
Statistica Sinica 20 (2010), 853-869

SEMIPARAMETRIC REGRESSION

WITH TIME-DEPENDENT

COEFFICIENTS FOR FAILURE TIME DATA ANALYSIS

Zhangsheng Yu and Xihong Lin

Indiana University and Harvard School of Public Health

Abstract: We propose a working independent profile likelihood method for the

semiparametric time-varying coefficient model with correlation. Kernel likelihood

is used to estimate time-varying coefficients. Profile likelihood for the parametric

coefficients is formed by plugging in the nonparametric estimator. For independent

data, the estimator is asymptotically normal and achieves the asymptotic semipara-

metric efficiency bound. We evaluate the performance of proposed nonparametric

kernel estimator and the profile estimator, and apply the method to the western

Kenya parasitemia data.
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1. Introduction

The Cox proportional hazard model has been widely used for analysis of in-
dependent censored failure time data, where covariate effects are often modeled
parametrically. This parametric assumption is sometimes undesirable in prac-
tice, as the functional form of the covariate effect is often unknown and can be
complex. Several extensions of the Cox model have been proposed to model the
covariate effects nonparametrically (Fan, Gijbels and King (1997)) and to allow
regression coefficients to vary with time (Hastie and Tibshirani (1993); Cai and
Sun (2003)).

Clustered failure time data have emerged in the last decade. Examples in-
clude familial studies, where the survival times of multiple family members are
clustered within the same family. A common feature of clustered failure time data
is that observations within the same cluster are likely to be correlated. Statistical
methods for analysis of clustered failure time data in the last decade have been
mainly focused on multivariate analogs of the Cox model, where covariate effects
are modeled parametrically. In this paper, we propose a flexible semiparametric
regression model with time-varying regression coefficients for clustered survival
data, where some regression coefficients are assumed to be constant while some
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are assumed to be time-varying. Such models are particularly useful in situations
when exposure effects or treatment effects diminish over time.

One motivating example is the western Kenya parasitemia study (McElroy,
Beier, Oster, Onyango, Lin, Beedle and Hoffmann (1997)). This study enrolled
542 children from 309 households and followed them over time for the onset of
parasitemia. The risk factors of major interest are baseline parasitemia density
(BPD) and exposure to mosquito bites (BITE). Other covariates include age
and gender. McElroy et al. (1997) assumed the effect of BPD to be constant
over time. As shown in Figure 5.2, the effect of BPD diminishes over time.
Examination of the data shows that it is reasonable to assume constant effects of
BITE, age, and gender. It is hence desirable to consider a semiparametric time-
varying coefficient model, where the regression coefficient of BPD is allowed to be
time varying and nonparametric. A further complication of this study, and of the
estimation problem, is that survival times of the children within the same family
are likely to be correlated, due to similar genetic and environmental factors.

For independent data, varying-coefficient models were first proposed by
Hastie and Tibshirani (1993). The asymptotic properties of kernel estimation
in such models were studied by Cai and Sun (2003). Gray (1992) considered
smoothing spline estimation in such models. Extensions to semiparametric re-
gression, where some covariate effects are modeled parametrically, were consid-
ered by several authors. Tian, Zucker, and Wei (2005) and Fan, Lin and Zhou
(2006) estimated the nonparametric component using kernel smoothing and the
parametric component using weighted estimators or the profile estimators, re-
spectively. Ahmad, Leelahanon, and Li (2005) studied efficient estimation in
these semiparametric models, where the nonparametric component was estimated
using splines, which are computationally more intensive compared to the kernel
method. Other related works include Zucker and Karr (1990), and Winnett and
Sasieni (2003).

Several authors have considered nonparametric regression for clustered fail-
ure time data. Yu and Lin (2008) considered weighted local polynomial kernel
estimating equations for clustered failure time data, and showed the most effi-
cient local polynomial kernel estimator is obtained by ignoring the within-cluster
correlation. Cai, Fan, Zhou and Zhou (2007) considered nonparametric regres-
sion in varying coefficient models for multivariate survival data and proposed
kernel smoothing assuming independence. We consider in this paper a semi-
parametric model here, where one covariate effect is modeled nonparametrically
using a time-varying nonparametric function, and other covariates are modeled
parametrically.

Motivated by the Western Kenya data, we consider a semiparametric time-
varying coefficient model for clustered survival data. In view of the results of
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Yu and Lin (2008), we consider survival models with only time-varying coeffi-
cients and a common baseline hazard, and propose estimation of nonparametric
functions using the working independence kernel partial likelihood constructed by
ignoring within-cluster correlation. We study the asymptotic properties of these
nonparametric estimators. We next consider semiparametric models, where the
effects of some covariates are modeled parametrically. We propose a working in-
dependence kernel profile partial likelihood method for estimating nonparametric
time-varying coefficients and parametric regression coefficients. We show that the
profile estimator is

√
n-consistent and asymptotically normal. For independent

data, we derive the semiparametric efficient score and show the profile estima-
tors of regression coefficients are semiparametric efficient. To our knowlege, this
is the first paper that shows the semiparametric efficiency for the profile-kernel
estimator in semiparametric varying coefficient models. We evaluate the finite
sample performance of the proposed methods using simulations and illustrate
their application using the western Kenya parasitemia data.

The remainder of this paper is organized as follows. We described the model
and the estimation procedure in Section 2. In Section 3, we study the asymptotic
properties of the proposed estimator, and derive the efficiency score. In Section 4,
we evaluate the performance of the proposed estimators by simulations. We apply
the proposed estimation procedure to the western Kenya parasitemia study in
Section 5, followed by some discussions in Section 6. Technical details of theory
derivation are included in an appendix as a supplement to the online version
available at http://www.stat.sinica.edu.tw/statistica.

2. Models and Estimation

In this section we consider nonparametric and semiparametric regression
models for time-varying coefficient models for clustered survival models with a
common baseline hazard.

2.1. Nonparametric time-varying coefficient models

In this section we propose working independence kernel estimation for non-
parametric time-varying coefficient models. Suppose one observes (Tij , Xij , ∆ij)
for the jth subject of the ith cluster (i = 1, . . . , n; j = 1, . . . , Ji). Here Tij =
min(T ∗

ij , Cij), where T ∗
ij is the failure time and Cij is the censoring time; Xij(t)

is the covariate vector {X1ij(t), . . . , Xpij(t)}T , and ∆ij = I(T ∗
ij ≤ Cij) is the

censoring indicator. Let Yij(t) = I(Yij ≥ t) be the at-risk process, and Nij(t) be
the observed failure counting process. The Tij within the same cluster i might be
correlated, while observations from different clusters are assumed to be indepen-
dent. Failure times {T ∗

ij} are independent from censoring time {Cij}, conditional
on covariates.

http://www.stat.sinica.edu.tw/statistica
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We assume that the marginal hazard for Tij follows

λij(t; Xij) = Yij(t)λ0(t) exp{Xij(t)T β(t)}, (2.1)

where β(t) = {β1(t), . . . , βp(t)}T is a vector of time-varying coefficients and βk(t)
is a nonparametric smooth function with a continuous second derivative, and
λ0(t) is a common baseline hazard. The hazard λij(t; Xij) is the instantaneous
failure rate at time t for the ijth subject, conditional on all the information of
the ijth subject prior to t. The random process

Mij(t) = Nij(t) −
∫ t

0
Yij(u)eXij(u)T β(u)λ0(u)du

is a martingale with respect to the marginal filtration, but not to the joint filtra-
tion.

We propose estimating the nonparametric time-varying coefficient using the
local polynomial kernel method assuming working independence. For simplicity
we focus here on local linear kernel estimators, extension to a local pth order
kernel estimator are straightforward. Specifically, to estimate βk(·) at time t,
one can approximate βk(u) using a linear Taylor expansion around t as βk(u) ≈
b0k + b1k(u − t). Then β̂k(t) = b̂0k. Let b = (b01, . . . , b0p, b11, . . . , b1p)T and
X̃ij(u, t) = (1, u − t)T ⊗ Xij , with ⊗ being the Kronecker product. In view of
the results of Yu and Lin (2008), we propose the working independence kernel
partial likelihood by ignoring within-cluster correlation for estimating b as

p`N (b, t) =
1
n

n∑
i=1

Ji∑
j=1

∫ τ

0
Kh(u − t)

[
X̃ij(u, t)T b

− log
{ n∑

l=1

Jl∑
r=1

Ylr(u)e eXlr(u,t)T b
}]

dNij(u), (2.2)

where Kh(·) = h−1K(·/h), K(·) is a kernel function, and h is a bandwidth.
The kernel function K(·) is usually chosen to be a unimodal probability density
function. In the numerical study presented latter, we use the Epanechnikov
kernel K(t) = 1

4(1 − t2)I{|t|<1}. Similar to the Cox partial likelihood, one can
derive this kernel partial likelihood by profiling out the baseline hazard from a
kernel full likelihood. It reduces to that in Cai and Sun (2003) when the cluster
size Ji = 1, i.e., all observations are independent.

The concavity of (2.2) as a function of b can be easily verified. One can
estimate b by maximizing the kernel partial likelihood (2.2) or by solving the
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following kernel estimating equations, which are the derivative of the partial
likelihood (2.2) with respect to b:

0 = UN (b, t) =
n∑

i=1

UNi(b, t) =
1
n

n∑
i=1

Ji∑
j=1

∫ τ

0
Kh(u − t)

×
{

X̃ij(u, t) −
∑n

l=1

∑Jl
r=1 Ylr(u)X̃lr(u, t)e eXlr(u,t)T b∑n

l=1

∑Jl
r=1 Ylr(u)e eXlr(u,t)T b

}
dNij(u). (2.3)

We term equations (2.3) the working independence kernel estimating equa-
tions and the resulting estimators b̂ the working independence kernel estimators,
reflecting the fact that the kernel partial likelihood ignores the within-cluster
correlation. Then β̂k(t) = b̂0k and β̂′

k(t) = b̂1k (k = 1, . . . , p). We denote the
resulting kernel estimator of β(t) as β̂(t).

Equations (2.3) can be solved using the Newton-Raphson method. We esti-
mate the covariance of b̂ using the sandwich estimator V̂ (b̂) = Ω−1

1 Ω2Ω−1
1 , where

Ω1 = −∂UN (b, t)/∂b|
b=bb

, Ω2 =
∑n

i=1 UNi(b, t)⊗2|
b=bb

, and A⊗2 = AAT . The co-
variance matrix of {β̂1(t), . . . , β̂p(t)} can then be estimated by ∆T

1 V̂ (b̂)∆1, where
∆1 = (1, . . . , 1, 0, . . . , 0)T .

2.2. Semiparametric models

In this section we consider a semiparametric regression model where some
covariate effects are modeled nonparametrically using varying coefficients, and
other covariates are modeled parametrically using parametric regression coeffi-
cients. We propose to first estimate nonparametric time-varying coefficients using
the local kernel method and then estimate parametric regression coefficients using
a profile likelihood method assuming working independence.

Following the notation in Section 2.1, besides (Tij , Xij , Zij ,∆ij), suppose we
also observe covariates Zij , a p × 1 covariate vector associated with parametric
regression coefficients γ. Observed failure times Tij are assumed to have the
marginal hazard

λij(t;Xij , Zij) = Yij(t)λ0(t) exp{Xijβ(t) + ZT
ijγ}. (2.4)

For simplicity, the covariates Zij are assumed to be time-independent. This
model corresponds to a useful setting in our western Kenya data application with
a time-varying coefficient for a baseline covariate (BPD) and time-independent
coefficients for the other covariates. Similarly, we allow failure times Tij to be
correlated within the same cluster and assume independent censoring. We assume
a scalar covariate Xij with a scalar time-varying coefficient β(t), extensions of
the proposed method to the vector Xij case are straightforward.
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To estimate both β(t) and γ, we propose a working independence kernel
profile partial likelihood method by ignoring the within-cluster correlation. The
estimation procedure is a two-step iterative procedure. For simplicity, we consider
a local kernel estimator of β(t) that approximates β(u) at a target point u using
its linear expansion about t as β̃(u) = b0 + b1(u− t). Let X̃ij(u, t) = (1, u− t)T ⊗
Xij .

The kernel profile estimation steps are as follows.

(i) For given γ, b = (b0, b1)T is estimated by maximizing the working indepen-
dence kernel partial likelihood

p`1(b, t; γ) =
1
n

n∑
i=1

Ji∑
j=1

∫ τ

0
Kh(u − t)

×
[
X̃ij(u, t)T b + ZT

ijγ − log
{ n∑

l=1

Jl∑
r=1

Ylr(u)e eXlr(u,t)T b+ZT
lrγ

}]
dNij(u). (2.5)

Then the resulting kernel estimator of β(t) is β̂(t, γ) = b̂0, which is a function
of γ.

(ii) After obtaining the kernel estimator β̂(t, γ), γ is estimated by maximizing
the working independence profile partial likelihood

p`2{γ, β̂(u, γ)} =
1
n

n∑
i=1

Ji∑
j=1

∫ τ

0

[
Xij β̂(u, γ) + ZT

ijγ

− log
{ n∑

l=1

Jl∑
r=1

Ylr(u)eXlr
bβ(u,γ)+ZT

lrγ
}]

dNij(u). (2.6)

We iterate between these two steps until convergence and obtain the kernel non-
parametric estimator β̂(t) and the profile estimator γ̂. The concavity of the
partial likelihood in these two steps can be easily verified. Note that the profile
method for estimating γ differs from the backfitting method in that β̂(u, γ) in
Step (ii) is considered to be a function of γ instead of being held fixed at the
previous iteration when maximizing (2.6), as done in backfitting. Hence as we
show in Section 3,

√
n-consistency of γ using the profile method only requires

regular smoothing of β(t). The backfitting estimator of γ̂ on the other hand often
requires undersmoothing of β(t) to achieve

√
n-consistency.

Some calculations show that the working independence kernel and profile
partial likelihood estimators of {β(t), γ} solve the following estimating equations.
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Given γ, the working independence kernel estimating equations for estimat-
ing β(t) is

0 = U1(b, t; γ) =
1
n

n∑
i=1

Ji∑
j=1

∫ τ

0
Kh(u − t)

{
X̃ij(u, t)

−
∑n

l=1

∑Jl
r=1 Ylr(u)Xlr(u, t)e eXlr(u,t)T b+ZT

lrγ∑n
l=1

∑Jl
r=1 Ylr(u)e eXlr(u,t)T b+ZT

lrγ

}
dNij(u). (2.7)

We denote the kernel estimator of β(t) by β̂(t, γ).
The working independence profile estimating equation for γ is

0 = U2{γ, β̂(u, γ)} =
n∑

i=1

U2i{γ, β̂(u, γ)}

=
1
n

n∑
i=1

Ji∑
j=1

∫ τ

0

{
Xij β̂γ(u, γ) + Zij

−
∑n

l=1

∑Jl
r=1 Ylr(u)(Xlrβ̂γ(u, γ) + Zlr)eXlr

bβ(u,γ)+ZT
lrγ∑n

l=1

∑Jl
r=1 Ylr(u)eXlr

bβ(u,γ)+ZT
lrγ

}
dNij(u), (2.8)

where β̂γ(t, γ) is the derivative of β̂(t, γ) with respect to γ.
The Newton-Raphson algorithm can be used to solve these estimating equa-

tions. To carry this out, one also has to calculate the estimator β̂γ(u, γ) and
the matrix estimator β̂γγ(u, γ), the first and second derivatives of β̂(u, γ) with
respect to γ, by solving the corresponding derivative equations of U1(γ, t) with
respect to γ.

The covariance estimators for the kernel estimator β̂(t) and the parametric
regression coefficients γ̂ can be obtained using the sandwich method. Specifi-
cally, the sandwich estimator for the variance of β̂(t) is similar to that given
in Section 2.1 except that Xijβ(t) needs to be replaced by Xijβ(t) + ZT

ijγ. The
sandwich estimator for γ̂ is Ω−1

γ1 Ωγ2Ω−1
γ1 , where Ωγ2 =

∑n
i=1 U2i(γ, β̂(u, γ))⊗2|γ=bγ,

and Ωγ1 = ∂U2(γ, β̂(u, γ))/∂γT |γ=bγ .

2.3. Estimation of the baseline hazard function

The baseline hazard can be estimated using the Breslow-Aalen type esti-
mator for the cumulative baseline hazard Λ0(t). For the semiparametric model
(2.4), after obtaining the kernel and profile estimators β̂(t) and γ̂, the cumulative
baseline hazard can be estimated by

Λ̂0(t) =
n∑

i=1

Ji∑
j=1

∆ij1{Tij ≤ t}∑n
i′=1

∑Ji
l=1 eXi′l

bβ(Ti′l)+ZT
i′lbγ1{Ti′l ≥ t}

.
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To estimate the baseline hazard λ0(t) itself, one can use a smoothing technique
as suggested by many authors, such as Fan, Gijbels and King (1997), via

λ̂0(t) =
∫

Kλ
h′(u − t)dΛ̂0(u) =

1
h′

n∑
i=1

Ji∑
j=1

∆ijK
λ((Tij − t)/h′)∑n

i′=1

∑Ji
l=1 eXi′l

bβ(Ti′l)+ZT
i′lbγ1{Ti′l ≥ t}

,

(2.9)
where Kλ is a kernel function and h′ is a bandwidth. The asymptotic properties of
the baseline hazard estimator are complicated, and are not pursued here, as this
is not our primary focus. The baseline hazard estimator for the nonparametric
model (2.1) can be formed in a similar way.

3. Asymptotic Properties

In this section we study the asymptotic properties of the nonparametric
kernel estimator in Section 3.1 and the profile-kernel estimators in Section 3.2.
We further derive, for independent data, the semiparametric efficient score of
parametric regression coefficients γ, and, we show the profile-kernel estimator γ̂

is semiparametric efficient in Section 3.3.

3.1. Nonparametric varying-coefficient models

We first consider the nonparametric model (2.1).Without loss of generality,
assume an equal cluster size, Ji = J , unequal cluster sizes can be easily handled
by including dummy observations with censoring times of 0. Let PNj(t|x) =
P (Yj > t|Xj(t) = x) and
QNr(t) = E[

∑J
j=1 PNj(t|Xj(t))Xj(t)⊗r exp{Xj(t)T β(t)}λ0(t)], r = 0, 1, 2. For

simplicity, the subscript i is suppressed. Let

ΣN (t) = QN2(t) −
QN1(t)QN1(t)T

QN0(t)
. (3.1)

Here the subscript N stands for the nonparametric model. We use subscript s

to stand for the semiparametric model in the following subsection. Let vj =∫
sjK2(u)du, j = 0, 1, 2, β0(t) be a vector of true values of the time-dependent

coefficients at time t. We introduce Conditions A to ensure Theorem 1.

Conditions A

1. The kernel function K(s) is a bounded symmetric function with a bounded
support, bandwidth h → 0, nh → ∞, as n → ∞, and nh5 = O(1).

2. The covariate Xk(t) is bounded, and the time-dependent coefficient βk(t) sat-
isfyies supt∈[0,τ ]|βk(t)| < B for a positive constant B, and has a continuous
second derivative for all k = 1, . . . ,K.
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3. ΣN (t) is positive definite for each t ∈ [0, τ ].
4. P (Yij(t) = 1, for all t ∈ [0, τ ]) > 0 for each i, j.

Denote by β0(t) the true value of β(t). Theorem 1 states the asymptotic
consistency and normality of the local linear kernel estimator of β(t). The proof
is in Appendix 1.

Theorem 1. Under A, the working independence local kernel estimator β̂(t)
obtained by maximizing the local kernel partial likelihood (2.2) converges in prob-
ability to β0(t), and

√
nh

{
β̂(t) − β0(t) −

h2

2
µ2β

(2)
0 (t)

}
→ N{0,ΣN (t)−1v0} (3.2)

in distribution, where µ2 =
∫

u2K(u)du, and ΣN (t) is defined in (3.1).

For independent data, ΣN (t) reduces to that of Cai et al. (2003), and the
asymptotic results are the same as Theorem 2 there. One can easily show that
the optimal bandwidth is of order h = O(n−1/5). The asymptotic bias of β̂(t) is
of order h2; the bias and rate of convergence under the optimal bandwidth are
of order n−2/5 and n2/5, respectively.

3.2. Semiparametric varying-coefficient models

In this subsection, we study the asymptotic properties of the working in-
dependence kernel and profile estimators for the semiparametric model (2.4).
Additional notation is needed. Let

Qsr(t, γ) = E
[ J∑

j=1

Yj(t)Xr
j eXjβ(t,γ)+ZT

j γλ0(t)
]
, r = 0, 1, 2,

Σs(t, γ) = Qs2(t, γ) − Qs1(t, γ)2

Qs0(t, γ)
. (3.3)

We use β(t, γ), βγ(t, γ) to denote the asymptotic limit of β̂(t, γ), β̂γ(t, γ), which
are obtained by solving the first and second derivative of (2.7) with respect to γ.
Denote by β0(t) and γ0 the true values of β(t) and γ. Regularity conditions are
given in Conditions B in Appendix 2.1

Theorem 2. Under B, the local linear kernel estimator β̂(t) for β(t) in model
(2.4), obtained by maximizing the local partial likelihood (2.5), converges in prob-
ability to β0(t), and

√
nh

{
β̂(t) − β0(t) −

h2

2
µ2β

(2)
0 (t)

}
→ N{0, Σs(t, γ0)−1v0} (3.4)

in distribution, where Σs(t, γ) is defined in (3.3).
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The proof of Theorem 2 is similar to Theorem 1 and hence is omitted. The
estimator for the nonparametric component in the semiparametric model has
the same convergence rate and bias as that of nonparametric model (2.1). The
asymptotic variance is different since it involves the parametric coefficient γ0.
The bias term does not involve γ0 since Σs(t, γ0) is canceled in the calculation.

The parametric component γ is often of greater interest in semiparametric
model (2.4) for ease of interpretation. In order to obtain the asymptotic proper-
ties of γ̂, one has to study βγ(t, γ0), the asymptotic limit of β̂γ(t, γ0). The related
calculations are presented in Appendix 3.

Theorem 3. Under B, the working independence profile-kernel estimator γ̂ in
Model (2.4), obtained by solving the profile-kernel estimating equations (2.8) con-
verges in probability to γ0, and

√
n(γ̂ − γ0) → N{0, Σ−1

p2 Σp1Σ−1
p2 } in distribution,

where

Σp2=
∫ τ

0

[
E{(X1βγ(u, γ0) + Z1)⊗2|T1 = u,∆1 = 1}

−{E{X1βγ(u, γ0)+Z1|T1 =u, ∆1 =1}}⊗2
] J∑

j=1

E{Yj(u)eXjβ(u)+ZT
j γ0}λ0(u)du,

Σp1=E
[ J∑

j=1

∫ τ

0
Zj+Xjβγ(u, γ0)−E{Xjβγ(u, γ0)+Zj |T =u,∆=1}dMj(u)

]⊗2
,

where the subscript i is suppressed.

We sketch the proof of Theorem 3 in Appendix 2. The results are consistent
with Result 1.c in Lin and Carroll (2001) for the working independence esti-
mators for non-censored data. No undersmoothing is required for the

√
n rate

convergence of γ̂. Condition B.7, which assumes the same marginal distribution
of observations in one cluster, is necessary for the calculation of the asymptotic
variance. We consider this assumption reasonable under the common baseline
hazard model, and for the western Kenya parasitemia data.

3.3. The efficient score functions

In this section we are interested in studying the semiparametric efficiency
bound of the parametric estimator for model (2.4), and whether the profile-kernel
estimator γ̂ reaches the efficiency bound.

We first consider the situation when all observations are independent. We
study the semiparametric efficient score functions and the efficiency bound of
the semiparametric estimator. Using this result, we show that the profile-kernel
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estimator is semiparametric efficient. When observations are independent, we
can show that the semiparametric efficient score for γ of a single observation is

U∗
γ (T,X,Z, ∆) =

∫ ∞

0
[Z+Xβγ(u, γ0)−E{Z+Xβγ(u, γ0)|T = u, ∆ = 1}]dM(u),

(3.5)
where

βγ(u, γ0) = −E{XZ|T = t, ∆ = 1} − E{X|T = t, ∆ = 1}E{Z|T = t, ∆ = 1}
E{X2|T = 1, ∆ = 1} − E{X|T = t, ∆ = 1}2

.

The detailed calculations of βγ(u, γ0) are given in Appendix 3. The proof for this
semiparametric efficient score is similar to that of Sasieni (1992b) and is omitted.
Some calculations show that the semiparametric efficiency bound of γ is

νγγ =
∫ ∞

0

[
E{(Xβγ(u, γ0) + Z)⊗2|T = u, ∆ = 1}

−{E[Xβγ(u, γ0) + Z|T = u,∆ = 1]}⊗2
]
E{Y (u)eXβ(u)+ZT γ0}λ0(u)du.

Theorem 4 states, for independent data, that the profile kernel estimator γ̂

is semiparametric efficient and its variance reaches the semiparametric efficiency
bound. The proof is straightforward using Theorem 3 and Σp1 = νγγ , and is
omitted.

Theorem 4. Under B, for independent data, Σp2 = Σp1 = νγγ, hence the
profile-kernel estimator of γ̂ under model (2.4) reaches the semiparametric effi-
cient bound.

For correlated clustered data, calculations of the efficient score function are
much more complicated. The parametric results of Cai and Prentice (1995)
show that accounting for within-cluster correlation using weighted estimating
equations often provides little efficiency except for the case when the correlation
is very strong. We expect the working independence profile estimator of γ to
have a similar property in semiparametric varying coefficient models, and hence
recommend its use in practice, especially in view of its simplicity.

4. Simulation Study

In this section, we evaluate the finite sample performance of the proposed
estimators for the semiparametric model (2.4) using simulations. We present
results for both correlated data and independent data. Results for the nonpara-
metric model are similar and are omitted.

We assumed that bivariate survival times (Ti1, Ti2) follow the Clayton model

S(t1, t2;xij , zijφ) =
{

S1(t1; xi1, zi1)−1/φ + S2(t2; xi2, zi2)−1/φ − 1
}−φ

,
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Figure 4.1. Estimation of β(t) for the correlated semiparametric model.
Top panel: correlated model; bottom panel: independent model. (a) and
(c) Estimator of β(t). – true value, · · · kernel estimator, bandwidth=0.35;
(b) and (d) Empirical and estimated standard error. – empirical SE, · · ·
estimated SE; (c)and (f) empirical coverage of 95% confidence intervals.

where the marginal survival function is

Sj(t; xij , zij) = exp{−
∫ t

0
λij(u; xij , zij)du}, (4.1)

and λij(t; xij , zij) = λ0(t) exp{xijβ(t)+z1ijγ1 +z2ijγ2}. The correlation between
Ti1 and Ti2 decreases as φ increases. The time-varying coefficient was set as
β(t) = π−1/2 exp{−16(t − 1)2/2}, proportional to the normal density function
with mean 1 and variance 1/4. This unimodal bell shape function is shown in
Figure 4.1 (a). The baseline hazard was λ0(t) = 0.8. The covariate xij was
generated as i.i.d. Uniform(0, 1). The covariate z1 was generated as a binary
random variable with Pr(z1 = 1) = 0.5 and correlated with xij with correlation
about 0.5. The covariate z2 was generated as an i.i.d. normal random variable
with mean 0 variance 0.25, and independent of other covariates. The true coef-
ficients were (γ1, γ2) = (1, 0.5). To generate (Ti1, Ti2) under the Clayton model,
we first generated ui1, ui2 independently from Uniform(0, 1), and then calcu-
lated Ti1 = S−1

1 (ui1; xi1, zi1). We evaluated the inverse function S−1
1 numerically.

Then Ti2 was generated using

Ti2 = S−1
2 [{S1(Ti1)−1/φu

−1/(1+φ)
i2 + 1 − S1(Ti1)−1/φ}−φ],
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Table 4.1. Simulation results for the parametric regression coefficient esti-
mator

model parameter true estimator empirical SE estimated SE coverage
correlated γ1 1 1.014 0.127 0.129 95.5%
(φ = 0.5) γ2 0.5 0.512 0.094 0.102 96.5%

independent γ1 1 0.995 0.117 0.127 98.0%
γ2 0.5 0.494 0.102 0.099 95.0%

which can be derived from the conditional distribution of Ti2 given Ti1. We set
φ = 0.5, which corresponds to a strong correlation. Censoring times were gener-
ated from i.i.d. ∼ exp(0.7), and independent from failure times and covariates.
The maximum follow-up time was 2, and the censoring percentage was about
20%. We generated 200 data sets with each having 250 clusters.

We took bandwidths h = 0.25, 0.30, 0.35. The results presented here are for
h = 0.35, the results for h = 0.25, 0.30 are similar and are omitted. We used the
Epanechnikov kernel density. The top panel of Figure 4.1 (a) compares the mean
function of the estimated time-dependent coefficient of β(t) with its true value.
The estimated function β̂(t) was close to the true function, showing that our
kernel method worked well. Figure 4.1 (b) shows the point-wise empirical stan-
dard error close the point-wise mean estimated standard error. Except for the
region close to the maximum follow-up time, which results from a small number
of events; the sandwich method worked well. Figure 4.1 (c) shows the empirical
coverage probabilities of the point-wise 95% confidence intervals constructed us-
ing the sandwich estimator, and very close to the 95% nominal value. The mean
coverage probability over the time interval [0, 2] was 93.2%.

Table 4.1 gives the simulation results for the profile-kernel estimators of
the parametric regression coefficients γ1, γ2. The average point estimates were
very close to their true values, the estimated standard errors were very close to
the empirical standard errors. The empirical coverage probabilities of the 95%
confidence intervals were 95.5% for γ̂1 and 96.5% for γ̂2.

We ran another set of simulations for independent data with the same mar-
ginal distributions and the same censoring time distributions. One hundred data
sets were generated with 500 observations in each. The bottom panel of Figure
4.1 shows a similar pattern of the time-dependent coefficient kernel estimate β̂(t)
as in the correlated model. The mean coverage probability of the 95% confidence
intervals was 93.4%. Table 4.1 shows the results for the profile-kernel parametric
coefficient estimate (γ̂1, γ̂2). These results are similar to the correlated data case
and show that the profile-kernel estimates worked well with little bias, and the
estimated standard errors agreed with their empirical counterparts.
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We ran additional simulations with different levels of censoring and correla-
tion, and binary Xij . The results were similar and are omitted.

5. Application

We applied the proposed method to the analysis of the western Kenya para-
sitemia data set (McElroy et al. (1997)) that was introduced in Section 1. This
study enroled 607 children. At the date of enrollment, regardless of his/her para-
sitemia status, each child received a treatment of sulfadoxine and pyrimethamine
to eliminate the parasitemia infection. Children were examined at two weeks
after enrollment. Children with positive blood films were excluded from the
study to minimize the chance that a recurrent parasitemia was caused by drug
sulfadoxine/pyrimethamine resistance. This resulted in 542 children from 309
households. They were then followed up for 10 weeks for the time to parasitemia
infection. Observations from the same family were likely to be correlated due
to similar environmental and genetic factors. We are interested in studying the
risk factors associated with time to the onset of parasitemia. The risk factors
of interest included baseline parasitemia density, age, gender, and daily mean of
mosquito bites. Following McElroy et al. (1997), we log-transformed the baseline
parasitemia density and denoted the new variable by LNBPD. The daily mean
of mosquito bites was also quartic-root transformed, and denoted by covariate
BITE.

Preliminary examination of the LNBPD effect in Figure 5.2 shows a nonlin-
ear effect, while the other covariate effects were found to be linear. We hence con-
sidered a semiparametric varying coefficient model, where the effect of LNBDP

is allowed to be time-varying and the effects of BITE, AGE, GENDER to be
parametric. We fit the model using the proposed working independence kernel
profile method. We examined several choices of the bandwidth for estimating
β(t) and found h = 20 fit the data well.

Figure 5.2 shows LNBPD significantly positively associated with the risk of
parasitemia before day 26; after Day 30, the LNBPD effect plateaued at a level
close to 0 and was not significant. This result is not surprising since the effect of
baseline parasitemia density on the time of onset of parasitemia is likely to di-
minish over time. Table 5.2 shows the parametric regression coefficient estimates.
The dose of mosquito bites significantly increased the risk of parasitemia. Older
children had a higher risk of developing parasitemia. Gender has no significant
effect.

6. Discussion

In this paper, we propose estimation in semiparametric time-varying coeffi-
cient models for clustered survival data using kernel and profile methods under
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Figure 5.2. The kernel estimator and 95% confidence interval of the vary-
ing coefficient function of LNBPD for the western Kenya parasitemia data,
bandwidth h = 25

Table 5.2. Parametric covariates’ effects for the western Kenya parasitemia
data.

Covariate BITE AGE (Month) GENDER
γ̂ (SE) 0.3221(0.1085) 0.0362 (0.0253) 0.0285 (0.0807)

working independence. We show that the profile-kernel estimator of the para-
metric regression coefficients is consistent and

√
n-consistent. We further show

that it is semiparametric efficient when data are independent. The simulation
results suggest that the proposed method performs well in finite samples.

For semiparametric models with independent data, Tian et al. (2005) pro-
posed an estimator γ̂ =

∫ τ−hn

hn
w(s)γ̂(s)ds/

∫ τ−hn

hn
w(s)ds, where hn is the band-

width and w(t) is the inverse of the upper left submatrix of I−1(β(t), γ(t)). They
showed that γ̂ is semiparametric efficient. Although this is an non-iterative esti-
mator, cross-validation is often time consuming, perhaps more so than the profile
estimator. No simulation was performed to evaluate the finite sample perfor-
mance of this estimator. We expect that undersmoothing might be needed for
estimating β(t) and the integrated γ estimator might be subject to a larger finite
sample variance. It is of future interest to compare the small sample performance
of these estimates. It is also worth noting that, in our simulation, it only took
about 5 to 6 iterations between steps (2.5) and (2.6) to converge which is not an
insurmountable increase.

It is important to develop a data driven bandwidth selection tool, though
cross validation method is more commonly used. For the nonparametric regres-
sion of time-dependent coefficient for survival data, little work has been done
on data-driven methods for choosing an optimal bandwidth. Tian et al. (2005)
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proposed a a K-fold cross validation method, but its performance was not eval-
uated.

One might consider improving the efficiency of the nonparametric kernel es-
timator β(t) by extending the seemingly unrelated (SUR) kernel method (Wang
(2003)) to censored data, and improving the efficiency of the parametric regres-
sion parameter γ by incorporating rates in a similar spirit to Cai and Prentice
(1995). The parametric regression results of Cai and Prentice (1995) and Gray
and Li (2002) for clustered survival data show that the improvement in efficiency
by incorporating weights in estimating equations is often small. Alternative ap-
proaches are likely to be needed.
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