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Abstract: The semiparametric partially linear model allows flexible modeling of

covariate effects on the response variable in regression. It combines the flexibility

of nonparametric regression and the parsimony of linear regression. The most

important assumption in the existing methods for the estimation in this model

is that a priori it is known which covariates have a linear effect and which do

not. However, in applied work, this is rarely known in advance. We consider

the problem of estimation in the partially linear models without assuming a priori

which covariates have linear effects. We propose a semiparametric regression pursuit

method for identifying the covariates with a linear effect. Our proposed method

is a penalized regression approach using a group minimax concave penalty. Under

suitable conditions we show that the proposed approach is model-pursuit consistent,

meaning that it can correctly determine which covariates have a linear effect and

which do not with high probability. The performance of the proposed method is

evaluated using simulation studies that support our theoretical results. A data

example is used to illustrated the application of the proposed method.

Key words and phrases: Group selection, minimax concave penalty, model-pursuit

consistency, penalized regression, semiparametric models, structure estimation.

1. Introduction

Suppose we have a random sample (yi, xi1, . . . , xip), 1 ≤ i ≤ n, where yi is the
response variable and (xi1, . . . , xip) is a p-dimensional covariate vector. Consider

the semiparametric partially linear model

yi = µ+
∑
j∈S1

βjxij +
∑
j∈S2

fj(xij) + εi, 1 ≤ i ≤ n, (1.1)

where S1 and S2 are mutually exclusive and complementary subsets of {1, . . . , p},
{βj : j ∈ S1} are regression coefficients of the covariates with indices in S1, and

(fj : j ∈ S2) are unknown functions. In this model, the mean response is linearly

related to the covariates in S1, while its relation with the remaining covariates

is not specified up to any finite number of parameters. This model combines the

flexibility of nonparametric regression and the parsimony of linear regression.

When the relation between yi and {xij : j ∈ S1} is of main interest and can be
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approximated by a linear function, it offers more interpretability than a purely

nonparametric additive model.

There is a large literature on estimation in partially linear models. Examples

include the partial spline estimator (Wahba (1984), Engle et al. (1986), and

Heckman (1986)), the partial residual estimator (Robinson (1988), Speckman

(1985)), and polynomial spline estimator (Chen (1988)). An excellent discussion

of partially linear models can be found in the book of Härdle Liang, and Gao

(2000), which also contains an extensive list of references on this model. A

comprehensive treatment of general semiparametric theory and many related

models can be found in Bickel et al. (1993).

The most important assumption in the existing methods for the estimation

in partially linear models is that it is known a priori which covariates have a

linear form and which do not in the model. This assumption underlies the con-

struction of the estimators and investigation of their theoretical properties in the

existing methods. However, in applied work, it is rarely known in advance which

covariates have linear effects and which have nonlinear effects.

Recently, Zhang, Cheng, and Liu (2011) proposed a novel method for de-

termining the zero, linear, and nonlinear components in partially linear mod-

els. Their method is a two-step regularization method in the smoothing spline

ANOVA framework. In the first step, they obtain an initial consistent estimator

for the components in a nonparametric additive model, and then use the initial

estimator as the weights in their proposed regularized smoothing spline method

in a way similar to the adaptive Lasso (Zou (2006)). They obtained the rate of

convergence of their proposed estimator. They also showed that their method is

selection consistent in the special case of tensor product design. However, they

did not prove any selection consistency results for general partially linear models.

Also, in their two-step approach, a total of four penalty parameters need to be

selected, and this may be difficult to implement in practice.

We consider the problem of estimation in partially linear models without

assuming a priori which covariates have linear effects and which have nonlinear

effects, and propose a semiparametric regression pursuit method for identifying

them. We embed partially linear models into a nonparametric additive model.

By approximating the nonparametric components using spline series expansions,

we transform the problem of model specification into a group variable selection

problem. We then determine the linear and nonlinear components with a penal-

ized approach, using a minimax concave penalty (MCP, Zhang (2010)) imposed

on the norm of the coefficients in the spline expansion. We refer to this penalized

approach as the group MCP method. We show that, under suitable conditions,

the proposed approach is model pursuit consistent, meaning that it can correctly

determine which covariates have a linear effect and which do not, with high prob-

ability. We allow the possibility that the underlying true model is not partially



SEMIPARAMETRIC REGRESSION PURSUIT 1405

linear. Then the proposed approach has the same asymptotic property as the

nonparametric estimator in the nonparametric additive model. We also show

that the estimated coefficients of linear effects are asymptotically normal, with

the same distribution as the estimator assuming the true model were known in

advance.

Some of the techniques used in this paper are similar to those in Huang,

Horowitz, and Wei (2010), in which the problem of variable selection in non-

parametric additive models is considered. In particular, after transforming the

present problem of model pursuit into a group selection problem based on spline

approximation, some of the techniques in obtaining rate of convergence for the

group Lasso estimator in the context of nonparametric additive models in Huang,

Horowitz, and Wei (2010) can be applied, with some modifications, see the proof

of Theorem 2 in the Appendix. However, the problem of model pursuit consid-

ered here is very different from that in Huang, Horowitz, and Wei (2010). Also,

we use the group MCP rather than the group Lasso, which requires different

treatment at the technical level.

This article is organized as follows. In Section 2 we describe our proposed

semiparametric regression pursuit (SRP) method. We transform the problem of

identifying linear and nonlinear components into an group selection problem us-

ing the group MCP. In Section 3 we derived a group coordinate descent algorithm

to implement the proposed method. In Section 4 we state the theoretical results

concerning the selection and estimation properties of the proposed method. Sec-

tion 5 includes simulation studies and an illustration of the proposed method

on a data example. Proofs of the results stated in Section 3 are given in the

Appendix.

2. Semiparametric Regression Pursuit via Group Minimax Concave

Penalization

2.1. Method

The semiparametric partially linear model (1.1) can be embedded into the

nonparametric additive model (Hastie and Tibshirani (1990)),

yi = µ+ f1(xi1) + · · ·+ fp(xip) + εi. (2.1)

Suppose that xij takes values in [a, b], where a < b are finite constants. To ensure

unique identification of the fj ’s, we take Efj(xij) = 0, 1 ≤ j ≤ p. If some of the

fj ’s are linear, then (2.1) becomes the partially linear additive model (1.1). The

problem is that of determining which fj ’s have a linear form and which do not.

For this purpose, we write fj as

fj(x) = β0j + βjx+ gj(x).
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Consider a truncated series expansion for approximating gj ,

gnj(x) =

mn∑
k=1

θjkϕk(x), (2.2)

where ϕ1, . . . , ϕmn are basis functions and mn →∞ at a certain rate as n→∞.

If θjk = 0, 1 ≤ k ≤ mn, then fj is linear. Therefore, with this formulation, the

problem is to determine which groups of {θjk, 1 ≤ k ≤ mn} are zero.

Let β = (β1, . . . , βp)
′ and θn = (θ′1n, . . . , θ

′
pn)

′, where θjn = (θj1, . . . , θjmn)
′.

Define the penalized least squares criterion

L(µ, β, θn;λ, γ) =
1

2n

n∑
i=1

(
yi − µ−

p∑
j=1

xijβj −
p∑

j=1

mn∑
k=1

θjkϕk(xij)
)2

+

p∑
j=1

ργ(∥θjn∥Aj ;
√
mnλ), (2.3)

where ρ is a penalty function depending on the penalty parameter λ ≥ 0 and

a regularization parameter γ. Here without causing confusing, we still use µ to

denote the intercept. The norm ∥θjn∥Aj = (θ′njAjθnj)
1/2 for a given positive

definite matrix Aj . In theory, any positive definite matrix can be used as Aj ,

since ∥θjn∥Aj = 0 if and only if θjn = 0. However, it is important to choose a

suitable Aj to make the amount of penalization comparable across the groups

and to facilitate the computation. We will specify Aj in (2.8) below.

We use the minimax concave penalty or MCP, introduced by Zhang (2010),

given by

ργ(t;λ) = λ

∫ t

0

(
1− x

γλ

)
+
dx, t ≥ 0, (2.4)

where γ is a parameter that controls the concavity of ρ and λ is the penalty

parameter. Here x+ = x1{x≥0}. We require λ ≥ 0 and γ > 1. The term MCP

comes from the fact that it minimizes the maximum concavity measure defined

at (2.2) of Zhang (2010), subject to conditions on unbiasedness and selection

features. The MCP can be easily understood by considering its derivative

ρ̇γ(t;λ) = λ
(
1− t

γλ

)
+
, t ≥ 0. (2.5)

It begins by applying the same rate of penalization as the lasso, but continuously

relaxes that penalization until, when t > γλ, the rate of penalization drops to

0. It provides a continuum of penalties with the ℓ1 penalty at γ = ∞ and the

hard-thresholding penalty as γ → 1+. In particular, it includes the Lasso penalty
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as a special case at γ = ∞. Detailed discussions on the MCP can be found in

Zhang (2010).

The penalty at (2.3) is a composite of the penalty function ργ(·;λ) and a

weighted ℓ2-norm of θj . The ργ(·;λ) is a penalty for individual variable selection.

When applied to a norm of θj , it selects the coefficients in θj as a group. This

is desirable, since the nonlinear components are represented by the coefficients

in the θj ’s as groups. Based on (2.3), it is natural to call it the group minimax

concave penalty, or group MCP.

For a given (λ, γ), the penalized least squares solution is

(µ̂n, β̂n, θ̂n) = argmin
µ,β,θn

L(µ, β, θn;λ, γ),

subject to the constraints

n∑
i=1

mn∑
k=1

θjkϕk(xij) = 0, 1 ≤ j ≤ p. (2.6)

These centering constraints are sample analogs of the identifying restriction

Efj(xij) = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ p.
We convert (2.6) to an unconstrained optimization problem by centering the

response and the covariate functions. Specifically, we center the responses and

covariates, and standardize the covariates by setting

n∑
i=1

yi = 0,
n∑

i=1

xij = 0 and
n∑

i=1

x2ij = n.

We also center the basis functions and take

ϕ̄jk =
1

n

n∑
i=1

ϕk(xij), ψjk(x) = ϕk(x)− ϕ̄jk. (2.7)

Let zij =
(
ψj1(xij), . . . , ψjmn(xij)

)′
, which consists of the centered basis functions

at the ith observation of the jth covariate. Let Z = (Z1, . . . , Zp), where Zj =

(z1j , . . . , znj)
′ is the n×mn ‘design’ matrix corresponding to the jth expansion.

Let y = (y1, . . . , yn)
′, xj = (x1j , . . . , xnj)

′ and X = (x1, . . . , xp). We can write

(β̂n, θ̂n) = argmin
β,θn

{L(β, θn;λ, γ) =
1

2n
∥y−Xβ−Zθn∥2+

p∑
j=1

ργ(∥θnj∥Aj ;
√
mnλ)}.

Here we dropped µ from the arguments of L, since the intercept is zero due to

centering. With the centering, the constrained optimization problem becomes an

unconstrained one.
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2.2. Penalized profile least squares

To compute (β̂n, θ̂n), we can use a penalized profile least squares approach.
For any given θn, the β̂ that minimizes L necessarily satisfies

X ′(y −Xβ − Zθn) = 0.

Thus β = (X ′X)−1X ′(y − Zθn). Let Q = I − PX , where PX = X(X ′X)−1X ′ is
the projection matrix onto the column space of X. The profile objective function
of θn is

L(θn;λ, γ) =
1

2n
∥Q(y − Zθn)∥2 +

p∑
j=1

ργ(∥θnj∥Aj ;
√
mnλ). (2.8)

As noted above, any positive definite matrix can be used for Aj . Here we use
Aj = Z ′

jQZj/n. The rationale for this choice is based on the following considera-
tions. First, in the profile objective function (2.8), the covariate matrix for group
j is QZj . The Gram matrix associated with it is Z ′

jQ
′QZj/n = Aj , since Q is an

orthonormal matrix. Although the original covariates xij ’s are standardized, the
covariate matrices for the groups are not necessarily so. Therefore, this choice
of Aj standardizes the covariate matrices associated with θnj ’s and makes the
amount of penalization comparable across the groups comparable. Second, it
leads to an explicit expression in the update steps in the group coordinate al-
gorithm described below; this facilitates the implementation of the algorithm,
since computation in each update step can be carried out using explicit ex-
pressions. For any given (λ, γ), the penalized profile least squares solution is
θ̂n = argminθn L(θn;λ, γ). We compute θ̂n using the group coordinate descent
algorithm described in Section 3.

The set of indices of the covariates that are estimated to have the linear form
in the regression model (1.1) is Ŝ1 ≡ {j : ∥θ̂nj∥ = 0}. Thus,

ĝnj(x) = 0, j ∈ Ŝ1 and ĝnj(x) =

mn∑
k=1

θ̂jkψjk(x), j ̸∈ Ŝ1.

Let X̂(1) = (xj , j ∈ Ŝ1), Ẑ(2) = (Zj : j ̸∈ Ŝ1) and θ̂n(2) = (θ̂′nj , j ̸∈ Ŝ1)′. We have

β̂n = (X ′X)−1X ′(y − Ẑ(2)θ̂n(2)). The estimator of the coefficients of the linear

components is β̂n1 = (β̂j : j ∈ Ŝ1)′. Let

f̂nj(x) = β̂jx+ ĝnj(x), j ̸∈ Ŝ1.

Write f̂nj(xj) = (f̂nj(x1j), . . . , f̂nj(xnj))
′. Then the estimator of the coefficient

vector of the linear components can also be written as

β̂n1 = (X̂ ′
(1)X̂(1))

−1X̂ ′
(1)(y −

∑
j ̸∈Ŝ1

f̂nj(xj)).
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2.3. Spline approximation

We use polynomial splines to approximate the nonparametric components
gj , 1 ≤ j ≤ p. Let a = t0 < t1 < · · · < tK < tK+1 = b be a partition of [a, b] into
K subintervals IKk = [tk, tk+1), k = 0, . . . ,K − 1 and IKK = [tK , tK+1], where
K ≡ Kn = O(nv), 0 < v < 0.5, is a positive integer such that max1≤k≤K+1 |tk −
tk−1| = O(n−v). Let Sn be the space of polynomial splines of degree l ≥ 1
consisting of functions s for which the restriction of s to IKk is a polynomial
of degree l for 1 ≤ k ≤ K, and for l ≥ 2 and 0 ≤ l′ ≤ l − 2, s is l′ times
continuously differentiable on [a, b] (Schumaker (1981)). There exists normalized
B-spline basis functions {ϕk, 1 ≤ k ≤ mn} for Sn, wheremn ≡ Kn+l (Schumaker
(1981)). We can use these basis functions in the approximation (2.2).

3. Computation

We derive a group coordinate descent algorithm for computing θ̂n. This
algorithm is a natural extension of the standard coordinate descent algorithm (Fu
(1998), Friedman et al. (2007), and Wu and Lange (2007)) used in optimization
problems with convex penalties, such as the Lasso. It has also been used in
calculating the penalized estimates based on concave penalty functions (Breheny
and Huang (2011), Mazumder, Friedman, and Hastie (2009)).

The group coordinate descent algorithm optimizes a target function with
respect to a single group at a time, iteratively cycling through all groups until
convergence is reached. It is particularly suitable for computing θ̂n, since it has
a simple closed form expression for a single-group model, see (3.1) below.

We write Aj = R′
jRj for an mn × mn upper triangular matrix Rj via the

Cholesky decomposition. Let bj = Rjθj , ỹ = Qy and Z̃j = QZjR
−1
j . Simple

algebra shows that

L(b;λ, γ) =
1

2n
∥ỹ −

p∑
j=1

Z̃jbj∥2 +
p∑

j=1

ργ(∥bj∥;
√
mnλ).

Note that n−1Z̃ ′
jZ̃j = R−1′

j (n−1Z ′
jQZj)R

−1
j = Imn . Let ỹj = ỹ −

∑p
k ̸=j Z̃kbk and

Lj(bj ;λ, γ) =
1

2n
∥ỹj − Z̃jbj∥2 + ργ(∥bj∥;

√
mnλ).

Let ηj = Z̃j(Z̃
′
jZ̃j)

−1ỹj = n−1Z̃ ′
j ỹ. For γ > 1, it can be verified that the value

that minimizes Lj with respect to bj is

b̃j,GM (λ, γ) =M(ηj ;λ, γ) ≡


0, if ∥ηj∥ ≤

√
mnλ,

γ
γ−1(1−

√
mnλ
∥ηj∥ )ηj , if

√
mnλ < ∥ηj∥ ≤ γ

√
mnλ,

ηj , if ∥ηj∥ > γ
√
mnλ.

(3.1)
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In particular, when γ =∞, we have

b̃j,GL =
(
1−
√
mnλ

∥ηj∥

)
+
ηj ,

which is the group Lasso estimate for a single-group model (Yuan and Lin (2006)).

The group coordinate descent algorithm can now be implemented as follows.

Suppose the current values for the group coefficients b̃
(s)
k , k ̸= j are given. We

want to minimize L with respect to bj . Let

Lj(bj ;λ, γ) =
1

2n
∥ỹ −

∑
k ̸=j

Z̃k b̃
(s)
k − Z̃jbj∥2 + ργ(∥bj∥;

√
mnλ),

and write ỹj =
∑

k ̸=j Z̃k b̃
(s)
k and η̃j = n−1Z̃ ′

j(ỹ − ỹj). Let b̃j be the minimizer

of Lj(bj ;
√
mnλ, γ). When γ > 1, we have b̃j = M(η̃j ;

√
mnλ, γ), where M is

defined in (3.1).

For any given (λ, γ), we use (3.1) to cycle through one component at a time.

Let β̃(0) = (β̃
(0)′
1 , . . . , β̃

(0)′
p )′ be the initial value. The proposed coordinate descent

algorithm is as follows.

Initialize vector of residuals r = y − ỹ, where ỹ =
∑p

j=1 Z̃jb
(0)
j . For s =

0, 1, . . ., carry out the following calculation until convergence. For j = 1, . . . , p,

repeat the following steps.

(1) Calculate η̃j = n−1Z̃ ′
jr + b̃

(s)
j .

(2) Update b̃
(s+1)
j =M(η̃j ;λ, γ).

(3) Update r ← r − Z̃j(b̃
(s+1)
j − b̃(s)j ) and j ← j + 1.

The last step ensures that r holds the current values of the residuals. Although

the objective function is not necessarily convex, it is convex with respect to a

single group when the coefficients of all the other groups are fixed. Thus, Theorem

5.1 of Tseng (2001) implies that the group coordinate descent algorithm described

above converges.

4. Theoretical Properties

We present results on the model-pursuit consistency, rate of convergence

and asymptotic normality of the proposed SRP estimator. In particular, our

model-pursuit consistency result shows that the proposed method can correctly

determine the linear and nonlinear components in the partially linear model with

high probability.

Denote the underlying regression components by f0j and write

f0j(x) = β0jx+ g0j(x).
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Suppose the series expansion for approximating g0j is

g0j(x) =

mn∑
j=1

θ0jkϕk(x).

Let θ0jn = (θ0j1, . . . , θ0jmn)
′, and let ∥g∥2 = (

∫ b
a g

2(x)dx)1/2 for any square in-

tegrable function g on [a, b]. We have S1 = {j : ∥g0j∥2 = 0} and ∥θ0nj∥ = 0 for

j ∈ S1. Let θ0n = (θ′0n1, . . . , θ
′
0np)

′.

Let q = |S1| be the cardinality of S1, the number of linear components in

the regression model. Take

θ̃n = argmin
θn

{ 1

2n
∥Q(y − Zθn)∥2 : θnj = 0, j ∈ S1}. (4.1)

This is the oracle estimator of θ0n that takes the identity of the linear components

as known.

Analogous to the estimates defined at the end of Section 2.2, write the oracle

estimators as

g̃nj(x) = 0, j ∈ S1 and g̃nj(x) =

mn∑
k=1

θ̃jkψjk(x), j ̸∈ S1.

Let X(1) = (xj , j ∈ S1), X(2) = (xj : j ∈ S2), θ̃n(2) = (θ̃′nj , j ∈ S2)′, and

f̃nj(x) = β̃jx+ g̃nj(x), j ∈ S2.

Write f̃nj(xj) = (f̃nj(x1j), . . . , f̃nj(xnj))
′. The oracle estimator of the coefficients

of the linear components is

β̃n1 = (X ′
(1)X(1))

−1X ′
(1)(y −

∑
j∈S2

f̃nj(xj)).

Without loss of generality, suppose that S1 = {1, . . . , q}. Write θ̃n =

(0′qmn
, θ̃′n(2))

′, where 0qmn is a (qmn)-dimensional vector of zeros and

θ̃n(2) = (Z ′
(2)QZ(2))

−1Z ′
(2)Qy. (4.2)

Let θ∗ = minj∈S1 ∥θ0nj∥, the smallest norm of the coefficients in the spline ex-

pansions of the nonlinear components.

Let k be a non-negative integer, and let α ∈ (0, 1] be such that d = k + α >

0.5. Let G be the class of functions g on [0, 1] whose kth derivative g(k) exists

and satisfies a Lipschitz condition of order α:

|g(k)(s)− g(k)(t)| ≤ C|s− t|α for s, t ∈ [a, b].

We make the following assumptions.
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(A1) p and q are fixed and ε1, . . . , εn are independent and identically distributed

with Eεi = 0 and Var(εi) = σ2. Furthermore, P (|εi| > x) ≤ K exp(−Cx2),
i = 1, . . . , n, for all x ≥ 0 for some constants C and K.

(A2) Egj(xj) = 0 and gj ∈ G, j = q + 1, . . . , p.

(A3) The covariate vector X has a continuous density and there exist constants

C1 and C2 such that the density function ηj of xj satisfies 0 < C1 ≤ ηj(x) ≤
C2 <∞ on [a, b] for every 1 ≤ j ≤ p.

Theorem 1. Suppose that mn = O(n1/(2d+1)), 1/
√
mnγ is less than the smallest

eigenvalue of Z ′QZ/n, and

1

m
(2d−1)/2
n (θ∗ − γλ)

+
1

λ
√
n
→ 0. (4.3)

Then under (A1)−(A3), P(θ̂n ̸= θ̃n)→ 0. Consequently, P(Ŝ1 = S1)→ 1, and

P(β̂n1 = β̃n1)→ 1, and P(∥f̂nj − f̃nj∥2 = 0, j ∈ S2)→ 1.

Therefore, under the conditions of Theorem 1, the proposed estimator can

correctly distinguish linear and nonlinear components with high probability. Fur-

thermore, the proposed estimator has the oracle property in the sense that it is

the same as the oracle estimator assuming the identity of the linear and nonlinear

components were known, except on an event with probability tending to zero.

We note that, except the assumption on the tail probabilities in (A1), (A1)−
(A3) are standard conditions for nonparametric additive models. They are

needed to estimate the additive components at the optimal ℓ2 rate of convergence

in standard nonparametric additive model setting. The main extra condition here

is (4.3), which requires both λ = o(n−1/2) and θ∗ > γλ+ anm
−(2d−1)/2
n for some

an →∞. The first part of this requirement ensures that the bias resulting from

the penalty is so small that it does not interfere with selection, and the second

part requires that the smallest norm θ∗ of the coefficients in the spline expansions

of the (nonzero) nonlinear components be larger than the penalty level plus a

term due to the spline approximation error.

Theorem 2. Suppose (A1)−(A3) hold. Under (2.1), we have

p∑
j=1

∥f̂nj − f0j∥22 ≤ Op

(mn

n

)
+O

( 1

m2d
n

)
+O(mnλ

2).

This theorem gives rate of convergence of the proposed estimator under the

nonparametric additive model (2.1) that contains the partially linear models as



SEMIPARAMETRIC REGRESSION PURSUIT 1413

special cases. In particular, if we assume that each component in (2.1) is second-

order differentiable (d = 2) and take mn = O(n1/5) and λ = n−1/2+δ for a

small δ > 0, then
∑p

j=1 ∥f̂nj − f0j∥22 = Op(n
−4/5), which is the optimal rate of

convergence in nonparametric regression.

We now consider the asymptotic distribution of β̂n1. Let

Hj = {hj = (hjk : k ∈ S1)′ : Eh2jk(xj) <∞, Ehjk(xj) = 0}, j ∈ S2.

Each element of Hj is a |S1|-vector of square integrable functions with mean zero.

Let the sumspace be

H = {h =
∑
j∈S2

hj : hj ∈ Hj}.

The projection of the centered covariate vector x(1) −E(x(1)) ∈ Rq onto the

sumspace H is the (h∗1, . . . , h
∗
r)

′, with Eh∗j (xj) = 0, j ≤ Ŝ2, that minimizes

W (h) ≡ E∥x(1) − E(x(1))−
∑
j∈S2

hj(xj)∥2. (4.4)

For x(2) = (xj : j ∈ S2), write

h∗(x(2)) =
∑
j∈S2

h∗j (xj). (4.5)

Under (A3), by Lemma 1 of Stone (1985) and Proposition 2 in Appendix 4

of Bickel et al. (1993), the sumspace H is closed. Thus the orthogonal projection

h∗ onto H is well defined and unique. Furthermore, each individual component

h∗j is also well-defined and unique. In addition to (A1)-(A3), we also need the

following condition.

(A4) Let w ≥ 1 be a positive integer. The wth partial derivatives of the joint

density of x(2) = (xj , j ∈ S2) are bounded by a constant and the qth derivative

of each component of ξ(v) = E(x(1)|xj = v), j ∈ S2, is bounded by a constant.

Let A = E[x(1) − E(x(1) − h∗(x(2))]⊗2, where h∗ is defined in (4.5). Here

x⊗2 = xx′ for any column vector x ∈ Rd.

Theorem 3. If the conditions of Theorem 1 and (A4) are satisfied, and if A is

nonsingular, then

n1/2(β̂n1 − β(1))→d N(0,Σ),

where β(1) = (βj : j ∈ S1)′ and Σ = σ2A−1.

The limit distribution of Theorem 3 is the same as that of the oracle estimator

β̃n1.



1414 JIAN HUANG, FENGRONG WEI AND SHUANGGE MA

5. Numerical Studies

5.1. Simulation studies

We used simulation to evaluate the finite sample performance of the pro-

posed method. Two examples were considered in the simulation. In each of the

simulated models, two sample sizes (n = 100, 200) were considered and a total

of 100 replications were conducted. Consider the following functions defined on

[0, 1]:

f1(x) = x, f2(x) =
sin(2πx)

2− sin(2πx)
,

f3(x) = 0.1 sin(2πx)+0.2 cos(2πx)+0.3 sin2(2πx)+0.4 cos3(2πx)+0.5 sin3(2πx),

f4(x) = (3x− 1)2, f5(x) =
cos(2πx)

2− cos(2πx)
,

f6(x) = 0.1 cos(2πx)+0.2 sin(2πx)+0.3 cos2(2πx)+0.4 sin3(2πx)+0.5 cos3(2πx).

In the implementation, we used cubic B-spline with seven basis functions to

approximate each function.

Example 1. Let p = 6 and consider the model

y = 3f1(x1) + 4f1(x2)− 2f1(x3) + 8f2(x4) + 6f3(x5) + 5f4(x6) + ε.

Here the first three variables have linear effect and the last three have nonlinear

effect. The p covariates were simulated as follows. First we simulated w1, · · · , wp

and u independently from U [0, 1]; then xik = (wk + u)/2 for k = 1, · · · , p. The

correlation among predictors was Corr(xij , xik) = 0.5. The error term ε was

chosen from N(0, 1.572) to give a signal to noise ratio of 3.

Example 2. Let p = 10 and consider the model

y = 3f1(x1) + 4f1(x2)− f1(x3)− f1(x4) + 2f1(x5)

+5f2(x6) + 4f3(x7) + 5f4(x8) + 5f5(x9) + 4f6(x10) + ε.

Here the first five components are linear and the remaining five are nonlinear.

The covariates were simulated as in Example 1. The error term ε ∼ N(0, 1.802),

which gives a signal to noise ratio of 3.

The group coordinate descent algorithm described in Section 3 was used

repeatedly to compute θ̂n over a grid of (λ, γ) values in a rectangle [λmax, λmin]×
[γmax, γmin]. Here λmax = max1≤j≤p ∥n−1Z̃ ′

j ỹ∥, which is the smallest value of λ

that forces all the solutions to be zero, and we took λmin = 0.0001λmax. We used

a set of 100 equally spaced grid points on the logarithmic scale in [λmax, λmin]. For
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Table 1. Simulation results for Examples 1−2. NL, the average number
of the nonlinear components being selected; ER, the average model error;
IN%, the percentage of occasions in which the correct nonlinear components
are included in the selected model; CS%, the percentage of occasions in
which exactly correct nonlinear components are selected, averaged over 100
replications. Enclosed in parentheses are the corresponding standard errors.

n = 100 n = 200
NL ER IN% CS% NL ER IN% CS%

Example 1, Group Lasso 3.46 2.66 100 67 3.10 2.71 100 92
(0.76) (0.66) (0.00) (0.47) (0.39) (0.39) (0.00) (0.27)

Group MCP 3.18 2.28 100 82 3.01 2.43 100 99
(0.39) (0.47) (0.00) (0.39) (0.10) (0.30) (0.00) (0.10)

Example 2, Group Lasso 4.37 6.26 51 17 5.41 3.55 98 62
(2.90) (4.84) (0.50) (0.38) (0.71) (0.59) (0.14) (0.49)

Group MCP 5.25 2.98 76 43 5.22 3.09 98 78
(1.37) (1.22) (0.43) (0.50) (0.54) (0.38) (0.14) (0.42)

the γ parameter in the group MCP, we considered a grid of equally spaced points

in the interval [γmax, γmin] = [8.0, 1.1] with grid size 0.1. We note that Zhang

(2010) suggested using γ = 2.7 for standardized covariates in linear regression. In

our studies, we found that the value of γ has considerable impact on the results.

Thus, instead of using a fixed γ value, we considered a range of γ values.

For the group Lasso, which can be considered a special case of the group MCP

with γ =∞, the algorithm started at λmax where θ̂n equals 0 and proceeded along

the grid values of λ, using the previous solution as the initial value at each grid

point. For the group MCP, for each value of λ in the λ-grid and the corresponding

initial value from the group Lasso, the algorithm proceeded along the grids of

γ in [8.0, 1.1], that is, for each λ grid value, we started the algorithm at γ = 8

using the group Lasso solution as the initial value. This approach follows that of

Mazumder, Friedman, and Hastie (2009). We then applied BIC (Schwarz (1978))

to select (λ, γ). Here BIC is defined as

BIC(λ, γ) = log(RSSλ,γ) + log n ·
mn dfλ,γ

n
,

where RSSλ,γ is the residual sum of squares and dfλ,γ is the number of the

nonzero selected groups for a given (λ, γ). Recall that mn is the number of spline

basis functions given in (2.2). The optimal value of (λ, γ) was chosen to be the

one that minimizes the BIC.

The simulation results based on 100 replications are presented in Tables 1−3.
The columns in Table 1 are the average number of nonlinear components being

selected (NL), the average model error (ER), the percentage of occasions in which

the correct nonlinear components were included in the selected model (IN%),
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Table 2. Number of times each component was selected as a nonlinear com-
ponent by the group Lasso and group MCP methods in the 100 replications,
in Examples 1−2.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
n = 100

Example 1, Group Lasso 21 13 12 100 100 100
Group MCP 9 4 5 100 100 100

n = 200
Group Lasso 3 4 3 100 100 100
Group MCP 1 0 0 100 100 100

n = 100
Example 2, Group Lasso 19 21 14 17 18 54 73 95 69 57
Group MCP 16 13 9 9 11 89 99 100 97 82

n = 200
Group Lasso 9 8 7 9 11 99 100 100 100 98
Group MCP 5 6 6 5 2 99 100 100 100 99

and the percentage of occasions in which the exactly nonlinear components were

selected (CS%) in the final model. Enclosed in parentheses are the corresponding

standard errors. Table 2 includes the number of times each component estimated

as a nonlinear function. Table 3 shows the average mean square error for each

function. Enclosed in parentheses are the corresponding standard errors.

Several observations can be made from Tables 1 and 2. Table 1 shows that

the proposed method with the group MCP performed better than the proposed

method with the group Lasso in terms of the percentage of occasions on which

the correct nonlinear components were included in the selected model (IN%)

and the percentage of occasions in which the exactly nonlinear components were

selected (CS%) in the final model. For instance, in Example 1 with n = 100, the

percentage of correct selection (CS%) was 82% with the group MCP and 67% with

the group Lasso. Also, when the sample size was 200, the percentage of inclusion

of all the nonlinear components (IN%) and the selection of the correct model

(CS%) by both methods were increased. Table 2 shows that the group MCP was

more accurate in distinguishing the linear functions from the nonlinear functions

than the group Lasso. When n = 200, the group MCP correctly distinguished

the linear from nonlinear components 99% of the times in Example 1 and 78% of

the times in Example 2. In Table 3, we examine the performance of the proposed

method for estimating the linear and nonlinear components in the simulated

models. In general, the proposed method with the group MCP has smaller mean

square errors. Overall, the proposed method with the group MCP was effective

in distinguishing the linear components from the nonlinear ones in the simulation

models.
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Table 3. The average mean square error for each component selected by the
group Lasso and group MCP methods based on 100 replications, in Examples
1−2.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
n = 100

Example 1, Group Lasso 0.64 0.66 0.67 7.52 12.23 25.50

(0.93) (0.79) (1.05) (1.48) (6.68) (10.02)

Group MCP 0.54 0.55 0.49 7.51 11.39 25.34

(0.83) (0.70) (0.65) (1.45) (6.72) (9.77)

Oracle 0.11 0.11 0.12 2.22 0.76 10.05

(0.25) (0.17) (0.23) (1.07) (0.46) (2.39)

n = 200

Group Lasso 0.21 0.19 0.20 7.29 12.08 27.24

(0.28) (0.27) (0.26) (1.05) (4.47) (7.04)

Group MCP 0.20 0.16 0.19 7.25 11.35 27.08

(0.28) (0.21) (0.26) (1.03) (4.77) (7.12)

Oracle 0.09 0.08 0.09 1.88 0.50 9.93

(0.07) (0.06) (0.07) (0.65) (0.18) (1.72)

Example 2, Group Lasso 1.22 1.55 1.58 1.40 1.87 3.66 10.24 23.80 3.03 10.09

(1.45) (2.63) (2.08) (2.06) (2.95) (1.43) (7.17) (12.7) (2.76) (5.80)

Group MCP 0.87 1.05 0.90 0.89 1.03 3.55 9.27 22.30 1.96 9.85

(1.02) (1.91) (1.16) (1.51) (1.33) (1.24) (6.88) (10.6) (1.98) (5.08)

Oracle 0.52 0.17 0.27 0.31 0.44 2.57 1.09 13.31 1.28 1.85

(1.00) (0.60) (0.36) (0.63) (0.79) (0.90) (1.54) (13.9) (1.80) (10.45)

n = 200

Group Lasso 0.34 0.36 0.30 0.38 0.39 3.34 8.55 20.09 0.95 9.26

(0.45) (0.40) (0.41) (0.61) (0.56) (0.71) (3.19) (6.61) (0.81) (3.86)

Group MCP 0.30 0.32 0.28 0.31 0.34 3.32 8.52 19.91 0.87 9.19

(0.40) (0.39) (0.39) (0.55) (0.52) (0.70) (3.24) (6.50) (0.81) (3.66)

Oracle 0.23 0.16 0.05 0.16 0.16 0.88 0.36 9.83 0.50 0.33

(0.20) (0.23) (0.02) (0.33) (0.41) (0.30) (0.14) (1.68) (0.17) (0.14)

5.2. Diabetes data example

This data set is from a study reported in Willems et al. (1997). The data

consist of 19 variables on 403 subjects from 1046 African Americans who were

interviewed in a study to understand the prevalence of obesity, diabetes, and

other cardiovascular risk factors in central Virginia. Diabetes Mellitus Type II

(adult onset diabetes) is associated with obesity. The 403 subjects were the

ones screened for diabetes. Glycosolated hemoglobin > 7.0 is usually taken as a

positive diagnosis of this disease.

We considered Glycosolated hemoglobin as the response variable and the

other 15 variables as the covariates. These 15 variables were cholesterol (chol),

stabilized glucose (stab.glu), high density lipoprotein (hdl), cholesterol/hdl ratio

(ratio), location, age, gender, height, height, weight, frame, first systolic blood
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Table 4. Diabetes data: Number of each component being selected by the
group Lasso and group MCP methods as nonlinear components. The top
panel of Table lists the 12 continuous variables selected by the group MCP
and the group Lasso as linear or nonlinear variables, indicated by 0 or 1
(0, linear; 1, nonlinear). The bottom panel shows the number of times a
variable had a nonlinear effect in the 100 partitions.

chol stab.glu hdl ratio age height weight bp.1s bp.1d waist hip time.ppn
whole data set

group Lasso 0 1 0 0 0 1 0 0 0 0 0 0
group MCP 1 1 0 1 1 1 0 0 0 0 0 1

training and testing sets
group Lasso 29 66 7 1 0 72 0 0 0 0 0 0
group MCP 89 100 30 99 65 100 9 2 0 0 4 89

Table 5. Diabetes data: The top panel shows the number of selected nonlin-
ear components (NL) and the residual sum of squares (RSS) based on the
whole data. The bottom panel shows the NL, the RSS, and the prediction
error (PE), averaged over 100 replications. Enclosed in parentheses are the
corresponding standard errors.

NL RSS PE
whole data

group Lasso 2.00 3.06
group MCP 6.00 2.53

training and testing sets
group Lasso 1.75 3.01 3.44

(0.76) (0.19) (1.02)
group MCP 5.87 2.53 3.27

(0.87) (0.16) (0.89)

pressure (bp.1s), first diastolic blood pressure (bp.1d), waist, hip, postprandial

time when labs were drawn (time.ppn). Among these 15 variables, three are

categorial variables (location, gender, frame) and 12 are continuous variables.

We are interested in finding which continuous covariates have nonlinear effects

on the response variable. In our study, we only considered the subjects without

missing values. Thus the number of subjects was n = 366.

The results are summarized in Tables 4 and 5. The top panel of Table 4 lists

the 12 continuous variables selected by the group MCP and the group Lasso as

linear or nonlinear variables, indicated by 0/1 (1, nonlinear; 0, linear). The top

panel of Table 5 shows the number of variables selected as nonlinear variables

and the residual sum of squares by both the group MCP and the group Lasso

methods.

To evaluate the prediction performance of the methods, we randomly selected

a training set with 300 subjects from the data to do the estimation and selection
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and used the remaining 66 subjects at the test set for prediction. We repeated

this process 100 times and the results are summarized in the bottom panel of

Tables 4 and 5. The bottom panel of Table 4 shows the number of times a

variable had a nonlinear effect. The bottom panel of Table 5 shows the number

of variables being selected (NL) as nonlinear components, the residual sum of

squares (RSS) and the prediction error (PE), averaged over 100 replications with

standard error in the parentheses. Table 5 shows that the proposed method with

the group MCP performed better than the group Lasso in terms of the residual

sum of squares and the prediction error.

6. Concluding Remarks

In this paper, we proposed a semiparametric regression pursuit method for

distinguishing linear from nonlinear components in semiparametric partially lin-

ear models. This approach determines the parametric and nonparametric com-

ponents in a semiparametric model adaptively based on the data. Our proposed

method is fundamentally different from the standard semiparametric inference

approach where the parametric and nonparametric components in a model are

pre-specified. We showed that our method has the asymptotic oracle properties,

meaning that it is the same as the standard semiparametric estimator assuming

the model structure is known. The asymptotic rates of the penalty parameters

required for our theoretical results are derived. However, as in many recent stud-

ies, it is not clear whether the penalty parameters selected using the BIC or other

procedures can match the asymptotic rates. This is an important and challeng-

ing problem that requires further investigation, but is beyond the scope of the

current paper. Our simulation study indicates that the proposed method works

well in finite sample situations.

We have only considered the proposed semiparametric regression pursuit

method in the partially linear model with fixed p. In many applications, such as

genomic data analysis, it is possible to have p > n. In this case, our proposed

method is not directly applicable but, assuming the model is sparse in the sense

the number of important covariates is much smaller than n, we can first reduce

the model dimension and then apply the proposed method. For example, we can

first use the adaptive group Lasso method to select the important variables in the

nonparametric additive model (Huang, Horowitz, and Wei (2010)). We can then

use the proposed method in this paper to determine linear and nonlinear com-

ponents in the model. Under the conditions given in Huang, Horowitz, and Wei

(2010) and those given in this paper, this two-step approach has the asymptotic

oracle property even in p > n settings. Further work is needed to evaluate the

finite sample performance and to spell out the technical details of this two-step

approach in p > n settings.
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The proposed semiparametric regression pursuit method extends the scope of
the application of penalized methods from variable selection to structure estima-
tion. We have focused on the proposed method in the context of semiparametric
partially linear models. It can be extended to other models, such as the gener-
alized partially linear and partially linear proportional hazards models (Huang
(1999)). It would be interesting to generalize the results of this paper to these
more complicated models.
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Appendix

Lemma A.1. If
(p− q)1/2

m
(2d−1)/2
n (θ∗ − γλ)

→ 0,

then

P
(
max
j ̸∈S1

∥θ̃nj − θnj∥ > θ∗ − γλ
)
≤ O(1)

(p− q)mn√
n(θ∗ − γλ)

. (A.1)

Proof of Lemma A.1. Let Tnj be an mn × (p− q)mn matrix with the form

Tnj = (0mn , . . . , 0mn , Imn , 0mn , . . . , 0mn),

where 0mn is an mn×mn matrix of zeros and Imn is an mn×mn identity matrix
in the jth block. By the triangle inequality,

∥θ̃nj − θnj∥2 ≤ ∥TnjC−1
(2)Z

′
(2)Qεn∥2 + ∥TnjC−1

(2)Z
′
(2)Qδn∥2. (A.2)

Let C be a generic constant independent of n. For the first term on the right-hand
side, we have

Emax
j ̸∈S1

∥TnjC−1
(2)Z

′
(2)Qεn∥2 ≤ n−1ρ−1

n1E∥Z
′
(2)Qεn∥2

= n−1/2ρ−1
n1E∥n

−1/2Z ′
(2)Qεn∥2

= n−1/2ρ−1
n1m

−1/2
n ((p− q)mn)

1/2 (A.3)

= O(1)(p− q)n−1/2mn. (A.4)
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Thus

P
(
max
j ̸∈S1

∥TnjC−1
(2)Z

′
(2)Qεn∥ ≥ (θ∗ − γ)/2

)
≤ O(1)(p− q)mn√

n(θ∗ − γλ)
.

By the approximation properties of splines to a smooth function, we have n−1∥δn∥2
= Op((p− q)m−2d

n ) and, for the second term,

max
j ̸∈S1

∥TnjC−1
(2)Z

′
(2)Qδn∥2 ≤ ∥nC

−1
(2)∥2 · ∥n

−1Z ′
(2)Z(2)∥

1/2
2 · ∥n−1/2δn∥2

= Op(1)ρ
−1
n1 ρ

1/2
n2 (p− q)1/2m−d

n

= Op(1)(p− q)1/2m−(2d−1)/2
n . (A.5)

Therefore, when
(p− q)mn√
n(θ∗ − γλ)

→ 0,

(A.1) holds.

Lemma A.2. If
1

λm
(2d+1)/2
n

→ 0,

then

P(n−1max
j∈S1

∥Z ′
jH(εn + δn)∥ > λ) ≤ O(1)

{log{(q ∨ 1)mn}}1/2

λ
√
n

. (A.6)

Proof of Lemma A.2. Write

n−1Z ′
jH(εn + δn) = n−1Z ′

jHnεn + n−1Z ′
jHnδn. (A.7)

By Lemma 2 of Huang, Horowitz, and Wei (2010),

E
(
max
j∈S1

∥n−1/2Z ′
jHnεn∥2

)
≤ O(1)

{
log((p− |S1|)mn)

}1/2
. (A.8)

Therefore,

P
(
n−1max

j∈S1

∥Z ′
jHnεn∥2 >

λ

2

)
≤ O(1)

{log(qmn)}1/2

λ
√
n

. (A.9)

For the second term on the right hand side of (A.7),

n−1max
j∈S1

∥Z ′
jHnδn∥2 ≤ n−1/2max

j∈S1

∥n−1Z ′
jZj∥1/22 · ∥Hn∥2 · ∥δn∥2

= O(1)ρ
1/2
n2 (p− q)1/2m−d

n

= O(1)(p− q)1/2m−(2d+1)/2
n . (A.10)
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Therefore, when
1

λm
(2d+1)/2
n

→ 0,

(A.6) follows from (A.9) and (A.10).

Proof of Theorem 1. Since 1/
√
mnγ is less than the smallest eigenvalue of

Z ′QZ/n, L(·;λ, γ) in (2.8) is a convex function. By the Karush-Kuhn-Tucker

conditions, a necessary and sufficient condition for θ̂n is{
Z ′
jQ

(
y − Zθ̂n

)
= nρ̇(∥θ̂n∥;λ), ∥θ̂j∥2 ̸= 0,

∥Z ′
jQ

(
y − Zθ̂n

)
∥2 ≤ nλ, ∥θ̂nj∥ = 0.

(A.11)

For j ̸∈ S1, if ∥θ̃nj∥ ≥ γλ, then ρ̇(∥θ̃nj∥;λ) = 0. Thus θ̃n satisfies (A.11) if also

∥Z ′
jQ

(
y − Zθ̃n

)
∥2 ≤ nλ for j ∈ S1. Therefore, θ̂n = θ̃n in the intersection of the

events

Ω1(λ) =
{
min
j ̸∈S1

∥θ̃nj∥ ≥ γλ
}

and Ω2(λ) =
{
max
j∈S1

∥Z ′
jQ(y − Zθ̃n)∥ ≤ nλ

}
.

(A.12)

Let g0j(xj) = (g0j(x1j), . . . , g0j(xnj))
′ and δn =

∑
j ̸∈S1

g0j(xj) − Z(2)θn(2).

Let C(2) = Z ′
(2)QZ(2) and H = Q−QZ(2)(Z

′
(2)QZ(2))

−1Z ′
(2)Q. By (4.2),

θ̃n(2) − θn(2) = C−1
(2)Z

′
(2)Q(εn + δn), (A.13)

Z ′
jQ(y − Z(2)θ̃n(2)) = Z ′

jH(εn + δn). (A.14)

Recall that θ∗ = minj∈S1 ∥θnj∥. If ∥θ̃nj−θnj∥ ≤ θ∗−γλ, then minj ̸∈S1 ∥θ̃nj∥ ≥ γλ.
Therefore,

1− P(Ω1(λ)) ≤ P(max
j ̸∈S1

∥θ̃nj − θnj∥ > θ∗ − γλ).

We also have

1− P(Ω2(λ)) ≤ P(n−1max
j∈S1

∥(Z ′
jH(εn + δn)∥ > λ).

Note that when mn = n1/(2d+1), we have mnn
−1/2 = m

−(2d−1)/2
n . Therefore, with

Lemmas A.1 and A.2, we have P(θ̂n ̸= θ̃n)→ 0.

Proof of Theorem 2. By the definition of θ̂n ≡ (θ̂′n1, . . . , θ̂
′
np)

′,

1

2n
∥Q(y−Zθ̂n)∥22+

p∑
j=1

ργ∥θ̂nj∥;λ) ≤
1

2n
∥Q(y−Zθn)∥22+

p∑
j=1

ργ∥θnj∥;λ). (A.15)

Let ηn = Q(y − Zθn), νn = QZ(θ̂n − θn, and write

Q(y − Zθ̂n) = Q(y − Zθn)−QZ(θ̂n − θn) = ηn − νn.
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We have ∥Q(y − Zθ̂n)∥22 = ∥νn∥22 − 2η′nνn + ∥ηn∥2. We can rewrite (A.15) as

∥νn∥22 − 2η′nνn ≤ 2n

p∑
j=1

(
ργ(∥θnj∥;λ)− ργ(∥θ̂nj∥;λ)

)
. (A.16)

Since ∣∣ργ(∥θnj∥;λ)− ργ(∥θ̂nj∥;λ)∣∣ ≤ λ∥θnj − θ̂nj∥, (A.17)

combining (A.16) and (A.17), we get

∥νn∥22 − 2η′nνn ≤ 2nλ
√
p∥θ̂n − θn∥. (A.18)

Let η∗n = QZ(Z ′QZ)−1Z ′Qηn. By the Cauchy-Schwartz inequality,

2|η′nνn| ≤ 2∥η∗n∥2 · ∥νn∥2 ≤ 2∥η∗n∥22 +
1

2
∥νn∥22. (A.19)

From (A.18) and (A.19), we have

∥νn∥22 ≤ 4∥η∗n∥22 + 4nλ
√
p · ∥θ̂n − θn∥2.

Let cn∗ be the smallest eigenvalue of Z ′QZ/n. By Lemma 1 of Huang, Horowitz,

and Wei (2010), cn∗ ≍p m
−1
n . Since ∥νn∥22 ≥ ncn∗∥θ̂n − θn∥22 and 2ab ≤ a2 + b2,

ncn∗∥θ̂n − θn∥22 ≤ 4∥η∗n∥22 +
(2nλ

√
p)2

2ncn∗
+

1

2
ncn∗∥θ̂n − θn∥22.

It follows that

∥θ̂n − θn∥22 ≤
8∥η∗n∥22
ncn∗

+
4λ2p

c2n∗
. (A.20)

Let f0(xi) =
∑p

j=1 f0j(xij). Write

ηn = Q(εi + (µ− ȳ)1+ f(xi)− Zθn).

Since |µ− ȳ|2 = Op(n
−1) and ∥f0j − fnj∥∞ = O(m−d

n ), we have

∥η∗n∥22 ≤ 2∥ε∗n∥22 +Op(1) +O(npm−2d
n ), (A.21)

where ε∗n is the projection of εn = (ε1, . . . , εn)
′ to the span of QZ. We have

∥ε∗n∥22 = ∥(Z ′QZ)−1/2Z ′Qεn∥22 ≤ Op(pmn) (A.22)

Combining (A.20), (A.21), and (A.22), we get

∥θ̂n − θn∥22 ≤ Op

(pmn

ncn∗

)
+Op

( 1

ncn∗

)
+O

(dn2m−2d
n

cn∗

)
+

4pλ2

c2n∗
.
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Since cn∗ ≍p m
−1
n and c∗n ≍p m

−1
n , we have

∥θ̂n − θn∥22 ≤ Op

(pm2
n

n

)
+Op

(mn

n

)
+O

( 1

m2d−1
n

)
+O(m2

nλ
2).

Now the result follows from the properties of polynomial splines (Schumaker

(1981)).

Proof of Theorem 3. Let θ̃n be the oracle estimator defined in (4.1), and let

g̃nj(x) = 0, j ∈ S1 and g̃nj(x) =

mn∑
k=1

θ̃jkψjk(x), j ∈ S2,

f̃nj(x) = β̃jx+ g̃nj(x), j ∈ Ŝ2.

Write f̃nj(xj) = (f̃nj(x1j), . . . , f̃nj(xnj))
′. The estimator of the coefficients of the

linear components is

β̃n1 = (X ′
(1)X(1))

−1X ′
(1)(y −

∑
j∈S2

f̃nj(xj)).

Using standard techniques in semiparametric models, such as those described in

Huang (1996), we can show that

√
n(β̃n1 − β01)→D N(0,Σ).

By Theorem 1, P(β̂n1 = β̃n1)→ 1, which implies
√
n(β̂n1−β̃n1)→P 0. Therefore,

by Slutsky’s Lemma, we also have

√
n(β̂n1 − β01) =

√
n(β̃n1 − β01) +

√
n(β̂n1 − β̃n1)→D N(0,Σ).

This completes the proof of Theorem 3.

References

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive

Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore.

Breheny, P. and Huang, J. (2011). Coordinate descent algorithms for nonconvex penalized re-

gression, with applications to biological feature selection. Ann. Appl. Statist. 5, 232-253.

Chen, H. (1988). Convergence rates for parametric components in a partly linear model. Ann.

Statist. 16, 136-146.

Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986). Semiparametric estimates of the

relation between weather and electricity sales. J. Amer. Statist. Assoc. 81, 310-320.

Friedman, J., Hastie, Hoefling, H. and Tibshirani, R. (2007). Pathwise coordinate optimization.

Ann. Appl. Statist. 35, 302-332.



SEMIPARAMETRIC REGRESSION PURSUIT 1425

Fu, W. J. (1998). Penalized regressions: the bridge versus the LASSO. J. Comp. Graph. Statist.

7, 397-416.
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