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Abstract

In this paper, we consider a semiparametric single index panel data model

with cross–sectional dependence, high–dimensionality and stationarity. Mean-

while, we allow fixed effects to be correlated with the regressors to capture un-

observable heterogeneity. Under a general spatial error dependence structure,

we then establish some consistent closed–form estimates for both the unknown

parameters and a link function for the case where both N and T go to ∞.

Rates of convergence and asymptotic normality consistencies are established for

the proposed estimates. Our experience suggests that the proposed estimation

method is simple and thus attractive for finite–sample studies and empirical im-

plementations. Moreover, both the finite–sample performance and the empirical

applications show that the proposed estimation method works well when the

cross-sectional dependence exists in the data set.
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1 Introduction

Single-index models have been studied by both econometricians and statisticians in the past

twenty years. These models include many classic parametric models (e.g. linear model or

logistic model) by using a general function form g (x′β) (see, for example, Chapter 2 of Gao

(2007)). For nonlinear panel data models, the researcher starts introducing single–index

panel data models (cf. Chen et al. (2013a) and Chen et al. (2013b)). For most of the

published work on semiparametric single-index models, the estimation is based on a non-

parametric kernel method, which may be sensitive to initial values due to the multi–modality

or flatness of a curve in practice. Chen et al. (2013b) use this technique to investigate a par-

tially linear panel data model with fixed effects and cross–sectional independence. In their

paper, a consistent parameter estimator is achieved with convergence rate
√
NT , but, due

to the identification requirements, they have to impose extra restrictions on the fixed effects.

Alternatively, one can use sieve estimation techniques to implement a two-step procedure.

Meanwhile, Su and Jin (2012) propose using sieve estimation techniques to a nonparmetric

multi–factor model, which is a nonparametric version of the parametric counterpart proposed

in Pesaran (2006).

To the best of our knowledge, consistent closed–form estimates have not been established

for this type of semiparametric single–index model in the literature. In this paper, we aim at

establishing consistent closed–form estimates for a semiparametric single-index panel data

model with both cross-sectional dependence and stationarity for the case where both N and

T go to ∞. The estimation procedure proposed below allows us to avoid some computational

issues and is therefore easy to implement. In this paper, we consider the stationary time

series case. Non-stationary situations are much more complex and will be discussed in a

companion paper. The estimation techniques proposed in this paper can also be extended

to the multi–factor structure model. (Under certain restrictions similar to those of Su and

Jin (2012), a semiparametric single–index extension can be achieved.) Furthermore, we add

fixed effects to the model and do not impose any particular assumptions on them, so they

can be correlated with the regressors to capture unobservable heterogeneity. Compared to

Chen et al. (2013b), our set-up is more flexible on the fixed effects. Moreover, we avoid the

issue about the curse of dimensionality through using a single–index form for the regressors.

In this paper, we assume that all the regressors and error terms can be cross–sectionally

correlated. As covered in Assumption 1 of Section 3 below, we impose a general spatial

correlation structure to link the cross-sectional dependence and stationary mixing condition

together. As a result, some types of spatial error correlation can easily be covered by the
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assumptions given in Section 3 (cf. Chen et al. (2012a) and Chen et al. (2012b)). This

set–up is more flexible than that considered by Chen et al. (2013b). As Andrews (2005) and

Bai (2009) discuss, the common shocks (e.g. global finance crisis) exist in many economic

phenomena and cause serious forecasting biases, and an important characteristic is that they

induce a correlation among individuals. Thus, it is vital for us to have such models that can

capture this type of “global” cross–sectional dependence.

In summary, this paper makes the following contributions:

1. It proposes a semiparametric single–index panel data model to simultaneously accom-

modate cross–sectional dependence, high–dimensionality, stationarity and unobserv-

able heterogeneity;

2. It establishes simple and consistent closed–form estimates for both unknown parame-

ters and link function, and the closed–form estimates are easy to implement in practice;

3. It establishes both rates of convergence and asymptotic normality results for the esti-

mates under a general spatial error dependence structure; and

4. It evaluates the proposed estimation method and through using both simulated and

real data examples.

The structure of this paper is as follows. Section 2 introduces our model and discusses the

main idea. Section 3 constructs a closed–form estimate for a vector of unknown parameters

of interest and introduces assumptions for the establishment of asymptotic consistency and

normality results. In Section 4, we recover the unknown link function and evaluate the

rate of convergence. In Section 5, we provide a simple Monte Carlo experiment and two

empirical case studies by looking into UK’s climate data and US cigarettes demand. Section

6 concludes this paper with some comments. All the proofs are given in an appendix.

Throughout the paper, we will use the following notation: ⊗ denotes the Kronecker

product; vec(A) defines the vec operator that transforms a matrix A into a vector by stacking

the columns of the matrix one underneath the other; Ik denotes an identity matrix with

dimensions k × k; ik denotes a k × 1 one vector (1, . . . , 1)′; Mp = Ik − P (P ′P )−1P ′ denotes

the project matrix generated by matrix P with dimensions k×h and h ≤ k; A− denotes the

Moore-Penrose inverse of the matrix A;
P−→ denotes converging in probability;

D−→ denotes

converging in distribution; ‖·‖ denots the Euclidean norm; ⌊a⌋ ≤ a means the largest integer

part of a.
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2 Semiparametric Single-Index Panel Data Models

A semiparametric single–index panel data model is specified as follows:

yit = g (x′
itθ0) + γi + eit, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where yit is a scalar process, xit is a (d× 1) explanatory variable, eit is an error process and

the link function g : R → R is unknown. We use γi’s to capture fixed effects in this model,

which are allowed to be correlated with the regressors. Under the current set-up, our main

interests are to consistently estimate the vector of unknown parameters θ0 = (θ01, . . . , θ0d)
′

and link function g(·) for the case where both N and T go to ∞.

To ensure that identification requirements are satisfied (cf. Horowitz (2009) and Ichimura

(1993)), we assume that θ0 belongs to a compact set Θ, ‖θ0‖ = 1 and θ01 > 0. For the

link function g (·), we expand it by Hermite polynomials and approximate it by a linear

combination of a finite number of basis functions from the expansion. As the number of basis

functions increases, the proxy approaches the true function. By doing so, a nonparametric

estimation is practically turned to a parametric one, so we need only to estimate θ0 and the

coefficients of the basis functions simultaneously.

We now introduce the background of Hermite polynomials briefly and explain how to ex-

pand the link function. Hermite polynomial system {Hm (w) , m = 0, 1, 2, . . .} is a complete

orthogonal system in a Hilbert space L2 (R, exp (−w2/2)) and each element is denoted as

Hm (w) = (−1)m · exp
(
w2/2

)
· dm

dwm
exp

(
−w2/2

)
. (2.2)

Since
∫
R
Hm (w)Hn (w) exp (−w2/2) dw equals to m!

√
2π for m = n and 0 for m 6=

n respectively, the normalised orthogonal system is denoted as {hm (w) , m = 0, 1, 2, . . .},
where hm (w) = 1√

m!
√
2π
Hm (w).

Thus, for ∀g ∈ L2 (R, exp (−w2/2)), we can express it in terms of hm (w) as follows:

g (w) =
∞∑

m=0

cmhm (w) and cm =

∫

R

g (w) · hm (w) · exp
(
−w2/2

)
dw. (2.3)

Furthermore, hm(w) · exp(−w2/4) is bounded uniformly in w ∈ R and m (cf. Nevai

(1986)).

Based on the above expansion, one is already able to use a profile method or an iterative

estimation method to estimate θ0 and the link function. Since neither of these two methods

results in a closed form estimation method, numerical estimates are often sensitive to the

initial values used in practice due to multi–modality or flatness of a curve. Instead, we
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further expand h (x′
itθ0) by Lemma 1 of the appendix as follows:

g (x′
itθ0) =

k−1∑

m=0

cmhm (x′
itθ0) +

∞∑

m=k

cmhm (x′
itθ0) (2.4)

=
k−1∑

m=0

∑

|p|=m

amp (θ0)Hp (xit) + δk (x
′
itθ0) , (2.5)

where

δk (x
′
itθ0) =

∞∑

m=k

cmhm (x′
itθ0) , amp =

(
m

p

)
cmθ

p
0,

(
m

p

)
=

m!
∏d

j=1 pj!
,

θp0 =
d∏

j=1

θ
pj
0j , Hp (xit) =

d∏

j=1

hpj (xit,j) , xit = (xit,1, . . . , xit,d)
′ , p = (p1, . . . , pd)

′ ,

|p| = p1 + . . .+ pd and pj’s for j = 1, . . . , d are non-negative integers.

The expansion (2.5) allows us to separate the covariate xit and the coefficient θ0, so the

closed form estimator can be established from it. The term δk (x
′
itθ0) can be considered as

a truncated error term, which goes to zero as k increases. Since each hm(w) · exp(−w2/4) is

bounded uniformly in w ∈ R and m, Hp (x) · exp(−‖x‖2 /4) must be bounded uniformly in

x ∈ R
d and p.

To further investigate the model, we now define an ordering relationship with respect to

p in (2.5).

Definition 1 Let Pm = {p : |p| = m}, where m is a non-negative integer. Suppose that

p̂, p̌ ∈ Pm. We say p̂ = (p̂1, . . . , p̂d) < p̌ = (p̌1, . . . , p̌d) if p̂j = p̌j for all j = 1, . . . , l − 1 and

p̂l < p̌l, where 1 < l ≤ d.

Based on Definition 1, we list all the Hp (xit)’s on the descending order with respect to

|p| = m for each m = 0, 1, . . . , k − 1 below.

• As m = 0,

p = (0, 0, . . . , 0)′ , Hp (xit) = h0 (xit,1)h0 (xit,2) · · ·h0 (xit,d) = 1,

a0p(θ0) = c0. (2.6)
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• As m = 1,

p = (1, 0, . . . , 0)′ , Hp (xit) = h1 (xit,1)h0 (xit,2) · · ·h0 (xit,d) = xit,1,

a1p(θ0) = c1θ01;

p = (0, 1, . . . , 0)′ , Hp (xit) = h0 (xit,1)h1 (xit,2) · · ·h0 (xit,d) = xit,2,

a1p(θ0) = c1θ02;

...

p = (0, 0, . . . , 1)′ , Hp (xit) = h0 (xit,1)h0 (xit,2) · · ·h1 (xit,d) = xit,d,

a1p(θ0) = c1θ0d. (2.7)

• As m = 2, . . . , k − 1,

p = (m, 0, . . . , 0)′ , Hp (xit) = hm (xit,1)h0 (xit,2) · · ·h0 (xit,d) = hm (xit,1) ,

amp(θ0) = cmθ
m
01;

p = (m− 1, 1, 0, . . . , 0)′ , Hp (xit) = hm−1 (xit,1)h1 (xit,2)h0 (xit,3) · · ·h0 (xit,d)

= hm−1 (xit,1)h1 (xit,2) ,

amp(θ0) = mcmθ
m−1
01 θ02;

...

p = (0, 0, . . . ,m)′ , Hp (xit) = h0 (xit,1)h0 (xit,2) · · ·hm (xit,d) = hm (xit,d) ,

amp(θ0) = cmθ
m
0d. (2.8)

Note that, by (2.6), it is easy to know that the first Hp (xit) in (2.5) is constant one and

its coefficient is constant c0. The second to the (d + 1)th Hp (xit)’s in (2.5) are simply xit

with coefficients c1θ0 shown in (2.7) and will be used to recover the interest parameter θ0

later on.

Accordingly, it allows us to denote the next two vectors to shorten notation:

Z (xit) =
(
Z1 (xit)

′ , . . . , Zk−1 (xit)
′)′ and β =

(
A1 (θ0)

′ , . . . , Ak−1 (θ0)
′)′ ,

where, for m = 1, . . . , k−1, Zm (xit)’s are column vectors consisting of all Hp (xit)’s arranged

on descent ordering with respect to |p| = m and Am (θ0) are column vectors consisting of all

corresponding amp (θ0). Notice that we have suppressed the notation θ0 in β for simplicity.

Thus, we can rewrite the model (2.1) as

yit = c0 +H (x′
itθ0)

′ C + δk (x
′
itθ0) + γi + eit

= c0 + Z (xit)
′ β + δk (x

′
itθ0) + γi + eit,
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where c0 = a0p(θ0), C = (c1, c2, . . . , ck−1)
′ and H(w) = (h1(w), h2(w), . . . , hk−1(w))

′ for

w ∈ R.

Moreover, it is easy to check that the cardinality of Pm is
(
m+d−1
d−1

)
, so the length of the

vector Z (xit) is

K =
k−1∑

m=1

#Pm =
(d+ k − 1)!

d! (k − 1)!
− 1 = O

(
kd
)
. (2.9)

Then, we may write Z (xit) as

Z (xit) =
(
Z1 (xit)

′ , . . . , Zk−1 (xit)
′)′ = (z1 (xit) , . . . , zK (xit))

′ ,

where zu (xit)’s for u = 1, . . . , K are Hp (xit)’s in (2.7) and (2.8) in the exactly same order.

To remove the fixed effects, we introduce the following notation:

ȳi. =
1

T

T∑

t=1

yit, H̄i.(θ0) =
1

T

T∑

t=1

H (x′
itθ0) , Z̄i. =

1

T

T∑

t=1

Z (xit) ,

δ̄k,i. (θ0) =
1

T

T∑

t=1

δk (x
′
itθ0) , ēi. =

1

T

T∑

t=1

eit,

ỹit = yit − ȳi., H̃it(θ0) = H (x′
itθ0)− H̄i.(θ0), Z̃it = Z (xit)− Z̄i.,

δ̃k (x
′
itθ0) = δk (x

′
itθ0)− δ̄k,i. (θ0) , ẽit = eit − ēi.,

and then eliminate γi’s by the within–transformation. The model now becomes

ỹit = H̃it(θ0)
′C + δ̃k (x

′
itθ0) + ẽit

= Z̃ ′
itβ + δ̃k (x

′
itθ0) + ẽit.

Alternatively, we can express the model in matrix forms as

(IN ⊗MiT )Y = (IN ⊗MiT )H(θ0)C + (IN ⊗MiT )D(θ0) + (IN ⊗MiT ) E (2.10)

= (IN ⊗MiT )Zβ + (IN ⊗MiT )D(θ0) + (IN ⊗MiT ) E , (2.11)

where

Y
NT×1

= (y11, . . . , y1T , . . . , yN1, . . . , yNT )
′ ,

H(θ)
NT×(k−1)

= (H (x′
11θ) , . . . , H (x′

1T θ) , . . . , H (x′
N1θ) , . . . , H (x′

NT θ))
′
for ∀θ ∈ Θ,

D(θ)
NT×1

= (δk (x
′
11θ) , . . . , δk (x

′
1T θ) , . . . , δk (x

′
N1θ) , . . . , δk (x

′
NT θ))

′
for ∀θ ∈ Θ,

Z
NT×K

= (Z (x11) , . . . , Z (x1T ) , . . . , Z (xN1) , . . . , Z (xNT ))
′ ,

E
NT×1

= (e11, . . . , e1T , . . . , eN1, . . . , eNT )
′ .
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Notice that c0 is a constant, so it is also removed by the within–transformation. It

indicates that one can only identify the unknown function g (·) up to a constant through

(2.10)-(2.11). To estimate the location, extra assumptions are needed (e.g. Assumption 1.ix

in Su and Jin (2012)). In the next section, we will recover the interest parameter θ0 by

(2.11). After that, we will bring a consistent estimate for θ0 back to (2.10) and recover the

link function in section 4.

3 Estimation of Parameter θ0

We consider a within–ordinary least squares (OLS) estimator of β:

β̂ = [Z ′ (IN ⊗MiT )Z]
− Z ′ (IN ⊗MiT )Y . (3.1)

To simplify the notation, for each time series {xi1, . . . , xiT}, let Q1,i = E
[
Z (xit)Z (xit)

′]

and qi = E [Z (xit)]. Also, denote that Q1 = 1
N

∑N
i=1 Q1,i, q̄ = 1

N

∑N
i=1 qi and Q2 =

1
N

∑N
i=1 qiq

′
i. Moreover, for t = 1, . . . , T , let xt = (x1t, . . . , xNt)

′ and et = (e1t, . . . , eNt)
′.

We now are ready to introduce the following assumptions. Specifically, we do not impose

any assumption on the fixed effects in this paper, so they can be correlated with the regressors

to capture unobservable heterogeneity.

Assumption 1 (Covariates and errors):

i. Let E[eit] = 0 for all i ≥ 1 and t ≥ 1. Suppose that {xt, et : t ≥ 1} is strictly stationary

and α-mixing. Let αij(|t− s|) represent the α-mixing coefficient between {xit, eit} and

{xjs, ejs}. Let the α-mixing coefficients satisfy

N∑

i=1

N∑

j=1

∞∑

t=1

(αij(t))
η/(4+η) = O(N) and

N∑

i=1

N∑

j=1

(αij(0))
η/(4+η) = O(N),

where η > 0 is chosen such that E [|eit|4+η] < ∞ and E [‖xit‖4+η] < ∞.

ii. Suppose that xit is independent of ejs for all i, j ≥ 1 and t, s ≥ 1.

Assumption 1.i entails that only the stationary cases are considered in this paper. The

nonstationary cases are more complex and will be discussed in a companion paper. We use

the α-mixing coefficient to measure the relationship between {xit, eit} and {xjs, ejs}. This

set-up is in spirit the same as Assumption A2 of Chen et al. (2012a) and Assumption C

of Bai (2009). Since the mixing properties are hereditary, it allows us to avoid imposing

restrictions on the functions by doing so. Thus, all the cross-sectional dependences and time
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series properties are captured by the mixing coefficients. Particularly, αij(0) only measures

the cross-sectional dependence between {xit, eit} and {xjt, ejt}.
We now use the factor model structure as an example to show that Assumption 1.i is

verifiable. Suppose that eit = γift+ εit, where all variables are scalars and εit is independent

and identically distributed (i.i.d.) across i and t with mean zero. Simple algebra shows that

the coefficient αij(|t−s|) reduces to αij · b(|t−s|), in which αij = E[γiγj] and b(|t−s|) is the
α–mixing coefficient of the factor time series {f1, . . . , fT}. If ft is strictly stationary α-mixing

process and γi is i.i.d. or a m-dependent sequence (cf. Appendix A of Gao (2007)Definition

9.1 and Theorem 9.1 in DasGupta (2008)), Assumption 1.i can easily be verified. More

details and useful empirical examples can be found under Assumption A2 in Chen et al.

(2012a).

Assumption 2 (Identifications):

i. Let Θ be a compact subset of Rd and θ0 ∈ Θ be in the interior of Θ. Moreover, ‖θ0‖ = 1

and θ01 > 0.

ii. E[g (x′
itθ0)] = 0 for all i ≥ 1 and t ≥ 1. Moreover, for the same η in Assumption 1, let

E[|g (x′
itθ0)|2+η/2] < ∞.

Assumption 2.i is a standard identification requirement. Instead one can follow Ichimura

(1993) to assume θ01 = 1. However, by doing so, it seems to be hard to decide which variable

should be considered as constant one in practice. Assumption 2.ii is not really necessary when

the main interests are only estimating the parameter θ0 and measuring the changes in output

y. Assumption 2.ii kicks in only if the location of a curve needs to be estimated. In practice,

the true expectation of E [g (x′
itθ0)] may not be zero, so Assumption 2.ii essentially means

that one is estimating g (x′
itθ0) − E [g (x′

itθ0)] rather than the true g (x′
itθ0) (cf. Su and Jin

(2012)). An example is given in a Monte Carlo study for illustration.

Assumption 3 (Boundaries):

i. Let the smallest eigenvalue of the K×K matrix (Q1 −Q2) be uniformly bounded away

from zero, such that λmin (Q1 −Q2) > 0 uniformly.

ii. (1) There exists r > 0 such that sup0≤ǫ≤1 sup‖θ−θ0‖≤ǫ maxi≥1 E [δ2k(x
′
i1θ)] = o(k−r).

(2) maxi≥1 E
[
|Hp (xi1)|4+η] = O

(
|p|d
)
as |p| → ∞, where |p| is given under (2.5).

iii. k3d

NT
→ 0 and k3d/2

T
→ 0 as N, T, k → ∞ jointly.
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Assumption 3.i can be verified by carrying on a similar procedure to Lemma A.2 in Gao

et al. (2002) and it is also similar to Assumption 2 in Newey (1997) and Assumption 3.iv in

Su and Jin (2012).

Assumption 3.ii is similar to Assumptions 2.ii and 3 in Newey (1997) and the second

condition of this assumption is more general than Assumption 3.iv in Su and Jin (2012). By

the argument under Assumption 2 in Newey (1997), it is not possible to assume Hp (xi1) is

bounded uniformly. Therefore, we put restrictions on the moments of the basis functions.

Compared to putting the bounds on the basis power series directly of Newey (1997), we be-

lieve our current assumption is more realistic. Also, the second condition in our Assumption

3.ii clearly allows xit to follow the standard multivariate normal distribution, which is ruled

out by Assumption 3.iv in Su and Jin (2012) for the cases where the basis functions are the

hermite polynomials. More relevant discussions will be given under Theorem 1.

We now illustrate that it is verifiable by the following example:

Suppose that we consider the second condition in Assumption 3.ii and {xi1, . . . , xiT} has

the standard multivariate normal density for i ≥ 1. Let η be large enough (say η = 1 without

losing generality) and x = (x1, . . . , xd). Then

E
[
|Hp (xi1)|5

]
=

∫

Rd

|Hp (x)|5 · exp(−‖x‖2/2)dx.

Note |Hp (x)|5 = |hp1 (x1) · · ·hpd (xd)|5, so expand it as
∣∣H 5

p (x)
∣∣ =

∣∣∣
∏d

j=1

∑5pj
sj=0 bsjhsj(xj)

∣∣∣,
which gives that

∫

R

|Hp (x)|5 · exp(−‖x‖2/2)dx ≤
d∏

j=1

5pj∑

sj=0

∣∣bsj
∣∣
∫

R

∣∣hsj (xj)
∣∣ exp

(
−x2

j/4
)
· exp

(
−x2

j/4
)
dx

≤
d∏

j=1

C1

5pj∑

sj=0

∣∣bsj
∣∣
∫

R

exp
(
−x2

j/4
)
dx

≤
d∏

j=1

C2

5pj∑

sj=0

∣∣bsj
∣∣ ≤ C3

d∏

j=1

5pj ≤ C4|p|d,

where we have used that hsj(xj) exp
(
−x2

j/4
)
is bounded uniformly in sj and xj, and |bsj |

is bounded over sj. Then, by moments monotonicity, the second condition in Assumption

3.ii has been verified. Analogously, we can show that the condition 1 in Assumption 3.ii is

verifiable.

Assumption 3.iii implies that the rate of k → ∞ needs to be slower than that of

min{(NT )
1

3d , T
2

3d}. In practice, the lengths of the cross-sectional dimension and time se-

ries can be relatively large, so Assumption 3.iii is easy to achieve. Moreover, the researcher
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normally assumes that N/T → c ∈ (0,∞] as N, T → ∞ in the conventional panel data case,

which is also covered by Assumption 3.iii.

We are ready to establish the main results and their proofs are given in the appendix.

Theorem 1 Let Assumptions 1, 2.i and 3 hold. Then, we have

∥∥∥β̂ − β
∥∥∥
2

= Op

(
k3d/2

NT

)
+ op

(
k−r
)
.

The first term of the convergence rate is not the optimal rate Op

(
kd

NT

)
, which is due to

the fact that we can not bound the hermite polynomials uniformly. However, the optimality

is achievable when the fourth order moment is bounded uniformly. This may be done in the

same way as in Su and Jin (2012). By doing so, we will rule out the standard multivariate

normal density for xit at least. The same arguments also apply to the other convergency

rates given below.

Notice that the first d elements of β only involve θ0 and constant c1 by (2.7). Moreover,∥∥∥β̂d − βd
∥∥∥
2

≤
∥∥∥β̂ − β

∥∥∥
2

, where β̂d and βd denote the first d elements of β̂ and β, respectively.

In connection with the identification restriction, it is easy to obtain that
√∑d

i=1 β̂
2
i converges

to |c1|. Then, intuitively, the estimator of θ0 is as follows.

θ̂ =
sgn(β̂1)√∑d

i=1 β̂
2
i

·Q3 · β̂, Q3
d×K

=

(
Id 0

d×(K−d)

)
and Id is a d× d identity matrix.

By Theorem 1, the following corollary follows immediately.

Corollary 1 Under the conditions of Theorem 1, θ̂ is consistent.

Furthermore, we establish the following normality.

Theorem 2 Let Assumptions 1, 2.i and 3 hold. If, in addition, NT
kr

→ σ for 0 ≤ σ <

∞, k4.5d

NT
→ 0 and E

[∥∥∥ 1√
N

∑N
i=1 Q3 (Q1 −Q2)

−1 (Z (xi1)− qi) ei1

∥∥∥
4
]
= O(1), as (N, T ) →

(∞,∞) jointly, then

√
NT

(
θ̂ − θ0

)
D−→ N

(
0, c−2

1 · Ξ0

)
,

10



where

Ξ0 = lim
N→∞

1

N

N∑

i=1

Q3 (Q1 −Q2)
−
{
E
[
e2i1 (Z (xi1)− qi) (Z (xi1)− qi)

′]

+
∞∑

t=2

E
[
ei1eit (Z (xi1)− qi) (Z (xit)− qi)

′]

+
∞∑

t=2

E
[
ei1eit (Z (xit)− qi) (Z (xi1)− qi)

′]
}
(Q′

1 −Q′
2)

−
Q′

3,

and c1 is denoted in (2.3).

The extra conditions required in the body of this theorem imply that achieving the

asymptotic normality comes with a price such that r > 4.5d, which is caused by the second

decomposition on g(x′
itθ0) (see (2.5) for details) and can be considered as a trade-off in order

to achieve the closed form estimator.

The restriction E

[∥∥∥ 1√
N

∑N
i=1 Q3 (Q1 −Q2)

−1 (Z (xi1)− qi) ei1

∥∥∥
4
]
= O(1) is in spirit the

same as Assumption ii of Lemma A.1 in Chen et al. (2012b) and can be easily verified for

the i.i.d cases.

Based on Theorems 1 and 2, it is easy to realise that

Ξ̂0 = Q3Q̂
−1
12

(
1

NT

N∑

i=1

T∑

t=1

Z̃itZ̃
′
it

(
ỹit − Z̃ ′

itβ̂
)2
)
Q̂−1

12 Q
′
3

P−→ Ξ0,

where Q̂12 =
1

NT

∑N
i=1

∑T
t=1 Z̃itZ̃

′
it. Therefore, the traditional hypothesis tests on θ0 can be

established by

(
d∑

i=1

β̂2
i

)1/2

Ξ̂
−1/2
0 ·

√
NT

(
θ̂ − θ0

)
D−→ N (0, Id) .

So far we have fully recovered the interest parameter θ0. We will focus on the link function

in the following section.

4 Estimation of The Link Function

We now can only estimate g(x′θ0) up to a constant by using β̂, because c0 gets cancelled

out by the within–transformation. Therefore, we need to take into account the location of

the link function by Assumption 2.ii and recover c0 by the next theorem. The proofs of the

following results are given in the appendix.
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Theorem 3 Under Assumptions 1–3, we have

(ĉ0 − c0)
2 = Op

(
k3d/2

NT

)
+ op

(
k−r
)
,

where ĉ0 = − 1
NT

∑N
i=1

∑T
t=1 Z (xit)

′ β̂.

In connection with (2.5) and Theorem 1, intuitively, we provide the next estimator for

g(x′θ0).

ĝ
(
x′θ̂
)
= Z (x)′ β̂ + ĉ0 (4.1)

Based on the proof of Theorem 2, achieving the next result is straightforward.

Theorem 4 Let Assumptions 1, 2 and 3 hold. If, in addition, NT
kr

→ σ for r > 4.5d and

0 ≤ σ < ∞, k4.5d

NT
→ 0 and E

[∥∥∥ 1√
NK3/2

∑N
i=1 (Z (x)− q̄)′ (Q1 −Q2)

−1 (Z (xi1)− qi) ei1

∥∥∥
4
]
=

O(1), as (N, T ) → (∞,∞) jointly, then

√
NT

K3/2

(
ĝ
(
x′θ̂
)
− g(x′θ0)

)
D−→ N (0,Ξ1) ,

where

Ξ1 = lim
N,k→∞

1

N

N∑

i=1

1

K3/2
(Z (x)− q̄)′ (Q1 −Q2)

−
{
E
[
e2i1 (Z (xi1)− qi) (Z (xi1)− qi)

′]

+
∞∑

t=2

E
[
ei1eit (Z (xi1)− qi) (Z (xit)− qi)

′]

+
∞∑

t=2

E
[
ei1eit (Z (xit)− qi) (Z (xi1)− qi)

′]
}
(Q′

1 −Q′
2)

−
(Z (x)− q̄) ,

and K is chosen by (2.9).

Again, it is pointed out that while the rate of convergence may not be optimal, the

optimality is achievable when the fourth order moment is bounded uniformly. This may be

done in the same way as in Su and Jin (2012). However, the optimality comes with a price.

For example, xit cannot even follow the standard multivariate normal distribution.

Similar to Theorem 2, it is easy to establish a standardised version of the form:

√
NT

K3/2
· Ξ̂−1/2

1 ·
(
ĝ
(
x′θ̂
)
− g(x′θ0)

)
D−→ N (0, 1) ,

12



where

Ξ̂1 = (Z (x)− q̂)′ Q̂−1
12

(
1

NTK

N∑

i=1

T∑

t=1

Z̃itZ̃
′
it

(
ỹit − Z̃ ′

itβ̂
)2
)
Q̂−1

12 (Z (x)− q̂) ,

Q̂12 =
1

NT

N∑

i=1

T∑

t=1

Z̃itZ̃
′
it and q̂ =

1

NT

N∑

i=1

T∑

t=1

Z(xit).

In practice, the above results are useful to calculate the confidence interval for a point

prediction of g(x′θ0).

Notice that the above two theorems just recover g(x′θ0) rather than g(w) itself. To

estimate the link function g(w) regardless of θ0, we now bring θ̂ in (2.10) and then provide

our estimator on C below.

Ĉ =
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )Y (4.2)

We will proceed as in the previous section to investigate (4.2). To simplify the nota-

tion, for each time series {xi1, . . . , xiT}, let R1,i (θ) = E
[
H (x′

itθ)H (x′
itθ)

′] and ri (θ) =

E [H (x′
itθ)]. Also, denote that R1 (θ) =

1
N

∑N
i=1 R1,i (θ), r̄ (θ) =

1
N

∑N
i=1 ri (θ) and R2 (θ) =

1
N

∑N
i=1 ri (θ) ri (θ)

′. Moreover, the next assumption is necessary for achieving the consis-

tency.

Assumption 4:

i. Let the smallest eigenvalue of the (k−1)×(k−1) matrix (R1 (θ)−R2 (θ)) be bounded

away from zero uniformly on a neighbourhood of θ0.

ii. sup0≤ǫ≤1 sup‖θ−θ0‖≤ǫ maxi≥1 E
[
|hm (x′

i1θ)|4+η] = O (m) as m → ∞, where η is given in

Assumption 1.

iii. Suppose that xit has a support X ⊂ R
d. For ∀x ∈ X, g(x′θ) satisfies a Lipschitz

condition on a neighbourhood of θ0, Uθ0 , such that

|g(x′θ1)− g(x′θ0)| ≤ M(x) ‖θ1 − θ0‖ ,

where θ1 ∈ Uθ0 . Moreover, 1
NT

∑N
i=1

∑T
t=1 (M(xit))

2 = Op(1).

Assumption 4.i-ii are in spirit the same as Assumption 3.i-ii. Similar to the arguments

for Assumption 3.ii, we can show that Assumption 4.ii is verifiable. For example, if x′
itθ

follows a normal distribution, then we can show that Assumption 4.ii is verifiable by going

through the similar procedure of the example given for Assumption 3.ii. Assumption 4.iii is

13



similar to Assumptions 5.3.1 and 5.5 in Ichimura (1993) and Assumption 3 in Newey and

Powell (2003). We put Lipschitz condition on a neighbour of θ0 rather than assume X is

compact. In this sense, this assumption is more general compared to Ichimura (1993). The

last equation in Assumption 4.iii can be easily verified under certain restriction by following

the similar procedure to the second result of Lemma 2 in the appendix.

Under the extra conditions, we establish the following theorem.

Theorem 5 Under the conditions of Theorem 2 and Assumption 4, as (N, T ) → (∞,∞)

jointly, then

∥∥∥Ĉ − C
∥∥∥
2

= Op

(
k3/2

NT

)
+ op

(
k−r
)
.

Similar to the discussion under Theorem 1, if we use a stronger assumption to bound the

moments of hm(x
′
itθ) uniformly, the first term in the convergency rate above will become the

optimal rate Op

(
k

NT

)
.

Notice that the second decomposition (2.5) raises the curse of dimensionality issue when

we estimate β (cf. see the convergence rate in Theorem 1), but this issue does not exist in

the convergency rate given by Theorem 5.

Intuitively, we denote an estimator of g(w) similar to (4.1) as

ĝ1(w) = H(w)′Ĉ + c̃0, (4.3)

where c̃0 = − 1
NT

∑N
i=1

∑T
t=1 H

(
x′
itθ̂
)′
Ĉ.

The integrated mean squared error of the nonparametric estimate is summarised below.

Corollary 2 Under the conditions of Theorem 5, if in additional Assumption 2.ii holds, as

(N, T ) → (∞,∞) jointly, then

∫

R

(ĝ1(w)− g(w))2 · exp
(
−w2/2

)
dw = Op

(
k3/2

NT

)
+ op

(
k−r
)
.

The proofs of Theorem 5 and Corollary 2 are given in the appendix. We will evaluate the

proposed model and the estimation method using both simulated and real data examples in

Section 5 below.
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5 Numerical Study

In this section, we provide a Monte Carlo simulation and two empirical studies. In the

simulation, we consider an exponential functional form, g(w) = exp(w). The expectation

E [exp(x′θ0)] is certainly not zero, but it will not affect us to obtain a consistent estimation

on θ0. It further backs up our argument for Assumption 2.ii. Similar discussion can be found

in the Monte Carlo study section of Su and Jin (2012). In empirical studies, we investigate

UK’s climate data and US cigarettes demand. It clearly shows that our method outperforms

some existing methods in practice.

5.1 Monte Carlo Study

The data generating process (DGP) is as follows.

yit = exp (x1,itθ01 + x2,itθ02) + γi + eit (5.1)

and for j = 1, 2

xj,it = ρxj
xji,t−1 + i.i.d. N (0, 1) for t = −99, . . . , 0, . . . , T,

ρx1
= 0.7, ρx2

= 0.3, xji,−100 = 0.

To introduce the cross-sectional dependence to the model, we follow the DGP in Chen

et al. (2012a) and let et = (e1t, . . . , eNt)
′, e−100 = 0N×1 and ρe = 0.2 for 1 ≤ t ≤ T . Then

the error term et is generated as

et = ρeet−1 + i.i.d. N (0N×1,Σe) for t = −99, . . . , 0, . . . , T,

where Σe = (σij)N×N = 0.5|i−j| for 1 ≤ i, j ≤ N . The fixed effects, γi’s, follow from

i.i.d. U (0, 1).

The values of θ01 and θ02 are set to 0.8 and -0.6, and they are estimated by θ̂1 and

θ̂2, respectively. In this Monte Carlo study, we choose N, T = 20, 50, 100, 200 and k as

⌊1.36 · 3
√
50⌋ = 5, ⌊1.36 · 3

√
100⌋ = 6 and ⌊1.36 · 3

√
200⌋ = 7 respectively. We repeat the

estimation procedure 10000 times.

As Tables 1-3 shows, all the results are very accurate. The biases and the root mean

squared errors (RMSE) of θ̂1 and θ̂2 decrease as both N and T increase. Notice that the

biases for this simulation are quite small, which is due to the next reasons. In (A.11), it

is easy to be seen that the first term on the right hand side (RHS) is unbiased and has

expectation zero. The second term on RHS of (A.11) is biased and its convergence rate is
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op(k
−r), where r is directly related to the smoothness of the link function g(x). We know

that the nth derivative of the exponential function exists for all positive integers n = 1, 2, . . .,

so it is reasonable to expect this term will generate very small bias. Similarly, we do not

expect the second term on RHS of (A.11) contributes too much to RMSE.

θ̂1 θ̂2

k = 5 N \ T 20 50 100 200 20 50 100 200

Bias 20 -0.0012 0.0005 0.0006 0.0005 0.0000 0.0012 0.0011 0.0009

50 -0.0004 0.0005 0.0005 0.0003 0.0001 0.0009 0.0008 0.0005

100 -0.0005 0.0002 0.0004 0.0004 -0.0002 0.0005 0.0006 0.0004

200 -0.0004 0.0002 0.0002 0.0001 -0.0003 0.0004 0.0003 0.0002

RMSE 20 0.0264 0.0152 0.0109 0.0083 0.0352 0.0204 0.0146 0.0111

50 0.0171 0.0106 0.0078 0.0062 0.0228 0.0162 0.0104 0.0082

100 0.0131 0.0081 0.0061 0.0047 0.0174 0.0108 0.0081 0.0063

200 0.0099 0.0063 0.0048 0.0037 0.0132 0.0084 0.0064 0.0049

Table 1: Bias and RMSE for k = 5

θ̂1 θ̂2

k = 6 N \ T 20 50 100 200 20 50 100 200

Bias 20 -0.0015 -0.0002 -0.0001 -0.0002 -0.0003 0.0002 0.0001 -0.0001

50 -0.0009 -0.0002 -0.0001 -0.0002 -0.0007 -0.0001 0.0000 -0.0002

100 -0.0009 -0.0002 -0.0001 -0.0001 -0.0010 -0.0002 -0.0001 -0.0002

200 -0.0009 -0.0002 -0.0001 -0.0001 -0.0010 -0.0002 -0.0002 -0.0001

RMSE 20 0.0027 0.0138 0.0093 0.0064 0.0374 0.0185 0.0123 0.0086

50 0.0157 0.0087 0.0060 0.0042 0.0209 0.0116 0.0079 0.0055

100 0.0109 0.0061 0.0042 0.0031 0.0145 0.0082 0.0056 0.0041

200 0.0078 0.0045 0.0031 0.0023 0.0103 0.0060 0.0042 0.0031

Table 2: Bias and RMSE for k = 6
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θ̂1 θ̂2

k = 7 N \ T 20 50 100 200 20 50 100 200

Bias 20 -0.0014 -0.0001 -0.0001 -0.0001 0.0008 0.0003 0.0001 -0.0001

50 -0.0009 -0.0002 -0.0001 -0.0002 -0.0006 -0.0001 0.0000 -0.0002

100 -0.0009 -0.0002 -0.0001 -0.0001 -0.0010 -0.0002 -0.0001 -0.0002

200 -0.0009 -0.0002 -0.0002 -0.0001 -0.0010 -0.0002 -0.0002 -0.0001

RMSE 20 0.0333 0.0142 0.0092 0.0063 0.0458 0.0190 0.0123 0.0084

50 0.0161 0.0086 0.0058 0.0040 0.0214 0.0115 0.0077 0.0053

100 0.0109 0.0060 0.0040 0.0028 0.0145 0.0079 0.0054 0.0038

200 0.0076 0.0042 0.0029 0.0020 0.0101 0.0056 0.0039 0.0027

Table 3: Bias and RMSE for k = 7

5.2 Empirical Studies

In this section, we provide two empirical studies to demonstrate how our method performs

in practice. As a comparison, we also run OLS regression on the following linear model after

within transformation for the next two data sets.

yit = x′
itθ0 + γi + eit. (5.2)

According to the results on convergence rates in previous sections, it is impossible to tell

what the optimal k should be. To choose the truncation parameter k, we use the extended

version of the generalized cross-validation (GCV) criterion proposed in Gao et al. (2002) at

first. Then select a k according to the other measurements (e.g. R2) in a small range of the

k̂ suggested by GCV. As they mention in the paper, how to select an optimum truncation

parameter has not been completely solved yet.

Below SIM and LIM denote the semiparametric single-index model (2.1) and the lin-

ear model (5.2), respectively. The corresponding standard deviations are reported in the

brackets.

5.2.1 UK’s Climate Data

Firstly, we use the exactly same UK’s climate data as Chen et al. (2013a), which is avail-

able from http://www.metoffice.gov.uk/climate/uk/stationdata/. We investigate how the

average maximum temperature (TMAX) is affected by the number of millimeters of rainfall
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(RAIN) and the number of hours of sunshine (SUN). The data were collected over the decade

of January 1999 to December 2008 from 16 stations across UK, so N = 16 and T = 120.

The results are reported in Table 4 and Figures 1 and 2.

SIM LIM

θ̂1 θ̂2 R2 θ̂1 θ̂2 R2

0.313 0.950 0.685 0.019 0.070 0.655

(0.702) ( 0.953) (0.003) (0.004)

Table 4: Estimated coefficients for UK’s climate data

The R2’s indicate that the semiparametric estimator proposed in this paper generates

more accurate results. Compared to the R2 = 0.6199 in Chen et al. (2013a), our method

performs better. For our model, the number of Hermite Polynomial function is chosen as 6

(such that h0, h1, . . . , h5 are chosen and K = 20 by (2.9)). Due to the similarity, we only

report the temperature plots for one station in Figure 1 and omit the others. The dash-

dot line is the observed TMAX data; the solid line is the estimated temperature by our

approach; and the two dash lines are 95% confidence interval obtained by using Theorem

4. Figure 1 shows that our estimates clearly capture the movement of average maximum

temperature. In Figure 2, the estimated curve is plotted according to (4.3). As one can

see, the linear model tells an unconvincing story. According to Figure 2 and the results

from OLS, one would have concluded that as the amount of rain fall goes up, the average

maximum temperature will increase. However, this seems to be very misleading. On the

other hand, the single-index model tells us that the maximum temperature will decrease as

the amount of rain fall increases, which is more meaningful to us.

5.2.2 US Cigarettes Demand

The data set of the second case study is from Baltagi et al. (2000) for analysing the demand

for cigarettes in the U.S., who use the next linear model of the form

lnCit = β0 + β1 lnCi,t−1 + β2 lnDIit + β3 lnPit + β4 lnPNit + uit, (5.3)

where i = 1, . . . , 46 and t = 1, . . . , 30 represent the states and the years (1963-1992) respec-

tively, Cit is the real per capita sales of cigarettes (measured in packs), DIit is the real per

capita disposable income, Pit is the average retail price of a pack of cigarettes measured in
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Figure 1: Estimated average maximum temperature
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Figure 2: Estimated curve for UK’s climate data

real terms, PNit is the minimum real price of cigarettes in any neighbouring state and uit is

the disturbance term.

We consider fitting the data by a semiparametric single–index model of the form

lnCit = g(x′
itθ) + γi + eit, (5.4)

where xit = (lnCi,t−1, lnDIit, lnPit, lnPNit)
′. Due to the lagged dependent value included

in xit, the length of time series used in the regression is 29 (such that t = 2, . . . , 30). γi’s

capture all the state-specific effects. All the errors’ cross-sectional dependences and year-

specific effects are absorbed in eit. Similar to the previous section, we report the estimates

below. The results of several other attempts can be found in Baltagi et al. (2000), Mammen

et al. (2009) and Chen et al. (2013b).

Compared to the R2 = 0.9698 in Chen et al. (2013b), our method provides slightly better

results. For our model, the number of Hermite Polynomial function is chosen as 2 (such that
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θ̂1 θ̂2 θ̂3 θ̂4 R2

SIM 0.942 0.155 -0.288 0.070 0.973

(0.665) (0.412) (0.860) (0.776)

LIM 0.811 0.133 -0.248 0.061 0.753

(0.033) (0.018) (0.029) (0.029)

Table 5: Estimated coefficients for US cigarette demand

h0 and h1 are chosen) so that the link function g is a linear function (with a different slope

compared to the identity function). Due to the similarity, we only report the plots for one

state in Figure 3 and omit the others. The dash-dot line is the real per capita sales of

cigarettes; the solid line is the estimated per capita sales of cigarettes by our approach; the

two dash lines are 95% confidence interval obtained by using Theorem 4. In Figure 4, the

estimated curve is plotted.
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Figure 3: Estimated log real per capita sales of cigarettes

6 Conclusion

In this paper, we have proposed a semiparametric single–index panel data model associated

with cross-sectional dependence, high–dimensionality, stationarity and unobservable hetero-

geneity. Some closed–form estimates have been proposed and the closed–form estimates

have been used to recover the estimates of the parameters of interest and the link function

respectively. The resulting asymptotic theory has been established and illustrated using

both simulated and empirical examples. As both the theory and Monte Carlo study have

suggested, our model and estimation method perform well when cross-sectional dependence
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Figure 4: Estimated curve for US cigarette demand

exists in the system. Moreover, since we have not imposed any specific assumption on the

fixed effects, they can be correlated with the regressors to capture unobservable heterogene-

ity. Two empirical examples have shown that the proposed model and estimation method

outperform some natural competitors.

Appendix

We now provide some useful lemmas before we prove the main results of this paper. Lemma 1 is

in the same spirit as Lemma 12.4.2 of Blower (2009).

Lemma 1 Suppose that u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ R
d and ‖v‖ = 1. Then

Hm(u′v) =
∑

|p|=m

(
m

p

) d∏

j=1

Hpj (uj)
d∏

j=1

v
pj
j ,

where p = (p1, . . . , pd), pj for j = 1, . . . , d are all nonnegative integers, |p| = p1 + · · · + pd and
(
m
p

)
= m!∏

pj !
.

Proof of Lemma 1: It is known that Hermite polynomial system has the following generating

function

exp
(
λx− λ2/2

)
=

∞∑

n=0

λn

n!
Hn (x) . (A.1)

For each j = 1, . . . , d, by (A.1) we have exp
(
vjuj − v2j /2

)
=
∑∞

pj=0

v
pj
j

pj !
Hpj (uj).
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Hence, we can take product of j to obtain that

exp
(
u′v − ‖v‖2 /2

)
=

d∏

j=1

∞∑

pj=0

v
pj
j

pj !
Hpj (uj)

=

∞∑

m=0

∑

|p|=m

1
∏d

j=1 pj !

d∏

j=1

Hpj (uj)

d∏

j=1

v
pj
j .

Notice that ‖v‖ = 1 and once again the generating function indicates that the term of degree m

on left hand side (LHS) is 1
m!Hm(u′v), which, after matching with the term of degree m on right

hand side (RHS), gives the result. �

Lemma 2 Let Assumptions 1, 2 and 3 hold. Then, we have

1. E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1 Z (xit)Z (xit)

′ −Q1

∥∥∥
2
= O

(
k3d

NT

)
;

2. E
[

1
NT

∑N
i=1

∑T
t=1 g (x

′
itθ0)

]2
= O

(
1

NT

)
;

3. E
∥∥∥ 1
T

∑T
t=1 Z (xit)− qi

∥∥∥
2
= O

(
k3d/2

T

)
;

4. E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1 Z (xit) eit

∥∥∥
2
= O

(
k3d/2

NT

)
;

5. λmin

(
1

NT Z ′ (IN ⊗MiT )Z
)
≥ λmin (Q1 −Q2) /2 > 0.

Proof of Lemma 2: 1). Write

E

∥∥∥∥∥
1

NT

N∑

i=1

T∑

t=1

Z (xit)Z (xit)
′ −Q1

∥∥∥∥∥

2

=
K∑

u=1

K∑

v=1

E

[
1

NT

N∑

i=1

T∑

t=1

zu (xit) zv (xit)−
1

N

N∑

i=1

Q1,iuv

]2
, (A.2)

where zu(·) and zv(·) are the uth and vth elements of Z(·), respectively, and Q1,iuv is the (u, v)th

element of Q1,i.
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Observe that

E

[
1

NT

N∑

i=1

T∑

t=1

zu (xit) zv (xit)−
1

N

N∑

i=1

Q1,iuv

]2

=
1

N2

N∑

i=1

N∑

j=1

E

[
1

T 2

T∑

t1=1

T∑

t2=1

(zu (xit1) zv (xit1)−Q1,iuv) (zu (xjt2) zv (xjt2)−Q1,juv)

]

=
1

N2T

N∑

i=1

N∑

j=1

Cov (zu (xi1) zv (xi1) , zu (xj1) zv (xj1))

+
1

N2T

N∑

i=1

N∑

j=1

T−1∑

t=1

(
1− t

T

)
Cov (zu (xi1) zv (xi1) , zu (xj,1+t) zv (xj,1+t))

+
1

N2T

N∑

i=1

N∑

j=1

T−1∑

t=1

(
1− t

T

)
Cov (zu (xj1) zv (xj1) , zu (xi,1+t) zv (xi,1+t))

=
1

N2T

N∑

i=1

N∑

j=1

(Φijuv,1 +Φijuv,2 +Φijuv,3). (A.3)

We then consider each term on right hand side (RHS) of (A.3) respectively. Due to the Davydov

inequality (cf. pages 19-20 in Bosq (1996) and supplementary of Su and Jin (2012))

|Φijuv,2| =
∣∣∣∣∣

T−1∑

t=1

(
1− t

T

)
Cov (zu (xi1) zv (xi1) , zu (xj,1+t) zv (xj,1+t))

∣∣∣∣∣

≤ cη

T−1∑

t=1

∣∣∣∣1−
t

T

∣∣∣∣ · (αij (t))
η/(4+η) ·

(
E
[
|zu (xi1) zv (xi1)|2+η/2

])2/(4+η)

·
(
E
[
|zu (xj1) zv (xj1)|2+η/2

])2/(4+η)

≤ cη
2

T−1∑

t=1

∣∣∣∣1−
t

T

∣∣∣∣ · (αij (t))
η/(4+η) ·

(
E
[
|zu (xi1) zv (xi1)|2+η/2

])4/(4+η)

+
cη
2

T−1∑

t=1

∣∣∣∣1−
t

T

∣∣∣∣ · (αij (t))
η/(4+η) ·

(
E
[
|zu (xj1) zv (xj1)|2+η/2

])4/(4+η)

≤ cη
2

T−1∑

t=1

(αij (t))
η/(4+η) ·

(
E
[
|zu (xi1)|4+η

]
E
[
|zv (xi1)|4+η

])2/(4+η)

+
cη
2

T−1∑

t=1

(αij (t))
η/(4+η) ·

(
E
[
|zu (xj1)|4+η

]
E
[
|zv (xj1)|4+η

])2/(4+η)
(A.4)

where cη = 2(4+2η)/(4+η) · (4 + η)/η.
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In connection with Assumption 3.ii,

1

N2T

K∑

u=1

K∑

v=1

N∑

i=1

N∑

j=1

|Φijuv,2|

≤ C

N2T

K∑

u=1

K∑

v=1

N∑

i=1

N∑

j=1

T−1∑

t=1

(αij (t))
η/(4+η) ·

(
O
(
|pu|d

)
·O
(
|pv|d

))2/(4+η)

≤ C

N2T

K∑

u=1

K∑

v=1

N∑

i=1

N∑

j=1

T−1∑

t=1

(αij (t))
η/(4+η) ·

(
O
(
|pu|d · |pv|d

))1/2
= O

(
k3d

NT

)
,

where the last line is true due to the fact that max1≤u≤K |pu| = k − 1 and K = O
(
kd
)
.

Similarly,

1

N2T

K∑

u=1

K∑

v=1

N∑

i=1

N∑

j=1

|Φijuv,1| = O

(
k3d

NT

)
and

1

N2T

K∑

u=1

K∑

v=1

N∑

i=1

N∑

j=1

|Φijuv,3| = O

(
k3d

NT

)
.

Thus, the result follows. �

2). Write

E

[
1

NT

N∑

i=1

T∑

t=1

g
(
x′itθ0

)
]2

=
1

N2

N∑

i=1

N∑

j=1

E

[
1

T 2

T∑

t1=1

T∑

t2=1

g
(
x′it1θ0

)
g
(
x′jt2θ0

)
]
. (A.5)

Expanding the RHS of the above equation by the same procedure as (A.3) and (A.4), the result

follows from Assumptions 1.i and 2.ii. �

3). By following the same procedure as the first result of this lemma, the result follows. �

4). Write

E

∥∥∥∥∥
1

NT

N∑

i=1

T∑

t=1

Z (xit) eit

∥∥∥∥∥

2

=
K∑

u=1

E

[
1

NT

N∑

i=1

T∑

t=1

zu (xit) eit

]2

=

K∑

u=1

1

N2

N∑

i=1

N∑

j=1

E

[
1

T 2

T∑

t1=1

T∑

t2=1

zu (xit1) eit1zu (xjt2) ejt2

]
. (A.6)

Following the same procedure as the first result of this lemma, the result follows. �

5) Write

λmin

(
1

NT
Z ′ (IN ⊗MiT )Z

)
= λmin

(
1

NT

N∑

i=1

T∑

t=1

Z̃itZ̃
′
it

)

= min
‖χ‖=1

{
χ′ (Q1 −Q2)χ+ χ′

(
1

NT

T∑

t=1

N∑

i=1

Z̃itZ̃
′
it − (Q1 −Q2)

)
χ

}

≥ λmin (Q1 −Q2)−
∥∥∥∥∥

1

NT

T∑

t=1

N∑

i=1

Z̃itZ̃
′
it − (Q1 −Q2)

∥∥∥∥∥ . (A.7)

24



We now consider 1
NT

∑T
t=1

∑N
i=1 Z̃itZ̃

′
it − (Q1 −Q2).

1

NT

T∑

t=1

N∑

i=1

Z̃itZ̃
′
it − (Q1 −Q2) =

1

NT

N∑

i=1

T∑

t=1

(
Z (xit)Z (xit)

′ −Q1,i

)
− 1

N

N∑

i=1

(
Z̄i.Z̄

′
i. − qiq

′
i

)

Similar to the first result of this lemma
∥∥∥∥∥
1

N

N∑

i=1

(
Z̄i.Z̄

′
i. − qiq

′
i

)
∥∥∥∥∥

≤
∥∥∥∥∥
1

N

N∑

i=1

(
Z̄i. − qi

) (
Z̄i. − qi

)′
∥∥∥∥∥+

∥∥∥∥∥
1

N

N∑

i=1

(
Z̄i. − qi

)
q′i

∥∥∥∥∥+
∥∥∥∥∥
1

N

N∑

i=1

qi
(
Z̄i. − qi

)′
∥∥∥∥∥ = op (1) .

In connection with the first result of this lemma, we obtain

∥∥∥∥∥
1

NT

N∑

i=1

T∑

t=1

Z̃itZ̃
′
it − (Q1 −Q2)

∥∥∥∥∥

≤
∥∥∥∥∥

1

NT

N∑

i=1

T∑

t=1

(
Z (xit)Z (xit)

′ −Q1,i

)
∥∥∥∥∥+

∥∥∥∥∥
1

N

N∑

i=1

(
Z̄i.Z̄

′
i. − qiq

′
i

)
∥∥∥∥∥ = op (1) .

Thus, the result follows. �

Lemma 3 Let Assumptions 1–4 hold. Then the following results hold uniformly in a small neigh-

bour of θ0:

1. E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1H (x′itθ)H (x′itθ)

′ −R1 (θ)
∥∥∥
2
= O

(
k3

NT

)
;

2. E
∥∥∥ 1
T

∑T
t=1H (x′itθ)− ri (θ)

∥∥∥
2
= O

(
k3/2

T

)
;

3. E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1H (x′itθ) eit

∥∥∥
2
= O

(
k3/2

NT

)
;

4. λmin

(
1

NT H (θ)′ (IN ⊗MiT )H (θ)
)
≥ λmin (R1 (θ)−R2 (θ)) /2 > 0.

Proof of Lemma 3: 1). Write

E

∥∥∥∥∥
1

NT

N∑

i=1

T∑

t=1

H
(
x′itθ

)
H
(
x′itθ

)′ −R1 (θ)

∥∥∥∥∥

2

=

k−1∑

u=1

k−1∑

v=1

E

[
1

NT

N∑

i=1

T∑

t=1

hu
(
x′itθ

)
hv
(
x′itθ

)
− 1

N

N∑

i=1

R1,iuv (θ)

]2
, (A.8)

where hu(·) and hv(·) are the uth and vth elements of H(·), respectively, and R1,iuv is the (u, v)th

element of R1,i(θ).
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Observe that

E

[
1

NT

N∑

i=1

T∑

t=1

hu
(
x′itθ

)
hv
(
x′itθ

)
− 1

N

N∑

i=1

R1,iuv (θ)

]2

=
1

N2T

N∑

i=1

N∑

j=1

Cov
(
hu
(
x′i1θ

)
hv
(
x′i1θ

)
, hu

(
x′j1θ

)
hv
(
x′j1θ

))

+
1

N2T

N∑

i=1

N∑

j=1

T−1∑

t=1

(
1− t

T

)
Cov

(
hu
(
x′i1θ

)
hv
(
x′i1θ

)
, hu

(
x′j,1+tθ

)
hv
(
x′j,1+tθ

))

+
1

N2T

N∑

i=1

N∑

j=1

T−1∑

t=1

(
1− t

T

)
Cov

(
hu
(
x′j1θ

)
hv
(
x′j1θ

)
, hu

(
x′i,1+tθ

)
hv
(
x′i,1+tθ

))

=
1

N2T

N∑

i=1

N∑

j=1

(Ψijuv,1(θ) + Ψijuv,2(θ) + Ψijuv,3(θ)). (A.9)

By the similar procedure of (A.4)

|Ψijuv,2(θ)| =
∣∣∣∣∣

T−1∑

t=1

(
1− t

T

)
Cov

(
hu
(
x′i1θ

)
hv
(
x′i1θ

)
, hu

(
x′j,1+tθ

)
hv
(
x′j,1+tθ

))
∣∣∣∣∣

≤ cη
2

T−1∑

t=1

(αij (t))
η/(4+η) ·

(
E
[∣∣hu

(
x′i1θ

)∣∣4+η
]
E
[∣∣hv

(
x′i1θ

)∣∣4+η
])2/(4+η)

+
cη
2

T−1∑

t=1

(αij (t))
η/(4+η) ·

(
E
[∣∣hu

(
x′j1θ

)∣∣4+η
]
E
[∣∣hv

(
x′j1θ

)∣∣4+η
])2/(4+η)

,

where cη = 2(4+2η)/(4+η) · (4 + η)/η.

In connection with Assumption 4.ii,

1

N2T

k−1∑

u=1

k−1∑

v=1

N∑

i=1

N∑

j=1

|Ψijuv,2| ≤
C

N2T

k−1∑

u=1

k−1∑

v=1

N∑

i=1

N∑

j=1

T−1∑

t=1

(αij (t))
η/(4+η) · (O (u) ·O (v))2/(4+η)

≤ C

N2T

k−1∑

u=1

k−1∑

v=1

N∑

i=1

N∑

j=1

T−1∑

t=1

(αij (t))
η/(4+η) · (O (u · v))1/2 = O

(
k3

NT

)
.

Similarly,

1

N2T

k−1∑

u=1

k−1∑

v=1

N∑

i=1

N∑

j=1

|Ψijuv,1| = O

(
k3

NT

)
and

1

N2T

k−1∑

u=1

k−1∑

v=1

N∑

i=1

N∑

j=1

|Ψijuv,3| = O

(
k3

NT

)
.

Thus, the result follows. �

2). Using the similar procedure to the first result of this lemma, the result follows. �

3). Write

E

∥∥∥∥∥
1

NT

N∑

i=1

T∑

t=1

H
(
x′itθ

)
eit

∥∥∥∥∥

2

=

k−1∑

u=1

E

[
1

NT

N∑

i=1

T∑

t=1

hu
(
x′itθ

)
eit

]2

=
k−1∑

u=1

1

N2

N∑

i=1

N∑

j=1

E

[
1

T 2

T∑

t1=1

T∑

t2=1

hu
(
x′it1θ

)
hu
(
x′jt2θ

)
eit1ejt2

]
. (A.10)
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Similar to the procedure used in proving the first result of this lemma, the result follows. �

4) Similar to (A.7), write

λmin

(
1

NT
H′ (IN ⊗MiT )H

)

≥ λmin (R1 (θ)−R2 (θ))−
∥∥∥∥∥

1

NT

N∑

i=1

T∑

t=1

H̃
(
x′itθ

)
H̃
(
x′itθ

)′ − (R1 (θ)−R2 (θ))

∥∥∥∥∥ ,

where H̃ (x′itθ) = H (x′itθ)− H̄i. (θ) and H̄i. (θ) =
1
T

∑T
t=1H (x′itθ).

We now consider

1

NT

T∑

t=1

N∑

i=1

H̃
(
x′itθ

)
H̃
(
x′itθ

)′ − (R1 (θ)−R2 (θ))

=
1

NT

N∑

i=1

T∑

t=1

(
H
(
x′itθ

)
H
(
x′itθ

)′ −R1,i (θ)
)
− 1

N

N∑

i=1

(
H̄i. (θ) H̄i. (θ)

′ − ri (θ) ri (θ)
′) .

In a similar fashion to the proof of the first result of this lemma, we have

∥∥∥∥∥
1

N

N∑

i=1

(
H̄i. (θ) H̄i. (θ)

′ − ri (θ) ri (θ)
′)
∥∥∥∥∥

≤
∥∥∥∥∥
1

N

N∑

i=1

(
H̄i. (θ)− ri (θ)

) (
H̄i. (θ)− ri (θ)

)′
∥∥∥∥∥+

∥∥∥∥∥
1

N

N∑

i=1

(
H̄i. (θ)− ri (θ)

)
ri (θ)

′
∥∥∥∥∥

+

∥∥∥∥∥
1

N

N∑

i=1

ri (θ)
(
H̄i. (θ)− ri (θ)

)′
∥∥∥∥∥ = op (1) .

In connection with the first result of this lemma, we obtain

∥∥∥∥∥
1

NT

T∑

t=1

N∑

i=1

H̃
(
x′itθ

)
H̃
(
x′itθ

)′ − (R1 (θ)−R2 (θ))

∥∥∥∥∥

≤
∥∥∥∥∥

1

NT

N∑

i=1

T∑

t=1

H
(
x′itθ

)
H
(
x′itθ

)′ −R1 (θ)

∥∥∥∥∥+
∥∥∥∥∥
1

N

N∑

i=1

(
H̄i. (θ) H̄i. (θ)

′ − ri (θ) ri (θ)
′)
∥∥∥∥∥ = op (1) .

Thus, the result follows. �

Proof of Theorem 1: We now start the proof of the consistency. By the uniqueness of the

Moore-Penrose inverse and the fifth result of Lemma 2 of this appendix, the K × K dimensions

matrix [Z ′ (IN ⊗MiT )Z]− is the inverse of Z ′ (IN ⊗MiT )Z for each K. Therefore,

β̂ − β =
[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E

+
[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0). (A.11)
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Focusing on 1
NT Z ′ (IN ⊗MiT ) E firstly, we have

E

∥∥∥∥
1

NT
Z ′ (IN ⊗MiT ) E

∥∥∥∥
2

= E

∥∥∥∥∥
1

NT

N∑

i=1

T∑

t=1

Z (xit) eit −
1

N

N∑

i=1

Z̄i.ēi.

∥∥∥∥∥

2

≤ 2E

∥∥∥∥∥
1

NT

N∑

i=1

T∑

t=1

Z (xit) eit

∥∥∥∥∥

2

+ 2E

∥∥∥∥∥
1

N

N∑

i=1

Z̄i.ēi.

∥∥∥∥∥

2

. (A.12)

By the fourth result of Lemma 2, we have E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1 Z (xit) eit

∥∥∥
2
= O

(
k3d/2

NT

)
. For the

second term on RHS of (A.12), write

E

∥∥∥∥∥
1

N

N∑

i=1

Z̄i.ēi.

∥∥∥∥∥

2

=
K∑

u=1

E

[
1

NT 2

N∑

i=1

T∑

t1=1

T∑

t2=1

zu (xit1) eit2

]2

=
K∑

u=1

1

N2

N∑

i=1

N∑

j=1

E

[
1

T 4

T∑

t1=1

T∑

t2=1

T∑

t3=1

T∑

t4=1

zu (xit1) eit2zu (xjt3) ejt4

]

=
1

N2

N∑

i=1

N∑

j=1

E

[
1

T 2

T∑

t2=1

T∑

t4=1

eit2ejt4

]
·

K∑

u=1

E

[
1

T 2

T∑

t1=1

T∑

t3=1

zu (xit1) zu (xjt3)

]
,

where the last line follows Assumption 1.ii.

By Cauchy-Schwarz inequality, moment monotonicity and Assumption 3.ii respectively,

∣∣∣∣∣

K∑

u=1

E

[
1

T 2

T∑

t1=1

T∑

t3=1

zu (xit1) zu (xjt3)

]∣∣∣∣∣

≤
K∑

u=1

1

T 2

T∑

t1=1

T∑

t3=1

(
E
[
z2u (xit1)

]
E
[
z2u (xjt3)

])1/2

≤
K∑

u=1

1

T 2

T∑

t1=1

T∑

t3=1

(
E
[
z4+η
u (xit1)

]
E
[
z4+η
u (xjt3)

])1/(4+η)

≤
K∑

u=1

1

T 2

T∑

t1=1

T∑

t3=1

(
E
[
z4+η
u (xit1)

]
E
[
z4+η
u (xjt3)

])1/4
= O(k3d/2).

Similar to the proof of the first result of Lemma 2, 1
N2

∑N
i=1

∑N
j=1E

[
1
T 2

∑T
t2=1

∑T
t4=1 eit2ejt4

]
=

O
(

1
NT

)
. Thus, E

∥∥∥ 1
N

∑N
i=1 Z̄i.ēi.

∥∥∥
2
= O

(
k3d/2

NT

)
. Based on the above, we have

∥∥∥∥
1

NT
Z ′ (IN ⊗MiT ) E

∥∥∥∥
2

= Op

(
k3d/2

NT

)
. (A.13)

According to the fifth result of Lemma 2 and (A.13), we obtain

∥∥∥
[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E
∥∥∥
2

= E ′ (IN ⊗MiT )Z
[
Z ′ (IN ⊗MiT )Z

]− [Z ′ (IN ⊗MiT )Z
]−Z ′ (IN ⊗MiT ) E

≤
[
λmin

(
1

NT
Z ′ (IN ⊗MiT )Z

)]−2

·
∥∥∥∥

1

NT
Z ′ (IN ⊗MiT ) E

∥∥∥∥
2

= Op

(
k3d/2

NT

)
. (A.14)
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We now consider [Z ′ (IN ⊗MiT )Z]−Z ′ (IN ⊗MiT )D(θ0) and write
∥∥∥
(
Z ′ (IN ⊗MiT )Z

)−Z ′ (IN ⊗MiT )D(θ0)
∥∥∥
2

= D(θ0)
′ (IN ⊗MiT )Z

(
Z ′ (IN ⊗MiT )Z/(NT )

)−

·
(
Z ′ (IN ⊗MiT )Z

)−Z ′ (IN ⊗MiT )D(θ0)/(NT )

≤
[
λmin

(
Z ′ (IN ⊗MiT )Z/(NT )

)]−1

·D(θ0)
′ (IN ⊗MiT )Z

(
Z ′ (IN ⊗MiT )Z

)−Z ′ (IN ⊗MiT )D(θ0)/(NT )

≤
[
λmin

(
Z ′ (IN ⊗MiT )Z/(NT )

)]−1 · λmax(W ) ·
(
‖D(θ0)‖2 /(NT )

)
. (A.15)

Note that W = (IN ⊗MiT )Z (Z ′ (IN ⊗MiT )Z)−Z ′ (IN ⊗MiT ) is symmetric and idempotent,

so λmax(W ) = 1. According to Assumption 3.ii and the Weak Law of Large Numbers (WLLN), it

is easy to know that ‖D(θ0)‖2 /(NT ) = op (k
−r). In connection with the fifth result of Lemma 2 of

this appendix, we obtain that
∥∥∥
[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0)
∥∥∥
2
= op

(
k−r
)
. (A.16)

Therefore, the theorem follows form (A.14) and (A.16). �

Proof of Theorem 2: It is easy to know that sgn(β̂1) ·
(∑d

i=1 β̂
2
i

)−1/2
converges to |c1|−1 by

(2.7) and Theorem 1, so we only need to consider
√
NT ·Q3

(
β̂ − β

)
and write

√
NT ·Q3

(
β̂ − β

)
=

√
NT ·Q3

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0)

+
√
NT ·Q3

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E . (A.17)

Notice that K = O
(
kd
)
and Q3 = O (1). In connection with (A.16) and the assumption in the

body of this theorem, it is straightforward to obtain
∥∥∥
√
NT ·Q3

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0)
∥∥∥

≤
√
NT ·O(1) · op

(
k−r/2

)
= op(1). (A.18)

Then, to achieve the normality, we need only to consider the second term on RHS of (A.17).

√
NT ·Q3

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E

=
√
NT ·Q3

((
1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−
)(

1

NT
Z ′ (IN ⊗MiT ) E

)

+
√
NT ·Q3 (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
(A.19)

For two non-singular symmetric matrices A,B with same dimensions, we observe that by The-

orem 2 on page 35 of Magnus (2007)

∥∥A−1 −B−1
∥∥2 =

∥∥B−1 (B −A)A−1
∥∥2 =

∥∥vec
(
B−1 (B −A)A−1

)∥∥2

=
∥∥(A−1 ⊗B−1

)
vec (B −A)

∥∥2 ≤ λ−2
min (A⊗B) ‖vec (B −A)‖2 = λ−2

min (A⊗B) ‖B −A‖2 ,
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where λmin (A⊗B) = λmin (A) · λmin (B) by Theorem 1 on page 28 of Magnus (2007). Therefore,

in connection with the proof of the fifth result of Lemma 2 in this appendix,
∥∥∥∥∥

(
1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−
∥∥∥∥∥ = Op

(√
k3d

NT

)
.

Moreover, by (A.13), we can obtain that
∥∥∥∥∥
√
NT ·Q3

((
1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−
)(

1

NT
Z ′ (IN ⊗MiT ) E

)∥∥∥∥∥

≤
√
NT ·Op

(√
k3d

NT

)
·Op

(√
k3d/2

NT

)
= Op

(√
k4.5d

NT

)
= op (1) .

The second term on RHS of (A.19) can be written as follows.

√
NT ·Q3 (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)

=
√
NT ·Q3 (Q1 −Q2)

− 1

N

N∑

i=1

(
qi − Z̄i.

)
ēi.

+
√
NT ·Q3 (Q1 −Q2)

− 1

NT

N∑

i=1

T∑

t=1

(Z (xit)− qi) eit (A.20)

For the first term on RHS of (A.20), we have E
∥∥∥ 1
N

∑N
i=1

(
qi − Z̄i.

)
ēi.

∥∥∥
2
= O

(
k3d/2

NT 2

)
. Similar

to (A.14),
∥∥∥(Q1 −Q2)

− 1
N

∑N
i=1

(
qi − Z̄i.

)
ēi.

∥∥∥ = Op

(√
k3d/2

NT 2

)
.

Therefore,

∥∥∥∥∥
√
NT ·Q3 (Q1 −Q2)

− 1

N

N∑

i=1

(
qi − Z̄i.

)
ēi.

∥∥∥∥∥ ≤
√
NT ·O (1) ·Op

(√
k3d/2

NT 2

)
= op (1) .

Since xit and eit are assumed to be stationary and α-mixing, we now use the large-block and

small-block technique (e.g. Theorem 2.21 in Fan and Yao (2003); Lemma A.1 in Gao (2007);

Lemma A.1 in Chen et al. (2012b)) to prove the normality for the second term on RHS of (A.20).

Write

√
NT ·Q3 (Q1 −Q2)

− 1

NT

N∑

i=1

T∑

t=1

(Z (xit)− qi) eit =
T∑

t=1

VNT (t) , (A.21)

where VNT (t) = 1√
NT

∑N
i=1Q3 (Q1 −Q2)

− (Z (xit)− qi) eit.

Notice that Q3 is just a selection matrix that selects the first d elements of β̂, so VNT is a

summation of random vectors with finite dimensions d× 1. Then, the conventional Central Limit

Theory (CLT) applies.

Partition the set {1, . . . , T} into 2κT +1 subsets with large block with size lT , small block with

size sT and the remaining set with size T − κT (lT + sT ), where

lT = ⌊T (λ−1)/λ⌋, sT = ⌊T 1/λ⌋, κT = ⌊T/ (lT + sT )⌋ for any λ > 2.
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For ρ = 1, . . . , κT , let V̂ =
∑T

t=κT (lT+sT )+1 VNT (t).

Ṽρ =

ρlT+(ρ−1)sT∑

t=(ρ−1)(lT+sT )+1

VNT (t) and V̄ρ =

ρ(lT+sT )∑

t=ρlT+(ρ−1)sT+1

VNT (t) .

For the small blocks, it can be seen

E

∥∥∥∥∥∥

κT∑

ρ=1

V̄ρ

∥∥∥∥∥∥

2

=
1

d

d∑

u=1





κT∑

ρ=1

E
[
v̄2ρ,u

]
+ 2

κT∑

ρ=2

(κT − ρ+ 1)E [v̄1,uv̄ρ,u]



 ,

where V̄ρ =
∑ρ(lT+sT )

t=ρlT+(ρ−1)sT+1 VNT (t) = (v̄ρ,1, . . . , v̄ρ,d)
′.

By the properties of α-mixing time series and a procedure similar to (A.6) in Chen et al. (2012b),

we obtain

E




κT∑

ρ=1

∥∥V̄ρ

∥∥2

 = O

(κT sT
T

)
= o(1).

Analogously, we have

E
∥∥∥V̂
∥∥∥
2
= O

(
T − κT lT

T

)
= o(1).

Therefore, in order to establish the CLT, we need only to consider
∑κT

ρ=1 Ṽρ. In connection with

Proposition 2.6 in Fan and Yao (2003) and the condition on the α-mixing coefficient, we have

∣∣∣∣∣∣
E


exp





κT∑

ρ=1

∥∥∥Ṽρ

∥∥∥






−

κT∏

ρ=1

E
[
exp

{∥∥∥Ṽρ

∥∥∥
}]
∣∣∣∣∣∣
≤ C (κT − 1)α(sT ) → 0

for some 0 < C < ∞, which implies that Ṽρ for ρ = 1, . . . , κT are asymptotically independent.

Furthermore, as in the proof of Theorem 2.21.(ii) in Fan and Yao (2003), we have

Cov
[
Ṽ1

]
=

lT
T
Ξ0 (I + o (1)) ,

where

Ξ0 = lim
N→∞

1

N

N∑

i=1

Q3 (Q1 −Q2)
−
{
E
[
e2i1 (Z (xi1)− qi) (Z (xi1)− qi)

′]

+
∞∑

t=2

E
[
ei1eit (Z (xi1)− qi) (Z (xit)− qi)

′]

+

∞∑

t=2

E
[
ei1eit (Z (xit)− qi) (Z (xi1)− qi)

′]
} (

Q′
1 −Q′

2

)−
Q′

3.

It further implies that

κT∑

ρ=1

Cov
[
Ṽρ

]
= κT · Cov

[
Ṽ1

]
=

κT lT
T

Ξ0 (I + o (1)) → Ξ0.
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Thus, the Feller condition is satisfied.

Moreover, by Cauchy-Schwarz inequality, we have

E

[∥∥∥Ṽρ

∥∥∥
2
· I {‖Vρ‖ ≥ ε}

]
≤
{
E

[∥∥∥Ṽρ

∥∥∥
3
]}2/3

·
{
P
(∥∥∥Ṽρ

∥∥∥ ≥ ε
)}1/3

≤ C

{
E

[∥∥∥Ṽρ

∥∥∥
3
]}2/3

·
{
E

[∥∥∥Ṽρ

∥∥∥
2
]}1/3

and by Lemma B.2 in Chen et al. (2012b),

E

[∥∥∥Ṽρ

∥∥∥
3
]
≤
(
lT
T

)3/2


E



∥∥∥∥∥

1√
N

N∑

i=1

Q3 (Q1 −Q2)
−1 (Z (xi1)− qi) ei1

∥∥∥∥∥

4






3/4

.

By the assumption in the body of the theorem

E



∥∥∥∥∥

1√
N

N∑

i=1

Q3 (Q1 −Q2)
−1 (Z (xi1)− qi) ei1

∥∥∥∥∥

4

 = O(1).

Therefore, E

[∥∥∥Ṽρ

∥∥∥
3
]
= O

((
lT
T

)3/2)
, which implies that

E

[∥∥∥Ṽρ

∥∥∥
2
· I {‖Vρ‖ ≥ ε}

]
≤ O

((
lT
T

)4/3
)

= o

(
lT
T

)
.

Consequently,
κT∑

ρ=1

E

[∥∥∥Ṽρ

∥∥∥
2
· I {‖Vρ‖ ≥ ε}

]
= o

(
κT lT
T

)
= o (1) .

Therefore, the Lindeberg condition is satisfied. Therefore, the proof is completed. �

Proof of Theorem 3: By (2.5), we have the following decomposition:

1

NT

N∑

i=1

T∑

t=1

g
(
x′itθ0

)
=

1

NT

N∑

i=1

T∑

t=1

Z (xit)
′ β + c0 +

1

NT

N∑

i=1

T∑

t=1

δk
(
x′itθ0

)
.

Moreover, 1
NT

∑N
i=1

∑T
t=1 g (x

′
itθ0) = Op

(
1√
NT

)
by the second result of Lemma 2. Plus ĉ0 from

both sides and organize the equation, so we obtain that

ĉ0 − c0 =
1

NT

N∑

i=1

T∑

t=1

Z (xit)
′
(
β − β̂

)
+

1

NT

N∑

i=1

T∑

t=1

δk
(
x′itθ0

)
+Op

(
1√
NT

)
. (A.22)

In view of the fact that
(

1
NT

∑N
i=1

∑T
t=1 Z (xit)

)(
1

NT

∑N
i=1

∑T
t=1 Z (xit)

′
)

has rank one and

using the similar procedure of (A.14), it may be shown
(

1

NT

N∑

i=1

T∑

t=1

Z (xit)
′
(
β − β̂

))2

=
(
β̂ − β

)′
(

1

NT

N∑

i=1

T∑

t=1

Z (xit)

)(
1

NT

N∑

i=1

T∑

t=1

Z (xit)
′
)(

β̂ − β
)

≤ C ·
∥∥∥β̂ − β

∥∥∥
2
= Op

(
k3d/2

NT

)
+ op

(
k−r
)
.
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By using Cauchy-Schwarz inequality twice

(
1

NT

N∑

i=1

T∑

t=1

δk
(
x′itθ0

)
)2

≤




N∑

i=1

(
1√
NT

T∑

t=1

δk
(
x′itθ0

)
)2

 ·
[

N∑

i=1

(
1√
N

)2
]

=
1

N

N∑

i=1

(
1

T

T∑

t=1

δk
(
x′itθ0

)
)2

≤ 1

NT

N∑

i=1

T∑

t=1

(
δk
(
x′itθ0

))2
.

Moreover, we have shown that 1
NT

∑N
i=1

∑T
t=1 (δk (x

′
itθ0))

2 = op (k
−r) in the proof of Theorem

1.

Based on the above, the result has been proved. �

Proof of Theorem 4: By (A.22) and the assumptions in the body of this theorem, it is easy to

obtain the next equation after some algebra.

√
NT

K3/2

(
ĝ
(
x′θ̂
)
− g(x′θ0)

)

=

√
NT

K3/2
ZNT (x)

′ [Z ′ (IN ⊗MiT )Z
]−Z ′ (IN ⊗MiT )D(θ0)

+

√
NT

K3/2
ZNT (x)

′ [Z ′ (IN ⊗MiT )Z
]−Z ′ (IN ⊗MiT ) E + op(1), (A.23)

where ZNT (x) =
(
Z (x)− 1

NT

∑N
i=1

∑T
t=1 Z (xit)

)
.

In connection with (A.16), it is straightforward to obtain that

∥∥∥∥∥

√
NT

K3/2
ZNT (x)

′ [Z ′ (IN ⊗MiT )Z
]−Z ′ (IN ⊗MiT )D(θ0)

∥∥∥∥∥

≤
√

NT

K3/2
·Op(

√
k3d/2) ·Op

(
k−r/2

)
= Op

(√
NT

kr

)
= op(1). (A.24)

Thus, to prove the normality, we need only to consider the second term on RHS of (A.23):

√
NT

K3/2
ZNT (x)

′ [Z ′ (IN ⊗MiT )Z
]−Z ′ (IN ⊗MiT ) E

=

√
NT

K3/2
ZNT (x)

′
((

1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−
)(

1

NT
Z ′ (IN ⊗MiT ) E

)

+

√
NT

K3/2
ZNT (x)

′ (Q1 −Q2)
−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
. (A.25)

Similar to the proof procedure of Theorem 2, write

∥∥∥∥∥

√
NT

K3/2
ZNT (x)

′
((

1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−
)(

1

NT
Z ′ (IN ⊗MiT ) E

)∥∥∥∥∥

≤
√

NT

K3/2
·Op

(√
k3d/2

)
·Op

(√
k3d

NT

)
·Op

(√
k3d/2

NT

)
= Op

(√
k4.5d

NT

)
.
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Similarly, we can show

√
NT

K3/2
ZNT (x)

′ (Q1 −Q2)
−
(

1

NT
Z ′ (IN ⊗MiT ) E

)

=

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
+Op

(√
k3d/2

T

)
.

Thus, we just need to focus on the next term:

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)

=

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

− 1

N

N∑

i=1

(
qi − Z̄i.

)
ēi.

+

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

− 1

NT

N∑

i=1

T∑

t=1

(Z (xit)− qi) eit. (A.26)

In Theorem 2, we have shown that

∥∥∥∥∥(Q1 −Q2)
− 1

N

N∑

i=1

(
qi − Z̄i.

)
ēi.

∥∥∥∥∥ = O

(√
k3d/2

NT 2

)
.

Hence, we obtain

∥∥∥∥∥

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

− 1

N

N∑

i=1

(
qi − Z̄i.

)
ēi.

∥∥∥∥∥

≤
√

NT

K3/2
·O
(√

k3d/2
)
·Op

(√
k3d/2

NT 2

)
= op (1) .

We still use the large-block and small-block technique to prove the normality for the second

term on RHS of (A.26). Write

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

− 1

NT

N∑

i=1

T∑

t=1

(Z (xit)− qi) eit =

T∑

t=1

VNTK (t) , (A.27)

where

VNTK (t) =
1√

NTK3/2

N∑

i=1

(Z(x)− q̄)′ (Q1 −Q2)
− (Z (xit)− qi) eit.

Notice that

(
(Z(x)− q̄)′ (Q1 −Q2)

− (Z (xit)− qi) eit
)2

≤ λmax

(
(Z(x)− q̄)(Z(x)− q̄)′

)
·
∥∥(Q1 −Q2)

− (Z (xit)− qi) eit
∥∥2

= Op(k
3d/2),

so that VNTK is a summation of random scalar and its absolute value is bounded uniformly in

K with probability one. Then the conventional CLT is applicable. The rest of the proof will be
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exactly the same as that of Theorem 2 of this paper and that of Lemma A.1 in Chen et al. (2012b),

so we omit them there. �

Proof of Theorem 5: By the uniqueness of the Moore-Penrose inverse and the fourth result of

Lemma 3 of this appendix above, the (k−1)×(k−1) dimensions matrix
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−

is the inverse of H(θ̂)′ (IN ⊗MiT )H(θ̂) for each k. Therefore,

Ĉ − C =
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )Y

−
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )H(θ̂)C

=
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )

(
G(θ0)− G(θ̂)

)

+
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )D(θ̂)

+
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT ) E , (A.28)

where G(θ)NT×1 = (g (x′11θ) , . . . , g (x
′
1T θ) , . . . , g (x

′
N1θ) , . . . , g (x

′
NT θ))

′ for ∀θ ∈ Θ.

Similar to (A.16), we have

∥∥∥∥
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )D(θ̂)

∥∥∥∥
2

= op
(
k−r
)
.

By the third and fourth results of Lemma 3 and the similar procedure of (A.14), we obtain

∥∥∥∥
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT ) E

∥∥∥∥
2

= Op

(
k3/2

NT

)
.

Then, we need only to consider the next term. By the same proof as (A.15) and Assumption

4.iii, we write

∥∥∥∥
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )

(
G(θ0)− G(θ̂)

)∥∥∥∥
2

≤
(
λmin

(
H(θ̂)′ (IN ⊗MiT )H(θ̂)/(NT )

))−1
· λmax(W̃ ) ·

(∥∥∥G(θ0)− G(θ̂)
∥∥∥
2
/(NT )

)

≤
(
λmin

(
H(θ̂)′ (IN ⊗MiT )H(θ̂)/(NT )

))−1
· λmax(W̃ ) ·

(
‖X‖2 ·

∥∥∥θ0 − θ̂
∥∥∥
2
/(NT )

)
,

where XNT×1 = (M(x11), . . . ,M(x1T ), . . . ,M(xN1), . . . ,M(xNT ))
′ and

W̃ = (IN ⊗MiT )H(θ̂)
(
H(θ̂)′ (IN ⊗MiT )H(θ̂)

)−
H(θ̂)′ (IN ⊗MiT ) .

Since W̃ is symmetric and idempotent, λmax(W̃ ) = 1.

By Assumption 4.iii and Theorem 2, we know that

1

NT
‖X‖2 ·

∥∥∥θ0 − θ̂
∥∥∥
2
=

1

NT

N∑

i=1

T∑

t=1

(M(xit))
2 ·
∥∥∥θ0 − θ̂

∥∥∥
2
= Op

(
1

NT

)
.
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Hence, similar with (A.16), we obtain that

∥∥∥∥
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )

(
G(θ0)− G(θ̂)

)∥∥∥∥
2

= Op

(
1

NT

)
.

Based on the above, the result has been proved. �

Proof of Corollary 2: Write

∫
(ĝ1(w)− g(w))2 · exp

(
−w2/2

)
dw

=

∫ (
H(w)Ĉ + c̃0 − c0 −H(w)C − δk (w)

)2
· exp

(
−w2/2

)
dw

≤ 4

∫ (
Ĉ − C

)′
H(w)H(w)′

(
Ĉ − C

)
· exp

(
−w2/2

)
dw

+4 ‖c̃0 − c0‖2 + 2

∫
δk (w)

2 · exp
(
−w2/2

)
dw

= 4
∥∥∥Ĉ − C

∥∥∥
2
+ 4 ‖c̃0 − c0‖2 + 2

∫
δk (w)

2 · exp
(
−w2/2

)
dw.

By going through the exactly same procedure as Theorem 3, it is easy to prove that

‖c̃0 − c0‖2 = Op

(
k3/2

NT

)
+ op

(
k−r
)
.

For the truncated residual term, it is easy to verify the standard multivariate normal den-

sity is covered by Assumption 3.ii. Therefore,
∫
δk (w)

2 · exp
(
−w2/2

)
dw = o(k−r) by using the

substitution rule of integration and Assumption 3.ii. �
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