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Semiparametric Transformation Models
for Survival Data With a Cure Fraction

Donglin ZENG, Guosheng YIN, and Joseph G. IBRAHIM

We propose a class of transformation models for survival data with a cure fraction. The class of transformation models is motivated by
biological considerations and includes both the proportional hazards and the proportional odds cure models as two special cases. An
efficient recursive algorithm is proposed to calculate the maximum likelihood estimators (MLEs). Furthermore, the MLEs for the regression
coefficients are shown to be consistent and asymptotically normal, and their asymptotic variances attain the semiparametric efficiency
bound. Simulation studies are conducted to examine the finite-sample properties of the proposed estimators. The method is illustrated on
data from a clinical trial involving the treatment of melanoma.

KEY WORDS: Cure model; Linear transformation models; Proportional hazards model; Proportional odds model; Semiparametric effi-
ciency.

1. INTRODUCTION

In time-to-event data arising from cancer and AIDS clinical
trials, it is often observed that a proportion of subjects will never
fail. For analyzing such data, cure rate models have been pro-
posed and studied extensively. One type of commonly used cure
rate model is the so-called two-component mixture cure model
(Berkson and Gage 1952), which treats the whole population as
a mixture of cured subjects and noncured subjects. This mix-
ture model has been studied by many authors, including Gray
and Tsiatis (1989), Sposto, Sather, and Baker (1992), Laska
and Meisner (1992), Kuk and Chen (1992), Taylor (1995), Sy
and Taylor (2000), and Lu and Ying (2004), among others. The
book by Maller and Zhou (1996) provides a detailed discus-
sion of frequentist methods of inference for the two-component
mixture cure model.

Although the mixture cure model is intuitively attractive, it
does have several drawbacks from both a Bayesian and frequen-
tist perspective, as pointed out by Chen, Ibrahim, and Sinha
(1999) and Ibrahim, Chen, and Sinha (2001). An alternative
cure rate model with desirable properties, called the promotion
time cure model, has been proposed and studied by Yakovlev
and Tsodikov (1996), Tsodikov (1998), and Chen et al. (1999).
In this model the cured subjects are assumed to have sur-
vival time equal to infinity, and the survival distribution for
either cured subjects or noncured subjects can be integrated
into one single formulation. For the ith individual with covari-
ate Xi in the population, the survival function of subject i is
given by

S(t|Xi) = exp{−θ(Xi)F(t)}, (1)

where θ(·) is a known link function and F(t) is a distrib-
ution function. Under the promotion time cure model (1),
the cure rate is S(∞|Xi) = exp{−θ(Xi)} and the hazard rate
at time t for subject i is equal to θ(Xi)f (t), where f (t) =
dF(t)/dt. Thus we see that model (1) has the proportional
hazards structure when the covariates are modeled through
θ(·). Moreover, when θ(Xi) = exp(βTXi) and β contains
an intercept term β0, model (1) becomes the usual Cox
(1972) proportional hazards model subject to the restriction
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of a bounded cumulative baseline hazard function, given by
�(t) = F(t) exp(β0). Thus any cure rate model has a bounded
cumulative hazard, leading to an improper survival func-
tion [i.e., S(∞) > 0], whereas noncure models, such as the
Cox model (Cox 1972), have an unbounded cumulative haz-
ard, thus leading to a proper survival function [i.e., S(∞) =
0].

Yakovlev and Tsodikov (1996) and Chen et al. (1999) pro-
vided a biological derivation for model (1). The motivation
comes from studying the time to relapse of cancer for patients
with or without tumor cells. Specially, the promotion time cure
model is derived as follows. For the ith subject, let Ni denote the
number of tumor cells that have the potential of metastasizing,
that is, the number of metastasis-competent tumor cells. The
Ni’s are unobservable latent variables. We assume that Ni has a
Poisson distribution with Poisson rate (mean) θ(Xi). We denote
the promotion time for the kth tumor cell by T̃k (k = 1, . . . ,Ni),
which is the time for the kth metastasis-competent tumor cell to
produce a detectable tumor mass. The T̃k’s are also unobserv-
able quantities. Conditional on Ni, the T̃k’s are independent and
identically distributed (iid) as F, where F is sometimes referred
to as the promotion time cumulative distribution function. Then
the time to relapse of cancer, defined as T = min(T̃1, . . . , T̃Ni),
which is the observed event time, has the survival function

S(t|Xi) = P(Ni = 0)

+
∑

k≥1

P(T̃1 > t, . . . , T̃k > t|Ni = k)P(Ni = k)

= exp{−θ(Xi)} +
∞∑

k=1

{1 − F(t)}k θ(Xi)
k exp{−θ(Xi)}

k!
= exp{−θ(Xi)F(t)}.

In the derivation of (1), one critical assumption is that, con-
ditional on the number of tumor cells, Ni = k, (T̃1, . . . , T̃k) are
mutually independent. This assumption may be unrealistic, be-
cause (T̃1, . . . , T̃k) are unobserved random variables taken on
the same subject. One possible relaxation and remedy of this
assumption is to introduce a subject-specific frailty ξi such that
conditional on both Ni = k and ξi, (T̃1, . . . , T̃k) are mutually
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Zeng, Yin, and Ibrahim: Transformation Models for Survival Data 671

independent with distribution function F(t). Moreover, we as-
sume that conditional on Xi and ξi, Ni has a Poisson distribu-
tion with rate ξiθ(Xi); thus ξi represents the heterogeneity of
the Poisson rates in the Ni’s. Following the same derivation as
before, we then obtain that the survival function for the time to
relapse, T , is

S(t|Xi) = Eξi

[
e−θ(Xi)F(t)ξi

]
,

where Eξi denotes the expectation with respect to ξi. For ex-
ample, when ξi has a gamma distribution with mean 1 [i.e.,
ξi has density {γ 1/γ �(1/γ )}−1ξ

1/γ−1
i exp(−ξi/γ )], after sim-

ple algebra, we obtain

S(t|Xi) = {1 + γ θ(Xi)F(t)}−1/γ .

Equivalently, we can write

S(t|Xi) = Gγ {θ(Xi)F(t)}, (2)

where Gγ (·) is the transformation

Gγ (x) =
{

(1 + γ x)−1/γ , γ > 0
e−x, γ = 0.

(3)

Through (2) and (3), we obtain a very general class of trans-
formation cure models and note that the proportional hazards
cure rate model in (1) is a special case of this class corre-
sponding to γ = 0. There are also other interesting special
cases arising from (2) and (3). When γ = 1, we obtain a
proportional odds type of cure model similar in flavor to the
proportional odds models with proper survival functions con-
sidered by Pettitt (1982) and Bennett (1983). Moreover, the
general form of the class in (2) not only has a strong biolog-
ical motivation, but also can reduce to the usual linear trans-
formation models studied by Cheng, Wei, and Ying (1995)
under a special choice of θ(·). For instance, if we choose
θ(Xi) = exp(β0 + βT

1 Zi) with Xi = (1,ZT
i )T , β = (β0,β

T
1 )T ,

and β0 being the intercept term in the regression, then model (2)
is equivalent to S(t|Zi) = Gγ {exp(βT

1 Zi)�(t)}, where �(t) =
F(t) exp(β0) is the cumulative baseline hazard. But when θ(Xi)

has a form other than θ(Xi) = exp(βTXi) [e.g., if θ(Xi) =
exp(βTXi)/{1 + exp(βTXi)}], then model (2) is quite different
from the linear transformation model.

When γ , which specifies transformations in (3), is treated
as an unknown parameter, the model parameters may not be
identifiable. For example, suppose that θ(X) = exp(β0). Then
for any γ �= γ̃ , we can find a β̃0, different from β0, such that

{1 + γ eβ0}−1/γ = {
1 + γ̃ eβ̃0

}−1/γ̃
.

Thus for any distribution function F(t), we define F̃(t) so that

{1 + γ eβ0F(t)}−1/γ = {
1 + γ̃ eβ̃0 F̃(t)

}−1/γ̃
.

Clearly, F̃(t) is also a distribution function. Consequently, the
two sets of parameters (γ,β0,F) and (γ̃ , β̃0, F̃) give the same
survival function, so they are not distinguishable from the ob-
served data. More identifiability results are given in Section 4.
In addition, in most practical applications, there is little infor-
mation in the data from which to estimate γ with a reasonable
degree of precision for small to even moderately large sample
sizes. In these situations, the likelihood function of γ is flat.
Our experience shows that γ can be well estimated when the

sample size is very large, such as n = 1,500 or larger. Because
of these limitations, we focus on the γ fixed case throughout
the development of our model and asymptotic theory. However,
in Section 4 we discuss estimation of γ when it is identifiable
and also suggest a model selection strategy for choosing γ in
the γ fixed case.

The transformation in (2) may not necessarily be from the
family (3); different transformations are possible when ξ takes
other distributions. For example, we may consider the following
Box–Cox type transformations:

Gγ (x) =






exp

{
− (1 + x)γ − 1

γ

}
, γ > 0

1

1 + x
, γ = 0.

(4)

In this family, γ = 1 yields the proportional hazards model,
whereas γ = 0 yields the proportional odds model. In this arti-
cle, we study general classes of transformations G(·) and link
functions θ(·) and examine inference based on maximum like-
lihood estimation. However, for ease and clarity of exposition,
we focus on the class in (3) or (4) and θ(Xi) = exp(βTXi) in the
examples of Section 5. In addition, the promotion time cumula-
tive distribution functions, F(t), are completely unspecified and
thus are estimated nonparametrically throughout.

The rest of the article is organized as follows. In Section 2
we introduce notation and propose an efficient computational
algorithm for the maximum likelihood estimation procedure. In
Section 3 we derive the asymptotic properties of the parameter
estimates, including consistency and asymptotic normality. In
Section 4 we discuss important issues of model selection, in-
cluding estimation of γ when it is identifiable as well as the
selection of γ when it is treated as fixed. In Section 5 we con-
duct simulation studies to evaluate the finite-sample properties
of the estimators and also illustrate the proposed model with
a real dataset. We give some concluding remarks in Section 6
and provide technical details for the proofs of the theorems in
the Appendix.

2. MAXIMUM LIKELIHOOD ESTIMATION

Suppose that there are n iid right-censored observations,
{Yi = Ti ∧ Ci,Xi,�i = I(Ti ≤ Ci); i = 1, . . . ,n}, where Ti ∧
Ci = min(Ti,Ci) and I(·) is the indicator function. We assume
that the follow-up time is infinite and that a proportion of sub-
jects never experience failure or right-censoring, that is, Yi = ∞
(so Ci = ∞) with probability 1 for some subjects. The right-
censoring time Ci is assumed to be conditionally independent
of Ti given Xi and to have a finite hazard rate almost every-
where. We assume that model (2) is used to link Ti with the
covariate vector Xi, where θ(Xi) = η(βTXi), η(·) is a known
and strictly positive link function and β includes an intercept
term.

Thus the observed-data likelihood function of the parameters
(β,F) is given by

n∏

i=1

{[{−G′(η(βTXi)F(Yi)
)
η(βTXi)f (Yi)

}�i

× {
G

(
η(βTXi)F(Yi)

)}(1−�i)
]I(Yi<∞)

× [
G(η(βTXi))

]I(Yi=∞)
}
, (5)
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where G′(x) denotes the derivative of G with respect to x and
f (·) is the density function corresponding to the distribution
function F(·) with respect to Lebesgue measure. We wish to
maximize the foregoing likelihood function to obtain the max-
imum likelihood estimators (MLEs) β and F; however, this
maximum does not exist, because one can choose f (Yi) = ∞
for some Yi with �i = 1. Thus we apply a nonparametric max-
imum likelihood estimation approach, where F is allowed to
be a right-continuous function. Instead of maximizing (5), we
maximize the following modified function:

n∏

i=1

{[{−G′(η(βTXi)F(Yi)
)
η(βTXi)F{Yi}

}�i

× {
G

(
η(βTXi)F(Yi)

)}(1−�i)
]I(Yi<∞)

× [
G(η(βTXi))

]I(Yi=∞)
}
, (6)

where F{Yi} is the jump size of F at Yi. The MLE for F
is termed the nonparametric maximum likelihood estimator
(NPMLE) for F, and it is easy to show that the estimate for F
must be a distribution function only with point masses at the ob-
served Yi with �i = 1. To estimate F(t) nonparametrically, we
must determine a follow-up time such that all censored obser-
vations beyond that follow-up time, called the cure threshold,
are treated as Yi = ∞ (i.e., observed to be cured) and all obser-
vations lower than this threshold are treated as Yi < ∞ (i.e., ob-
served to be either a failure or right-censored). This assumption
is needed so that the model is identifiable in (β,F), as shown
in Section 3. Note that if a parametric form is assumed for F
(as in Ibrahim et al. 2001), then the condition that some of the
Yi’s are observed to be infinity is not needed.

To compute the MLEs, we first derive the F that maxi-
mizes (6) for fixed β . Equivalently, we maximize the logarithm
of (6), which is equal to

n∑

i=1

I(Yi < ∞)
[
�i log pi + �i log

{−G′(η(βTXi)Fi
)}

+ (1 − �i) log G
(
η(βTXi)Fi

)]
,

subject to the constraint
∑

j �jI(Yj < ∞)pj = 1, where pi =
F{Yi} denotes the jump size of F at Yi and Fi = ∑

Yj≤Yi,�j=1 pj.
If we order the observed failure times from smallest to largest
and use the indices (1), . . . , (m) for the ordered times, Y(1) <

· · · < Y(m), where m = ∑
i �iI(Yi < ∞), then, after introducing

the Lagrange multiplier λ, we obtain p(i) by solving the equa-
tion

1

p(i)
+

n∑

j=1

{
�j

G′′(η(βTXj)Fj)η(βTXj)I(Y(i) ≤ Yj < ∞)

G′(η(βTXj)Fj)

+ (1 − �j)

× G′(η(βTXj)Fj)η(βTXj)I(Y(i) ≤ Yj < ∞)

G(η(βTXj)Fj)

}

− λ

= 0,

where G′′(x) denotes the second derivative of G with respect
to x. Thus it follows that

1

p(i+1)

= 1

p(i)

+
∑

Y(i)≤Yj<Y(i+1)

{
�j

G′′(η(βTXj)Fj)η(βTXj)

G′(η(βTXj)Fj)

+ (1 − �j)
G′(η(βTXj)Fj)η(βTXj)

G(η(βTXj)Fj)

}
.

Equivalently,

1

p(i+1)

= 1

p(i)

+ G′′(η(βTX(i))F(i))η(βTX(i))

G′(η(βTX(i))F(i))

+
∑

Y(i)<Yj<Y(i+1)

G′(η(βTXj)F(i))η(βTXj)

G(η(βTXj)F(i))
, (7)

where F(i) = p(1) + · · ·+ p(i). Using the fact that
∑m

i=1 p(i) = 1,
we can also write (7) as

1

p(i)
= 1

p(i+1)

− G′′(η(βTX(i))(1 − S(i+1)))η(βTX(i))

G′(η(βTX(i))(1 − S(i+1)))

−
∑

Y(i)<Yj<Y(i+1)

G′(η(βTXj)(1 − S(i+1)))η(βTXj)

G(η(βTXj)(1 − S(i+1)))
,

(8)

where S(i+1) = p(i+1) + p(i+2) + · · · + p(m). From (7), we ob-
tain a recursive formula of calculating p(i+1) from p(i) and F(i);
whereas from (8), we obtain another recursive formula of cal-
culating p(i) from p(i+1) and S(i+1). When G′′ > 0 and G′ < 0,
we prefer to use (8), because it ensures that 0 < p(i) < p(i+1)

once p(i+1) > 0 and S(i+1) < 1.
Hence, from (8), we can treat β , α ≡ p(m) > 0, and λ as

independent parameters and p(1), . . . ,p(m−1) as functions of
β and α. Then the constrained maximum likelihood equations
for β and p(1), . . . ,p(m) can be reduced to solving the following
score equations for β , α, and λ:

0 =
m∑

i=1

1

p(i)

∂

∂β
p(i)

+
m∑

i=1

G′′(η(βTX(i))F(i))

G′(η(βTX(i))F(i))

×
{
η′(βTX(i)

)
X(i)F(i) + η

(
βTX(i)

) ∂

∂β
F(i)

}

+
m∑

i=1

∑

Y(i)<Yj<Y(i+1)

G′(η(βTXj)F(i))

G(η(βTXj)F(i))

×
{
η′(βTXj)XjF(i) + η(βTXj)

∂

∂β
F(i)

}

+
n∑

j=1

�jXj (9)
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+
n∑

j=1

I(Yj = ∞)
G′(η(βTXj))

G(η(βTXj))
η′(βTXj)Xj

− λ

m∑

i=1

∂

∂β
p(i),

0 =
m∑

i=1

1

p(i)

∂

∂α
p(i)

+
m∑

i=1

G′′(η(βTX(i))F(i))

G′(η(βTX(i))F(i))
η
(
βTX(i)

) ∂

∂α
F(i)

+
m∑

i=1

∑

Y(i)<Yj<Y(i+1)

G′(η(βTXj)F(i))

G(η(βTXj)F(i))
η(βTXj)

∂

∂α
F(i)

− λ

m∑

i=1

∂

∂α
p(i),

0 =
m∑

i=1

p(i) − 1.

After eliminating λ from the first two equations, the Newton–
Raphson algorithm can be used to solve the system of equations
in (9). The first and second derivatives of p(i) with respect to
β and α can be computed using the recursive formula (8).

We denote the MLEs for β and α by β̂n and α̂n. We can
estimate the asymptotic variance of (β̂n, α̂n) based on the pro-
file log-likelihood function for (β, α), which is defined as the
maximum value of the logarithm of (6) for any fixed (β, α) and
is denoted by pln(β, α). The asymptotic variance of (β̂n, α̂n)

can be estimated using the negative inverse of the curvature of
pln(β, α) at (β̂n, α̂n), that is,

−
(

∂2

∂β2 pln(β, α) ∂2

∂β ∂α
pln(β, α)

∂2

∂α ∂β pln(β, α) ∂2

∂α2 pln(β, α)

)−1 ∣∣∣∣∣
β=β̂n,α=α̂n

.

Specifically, the second derivative of pln(β, α) with respect to
β and α can be calculated based on the following chain rule and
the recursive formula (8):

∂

∂β
pln(β, α) = ∂

∂β
ln(β,F) +

m−1∑

i=1

∂ln(β,F)

∂p(i)

∂p(i)

∂β

and

∂

∂α
pln(β, α) = ∂

∂α
ln(β,F) +

m−1∑

i=1

∂ln(β,F)

∂p(i)

∂p(i)

∂α
,

where ln(β,F) is the logarithm value of (6). The justification
of the foregoing variance estimation method is based on the
profile likelihood theory of Murphy and van der Vaart (2000),
and is discussed in the Appendix.

3. ASYMPTOTIC PROPERTIES

In this section we establish theorems characterizing the as-
ymptotic properties of (β̂n, α̂n). To achieve consistency and as-
ymptotic normality, we first need the following assumptions:

(C1) The covariate X is bounded with probability 1, and if
there exists a vector β̃ such that β̃TX = 0 with proba-
bility 1, then β̃ = 0.

(C2) Conditional on X, the right-censoring time C is inde-
pendent of T , and P(C = ∞|X) > 0.

(C3) The true value of β , denoted by β0, belongs to the
interior of a known compact set B0, and the true pro-
motion time cumulative distribution function F0 is dif-
ferentiable with F′

0(x) > 0 for all x ∈ R
+.

(C4) The link function η(·) is strictly increasing and twice-
continuously differentiable with η(·) > 0. Furthermore,
the transformation G satisfies

G(0) = 1, G(x) > 0, G′(x) < 0,

G(3)(x) exists and is continuous,

where G(3)(x) is the third derivative of G(x).

Condition (C1) is the usual condition for a design matrix in
regression settings. The condition P(C = ∞|X) in (C2) ensures
that at least some cured subjects are not right-censored; other-
wise, if all subjects either fail or are right-censored, then, intu-
itively, one would be unable to identify the cure rate. In (C3),
β is assumed to be bounded. Such an assumption is often
imposed in semiparametric inference, because practical calcu-
lation is always performed within a reasonable bounded set.
Many link functions η(·) and G(·) satisfy the conditions in (C4).
Examples of η(·) include η(x) = ex, η(x) = ex/(1 + ex), and
η(x) = �(x), where � is the cumulative distribution function
of the standard normal distribution. Examples of transforma-
tions satisfying (C4) include the transformations (1 + γ x)−1/γ

for γ > 0 and exp(−x) for γ = 0, as well as some others,
such as G(x) = {1 + log(1 + x)}−γ for γ > 0 and G(x) =
exp{−((1 + x)γ − 1)/γ } for γ > 0.

Before stating the main results, we first show that under con-
ditions (C1)–(C4), the parameters β and F are identifiable. Sup-
pose that two sets of parameters, (β,F) and (β̃, F̃), give the
same likelihood function for the observed data. We claim that
β = β̃ and F = F̃. Because

[{−G′(η(βTX)F(Y)
)
η(βTX)f (Y)

}�

× {
G

(
η(βTX)F(Y)

)}(1−�)
]I(Y<∞)

× [G(η(βTX))]I(Y=∞)

=
[{−G′(η(β̃TX)F̃(Y)

)
η(β̃TX)f̃ (Y)

}�

× {
G

(
η(β̃TX)F̃(Y)

)}(1−�)
]I(Y<∞)

× [
G(η(β̃TX))

]I(Y=∞)
, (10)

we choose Y = ∞. Then, from the monotonicity of both
G and η, it follows that βTX = β̃TX. Thus condition (C1) gives
β = β̃ . Furthermore, by letting � = 1 and Y = y and integrat-
ing both sides of (10) from 0 to y, we have G(η(βTX)F( y)) =
G(η(β̃TX)F̃( y)); therefore, F( y) = F̃( y).

The following theorem establishes the consistency of
the MLE.
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Theorem 1. Under conditions (C1)–(C4), with probability 1,

|β̂n − β0| → 0 and sup
t∈R+

|F̂n(t) − F0(t)| → 0;

that is, both β̂n and F̂n are strongly consistent.

The basic idea in proving Theorem 1 is as follows. Suppose
that β̂n and F̂n converge to β∗ and F∗. We first construct an
empirical distribution function F̃n converging to F0. Then, be-
cause {ln(β̂n, F̂n) − ln(β0, F̃n)}/n ≥ 0, where ln(β,F) denotes
the observed log-likelihood function at (β,F), and this differ-
ence converges to the negative Kullback–Leibler divergence
between (β∗,F∗) and (β0,F0), the identifiability result gives
β∗ = β0 and F∗ = F0. This establishes the consistency result
in Theorem 1. Constructing the empirical function F̃n and us-
ing the Kullback–Leibler divergence to prove consistency has
been used by many others in semiparametric theory, includ-
ing Murphy (1994), Murphy, Rossini, and van der Vaart (1997),
Parner (1998), Slud and Vonta (2004), and Kosorok, Lee, and
Fine (2004), among others. However, observing the fact that
F̂n is a distribution function, proving the convergence of the
Kullback–Leibler divergence is not trivial in our case, as we
show in the Appendix.

Our second result concerns the joint asymptotic distribution
of β̂n and F̂n. To obtain the joint asymptotic distribution for
(β̂n, F̂n), we first introduce the set

H = {
(h1,h2) : h1 ∈ R

d,‖h1‖ < 1,

h2 is a function in [0,∞) with

its total variation bounded by 1
}
.

Here the total variation of a function h2 is defined as the
supremum of

∑m
i=1 |h2(ti+1) − h2(ti)| over all finite partitions

0 = t1 < t2 < · · · < tm+1 = ∞. We let ‖h2‖V denote the total
variation of h2. Then

√
n(β̂n − β0, F̂n − F0) can be treated as

a linear functional in l∞(H), the space of all bounded linear
functionals on H, defined as
√

n(β̂n − β0, F̂n − F0)[h1,h2]
= √

n(β̂n − β0)
T h1 + √

n
∫

h2(t)d(F̂n − F0).

The next theorem establishes the asymptotic distribution of√
n(β̂n − β0, F̂n − F0) in the metric space l∞(H).

Theorem 2. Under conditions (C1)–(C4),
√

n(β̂n − β0,

F̂n − F0) converges weakly to a mean-0 Gaussian process
in l∞(H). Furthermore, β̂n is efficient; equivalently, its as-
ymptotic variance attains the semiparametric efficiency bound
for β0.

The covariance matrix of the asymptotic Gaussian process is
given in the Appendix. A definition of the semiparametric ef-
ficiency bound has been provided by Bickel, Klaassen, Ritov,
and Wellner (1993, chap. 3). Thus Theorem 2 establishes that
the MLEs are asymptotically normal and efficient. The proof
of Theorem 2 is standard in most of the current semiparametric
literature (including Murphy 1995; Parner 1998; and Kosorok
et al. 2004). The proof relies on the linearization of the like-
lihood equations for β̂n and F̂n and uses theorem 3.3.1 of
van der Vaart and Wellner (1996). In the proof, verifying some

Donsker classes and proving the invertibility of the information
operator are the key steps. Both of these issues are discussed in
detail in the Appendix for the proposed model.

Theorem 2 has many useful applications. By letting h2(·) =
I(· ≤ t) for any t ≥ 0, we obtain that

√
n(β̂n −β0, F̂(t)− F0(t))

converges weakly to a mean-0 Gaussian process in l∞(Rd ×
[0,∞)). As a result, for fixed t0,

√
n(F̂n(t0) − F0(t0)) has

an asymptotic normal distribution with mean 0. If its asymp-
totic variance can be estimated, then one can easily construct
a confidence interval for F0(t0). Special choices of t0 can be
the quantiles of F0. Furthermore, when interest is in testing
whether the true promotion distribution function is equal to a
given distribution function F0, we can construct a test statistic√

n supt≥0 |F̂n(t) − F0(t)|, similar to the Kolmogorov–Smirnov
statistic. Then Theorem 2 implies that such a statistic has an
asymptotic distribution that is the same as the supremum of a
Gaussian process. We remark that in the foregoing cases, the
asymptotic covariance function of the Gaussian process in The-
orem 2 must be estimated. One practical way to estimate this
function is through a bootstrapping approach. The justification
of the bootstrapping procedure can be shown using the same
techniques used by Kosorok et al. (2004). We do not pursue
this issue further here, but focus only on inference for regres-
sion coefficients in the subsequent development.

4. ESTIMATION OF THE TRANSFORMATION G(·)
In the foregoing sections, the transformation G(·) was as-

sumed known. One important practical issue is how to estimate
G(·) using the observed data. We discuss two possible methods
to estimate this transformation.

The first approach is to consider G(·) from a parametric
transformation family {Gγ :γ ∈ �}, where � is a compact set in
Euclidean space. For example, Gγ arises from the family given
in (3) or (4). Using the observed data, we then estimate γ along
with β and F. However, as noted in Section 1, one serious prob-
lem with this approach is the possible nonidentifiability of γ .
However, for some special families of transformations, the pa-
rameters (γ,β,F) are identifiable, as stated in the following
proposition.

Proposition 1. Let X = (1,WT)T and β0 as (β01,β
T
0w)T . As-

sume that W has support containing a nonempty open interior
and that βT

0wW �= 0. Then, for transformations from the fam-
ily (3) and η(x) = exp(x), β0,F0, and γ0 are identifiable.

Proof. Suppose that (β̃, F̃, γ̃ ) gives the same observed like-
lihood function as (β0,F0, γ0), that is,

[{−G′
γ0

(
η(βT

0 X)F0(Y)
)
η(βT

0 X)f0(Y)
}�

× {
Gγ0

(
η(βT

0 X)F0(Y)
)}(1−�)

]I(Y<∞)

× [
Gγ0(η(βT

0 X))
]I(Y=∞)

=
[{−G′

γ̃

(
η(β̃TX)F̃(Y)

)
η(β̃TX)f̃ (Y)

}�

× {
Gγ̃

(
η(β̃TX)F̃(Y)

)}(1−�)
]I(Y<∞)

× [
Gγ̃ (η(β̃TX))

]I(Y=∞)
, (11)
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where Gγ (x) = (1 + γ x)−1/γ . We choose Y = ∞ in (11) and
obtain

{1 + γ̃ exp(β̃TX)}1/γ̃ = {1 + γ0 exp(βT
0 X)}1/γ0 .

Because both sides are analytic in W, this equality holds for
any W in real space. If γ0 < γ̃ , then, from the monotonicity of
(1 + γ x)1/γ , we have βT

0 X > β̃TX for any X. Immediately, we
conclude that β̃0w = β0w and β01 < β̃01. As a result, we have

{1+ γ̃ exp(β̃01 +βT
0wW)}1/γ̃ = {1+γ0 exp(β01 +βT

0wW)}1/γ0 ,

and this holds for any real W. Letting βT
0wW → ∞, we then

obtain γ0 = γ̃ and β01 = β̃01. Furthermore, choosing � = 1
and Y = y and integrating from 0 to y in (11), we obtain F̃( y) =
F0( y).

Proposition 1 states that if a continuous covariate has a
nonzero effect, then γ can be identified. When model parame-
ters are identifiable, with some additional regularity conditions
beyond (C.1)–(C.4), the NPMLEs for β,F, and γ are strongly
consistent and asymptotically normal; the details are given in
the remarks of the Appendix. This approach uses the observed
data to estimate the transformation parameter, and our proposed
algorithm can be easily adapted to incorporate this extra para-
meter estimation. However, this approach may not be useful for
practical applications, for the following reasons. First, with no
prior knowledge about the true covariate effects, there is always
a concern about identifying all of the parameters in the model,
because nonidentifiability can cause numerical instability in the
computations. Second, even if the parameters are identifiable,
our experience indicates that for small samples, the likelihood
function is typically quite flat as a function of γ . Thus, obtain-
ing an accurate estimate of γ requires a very large sample size,
which may not be practical in many biomedical studies. Third,
when the choices of transformations are from multiple fami-
lies of transformations that are parameterized differently, this
approach is no longer feasible.

Hence we suggest the following approach for estimating the
transformation G in practice. When many transformations are
under consideration, we can calculate the NPMLEs under each
transformation, then choose the transformation that maximizes
the Akaike information criterion (AIC). The AIC is defined as
the twice log-likelihood function minus twice the number of
parameters. In some applications, to obtain algebraically sim-
ple transformations, we may also penalize the complexity of
the transformation. Some possible choices of a penalty can be
the maximal difference between G(x) and exp(−x), so that we
can choose a model close to the proportional hazards model;
or the choice can be the maximal difference between G(x) and
1/(1 + x), so that we can choose a model close to the propor-
tional odds model. However, the determination of the trans-
formation complexity remains an unsolved issue, so we defer
further discussion to future work. Besides the AIC criterion,
other criteria can also be used, including the Bayesian informa-
tion criterion (BIC) (Schwarz 1978), the L measure (Ibrahim
and Laud 1994), and likelihood-based cross-validation. As an
additional note, in most practice the inference is based solely
on the selected model and thus the variance estimate does not
reflect the variation due to the model selection procedure. The

correction of the variance estimate, sometimes called post–
model selection inference, remains an open problem in semi-
parametric inference.

In the subsequent simulation study, we examine the perfor-
mance of the NPMLEs for a fixed transformation, whereas, in
the data application, we use the AIC to select the best transfor-
mation to fit the data.

5. NUMERICAL STUDIES

5.1 Simulation

We conducted simulation studies to examine the small-
sample performance of our proposed methodology. In the first
simulation study, the transformation cure model had a survival
function of the form

S(t|X1,X2) = {
1 + γ exp(β0 + β1X1 + β2X2)F(t)

}−1/γ
,

with X1 a uniformly distributed random variable in [0,1], X2 a
Bernoulli random variable, β0 = .5, β1 = 1, β2 = −.5, and
F(t) = 1 − exp(−t). We chose γ to vary from 0 to 1. More-
over, each subject had a 40% chance of being right-censored,
and the censoring time was generated from an exponential dis-
tribution with mean 1. The censoring proportions varied from
17% to 22% as γ changed from 0 to 1, whereas the cure rate
was as low as 8% when γ = 0 and rose to 20% when γ = 1. For
each simulated dataset, the proposed method of Section 2 was
implemented to calculate the MLEs of β and its correspond-
ing variance estimate. In solving the score equations using the
Newton–Raphson iterations, the initial values for β were set
to 0 and the initial value for α was set to 1/n, with n the sam-
ple size. Other initial values were also tested in the simulation
study, and results were very robust to those choices. The con-
vergence of each simulation was fast and often obtained within
10 iterations.

Table 1 summarizes the results from 1,000 replications for
each combination of γ and n. The column labeled “Estimate”
denotes the average values of the estimates, “SE” is the sam-
ple standard error of the estimates, “ESE” is the average of
the estimated standard errors, and “CP” is the coverage pro-
portion of 95% confidence intervals constructed based on the
asymptotic normal approximation. The results in Table 1 indi-
cate that the proposed estimation method performs well with
sample sizes of 100 and 200; the biases are small, the estimated
standard errors agree well with the sample standard errors, and
the coverage probabilities are accurate.

In the second simulation study, we generated the failure time
from the transformation cure model with survival function

S(t|X1,X2)

= exp
[−{(

1 + γ exp(β0 + β1X1 + β2X2)F(t)
)γ − 1

}
/γ

]
,

where F(t) = 1−exp(−t) and the covariates and censoring time
were generated using the same distributions as in the first simu-
lation. In this setting we also varied γ from 0 to 1, where γ = 0
corresponds to the proportional odds cure model and γ = 1 cor-
responds to the proportional hazards cure model. The censoring
proportion and the cure rate were 22% and 20% when γ = 0
and became 17% and 8% when γ = 1. The results, based on
1,000 repetitions for sample sizes 100 and 200, are summarized
in Table 2. From Table 2, we obtain the same conclusions as in
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Table 1. Simulation Results From 1,000 Replications Under the Transformation G(x) = (1 + γ x)−1/γ

Model n Parameter True value Estimate SE ESE CP (%)

γ = 0 100 β0 .5 .490 .289 .312 97.7
β1 1 1.033 .433 .427 94.9
β2 −.5 −.519 .242 .242 95.7

200 β0 .5 .502 .200 .218 96.1
β1 1 1.019 .300 .296 94.6
β2 −.5 −.509 .167 .168 95.9

γ = .25 100 β0 .5 .476 .341 .350 95.6
β1 1 1.036 .512 .493 94.0
β2 −.5 −.490 .280 .281 96.0

200 β0 .5 .499 .236 .245 95.6
β1 1 1.006 .356 .344 95.1
β2 −.5 −.507 .194 .197 95.5

γ = .5 100 β0 .5 .477 .380 .388 96.3
β1 1 1.022 .550 .554 95.4
β2 −.5 −.518 .320 .318 95.1

200 β0 .5 .488 .271 .273 95.5
β1 1 1.015 .400 .388 94.9
β2 −.5 −.505 .225 .222 95.1

γ = .75 100 β0 .5 .487 .410 .423 95.7
β1 1 .995 .601 .607 95.1
β2 −.5 −.491 .359 .348 94.2

200 β0 .5 .486 .284 .298 96.5
β1 1 1.022 .426 .425 94.7
β2 −.5 −.494 .241 .244 95.4

γ = 1 100 β0 .5 .455 .426 .458 96.7
β1 1 1.043 .637 .658 96.1
β2 −.5 −.498 .375 .378 95.4

200 β0 .5 .482 .310 .321 95.4
β1 1 1.015 .458 .460 94.8
β2 −.5 −.502 .258 .264 95.8

Table 2. Simulation Results From 1,000 Replications Under the Transformation G(x) = exp[ −{(1 + x)γ − 1}/γ ]

Model n Parameter True value Estimate SE ESE CP (%)

γ = 0 100 β0 .5 .465 .442 .458 96.6
β1 1 1.026 .632 .658 96.4
β2 −.5 −.510 .387 .378 94.8

200 β0 .5 .498 .318 .321 95.4
β1 1 .995 .474 .461 93.9
β2 −.5 −.504 .263 .264 95.0

γ = .25 100 β0 .5 .500 .391 .406 95.2
β1 1 .994 .568 .585 96.3
β2 −.5 −.501 .328 .335 95.7

200 β0 .5 .489 .283 .285 94.8
β1 1 1.010 .397 .409 95.9
β2 −.5 −.502 .237 .235 94.7

γ = .5 100 β0 .5 .459 .356 .364 95.8
β1 1 1.081 .545 .523 94.7
β2 −.5 −.500 .297 .299 95.8

200 β0 .5 .502 .247 .256 96.3
β1 1 1.005 .360 .365 95.4
β2 −.5 −.502 .214 .209 93.6

γ = .75 100 β0 .5 .471 .318 .332 96.8
β1 1 1.069 .479 .469 93.9
β2 −.5 −.505 .264 .267 95.3

200 β0 .5 .506 .228 .233 95.8
β1 1 1.000 .327 .326 94.8
β2 −.5 −.500 .192 .187 94.2

γ = 1 100 β0 .5 .509 .289 .314 97.8
β1 1 1.008 .419 .423 95.5
β2 −.5 −.516 .245 .242 94.2

200 β0 .5 .508 .205 .219 97.1
β1 1 1.010 .296 .296 95.2
β2 −.5 −.508 .172 .168 94.1
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Zeng, Yin, and Ibrahim: Transformation Models for Survival Data 677

Table 3. Simulation Results From 1,000 Replications Under Misspecified Transformation (n = 100)

Model Parameter True value Estimate SE ESE CP (%)

True transformation: G(x) = (1 + x/2)−2

Proportional hazards model β0 .5 .165 .290 .311 82.6
β1 1 .799 .450 .446 92.5
β2 −.5 −.404 .248 .255 94.2

Proportional odds model β0 .5 .818 .456 .466 9.8
β1 1 1.240 .672 .654 93.0
β2 −.5 −.578 .375 .373 95.1

True transformation: G(x) = exp[ −2{(1 + x)1/2 − 1}]
Proportional hazards model β0 .5 .189 .304 .311 84.1

β1 1 .868 .464 .442 91.9
β2 −.5 −.411 .254 .252 92.7

Proportional odds model β0 .5 .960 .463 .472 84.4
β1 1 1.205 .650 .652 94.8
β2 −.5 −.606 .363 .373 95.0

the first simulation study; thus we conclude that maximum like-
lihood estimation procedure proposed here not only provides an
asymptotically efficient estimator, but also yields good inferen-
tial properties for small sample sizes.

Because the proportional hazards cure model and the propor-
tional odds cure model are commonly used in practice, we also
conducted a simulation study to examine the performance of the
estimates based on these two models when data were generated
from a different model. Specifically, we used the same setting
for generating the covariates and censoring time as in the other
two simulations described earlier, while generating the survival
time from either the model with a transformation (1+x/2)−2 or
exp{−2((1 + x)1/2 − 1)}; equivalently, γ = 1/2 in both classes
of (3) and (4). Both choices correspond to a model between
the proportional hazards cure model and the proportional odds
cure model. The results, based on 1,000 replications, are re-
ported in Table 3. We observe that both the proportional haz-
ards cure model and proportional odds cure models produce
notable bias. Interestingly, both models estimate the direction
of the coefficients correctly, and the proportional hazards cure
model tends to bias towards 0, whereas the opposite is observed
for the proportional odds cure model. The bias for the intercept
term in both models is large, but the biases for other covariate
effects are relatively small. We also observe that even with siz-
able bias, standard error estimates of the regression coefficients
corresponding to the covariates appear to be correct.

Finally, we considered estimation of γ . We generated fail-
ure times using the cure model for the transformation class
G(x) = (1 + γ x)−1/γ . The simulation study (not shown here)
indicates that the performance of the NPMLEs is poor and the
convergence in calculating the NPMLEs is often problematic
with a sample size of n = 400, due to the fact that the likeli-
hood function tends to be flat when γ varies around the true
value.

5.2 Application to Melanoma Data

As an illustration, we applied the transformation cure model
in (2) to a phase III melanoma clinical trial conducted by the
Eastern Cooperative Oncology Group (ECOG), labeled E1690
(Kirkwood et al. 2000). This trial consisted of two treatment
arms with a total of n = 427 patients on the combined treat-
ment arms, of which 241 patients experienced the event (can-

cer relapse). The response variable was relapse-free survival
(RFS) time (in years). The covariates included in this analysis
were treatment (high-dose interferon = 1, observation = 0), age
(a continuous variable ranging from 19.13 to 78.05 years, with
a mean of 47.93 years), sex (female = 1, male = 0), and nodal
category (taking a value of 0 if there were 0 positive nodes or
1 if there were one or more positive nodes). The median follow-
up time for this study was 4.33 years, which is considered a
sufficient duration of follow-up for this disease. The solid and
dotted curves in Figure 1 represent the Kaplan–Meier survival
curves for the two treatment arms. We see that a reasonable
plateau has been reached at the tails of the survival curves, and it
appears that based on this follow-up period, a cure rate model is
a suitable approach for the data. Cure rate models for the E1690
data were also considered by Chen, Harrington, and Ibrahim
(2002) and were shown to fit better than proper survival models.
Based on Figure 1, we considered subjects to be “cured” if they
were censored at 5.5 years or beyond. In the dataset, 30 subjects
had censored RFS times ≥5.5 years (Yi = ∞). Patients with ob-
served times <5.5 years were either failures or right-censored;
and some of those right-censored subjects might indeed have
been “cured” patients, but we cannot determine this because of
the right-censoring.

We fit the proposed model in (2), where G(x) comes from
the family (3) as well as the family (4). We considered val-
ues of γ in [0,2]. The MLEs for the regression coefficients of
the proposed class of semiparametric transformation cure mod-
els were computed using the proposed method. Furthermore,
we selected the best transformation among these two classes
as the one that maximized the AIC criterion, which is equiva-
lent to the observed log-likelihood function in this case because
the number of parameters is constant. Figure 2 plots the ob-
served log-likelihood functions obtained using the two classes
of transformations. Interestingly, both classes select the same
best transformation, which corresponds to the proportional haz-
ards cure model.

Consequently, we report the results from the proportional
hazards cure model in Table 4. The results show that both
interferon treatment and sex did not significantly affect RFS,
whereas age and nodal category did. Younger patients or those
with no positive nodes had significantly better RFS and thus
were more likely to be “cured,” that is, to not have recurrence
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Figure 1. Kaplan–Meier Curves and Predicted Survival Curves of the Interferon and Observation Groups in the E1690 Data. The solid line and
the dotted line are the Kaplan–Meier curves; the dashed line and the dot-dashed line are the predicted survival curves.

of melanoma. The results can also be used to estimate the cure
rate for each group. For example, the estimated cure rates for
a 50-year-old female patient with positive nodes under the in-
terferon treatment is 41.0%. Furthermore, Figure 1 plots the fit-
ted survival function within each treatment group, where the
survival function is calculated as the empirical average of the
predicted survival functions within each group. The dashed and

dot-dashed lines in Figure 1 present the predicted survival func-
tions; these agree quite well with the Kaplan–Meier curves.

As noted earlier, we treated censored subjects with RFS times
5.5 years or greater as “cured” to estimate the parameters. The
choice of such a threshold value can be artificial unless it has
some biological meaning. Thus we also studied the sensitiv-
ity of the estimates to the choice of this threshold value. To do

(a) (b)

Figure 2. The Observed Log-Likelihood Functions From Different Transformations in the E1690 Data. (a) The log-likelihood functions from
transformations G(x) = (1 + γ x)−1/γ . (b) The log-likelihood functions from transformations G(x) = exp{ −((1 + x)γ − 1)/γ }.
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Table 4. Estimates of Regression Coefficients in the Proportional
Hazards Cure Model for the E1690 Data

Cure threshold Covariate Estimate SE p value

5.1 years Intercept −.7977 .3147 .0113
Treatment −.2200 .1298 .0901

Age .0115 .0050 .0220
Sex −.2209 .1371 .1072

Nodal category .5519 .1599 .0006

5.5 years Intercept −.8027 .3156 .0110
Treatment −.2197 .1300 .0911

Age .0115 .0050 .0225
Sex −.2208 .1374 .1081

Nodal category .5520 .1603 .0006

6 years Intercept −.7988 .3151 .0112
Treatment −.2199 .1298 .0902

Age .0115 .0050 .0220
Sex −.2209 .1372 .1074

Nodal category .5519 .1600 .0006

6.5 years Intercept −.7969 .3147 .0113
Treatment −.2200 .1297 .0898

Age .0115 .0050 .0219
Sex −.2210 .1371 .1070

Nodal category .5518 .1599 .0006

7 years Intercept −.7972 .3148 .0113
Treatment −.2200 .1297 .0898

Age .0115 .0050 .0219
Sex −.2209 .1371 .1071

Nodal category .5518 .1599 .0006

this, we varied the threshold value larger than the last failure
(5 years), using values of 5.1, 5.5, 6, 6.5, and 7 years. The esti-
mates of the coefficients differ only in the third decimal point,
as shown in Table 4.

6. DISCUSSION

We have proposed a class of semiparametric transforma-
tion cure models motivated by a specific biological process.
This class is quite broad and includes the well-known pro-
portional hazards and proportional odds structures as two
special cases. We have provided an efficient algorithm for
calculating the MLEs. The maximum likelihood estimation
procedure yields efficient estimators of the regression parame-
ters. As one byproduct, because model (2) reduces to a linear
transformation model with a special choice of the link func-
tion θ(·), the algorithm in Section 2 provides a simple way
of calculating the MLEs for linear transformation models in
general. Specifically, for a linear transformation model with
S(t|Zi) = G{exp(βT

1 Zi)�(t)}, we can reparameterize to make
it a cure rate model by defining F(t) = �(t)/�(τ) and adding
an intercept term log�(τ) into the regression. Here τ refers to
the termination time of the study. Thus, treating any subjects
censored at time τ as “cured,” we then implement our proposed
algorithm to calculate the MLEs of the parameters.

The cure threshold for the E1690 melanoma data was taken
to be 5.5 years. The choice of this cutoff value depends heavily
on the dataset at hand and on other practical elements, includ-
ing the type of disease, the severity or stage, the corresponding
treatment, and other patient prognostic factors that require an
expert opinion from a physician. A simple guideline is that there
should be no failures after the cure threshold. In fact, the esti-
mates from the proposed method are very robust with respect to
the choice of this threshold, as shown in Table 4.

The transformation G(x) can be misspecified in practice be-
cause of limited knowledge or complex relationships between
the covariates and the time-to-event variable. Kosorok et al.
(2004) gave some examples in univariate survival data show-
ing that the regression parameters can be estimated up to the
correct direction even if G(x) is misspecified. The same ideas
can be extended to our proposed model; however, computing
such estimable quantities in the presence of nonidentifiable pa-
rameters is a very challenging problem.

In deriving (2), we assumed that the promotion time survival
function, S∗(t) = 1 − F(t), is the same for all tumor cells. One
possible generalization to this is to incorporate covariates into
S∗(t), for example, to allow them to be different across treat-
ments. In this case the survival function of the tumor cell for
the ith subject would be exp{−�(t)eζT Zi}, where Zi is a co-
variate vector for treatment and other risk factors and Zi may
share the same components as Xi. Thus the population survival
function of interest for subject i is

S(t|Xi,Zi) = G
{(

1 − e−�(t)eζT Zi )
θ(Xi)

}
.

Issues regarding model identifiability and maximum likelihood
estimation in these general models are currently under investi-
gation.

APPENDIX: PROOFS

A.1 Proof of Theorem 1

We introduce the following notation. Let Pn and P denote the em-
pirical measure of n iid observations and the expectation; that is, for
any measurable function g(�,Y,X) in L2(P),

Pn[g(�,Y,X)] = 1

n

n∑

i=1

g(�i,Yi,Xi),

P[g(�,Y,X)] = E[g(�,Y,X)].
From the Lagrange multiplier calculation, F̂n satisfies the equation

that for Yi < ∞,

�i

F{Yi} +
∑

∞>Yj≥Yi

{
�j

G′′(η(β̂T
n Xj)F(Yj))η(β̂T

n Xj)

G′(η(β̂T
n Xj)F(Yj))

+ (1 − �j)
G′(η(β̂T

n Xj)F(Yj))η(β̂T
n Xj)

G(η(β̂T
n Xj)F(Yj))

}

= nλ̂n.

We multiply both sides by F̂n{Yi} and sum over Yi such that Yi < ∞.
We get

λ̂n = 1

n

n∑

i=1

�iI(Yi < ∞) +
∫ ∞

0
Hn( y, β̂n, F̂n)dF̂n( y), (A.1)

where

Hn( y, β̂n, F̂n)

= 1

n

[ ∑

Yj<∞

{
�j

G′′(η(β̂T
n Xj)F̂n(Yj))η(β̂T

n Xj)I(Yj ≥ y)

G′(η(β̂T
n Xj)F̂n(Yj))

+ (1 − �j)
G′(η(β̂T

n Xj)F̂n(Yj))η(β̂T
n Xj)I(Yj ≥ y)

G(η(β̂T
n Xj)F̂n(Yj))

}]
.
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Hence F̂n{Yi} = �i/n(λ̂n − Hn(Yi, β̂n, F̂n)). Obviously, from (A.1),
λ̂n should be bounded by a constant with probability 1. Thus, by choos-
ing a subsequence, still indexed by {n}, we assume that λ̂n → λ∗.
By choosing a further subsequence, we assume that β̂n → β∗ and
F̂n → F∗ pointwise.

We consider the following class:

A1 =
{
�

G′′(η(βT X)F(Y))η(βT X)I(∞ > Y ≥ y)

G′(η(βT X)F(Y))

+ (1 − �)
G′(η(βT X)F(Y))η(βT X)I(∞ > Y ≥ y)

G(η(βT X)F(Y))
:

F is a distribution function,β ∈ B0, y ∈ [0,∞)

}
.

First, {βT X :β ∈ B0} and {F(Y) : F is a distribution function} are both
Donsker classes, where the latter follows from theorem 2.7.5 of
van der Vaart and Wellner (1996). Because G, G′, G′′, and η are
continuously differentiable functions, the preservation of the Donsker
property based on theorem 2.10.6 of van der Vaart and Wellner (1996)
implies that the classes
{
G(k)(η(βT X)F(Y)

)
:β ∈ B0,

F is a distribution function
}
, k = 0,1,2,

and {η(βT X) :β ∈ B0} are Donsker classes. Furthermore, we note that
G′(x) and G(x) are both bounded away from 0 when x is in a com-
pact set. Thus the preservation of the Donsker property under the sum-
mation, product, and quotient, as given in examples 2.10.7–2.10.9 of
van der Vaart and Wellner (1996), gives that the class A1 is a Donsker
class and so is also a Glivenko–Cantelli class. Based on the Glivenko–
Cantelli theorem and the bounded convergence theorem, we conclude
that uniformly in y, Hn( y, β̂n, F̂n) → H∗( y), where

H∗( y) = E

[
�

G′′(η(β∗T X)F∗(Y))η(β∗T X)I(∞ > Y ≥ y)

G′(η(β∗T X)F∗(Y))

+ (1 − �)
G′(η(β∗T X)F∗(Y))η(β∗T X)I(∞ > Y ≥ y)

G(η(β∗T X)F∗(Y))

]
.

Moreover, the right side of (A.1) converges to

λ∗ = E{�I(Y < ∞)} + E

{
I(Y < ∞)

∫ Y

0
H∗( y)dF∗( y)

}
.

Now we wish to show that |λ∗ − H∗( y)| > δ∗ for some positive
constant δ∗. To see that, we first note that from

∑n
i=1 F̂n{Yi} = 1,

1 =
n∑

i=1

I(Yi < ∞)
�i

n(λ̂n − Hn(Yi, β̂n, F̂n))

=
n∑

i=1

I(Yi < ∞)
�i

n|λ̂n − Hn(Yi, β̂n, F̂n)|

≥ 1

n

n∑

i=1

I(Yi < ∞)
�i

|λ̂n − Hn(Yi, β̂n, F̂n)| + ε
, (A.2)

for any positive constant ε. Because Hn( y, β̂n, F̂n) converges uni-
formly to H∗( y),

1

n

n∑

i=1

I(Yi < ∞)
�i

|λ̂n − Hn(Yi, β̂n, F̂n)| + ε

− 1

n

n∑

i=1

I(Yi < ∞)
�i

|λ∗ − H∗(Yi)| + ε
→ 0.

Then, after taking limits on both sides, we obtain 1 ≥ E{�I(Y < ∞)/

(|λ∗ − H∗(Y)| + ε)}. Letting ε → 0, by the monotone convergence
theorem, we have

1 ≥
∫ ∞

0

c0 dy

|λ∗ − H∗( y)| , (A.3)

where c0 is a positive constant. Thus if infy |λ∗ − H∗( y)| = 0, then
we claim that there exists a finite y0 such that H∗( y0) = λ∗; other-
wise, H∗(∞) = λ∗ = 0. Then, for large y, |λ∗ − H∗( y)| < 1, which
makes (A.3) impossible. Now suppose that there exists a finite y0 such
that λ∗ = H∗( y0). Then (A.3) becomes 1 ≥ c0

∫ ∞
0 dy/|H∗( y0) −

H∗( y)|. This is impossible, because H∗( y) is continuously differ-
entiable in a neighborhood of y0. Therefore, there exists a posi-
tive constant δ∗ such that |λ∗ − H∗( y)| > δ∗. This implies that
when n is large, |λ̂n − Hn( y, β̂n, F̂n)| > δ∗. Note that F̂n( y) =
n−1 ∑n

i=1 �iI(Yi ≤ y)/|λ̂n − Hn(Yi, β̂n, F̂n)|, so F̂n( y) converges
uniformly to F∗( y) = E{�I(Y ≤ y)/|λ∗ − H∗(Y)|}.

We now show that β∗ = β0 and F∗ = F0. To do so, we construct
another function F̃ that has jumps only at Yi such that �i = 1 and
Yi < ∞. Moreover,

F̃n{Yi} = 1

ncn

�i

λ̃n − Hn(Yi,β0,F0)
,

where λ̃n satisfies an equation similar to (A.1) and is given by

λ̃n = 1

n

n∑

i=1

�iI(Yi < ∞) +
∫ ∞

0
Hn( y,β0,F0)dF0( y),

and cn is a constant such that
∑n

i=1 F̃n{Yi} = 1. Furthermore, using the
argument of the Glivenko–Cantelli property as before, we can easily
show that uniformly in y, Hn( y,β0,F0) converges to

H̃( y) = E

{
�

G′′(η(βT
0 X)F0(Y))η(βT

0 X)I(∞ > Y ≥ y)

G′(η(βT
0 X)F0(Y))

+ (1 − �)
G′(η(βT

0 X)F0(Y))η(βT
0 X)I(∞ > Y ≥ y)

G(η(βT
0 X)F0(Y))

}
,

which, after integration by parts, is equal to E[η(βT
0 X)G′(η(βT

0 X) ×
F0( y))Sc( y|X)], where Sc is the conditional survival function of the
censoring time. Consequently, direct calculation gives that λ̃n con-
verges to 0. Furthermore, from

cnF̃n( y) = 1

n

n∑

i=1

�iI(Yi ≤ y)

λ̃n − Hn(Yi,β0,F0)
,

we obtain that uniformly in y, cnF̃n( y) converges to

E

[
�I(Y ≤ y)

−E{Sc( ỹ|X)η(βT
0 X)G′(η(βT

0 X)F0( ỹ))}|ỹ=Y

]
= F0( y).

Hence cn → 1 and F̃n( y) converges to F0( y) uniformly.
Note that F̂n is absolutely continuous with respect to F̃n( y) with

F̂n( y) =
∫ y

0

|λ̃n − H̃n(t,β0,F0)|
|λ̂n − Hn(t, β̂n, F̂n)| dF̃n(t). (A.4)

From the foregoing arguments, the integrand in (A.4) is bounded
and uniformly converges to |H̃(t)| /|λ∗ − H∗(t)|. We conclude that
F∗( y) = ∫ y

0 |H̃(t)|dF0(t)/|λ∗ − H∗(t)|. This implies that F∗ is ab-
solutely continuous with respect to F0. Therefore, F∗ is also differ-
entiable, and we denote its density function by f ∗.

In contrast, because the observed log-likelihood function at (β̂n, F̂n)

is larger than or equal to the observed log-likelihood function at
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(β0, F̃n), we have

1

n

n∑

i=1

I(Yi < ∞)�i log
F̂n{Yi}
F̃n{Yi}

+ 1

n

n∑

i=1

{
I(Yi = ∞) log

G(η(β̂T
n Xi))

G(η(βT
0 Xi))

}

+ 1

n

n∑

i=1

I(Yi < ∞)

×
{
�i log

G′(η(β̂T
n Xi)F̂n(Yi))η(β̂T

n Xi)

G′(η(βT
0 Xi)F̃n(Yi))η(βT

0 Xi)

+ (1 − �i) log
G(η(β̂T

n Xi)F̂n(Yi))

G(η(βT
0 Xi)F̃n(Yi))

}

≥ 0.

We take limits on both sides and note that

1

n

n∑

i=1

�iI(Yi < ∞) log
F̂n{Yi}
F̃n{Yi}

→ E

{
�I(Y < ∞) log

f ∗(Y)

f0(Y)

}
.

We obtain −K((β∗,F∗), (β0,F0)) ≥ 0, where K(·, ·) denotes the
Kullback–Leibler information of (β∗,F∗) with respect to the true pa-
rameters. Immediately, we obtain

{−G′(η(β∗T X)F∗(Y)
)
η(β∗T X)f ∗(Y)

}�I(Y<∞)

× {
G

(
η(β∗T X)F∗(Y)

)}(1−�)I(Y<∞)+I(Y=∞)

= {−G′(η(βT
0 X)F0(Y)

)
η(βT

0 X)f0(Y)
}�I(Y<∞)

× {
G

(
η(βT

0 X)F0(Y)
)}(1−�)I(Y<∞)+I(Y=∞) (A.5)

for almost every (�,X,Y) in its support. According to the second para-
graph in Section 3, we obtain β∗ = β0 and F∗ = F0.

We have shown that for almost every sample in the probability
space, we can always choose a subsequence of (β̂n, F̂n) so that it con-
verges to (β0,F0). Hence, with probability 1, β̂n → β0 and F̂n( y) →
F0( y) for every y ∈ [0,∞). In particular, we obtain supy |F̂n( y) −
F0( y)| → 0 because of the continuity of F0.

Remark A.1. When transformation G depends on some unknown
parameter γ , where γ belongs to a compact set �, the proof of the
consistency applies when assumptions (C1) and (C3) are replaced by
the following assumptions

(C1′). Parameters (β0, γ0,F0) are identifiable.
(C3′). Gγ (x) is three times differentiable with respect to γ and x,

and all of the derivatives are uniformly bounded with G′
γ (x) > 0.

In particular, (C3′) ensures that the classes of random functions in
the foregoing proof are the Glivenko–Cantelli classes, whereas (C1′)
ensures that the limit of (β̂n, γ̂n, F̂n) are the true parameters.

A.2 Proof of Theorem 2

To prove the asymptotic properties of (β̂n, F̂n), we recall the def-
inition of H in Section 3. Furthermore, we abbreviate l(β,F) as the
log-likelihood function of (5), given by

l(β,F) = I(Y < ∞)

× [
� log f + � log

{ − G′(η(βT X)F(Y)
)
η(βT X)

}

+ (1 − �) log G
(
η(βT X)F(Y)

)]

+ I(Y = ∞) log G(η(βT X)).

Let lβ (β,F) denote the derivative of l(β,F) with respect to β , and
let lF(β,F)[∫ (h2 −QF[h2])dF] denote the derivative of l(β,F) along
the path (β,Fε = F + ε

∫
QF(h2)dF), ε ∈ (−ε0, ε0) for a small con-

stant ε0, where QF[h2] = h2(t) − ∫ ∞
0 h2(t)dF(t). In addition, we de-

fine the derivative of lβ (β,F) with respect to β , denoted by lββ (β,F);

the derivative of lβ (β,F) with respect to F along the path F + ε(F̂n −
F), denoted by lβF[F̂n − F]; the derivative of lF(β,F)[∫ QF(h2)dF]
with respect to β , denoted by lFβ (β,F)[∫ QF(h2)dF]; and the deriv-
ative lF(β,F)[∫ QF(h2)dF] with respect to F along the path F +
ε(F̂n − F), denoted by lFF(β,F)[∫ QF(h2)dF, F̂n − F]. Furthermore,
define

�1(�,Y,X)

= I(Y < ∞)�

{
G(3)(η(βT X)F(Y))

G′(η(βT X)F(Y))
− G′′(η(βT X)F(Y))2

G′(η(βT X)F(Y))2

}

+ {(1 − �)I(Y < ∞) + I(Y = ∞)}G′′(η(βT X)F(Y))

G(η(βT X)F(Y))

− {(1 − �)I(Y < ∞) + I(Y = ∞)}G′(η(βT X)F(Y))2

G(η(βT X)F(Y))2

and

�2(�,Y,X)

= I(Y < ∞)�
G′′(η(βT X)F(Y))

G′(η(βT X)F(Y))

+ {(1 − �)I(Y < ∞) + I(Y = ∞)}G′(η(βT X)F(Y))

G(η(βT X)F(Y))
.

Because (β̂n, F̂n) maximizes Pnl(β,F), for any (h1,h2) ∈H, it fol-
lows that

Pn

{
lβ (β̂n, F̂n)T h1 + lF(β̂n, F̂n)

[∫
QF̂n

(h2)dF̂n

]}
= 0.

Note that P{lβ (β0,F0)T h1 + lF(β0,F0)[∫ QF0(h2)dF0]} = 0. Thus
we obtain

√
n(Pn − P)

{
lβ (β̂n, F̂n)T h1 + lF(β̂n, F̂n)

[∫
QF̂n

(h2)dF̂n

]}

= −√
nP

{
lβ (β̂n, F̂n)T h1 + lF(β̂n, F̂n)

[∫
QF̂n

(h2)dF̂n

]}

+ √
nP

{
lβ (β0,F0)T h1 + lF(β0,F0)

[∫
QF0(h2)dF0

]}
.

(A.6)

First, by the same arguments as in the consistency proof, the classes
of

A2 =
{

G′(x)
G(x)

,
G′′(x)
G′(x)

∣∣∣∣
x=η(βT X)F(Y)

:

‖β − β0‖ < δ0, sup
y

|F( y) − F0( y)| < δ0

}

and

A3 =
{
η′(βT X)F(Y), η(βT X)F(Y) :

‖β − β0‖ < δ0, sup
y

|F( y) − F0( y)| < δ0

}

are P-Donsker. In addition, clearly both classes {QF(h2) :
‖h2‖V ≤ 1, supy |F( y) − F0( y)| < δ0} and {∫ Y

0 QF(h2)dF :‖h2‖V ≤
1, supy |F( y) − F0( y)| < δ0} contain the functions of Y with bounded
variations, so they are also P-Donsker. Therefore, from the explicit ex-
pression of lβ and lF , the preservation of the Donsker classes under
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algebraic operations implies that the class

A4 =
{

lβ (β,F)T h1 + lF(β,F)

[∫
QF(h2)dF

]
:

‖h1‖ ≤ 1,‖h2‖V ≤ 1,‖β − β0‖ + sup
y

|F( y) − F0( y)| < δ0

}

is P-Donsker. In contrast, it is straightforward to show that

lβ (β̂n, F̂n)T h1 + lF(β̂n, F̂n)

[∫
QF̂n

(h2)dF̂n

]

→ lβ (β0,F0)T h1 + lF(β0,F0)

[∫
QF0(h2)dF0

]

uniformly in (h1,h2) ∈H. Thus the left side of (A.6) is equal to

√
n(Pn − P)

{
lβ (β0,F0)T h1 + lF(β0,F0)

[∫
QF0(h2)dF0

]}

+ op(1),

where op(1) is a random variable that converges to 0 in probability in
the metric space l∞(H). As a result, the left side of (A.6) converges
weakly to a mean-0 Gaussian process in l∞(H).

Second, simple algebra shows that, uniformly in (h1,h2) ∈H,
∣∣∣∣lβ (β̂n, F̂n)T h1 + lF(β̂n, F̂n)

[∫
QF̂n

(h2)dF̂n

]

− lβ (β0,F0)T h1 − lF(β0,F0)

[∫
QF0(h2)dF0

]

−
{
(β̂n − β0)T lββ (β0,F0)h1

+ (β̂n − β0)T lFβ (β0,F0)

[∫
QF0(h2)dF0

]

+ hT
1 lβF[F̂n − F0]

+ lFF(β0,F0)

[∫
QF0(h2)dF0, F̂n − F0

]}∣∣∣∣

≤ op{‖β̂n − β0‖ + ‖F̂n − F0‖l∞}.
Thus, combining with the expressions of lββ , lβF, lFβ , and lFF , we
obtain that the right side of (A.6) equals

−√
n

{
(β̂n − β0)T�β

(
h1,QF0(h2)

)

+
∫ ∞

0
�F

(
h1,QF0(h2)

)
d(F̂n − F0)( y)

}

+ o
{√

n(‖β̂n − β0‖ + ‖F̂n − F0‖l∞ )
}
,

where

�β

(
h1,QF0(h2)

)

= E

[
I(Y < ∞)�

η′′(βT X)η(βT X) − η′(βT X)2

η(βT X)2
XXT h1

]

+ E
[{

�0
1 (�,Y,X)η′(βT

0 X)2F0(Y)2

+ �0
2 (�,Y,X)η′′(βT

0 X)F0(Y)
}
XXT h1

]

+ E

[{
�0

1 (�,Y,X)η(βT
0 X)η′(βT

0 X)F0(Y)

+ �0
2 (�,Y,X)η′(βT

0 X)F0(Y)
}
X

×
∫ Y

0
QF0(h2)dF0

]

and

�F
(
h1,QF0(h2)

)

= −E
[
I(Y < ∞)� + �0

2 (�,Y,X)η(βT
0 X){F0(Y) − I(Y ≥ y)}]

× QF0 [h2]
+ E

[{
�0

1 (�,Y,X)η(βT
0 X)η′(βT

0 X)F0(Y)

+ �0
2 (�,Y,X)η′(βT

0 X)F0(Y)
}

× XT h1I(Y ≥ y)
]

+ E

[
I(Y ≥ y)�0

1 (�,Y,X)η(βT
0 X)2

∫ Y

0
QF0(h2)dF0

]
,

where �0
1 and �0

2 have the same expressions as �1 and �2 but with
β and F replaced by β0 and F0.

Third, the linear operator (�β ,�F) is a bounded linear operator
from the linear space

S = R
d ×

{
h̃2 :‖h̃2‖V < ∞,

∫ ∞
0

h̃2( y)dF0( y) = 0

}

to itself. We wish to show that (�β ,�F) is invertible. From the direct
calculation, we have

−E
[
I(Y < ∞)� + �0

2 (�,Y,X)η(βT
0 X){F0(Y) − I(Y ≥ y)}]

= E
[
G′(η(βT

0 X)F0( y)
)
η(βT

0 X)Sc( y|X)
]
,

which is negative. Thus, (�β ,�F) can be written as the summation
of an invertible operator and a compact operator. By the approach
of Rudin (1973), to prove the invertibility of (�β ,�F), it is suffi-
cient to show that (�β ,�F) is one-to-one; that is, if there exists some

(h1, h̃2) ∈ S such that �β (h1, h̃2) = 0 and �F(h1, h̃2) = 0, then we

need to show that h1 = 0 and h̃2 = 0. However, we note that, according
to the derivation of the �’s, it holds that

hT
1 �β (h1, h̃2) +

∫ ∞
0

�β (h1, h̃2)h̃2 dF0

= −E
{
lβ (β0,F0)T h1 + lF(β0,F0)[h̃2]}2

.

We thus obtain that, with probability 1,

lβ (β0,F0)T h1 + lF(β0,F0)[h̃2] = 0.

In particular, we choose Y = ∞ and obtain h1 = 0; then we let Y < ∞
and � = 1 and obtain a homogeneous integral equation for h̃2. Such
an equation has one trivial solution, h̃2 = 0.

Finally, using the inverse of (�β ,�F), denoted by (�̃β , �̃F),
(A.6) can be written as

√
n

{
(β̂n − β0)T h1 +

∫ ∞
0

h̃2 d(F̂n − F0)

}

= −√
n(Pn − P)

× {
lβ (β0,F0)T �̃β (h1, h̃2) + lF(β0,F0)T �̃F(h1, h̃2)

}

+ op(1)
{√

n(‖β̂n − β0‖ + ‖F̂n − F0‖l∞ )
}
,

where op(1) converges to 0 in probability uniformly in (h1, h̃2) ∈ S0,
where S0 contains all (h1, h̃2) ∈ S such that ‖h1‖ ≤ 1 and ‖h̃2‖V ≤ 1.
This immediately implies that

√
n(‖β̂n − β0‖ + ‖F̂n − F0‖l∞ ) = Op(1).
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Hence

√
n

{
(β̂n − β0)T h1 +

∫ ∞
0

h̃2 d(F̂n − F0)

}

= −√
n(Pn − P)

× {
lβ (β0,F0)T �̃β (h1, h̃2) + lF(β0,F0)T �̃F(h1, h̃2)

}

+ op(1). (A.7)

Then
√

n{(β̂n − β0)T h1 + ∫ ∞
0 h̃2 d(F̂n − F0)} converges weakly to

a Gaussian process, denoted by GP(h1, h̃2). The covariance between
GP(h1, h̃2) and GP(h∗

1, h̃∗
2) is given by

E
[{

lβ (β0,F0)T �̃β (h1, h̃2) + lF(β0,F0)[�̃F(h1, h̃2)]}

× {
lβ (β0,F0)T �̃β (h∗

1, h̃∗
2) + lF(β0,F0)[�̃F(h∗

1, h̃∗
2)]}

]
.

Because for any h2,
∫

h2 d(F̂n −F0) = ∫
QF0(h2)d(F̂n −F0), the fore-

going convergence result also implies the weak convergence result in
Theorem 2.

Specifically, if we choose in (A.7) that h̃2 = 0, then we conclude
that β̂T

n h1 is an asymptotic linear estimator for βT
0 h1 with its influence

function given by

lβ (β0,F0)T �̃β (h1,0) + lF(β0,F0)[�̃F(h1,0)].

This implies that β̂n is semiparametrically efficient, because the influ-
ence function is on the linear space spanned by the score functions for
β0 and F0.

Remark A.2. When the transformation depends on some parame-
ter γ , the foregoing proof can be easily adapted to this case by
introducing one more parameter, γ . The results hold if γ0 is as-
sumed to belong to the interior of �, (C1) and (C3) are replaced by
(C1′) and (C3′), and the following assumption also holds:

(C5′) If with probability 1,

G′
γ (η(βT

0 X))η′(βT
0 X)XT h1 + Ġγ (η(βT

0 X))h3 = 0,

where h1 and h3 are constant vectors and Ġγ denotes the derivative
with respect to γ , then h1 = 0 and h3 = 0.

Note that (C5′) is particularly useful for proving the invertibility of
the �’s.

Remark A.3. The profile likelihood function can be used to give a
consistent estimate for the asymptotic variance of β̂n. Its justification
follows from verifying all of the conditions of theorem 1 of Murphy
and van der Vaart (2000). Especially, from the invertibility of the �’s,
we conclude that the information operator for (β0,F0) is invertible;
therefore, there exits a vector of functions h with bounded variation
such that l∗FlF[∫ QF0(h)dF0] = l∗Flβ , where l∗F is the dual operator
of lF . The function

∫
QF0(h)dF0 was called the “least favorable di-

rection” by Murphy and van der Vaart (2000). We then consider the
submodel (ε,Fε), where Fε = F + (ε − β)

∫
QF(h)dF and ε ∈ R

d . It
is clear that such a submodel satisfies conditions (8) and (9) in Murphy
and van der Vaart (2000). Furthermore, for any β̃n, we let F̃n be the
distribution function maximizing (6) in which β = β̃n. From the proof
of Theorem 1, the same arguments imply that F̃n converges uniformly
to F0 with probability 1. We thus verify condition (10) of Murphy and
van der Vaart (2000). As in the proof of Theorem 2, we linearize the
likelihood function for F̃n, which is equal to

0 = Pn

{
lF(β̃n, F̃n)

[∫
QF̃n

(h2)dF̃n

]}
.

Following the same expansion and using the P-Donsker property as
used in proving Theorem 2, we obtain

√
n
∫

�F
(
0,QF0(h2)

)
d(F̃n − F0)

= √
n(Pn − P)

{
lF(β0,F0)

[∫
QF0 [h2]dF0

]}

− √
nP

[
lF(β̃n,F0)

[∫
QF0 [h2]dF0

]

− lF(β0,F0)

[∫
QF0 [h2]dF0]

]
+ op(1).

From the invertibility of �F(0, ·), and noting that
∣∣∣∣P

[
lF(β̃n,F0)

[∫
QF0 [h2]dF0

]

− lF(β0,F0)

[∫
QF0 [h2]dF0

]]∣∣∣∣ ≤ Op(‖β̃n − β0‖),

we obtain
√

n‖F̃n − F0‖l∞ = Op(
√

n + √
n‖β̃n − β0‖). This imme-

diately implies condition (11) (i.e., the no-bias condition) of Murphy
and van der Vaart (2000). Furthermore, by the same arguments as used
proving Theorem 1, it is straightforward to check that the class

{
∂

∂ε
l(ε,Fε) :‖ε − β0‖ + ‖β − β0‖ + ‖F − F0‖ < δ0

}

is P-Donsker and that the class
{

∂2

∂ε2
l(ε,Fε) :‖ε − β0‖ + ‖β − β0‖ + ‖F − F0‖ < δ0

}

is P-Glivenko–Cantelli. Thus all the conditions in theorem 1 of
Murphy and van der Vaart (2000) hold, so the results of theorem 1
of Murphy and van der Vaart (2000) are true. One conclusion of this
theorem shows the consistency of the variance estimator based on the
profile likelihood function.

[Received July 2004. Revised August 2005.]
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