–87.

Efron, B., Tibshirani, R., Storey, J., and Tusher, V. (2001). Empirical Bayes analysis of a
microarray experiment. Journal of the American Statistical Association 96, 1151–1160.

Fortunel, N.O., Otu, H.H., Ng, H.H., Chen, J., Mu, X., Chevassut, T., Li, X., Joseph, M.,
et al. (2003). Comment on “ ’Stemness’: Transcriptional Profiling of Embryonic and
Adult Stem Cells” and “A Stem Cell Molecular Signature,” Science, 302, 393.

Friedman, J.H. and Stuetzle, W. (1981). Projection pursuit regression.Journal of the Amer-
ican Statistical Association 76, 817–823.

Friedman, J.H. (1991). Multivariate adaptive regression splines (with discussion). Annals
of Statistics 19, 1–141.

Goeman, J.J., Oosting, J., Cleton-Jansen, A.-M., Anninga, J.K., and van Houwelingen,
H.C. (2005). Testing association of a pathway with survival using gene expression data.
Bioinformatics 21, 1950–1957.

20
Hosted by The Berkeley Electronic Press



Green, P.J. and Silverman B.W. (1994). Nonparametric Regression and Generalized Linear
Models. London: Chapman and Hall.

Gu, C. (2002). Smoothing Spline ANOVA Models. New York: Springer.

Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. London: Chapman
and Hall.

Kimeldorf, G.S. and Wahba, G. (1970). Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications 33, 82–95.

Laird, N. and Ware, J.H. (1982). Random-effects models for longitudinal data. Biometrics
38, 963–974.

Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J.,
Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, et al. (2003). PGC-1alpha re-
sponsive genes involved in oxidative phosphorylation are coordinately Downregulated in
human diabetes. Nature Genetics 34, 267–273.

Pillai, N., Wu, Q., Liang, F., and Mukherjee, S. (2006). Characterizing the function space
for Bayesian kernel models. Submitted.

Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian Processes for Machine Learning.
MA: MIT Press.

Ruppert, D., Wand, M.P. and Carroll, R.J. (2004). Semiparametric Regression. Cambridge:
Cambridge University Press.

Schölkopf, B., and Smola, A.J. (2002). Learning with Kernels. MA: MIT Press.

Self, S.G. and Liang, K.Y. (1987). Asymptotic properties of maximum likelihood estima-
tors and likelihood ratio tests under non-standard conditions. Journal of the American
Statistical Association 82, 605–610.

Sollich, P. (2002). Bayesian methods for support vector machines: Evidence and predictive
class probabilities. Machine learning 46, 21–52.

Speed, T. (1991). Discussion to “BLUP is a good thing: The estimation of random effects”
by Robinson, G. K. Statistical Sciences 6, 15–51.

Subramanian, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette, M., Paulovich,
A., Pomeroy, S., Golub, T., Lander, E., and Mesirov, J. (2005). Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proceedings of the National Academy of Sciences 102, 15545–15550.

21
http://biostats.bepress.com/umichbiostat/paper64



Suykens, J. A. K., Van Gestel T., De Brabanter, J., De Moor, J., and Vandewalle, J. (2002).
Least Squares Support Vector Machines. World Scientific, Singapore.

Tipping, M.E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal
of Machine Learning Research 1, 211–244.

Tusher, V., Tibshirani, R., and Chu, G. (2001) Significance analysis of microarrays applied
to the ionizing radiation response. Proceeding of the National Academy of Sciences 98,
5116-5124.

Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.

Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM Press.

Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing. London: Chapman and Hall.

Wang, Y. (1998). Smoothing spline models with correlated random errors. Journal of the
American Statistical Association 93, 341–348.

Zhang, D., Lin, X., Raz, J., and Sowers, M. (1998). Semiparametric stochastic mixed mod-
els for longitudinal data. Journal of the American Statistical Association 93, 710–719.

Zhang, D. and Lin, X. (2002). Hypothesis testing in semiparametric additive mixed models.
Biostatistics 4, 57–74.

22
Hosted by The Berkeley Electronic Press



Table 1
Parameter estimates of the semiparametric model and the score test for the genetic

pathway effect for the PSA data using the least squares kernel machine via the linear mixed
model representation.

Covariate Estimate S.E. P-value
Intercept -1.7722 1.1915 0.1425
Age 0.0177 0.0114 0.1259
Gleason 0.4461 0.1055 0.0001
τ 2.8182 3.7720 .
ρ 6.3635 13.5708 .
σ2 0.3712 0.0816 0.001

Score test for the genetic pathway effect H0 : h(z) = 0

ρ S ν P-value
3 31.010 14.924 0.0085
5 28.750 11.223 0.0028
10 26.598 8.295 0.0010
30 23.264 5.970 0.0007
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Table 2
Simulation results of estimated regression coefficients β and the nonparametric function

h(·) in model y = xβ + h(z) + e based on 300 runs. True β = 1 and true σ2 = 1.

Model Parameter Estimates Reg of h on ĥ

setting true # z used # z n β σ2 ρ Intercept Slope R2

1 5 5 60 1.00 0.96 5.34 a (estimated) -0.04 1.00 0.99
100 1.01 0.96 7.24 (estimated) -0.01 1.00 0.99
100 1.00 0.92 1.00 (fixed) -0.01 1.00 0.99
100 1.00 1.01 100.00 (fixed) -0.02 1.00 0.99

2 5 8 100 1.05 0.89 6.74 (estimated) 0.16 1.00 0.98
100 1.06 0.30 1.00 (fixed) 0.36 0.98 0.97
100 1.12 2.15 100.00 (fixed) 0.23 1.01 0.96

3 10 10 200 0.98 0.93 12.83 (estimated) -0.07 1.00 0.99
200 0.92 0.30 1.00 (fixed) -0.18 0.99 0.98
200 0.98 1.15 100.00 (fixed) -0.04 1.00 0.99

4 10 15 300 1.01 0.82 14.02 (estimated) 0.03 1.00 0.99
300 1.01 0.75 10.00 (fixed) 0.02 1.00 0.99
300 1.01 1.17 100.00 (fixed) 0.02 1.00 0.99

a Average of the estimated ρ̂ from 300 simulations
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Table 3
Simulation study results of standard error estimates of β̂ and ĥ(·) in model

y = xβ + h(z) + e based on 300 simulations.

Standard Errors of β̂

true used Empirical Bayesian Frequentist
setting # z # z n SE SE SE ρ

1 5 5 60 0.088 0.088 0.083 5.34 (estimated)
100 0.054 0.057 0.055 7.24 (estimated)
100 0.062 0.066 0.058 1.00 (fixed)
100 0.055 0.056 0.055 100.00 (fixed)

2 5 8 100 0.066 0.065 0.058 6.74 (estimated)
100 0.070 0.078 0.034 1.00 (fixed)
100 0.082 0.081 0.078 100.00 (fixed)

3 10 10 200 0.044 0.047 0.042 12.83 (estimated)
200 0.050 0.077 0.024 1.00 (fixed)
200 0.041 0.047 0.045 100.00 (fixed)

4 10 15 300 0.039 0.042 0.033 14.02 (estimated)
300 0.039 0.044 0.032 10.00 (fixed)
300 0.037 0.041 0.039 100.00 (fixed)

Standard Errors of ĥ

1 5 5 60 0.635 0.662 0.601 5.34 (estimated)
100 0.482 0.515 0.464 7.24 (estimated)
100 0.614 0.664 0.576 1.00 (fixed)
100 0.458 0.470 0.456 100.00 (fixed)

2 5 8 100 0.662 0.683 0.604 6.74 (estimated)
100 0.933 0.540 0.449 1.00 (fixed)
100 0.741 0.731 0.645 100.00 (fixed)

3 10 10 200 0.606 0.667 0.583 12.83 (estimated)
200 0.954 0.541 0.450 1.00 (fixed)
200 0.559 0.630 0.596 100.00 (fixed)

4 10 15 300 0.712 0.721 0.636 14.02 (estimated)
300 0.737 0.717 0.634 10.00 (fixed)
300 0.632 0.732 0.684 100.00 (fixed)
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Table 4
Simulation Results for the Score test for H0 : h(z) = 0.

Scale Size Power
ρ α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0
0.5 0.050 0.158 0.487 0.865 0.989 1.000

1 0.047 0.137 0.509 0.869 0.991 1.000
5 0.050 0.127 0.482 0.865 0.987 1.000

25 0.051 0.139 0.484 0.886 0.990 1.000
50 0.046 0.138 0.508 0.863 0.990 1.000

100 0.048 0.134 0.497 0.867 0.988 1.000
200 0.054 0.148 0.494 0.874 0.991 1.000
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Figure 2. Simulation result of model selection using BIC
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