
ISSN 1440-771X 

 
 

Australia 
 

 

 

 

 

Department of Econometrics and Business Statistics 
 

http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

September 2011 
 

 

 

 

 

 

 

 

Working Paper 15/11 

 

Semiparametric Trending Panel Data Models 
with Cross-Sectional Dependence 

 
Jia Chen, Jiti Gao and Degui Li 



Semiparametric Trending Panel Data Models

with Cross-Sectional Dependence

By Jia Chen, Jiti Gao and Degui Li1

The University of Adelaide and Monash University

Abstract

A semiparametric fixed effects model is introduced to describe the nonlinear trending

phenomenon in panel data analysis and it allows for the cross–sectional dependence in both

the regressors and the residuals. A pooled semiparametric profile likelihood dummy variable

approach based on the first–stage local linear fitting is developed to estimate both the pa-

rameter vector and the nonparametric time trend function. As both the time series length T

and the cross–sectional size N tend to infinity simultaneously, the resulting estimator of the

parameter vector is asymptotically normal with a rate of convergence of OP

(
1√
NT

)
. Mean-

while, the asymptotic distribution for the estimator of the nonparametric trend function

is also established with a rate of convergence of OP

(
1√
NTh

)
. Two simulated examples are

provided to illustrate the finite sample performance of the proposed method. In addition,

the proposed model and estimation method is applied to analyze a CPI data set as well as

an input–output data set.
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1. Introduction

Modeling time series with trend functions has attracted an increasing interest in recent

years. Mainly due to the limitation and practical inapplicability of parametric trend func-

tions, recent literature focuses on estimating time–varying coefficient trend functions using

nonparametric estimation methods. Such studies include Robinson (1989) and Cai (2007).

Phillips (2001) provides a review on the current development and future directions about

modeling time series with trends. In the meantime, some other nonparametric and semi-

parametric models are also developed to deal with time series with a trend function. Gao

and Hawthorne (2006) propose using a semiparametric time series model to address the issue

of whether the trend of a temperature series should be parametrically linear while allowing

for the inclusion of some explanatory variables in a parametric component.

While there is a rich literature on parametric and nonparametric time–varying coefficient

time series models, as far as we know, few work has been done in identifying and estimating

the trend function in a panel data model. Atak, Linton and Xiao (2010) propose a semipara-

metric panel data model to deal with the modeling of climate change in the United Kingdom.

The authors consider using a model with a dummy variable in the parametric component

while allowing for the time trend function to be nonparametrically estimated. More recently,

Li, Chen and Gao (2010) extend the work of Cai (2007) in a trending time–varying coefficient

time series model to a panel data time–varying coefficient model. In such existing studies,

the residuals are assumed to be cross–sectionally independent. A recent work by Robinson

(2010) may be among the first to introduce a nonparametric trending time–varying model

for the panel data case under cross–sectional dependence.

In order to take into account existing information and contribution from a set of explana-

tory variables, this paper proposes extending the nonparametric model by Robinson (2008) to

a semiparametric partially linear panel data model with cross–sectional dependence. In our

discussion, both the residuals and explanatory variables are allowed to be cross–sectionally

dependent. The model we consider in this paper is a semiparametric trending panel data

model of the form

Yit = X⊤
it β + ft + αi + eit, (1.1)

Xit = gt + xi + vit, i = 1, · · · , N, t = 1, · · · , T, (1.2)

where β is a d–dimensional vector of unknown parameters, ft = f
(

t
T

)
and gt = g

(
t
T

)
are both time trend functions with f(·) and g(·) being unknown, both {eit} and {vit} are
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independent and identically distributed (i.i.d.) across time but correlated among individuals.

Note that {αi} is allowed to be correlated with {Xit} through some unknown structure, while

{eit} is assumed to be independent of {vit}. Throughout this paper, we impose the following

restrictions on the fixed effects {αi} and the individual effects {xi},

N∑
i=1

αi = 0, and
N∑
i=1

xi = 0d, (1.3)

where 0d is the d–dimensional null vector.

Models (1.1) and (1.2) cover and extend some existing models. When β = 0, model (1.1)

reduces to the nonparametric model discussed in Robinson (2008). When N = 1, models

(1.1) and (1.2) reduce to the models discussed in Gao and Hawthorne (2006). Meanwhile,

model (1.2) allows for {Xit} to have a trend function and thus be nonstationary. As a conse-

quence, models (1.1) and (1.2) become more applicable in practice than some of the existing

models discussed in Cai (2007), and Li, Chen and Gao (2010), in which {Xit} is assumed

to be stationary. Such practical situations include the modeling of the dependence between

the share consumption, {Yit}, on the total consumption, {Xit}, as well as the modeling of

the dependence of the mean temperature series, {Yit}, on the Southern Oscillation Index,

{Xit}. Furthermore, we relax the cross–sectional independence assumption on both the re-

gressors {Xit} and the error process {eit}. As pointed out in Chapter 10 of Hsiao (2003), this

makes panel data models more practically applicable because there is no natural ordering for

cross–sectional indices. As a result, appropriate modeling and estimation of cross–sectional

correlatedness becomes difficult particularly when the dimension of cross–sectional obser-

vation N is large. To be able to study the asymptotic theory of our proposed estimation

method in this paper, we will impose certain mild moment conditions on {eit} and {vit}
as in (3.1)–(3.3) in Section 3. Different sets of cross–sectional dependence conditions are

discussed in some existing literature, such as Pesaran (2006), and Su and Jin (2011).

The main objective of this paper is then to construct a consistent estimation method

for the parameter vector β and the trending function f(·). Throughout the paper, both

the time series length T and the cross sections size N are allowed to tend to infinity. A

semiparametric dummy–variable based profile likelihood estimation method is developed to

estimate both β and f(·) based on first–stage local linear fitting. The resulting estimator of β

is shown to be asymptotically normal with a rate of convergence of OP

(
1√
NT

)
. Meanwhile,

an asymptotic distribution for the nonparametric estimator of the time trend function is

also established with a rate of convergence of OP

(
1√
NTh

)
. In addition, we also propose
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a semiparametric estimator for the cross–sectional covariance matrix of {vit, eit}, which is

useful in constructing the confidence intervals of the estimators of β and f(·).
The rest of the paper is organized as follows. A pooled semiparametric profile likelihood

dummy variable method is proposed in Section 2 for estimating β and f(·). The asymptotic

normality of the proposed estimators is established in Section 3. Some related discussions,

such as estimation of some covariance matrices, the averaged profile likelihood estimator

and the cross–validation bandwidth selection method, are given in Section 4. Two simulated

examples as well as two real–data examples are provided in Section 5. Section 6 concludes

the paper. The mathematical proofs of the main results are relegated to Appendices A and

B.

2. Estimation method

There are several semiparametric methods that can be adopted to estimate the parameter

vector β and the time trend function f(·). Among these methods, the averaged profile

likelihood estimation method is a commonly–used method and has been investigated by

some authors in both the time series and panel data cases (see, for example, Fan and Huang

2005; Su and Ullah 2006; Atak, Linton and Xiao 2010). In this paper, we propose using

a pooled semiparametric profile likelihood dummy variable method to estimate β and f(·),
which is more efficient than the averaged profile likelihood method (which will be introduced

in Section 4.2).

Before giving the estimation method, we first introduce the following notations:

Ỹ = (Y11, · · · , Y1T , Y21, · · · , Y2T , · · · , YN1, · · · , YNT )
⊤,

X̃ = (X11, · · · , X1T , X21, · · · , X2T , · · · , XN1, · · · , XNT )
⊤,

α = (α2, · · · , αN)
⊤, D = (−iN−1, IN−1)

⊤ ⊗ iT ,

f̃ = iN ⊗ (f1, · · · , fT )⊤, ẽ = (e11, · · · , e1T , e21, · · · , e2T , · · · , eN1, · · · , eNT )
⊤,

where ⊗ denotes the Kronecker product, ik is the k × 1 vector of ones and Ik is the k × k

identity matrix. As
N∑
i=1

αi = 0, model (1.1) can be rewritten as

Ỹ = X̃β + f̃ +Dα + ẽ. (2.1)

Let K(·) denote a kernel function and h is a bandwidth. Denote Z(τ) =


1 1−τT

Th

...
...

1 T−τT
Th
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and Z̃(τ) = iN ⊗ Z(τ). Then by Taylor expansion, we have

f̃ ≈ Z̃(τ)

 f(τ)

hf ′(τ)

 .

Let W (τ) = diag
(
K(1−τT

Th
), · · · , K

(
T−τT
Th

))
and W̃ (τ) = IN ⊗W (τ). The pooled semi-

parametric profile likelihood dummy variable estimation method is given as follows.

(i) Define the following loss function:

L(a, b) =
(
Ỹ − X̃β −Dα− Z̃(τ)(a, b)⊤

)⊤
W̃ (τ)

(
Ỹ − X̃β −Dα− Z̃(τ)(a, b)⊤

)
.

For given α and β, we estimate f(τ) and f ′(τ) by f̂α,β(τ)

hf̂ ′
α,β(τ)

 = arg min
(a,b)⊤

N∑
i=1

T∑
t=1

(
Yit −X⊤

itβ − αi − a− b

(
t

T
− τ

))2

K

(
t− τT

Th

)
= arg min

(a,b)⊤
L(a, b).

If we denote S(τ) =
(
Z̃⊤(τ)W̃ (τ)Z̃(τ)

)−1
Z̃⊤(τ)W̃ (τ), then by simple calculation, we

have

f̂α,β(τ) = (1, 0)S(τ)(Ỹ − X̃β −Dα) = s(τ)(Ỹ − X̃β −Dα), (2.2)

where s(τ) = (1, 0)S(τ).

(ii) Denote

f̃α,β = iN ⊗
(
f̂α,β (1/T ) , · · · , f̂α,β (T/T )

)⊤
= S̃(Ỹ − X̃β −Dα),

where S̃ = iN ⊗
(
s⊤ (1/T ) , · · · , s⊤ (T/T )

)⊤
. Then we estimate α and β by

(α̂⊤, β̂⊤)⊤ = arg min
(α⊤,β⊤)⊤

N∑
i=1

T∑
t=1

(
Yit −Xitβ − αi − f̂α,β

(
t

T

))2

= arg min
(α⊤,β⊤)⊤

(
Ỹ − X̃β −Dα− f̃α,β

)⊤ (
Ỹ − X̃β −Dα− f̃α,β

)
= arg min

(α⊤,β⊤)⊤

(
Ỹ ∗ − X̃∗β −D∗α

)⊤ (
Ỹ ∗ − X̃∗β −D∗α

)
, (2.3)

where Ỹ ∗ =
(
INT − S̃

)
Ỹ , X̃∗ =

(
INT − S̃

)
X̃ and D∗ =

(
INT − S̃

)
D.

Define M∗ = INT − D∗
(
D∗⊤D∗

)−1
D∗⊤. Simple calculation leads to the solution of

the minimization problem (2.3):

β̂ =
(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤M∗Ỹ ∗, (2.4)

α̂ =
(
D∗⊤D∗

)−1
D∗⊤

(
Ỹ ∗ − X̃∗β̂

)
. (2.5)
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(iii) Plug (2.4) and (2.5) into (2.2) to obtain the estimate of f(τ) by

f̂(τ) = s(τ)
(
Ỹ − X̃β̂ −Dα̂

)
. (2.6)

Note that our study in Sections 3 and 5 below shows that the proposed pooled profile

likelihood dummy variable method has both theoretical and numerical advantages over the

averaged profile likelihood estimation method,.

3. The main results

In this section, we first introduce some regularity conditions and then establish asymp-

totic distributions for β̂ and f̂(·).

3.1. Assumptions

A1. The kernel function K(·) is continuous and symmetric with compact support.

A2. Let vt = (v1t, · · · , vNt)
⊤, 1 ≤ t ≤ T . Suppose that {vt, t ≥ 1} is a sequence of i.i.d.

N ×d random matrices with zero mean and E
[
∥vit∥4

]
< ∞. There exist d×d positive

definite matrices Σv and Σ∗
v, such that as N → ∞,

1

N

N∑
i=1

E
[
vitv

⊤
it

]
−→ Σv,

1

N

N∑
i=1

N∑
j=1

E
[
vitv

⊤
jt

]
−→ Σ∗

v, E

∥∥∥∥∥
N∑
i=1

vit

∥∥∥∥∥
δ

= O
(
N δ/2

)
, (3.1)

where δ > 2 is a positive constant. Furthermore, {xi} satisfies max
i

∥xi∥ = OP (1),

where ∥ · ∥ is the Euclidean norm.

A3. The trend functions f(·) and g(·) have continuous derivatives up to the second order.

A4. Let et = {eit, 1 ≤ i ≤ N}. Suppose that {et, t ≥ 1} is a sequence of i.i.d. random

errors with zero mean and independent of {vit}. There exists a d× d positive definite

matrix Σv,e such that as N → ∞,

1

N

N∑
i=1

N∑
j=1

E
[
vi1v

⊤
j1

]
E [ei1ej1] → Σv,e. (3.2)

Furthermore, there is some 0 < σ2
e < ∞ such that as N → ∞

1

N
E

(
N∑
i=1

eit

)2

→ σ2
e and E

∣∣∣∣∣
N∑
i=1

eit

∣∣∣∣∣
δ

= O
(
N δ/2

)
, (3.3)

where δ > 2 is as defined in A2.
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A5. The bandwidth h satisfies as T → ∞ and N → ∞ simultaneously,

NTh8 → 0,

√
NTh

log(NT )
→ ∞ and

T 1− 2
δh

log(NT )
→ ∞.

Furthermore, N2/T δ = o(1) for δ > 2 defined as in A2.

Remark 3.1. A1 is a mild condition on the kernel function and many commonly–used

kernels, including the Epanechnikov kernel, satisfy A1. Furthermore, the compact support

condition for the kernel function can be relaxed at the cost of more tedious proofs.

In A2, we impose some moment conditions on {vit} and allow for cross–sectional depen-

dence of {vit} and thus {Xit}. Such condition of cross–sectional dependence is similar to the

condition A4 in Chen, Gao and Li (2010). When {vit} is also i.i.d. across individuals, it is

easy to check that (3.1) holds. Since there is no natural ordering for cross–sectional indices,

it may not be appropriate to impose any kind of mixing or martingale difference conditions

on {vit} when vit and vjt are dependent. Equation (3.1) instead imposes certain conditions

on the measurement of the “distance” between cross–sections ij and ik. To explain this in

some detail, let us consider the case of d = 1 and define a kind of “distance function” among

the cross–sections of the form

ρ(i1, i2, · · · , ik) = E
[
vj1i1,1 · · · v

jk
ik,1

]
, (3.4)

and then consider one of the cases where k = 4 and j1 = j2 = · · · = j4 = 1. In addition, we

focus on the case where all 1 ≤ i1, i2, · · · , i4 ≤ N are different. Consider a distance function

of the form

ρ(i1, i2, · · · , i4) =
1

|i4 − i3|δ3 |i3 − i2|δ2 · · · |i2 − i1|δ1
(3.5)

for δi > 0 for all 1 ≤ i ≤ 3. In this case, equation (3.1) can be verified because

N∑
i1=1

N∑
i2=1

· · ·
N∑

i4=1

E [vi1,1 · · · vi4,1] = O

N4−
3∑

j=1

δj

 = O
(
N2
)

(3.6)

when
3∑

j=1
δj ≥ 2. Obviously, the conventional Euclidean metric is covered. One may also

show that equation (3.1) can be satisfied when some other distance functions, including the

exponential distance function, are considered.

A3 is a commonly used condition in local linear fitting. In A2 and A4, we assume that

both {et} and {vt} are i.i.d., which a stronger than the corresponding condition in Robinson
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(2010). Our experience suggests however that the asymptotic theory in this paper still holds

when both {et} and {vt} are uncorrelated. Furthermore, the dependence condition on {et}
and {vt} can be relaxed by allowing both {et} and {vt} to be stationary and α–mixing (see,

for example, Gao 2007). However, the resulting asymptotic variance involved in (3.7) below

will be more complicated under the stationary α–mixing dependence condition than that

for the i.i.d. case. To avoid further technicality, this paper focuses on the i.i.d. case. Such

extensions are left for future research.

In A4, we impose the mutual independence between vit and eit. When vit and eit are

dependent with each other, we do not necessarily have E[viteit] = 0. In this case, a modified

estimation method, such as an instrumental variable based method may be needed to con-

struct a consistent estimator for β. To emphasize the main ideas, the proposed estimation

method and the resulting theory as well as to avoid involving further technicality, we estab-

lish the main results under the exogenous condition throughout this paper. However, such

extensions are left for future discussion. The cross–sectional dependence conditions in (3.2)

and (3.3) are similar to those in (3.1).

A5 is required for establishing the asymptotic theory without involving too much techni-

cality. A5 covers the case of N
T
→ λ for 0 ≤ λ ≤ ∞. For example, when N is proportional to

T , A5 reduces to Th4 → 0 and T
1− 2

δ h
log(T )

→ ∞, which can be satisfied if we take the bandwidth

h ∝ (NT )−1/5 ∝ T−2/5 and assume that δ > 10
3
(an ∝ bn means that |an/bn| ≤ C for some

positive constant C as n is large enough). For the general case of N = [T c], A5 reduces to

T 1+ch8 → 0 and T
1− 2

δ h
log(T )

→ ∞ (c ≥ 1− 4
δ
, δ > 4), and it can be satisfied if we take a bandwidth

of the form h ∝ (NT )−1/5 ∝ T−(1+c)/5 for some c < 4− 10
δ
.

3.2. Asymptotic theory

We first give the asymptotic distribution for β̂ in the following theorem.

Theorem 3.1. Let Conditions A1–A5 hold. Then as T → ∞ and N → ∞ simultaneously

√
NT

(
β̂ − β

)
d−→ N

(
0d, Σ−1

v Σv,eΣ
−1
v

)
. (3.7)

Remark 3.2. The above theorem shows that the proposed pooled profile likelihood estimator

of β can achieve the convergence rate of OP

(
1√
NT

)
. As both T and N tend to infinity jointly,

the asymptotic variance in (3.7) is simplified, compared with some existing literature on the

profile likelihood estimation of semiparametric panel data models with fixed effects (see,

for example, Su and Ullah 2006). A consistent estimation method for Σv and Σv,e will be

proposed in Section 4.1 below.
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(ii) Note that the proposed pooled profile likelihood estimator of β is asymptotically effi-

cient under cross–sectional independence. Under this independence, the asymptotic variance

reduces to Σ−1
v σ2

e , which is the smallest possible variance when both eit and vit are normally

distributed.

Define µj =
∫
ujK(u)du and νj =

∫
ujK2(u)du. An asymptotic distribution of f̂(τ) is

established in the following theorem.

Theorem 3.2. Let Conditions A1–A5 hold. Then, for τ ∈ (0, 1), as T → ∞ and N → ∞
simultaneously

√
NTh

(
f̂(τ)− f(τ)− bf (τ)h

2 + oP (h
2)
)

d−→ N
(
0, ν0σ

2
e

)
, (3.8)

where bf (τ) =
1
2
µ2f

′′(τ).

Remark 3.3. The asymptotic distribution in (3.8) is a standard result for local linear fitting

of nonlinear time trend function. From (3.8), we can obtain the mean integrated square error

(MISE) of f̂(·)

MISE(f̂(τ)) = E
∫ 1

0

(
f̂(τ)− f(τ)

)2
dτ ≈ ν0σ

2
e

NTh
+
∫ 1

0
b2f (τ)dτ h4, (3.9)

where the symbol “an ≈ bn” denotes that an
bn

→ 1 as n → ∞. From (3.9), we can obtain an

optimal bandwidth

hopt =

(
ν0σ

2
e

4
∫ 1
0 b2f (τ)dτ

)1/5

(NT )−1/5. (3.10)

The above bandwidth cannot be used directly as both σ2
e and b2f (τ) in (3.10) are unknown.

Hence, in the simulation study in Section 5, we use a semiparametric “leave–one–out” cross

validation method which will be introduced in Section 4.3 below.

4. Some related discussions

In Section 4.1, consistent estimators are constructed for Σv, Σv,e and σ2
e which are involved

in Theorems 3.1 and 3.2. Then, an averaged profile likelihood estimation is introduced in

Section 4.2. The so–called “leave–one–out” cross validation bandwidth selection criterion is

provided in Section 4.3.

4.1. Estimation of Σv, Σv,e and σ2
e

To make the proposed estimation method practically implementable, we also need to

construct consistent estimators for Σv and Σv,e. By (1.2), and letting ∆vit = vit − vi,t−1,

9



∆Xit = Xit −Xi,t−1 and ∆gt = gt − gt−1, we have for t ≥ 2,

∆vit = ∆Xit −∆gt.

Noting that {vit} is i.i.d. across time by A2, it is easy to check that

Var (∆vit) = 2Var (vit) =: 2Σv(i).

Define

v̂it = Xit − ĝt and ∆v̂it = v̂it − v̂i,t−1,

where ĝt := ĝ
(

t
T

)
is the local linear estimate of g

(
t
T

)
. Then, Σv can be estimated by

Σ̂v =
1

N

N∑
i=1

Σ̂v(i), (4.1)

where

Σ̂v(i) =
1

2[T/2]

[T/2]∑
t=1

∆v̂i,2t∆v̂⊤i,2t. (4.2)

By the uniform consistency of the local linear estimate (see the proofs in Appendix B)

and the fact that g(·) is independent of i, it is easy to check that Σ̂v(i) is a consistent

estimator of Σv(i) uniformly for i, which implies that Σ̂v is a consistent estimator of Σv.

Let ∆v̂it be defined as in (4.2) and

∆êit = êit − êi,t−1 and êit = Yit −X⊤
it β̂ − f̂t, (4.3)

where f̂t := f̂
(

t
T

)
. Then, ρij(v) := E

[
vi1v

⊤
j1

]
and ρij(e) := E [ei1ej1] can be estimated by

ρ̂ij(v) =
1

2[T/2]

[T/2]∑
t=1

∆v̂i,2t∆v̂⊤j,2t and ρ̂ij(e) =
1

2[T/2]

T∑
t=1

∆êi,2t∆ê⊤j,2t, (4.4)

respectively. Let φN be a positive integer satisfying φN ≤ N and φN → ∞. By (3.2), Σv,e

can be consistently estimated by

Σ̂v,e =
1

φN

φN∑
i=1

φN∑
j=1

ρ̂ij(v)ρ̂ij(e). (4.5)

Similarly, by (3.3), σ2
e can be consistently estimated by

σ̂2
e =

1

φN

φN∑
i=1

φN∑
j=1

ρ̂ij(e). (4.6)

4.2. Averaged profile likelihood estimation method
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As
N∑
i=1

αi = 0, another way to eliminate the individual effects αi from model (1.1) is to

take averages over i

YAt = X⊤
Atβ + ft + eAt, (4.7)

where the subscript A indicates averaging with respect to i, YAt =
1
N

N∑
i=1

Yit, XAt =
1
N

N∑
i=1

Xit

and eAt =
1
N

N∑
i=1

eit. Denote YA = (YA1, · · · , YAT )
⊤, XA = (XA1, · · · , XAT )

⊤, f = (f1, · · · , fT )⊤

and eA = (eA1, · · · , eAT )
⊤. Then, by applying the profile likelihood estimation approach to

model (4.7), one can obtain averaged profile likelihood estimators of β and f(·) as

β̂A =
(
X∗⊤

A X∗
A

)−1
X∗⊤

A Y ∗
A ,

f̂A(τ) = (1, 0)
(
Z⊤(τ)W (τ)Z(τ)

)−1
Z⊤(τ)W (τ)(YA −XAβ̂A),

where X∗
A = XA −MXA = (IT −M)XA, Y

∗
A = (IT −M)YA,

M =


(1, 0)

(
Z⊤(1/T )W (1/T )Z(1/T )

)−1
Z⊤(1/T )W (1/T )

...

(1, 0)
(
Z⊤(T/T )W (T/T )Z(T/T )

)−1
Z⊤(T/T )W (T/T )

 ,

in which W (τ) and Z(τ) are defined in Section 2, IT is the T × T identity matrix.

It can be shown that the rate of convergence of β̂A to β is of order
√
T , while the rate of

convergence of f̂A(τ) to f(τ) is of the same order of
√
NTh as that for f̂(τ). This is clearly

illustrated in Tables 5.1 and 5.2 below.

4.3. Bandwidth Selection

Due to the existence of the fixed effects, the traditional method of cross validation may not

provide satisfactory results in selecting the optimal bandwidth. Hence, we use an extension

of the conventional leave–one–out cross validation method, which is proposed by Sun et al

(2009) and is called leave–one–unit–out cross validation method. The idea is to remove

{(Xit, Yit), 1 ≤ t ≤ T} from the data for each 1 ≤ i ≤ N and use the rest of the (N − 1)T

observations as the training data to obtain estimates of β and f(·), which are denoted as

β̂(−i) and f̂(−i)(·). Then, the optimal bandwidth is chosen such that it minimizes a weighted

squared prediction error of the form(
Ỹ −B

(
X̃, β̂(−)

)
− f̂(−)

)⊤
M⊤M

(
Ỹ −B

(
X̃, β̂(−)

)
− f̂(−)

)
, (4.8)

where M = IN×T − 1
T
IN ⊗ (iT i

⊤
T ),

B
(
X̃, β̂(−)

)
=
(
X⊤

11β̂(−1), · · · , X⊤
1T β̂(−1), X

⊤
21β̂(−2), · · · , X⊤

2T β̂(−2), · · · , X⊤
N1β̂(−N), · · · , X⊤

NT β̂(−N)

)⊤
11



and f̂(−) =
(
f̂(−1)(1/T ), · · · , f̂(−1)(T/T ), f̂(−2)(1/T ), · · · , f̂(−2)(T/T ), · · · , f̂(−N)(1/T ), · · · , f̂(−N)(T/T )

)⊤
.

The weight matrix M is constructed to satisfy MD = 0 so that the fixed effects αi

are eliminated from (4.8). In effect, M removes a cross–time average from each variable.

For example, MỸ = (Y11 − Y1A, · · · , Y1T − Y1A, Y21 − Y2A, · · · , YNT − YNA)
⊤, where YiA =

1
T

T∑
t=1

Yit for i = 1, · · · , N .

5. Examples of implementation

We next carry out simulation studies to compare the small sample behavior of the two

profile likelihood estimation methods: the pooled and the averaged methods. The Epanech-

nikove kernel K(u) = 3
4
(1− u2)I{|u| ≤ 1} is used throughout the section. We also illustrate

the proposed pooled profile likelihood dummy variable method through applications to a

CPI data set and an input–output data set.

5.1. Simulated Examples

Example 5.1. Consider a data generating process of the form

Yit = Xitβ + f
(
t

T

)
+ αi + eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (5.1)

where β = 2, f(u) = 2u3 + u, αi =
1
T

T∑
t=1

Xit for i = 1, · · ·, N − 1, and αN = −
N−1∑
i=1

αi.

The error terms eit are generated as follows. For each 1 ≤ t ≤ T , let ẽ·t = (e1t, e2t, · · · , eNt),

which is a N–dimensional vector. Then, {ẽ·t, 1 ≤ t ≤ T} is generated as a N–dimensional

vector of independent Gaussian variables with zero mean and covariance matrix (cij)N×N ,

where

cij = 0.8|j−i|, 1 ≤ i, j ≤ N. (5.2)

From the way eit are generated, it is easy to see that

E(eitejs) = 0 for 1 ≤ i, j ≤ N, t ̸= s,

E(eitejt) = 0.8|j−i| for 1 ≤ i, j ≤ N, 1 ≤ t ≤ T.

The above equations imply that {eit} is cross–sectionally dependent and time independent.

The explanatory variables Xit are generated by

Xit = g
(
t

T

)
+ xi + vit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (5.3)

where g(u) = 2 sin(πu), {vit} is independent of {eit} and is generated in the same way as

{eit} but with a different covariance matrix (dij)N×N , where dij = 0.5|j−i| for 1 ≤ i, j ≤ N ,

xi ∼ U(−0.2, 0.2) for 1 ≤ i ≤ N − 1 and xN = −
N−1∑
i=1

xi.

12



We compare the pooled profile likelihood estimator (PPLE) with the averaged profile

likelihood estimator (APLE). The means and standard deviations (SDs) (in parentheses) of

the two estimators of the parameter β = 2 based on R = 500 replications are reported in

Table 5.1(a). Table 5.1(b) compares the mean squared errors (MSEs) of the two estimators

of the trend function and their SDs (in parentheses), where for an estimator f̂ , its MSE is

defined as

MSE(f̂) =
1

T

T∑
t=1

[
f̂
(
t

T

)
− f

(
t

T

)]2
. (5.4)

Tables 5.1(a)–(b) indicate that the PPLE estimates both the parameter and the trend

function much more accurately than the APLE, and it is also more efficient than the APLE.

Another important finding from the simulation results is that an increase in either N or T

results in a decrease in the SD of the PPLE of the parameter β or the MSE of the PPLE

of the trend function f(·). However, this does not apply to the APLE. While the SD of

the APLE of the parameter β or the MSE of the APLE of f(·) decreases as T increases, an

increase in N does not necessarily imply a decrease in them when T is fixed.

Table 5.1(a). Means and SDs of estimators for β = 2 in Example 5.1

N\T 10 20 30

PPLE APLE PPLE APLE PPLE APLE

10 1.9963 1.7543 1.9977 1.7848 1.9982 1.7752

(0.1313) (0.3339) (0.0978) (0.2279) (0.0813) (0.1821)

20
1.9969 1.6722 2.0018 1.7177 1.9986 1.7270

(0.0982) (0.3114) (0.0715) (0.3071) (0.0576) (0.1613)

30
1.9972 1.7774 1.9996 1.7001 1.9992 1.7087

(0.0873) (0.3124) (0.0567) (0.1791) (0.0487) (0.1371)

Table 5.1(b). Means and SDs of the MSEs of estimators for f(u) = 2u3 + u in Example 5.1

N\T 10 20 30

PPLE APLE PPLE APLE PPLE APLE

10 0.2272 0.4482 0.1361 0.2876 0.0900 0.2144

(0.1548) (0.5848) (0.0983) (0.2585) (0.0593) (0.1798)

20 0.1576 0.4567 0.0902 0.2949 0.0639 0.2431

(0.1050) (0.5285) (0.0570) (0.2543) (0.0418) (0.1948)

30 0.1182 0.3284 0.0649 0.2780 0.0457 0.1645

(0.0736) (0.3620) (0.0377) (0.2202) (0.0288) (0.2026)
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Example 5.2. Consider another the data generating process of the form

Yit = X⊤
it β + f

(
t

T

)
+ αi + eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (5.5)

where β = (2, 1, 2)⊤, Xit = (Xit,1, Xit,2, Xit,3)
⊤, f(u) = 1 + 2 sin(πu),

αi = max

{
1

T

T∑
t=1

Xit,1,
1

T

T∑
t=1

Xit,2,
1

T

T∑
t=1

Xit,3,

}
, i = 1, · · · , N − 1,

and αN = −
N−1∑
i=1

αi.

Letting ẽ·t = (e1t, e2t, · · · , eNt), then we generate {ẽ·t, 1 ≤ t ≤ T} as a N–dimensional

vector of Gaussian variables with zero mean and covariance matrix (c∗ij)N×N , where c∗ij =

1
(i−j)2+1

.

The explanatory variables Xit are generated by Xit = g
(

t
T

)
+ xi + vit, where

g(u) =
(
2(u− 1/2)2, u, −2u

)⊤
, (5.6)

and {vit = (vit,1, vit,2, vit,3)
⊤ : 1 ≤ i ≤ N, 1 ≤ t ≤ T} satisfies Evit = 0,

E
(
vitv

⊤
jt

)
=

1

(j − i)2 + 1


1 0 0

0 2 0

0 0 1

 , 1 ≤ i, j ≤ N, 1 ≤ t ≤ T,

and E
(
vitv

⊤
js

)
= 0 for 1 ≤ i, j ≤ N and s ̸= t, xi = 0.5N (0, I3) for 1 ≤ i ≤ N − 1, and

xN = −
N−1∑
i=1

xi.

We also compare the estimates from the two estimation methods, and the simulation

results based on 500 replications are given in Tables 5.2(a)–(b). Similar conclusions can be

drawn from Tables 5.2(a)–(b) as those from Tables 5.1(a)–(b): the PPLE outperforms APLE

in terms of accuracy and efficiency, and its performance improves as either N or T increases,

however, the performance of the APLE does not necessarily improve as N increases while

we hold T fixed.
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Table 5.2(a). Means and SDs of estimators for β = (2, 1, 2)⊤ in Example 5.2

N\T 10 20 30

PPLE APLE PPLE APLE PPLE APLE

10 β1 = 2 1.9945 1.9114 1.9967 1.9956 1.9985 1.9737

(0.1283) (0.5906) (0.0929) (0.2917) (0.0687) (0.2108)

β2 = 1 1.0036 1.0177 0.9953 0.9856 0.9996 0.9930

(0.0973) (0.4170) (0.0622) (0.2019) (0.0513) (0.1519)

β3 = 2 2.0020 1.9552 1.9987 1.9992 2.0035 2.0175

(0.1279) (0.6229) (0.0914) (0.2783) (0.0761) (0.2113)

20 β1 = 2 2.0013 1.3617 1.9996 2.0052 2.0019 1.9819

(0.0867) (0.7619) (0.0605) (0.3178) (0.0525) (0.2294)

β2 = 1 0.9979 1.0125 0.9989 0.9888 1.0010 0.9979

(0.0685) (0.6986) (0.0449) (0.2147) (0.0362) (0.1576)

β3 = 2 1.9952 2.0234 2.0016 2.0017 1.9994 2.0193

(0.0927) (0.9640) (0.0645) (0.2845) (0.0509) (0.2391)

30 β1 = 2 2.0013 1.7425 2.0011 1.9274 1.9990 1.9402

(0.0735) (0.5787) (0.0575) (0.2901) (0.0413) (0.2283)

β2 = 1 1.0041 0.9905 1.0016 1.0049 1.0000 0.9965

(0.0522) (0.4563) (0.0354) (0.1918) (0.0302) (0.1533)

β3 = 2 1.9985 1.9685 2.0011 2.0084 1.9998 2.0275

(0.0777) (0.6875) (0.0524) (0.2804) (0.0434) (0.2142)

Table 5.2(b). Means and SDs of MSEs of estimators for f(u) = 1 + 2 sin(πu) in Example 5.2

N\T 10 20 30

PPLE APLE PPLE APLE PPLE APLE

10 0.1290 0.9614 0.0668 0.1900 0.0500 0.1223

(0.1018) (1.5668) (0.0465) (0.2340) (0.0315) (0.1424)

20 0.0767 2.0194 0.0429 0.1792 0.0271 0.1138

(0.0541) (3.2566) (0.0286) (0.2362) (0.0166) (0.1342)

30 0.0539 0.9126 0.0286 0.1713 0.0204 0.0994

(0.0409) (2.3934) (0.0179) (0.2104) (0.0118) (0.1349)
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Figure 5.1. From left to right: scatter plots of the observations of log food CPI and log all-group CPI.

5.2. Empirical Applications

Example 5.3. The first data set consists of quarterly consumer price index (CPI) numbers

of 11 classes of commodities for 8 Australian capital cities spanning from 1994 to 2008

(available from the Australian Bureau of Statistics at www.abs.gov.au). The raw data were

seasonally adjusted before being used. We study the empirical relationship between the log

food CPI and the log all–group CPI. Let Yit be the log food CPI and Xit be the log all–group

CPI for city i at time t, where 1 ≤ i ≤ 8 and 1 ≤ t ≤ 60. We then assume that {(Yit, Xit)}
satisfies a semiparametric model of the form

Yit = Xitβ + ft + αi + eit, (5.7)

where αi are individual effects, and ft is the trend in the log food CPI. The scatter plots of

the observations of both Yit and Xit are given in Figure 5.1.

By applying the proposed pooled profile likelihood estimation procedure to the above

data set, we have the estimate of β as β̂ = 0.8160 with standard deviation 9.1× 10−5, which

indicates that this estimated coefficient is significant. The semiparametric estimate of the

trend function as well as its 95% confidence band is given in Figure 5.2. The estimated

trend curve exhibits an obvious upward pattern, which is consistent with the observation

that the food CPI series for each city generally increases with time. We also fit the data with
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Figure 5.2. The estimated common trend in the log food CPI of the 8 Australian capital cities from Q1 1994

to Q4 2008 as well as its 95% confidence band.

a linear trend and use the ordinary least squares (OLS) method to estimate the resulting

linear model. The OLS estimate of β is β̂OLS = 0.7583 with standard deviation 0.0370,

and the linear trend is estimated as 1.1143 + 0.0036t, which also implies that there is an

upward common trend in the 8 capital cities’ food CPI. The coefficient of determination for

the semiparametric model (5.7) is R2 = 0.9959 and that for the linear model is R2 = 0.9877,

which implies that the semiparametric model fits the data a little better than the linear

model.

Example 5.4. As a second empirical example, we use economic data extracted from the

World Bank’s STAR database on 82 countries over the period 1960 to 1987. This database

contains data on measures of gross domestic product (GDP) and the aggregate physical

capital stock, both of which are denominated in constant, end of period 1987, local currency

units. The database also provides data on the number of individuals in the workforce be-

tween the ages of 15 to 64 and the mean years of schooling of members in the workforce.

For cross–country comparability purposes and common econometric issues, the raw data on

GDP and the physical capital stock are transformed into constant 1987 U.S. dollars. The

papers of Duffy and Papageorgiou (DP) (2000) and You, Zhou and Zhou (2011) contain more

details about the data. DP (2000) used the data to estimate a general constant–elasticity–

of–substitution production function specification, and found that the Cobb–Douglas specifi-
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Figure 5.3. From left to right: scatter plots of the observations of log per–worker GDP and log per–worker

real capital.

cation could be rejected for the entire sample of countries.

Let Git denote real GDP, Kit denote real capital stock (in constant 1987 U.S. dollars),

and Lit denote the number of people in the workforce, where i = 1, 2, · · ·, 82 indexes 82

countries and t = 1, 2, · · ·, 28 indexes the 28 years from 1960 to 1987. Denote GLit = Git/Lit

and KLit = Kit/Lit, which represent real GDP per worker and real capital per worker,

respectively. DP (2000) considered the following specification to characterize the input–

output production relationship:

log(GLit) = γ + λt+ β1 log(KLit) + β2[log(KLit)]
2 + αi + ϵit, (5.8)

where a common linear trend λt was used. We generalize this specification by replacing the

linear trend γ + λt with a nonparametric trend function ft:

log(GLit) = ft + β1 log(KLit) + β2[log(KLit)]
2 + αi + ϵit. (5.9)

The nonparametric trend ft brings more flexibility into model (5.9) and the inclusion of the

fixed effects αi allows us to capture country–specific characteristics that might affect real

GDP. Figure 5.3 gives the scatter plots of the observations of both log per–worker GDP and

log per–worker real capital.

Applying the pooled profile likelihood method given in Section, we obtain the estimates

of (β1, β2)
⊤ as (0.1203, 0.0237)⊤ with standard deviations (0.0017, 0.0002)⊤, which implies
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Figure 5.4. The estimated common trend in the per–worker GDP of the 82 countries from 1960 to 1987.

that both of the estimated coefficients are significantly different from zeros. In contrast, the

OLS estimates of (β1, β2)
⊤ of model (5.8) in DP (2000) is (0.3201, 0.0318)⊤ with standard

deviations (0.0520, 0.0029), which also indicates that these two coefficients are significant.

Figure 5.4 shows the pooled profile likelihood estimate of the common trend in per–

worker GDP of the 82 countries as well as its 95% confidence band. The estimated curve

is bell shaped and far from linear. It shows an upward trend over the period from 1960 to

1973. However, in the two years following 1973, there is a drop in the per–worker GDP,

which may be a result of the oil crisis in 1973. During 1975 to 1979, the per–worker GDP

remains relatively steady, which indicates that the countries were recovering from the crisis.

However, a sharp decrease is seen for the period from 1979 to 1983, which shows the adverse

impact of the 1979 energy crisis on these 82 countries’ economy. After 1983, the per–work

GDP stabilizes and starts to rise from 1985. In comparison, if we model the trend by

a linear function as in (5.8), then the estimated trend resulting from the OLS would be

2.7689 − 0.0119t, which indicates a decrease in the per-worker output from 1960 to 1987.

Hence, the semiparametric model (5.9) allows us to extract information that cannot be

obtained by using a simple linear trend. For example, the two turning points of 1973 and

1979 in Figure 5.4 are indicative of the two crisis in the 1970s. The linear–trend–model (5.8),

however, gives no such information except a downward trend in the per-worker output from

1960 to 1987. A comparison of the coefficients of determination, which are R2 = 0.9932 for
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(5.9) and R2 = 0.9400 for (5.8), also shows model (5.9) fits the data better than (5.8).

6. Conclusions and discussion

We have considered a semiparametric fixed effects panel data model with cross–sectional

dependence in both the regressors and the residuals. A pooled semiparametric profile likeli-

hood dummy variable method has been proposed to estimate both the parameter vector and

the time trend function. Asymptotic distributions for the estimators of the two components

have been derived with possible optimal rate of convergence when both the time series length

T and the cross–sectional size N tend to infinity simultaneously.

We have also used two simulated examples to evaluate the finite–sample performance

of the proposed estimation method. The simulation results have shown that the proposed

pooled semiparametric profile likelihood method uniformly outperforms the averaged profile

likelihood method, which is commonly used in literature. In addition, we have illustrated

the proposed method through two sets of real–data with the first one being an Australian

consumer price index data set and the second one being a set of input–output data from 82

countries.

There are some limitations in this paper. This paper assumes that there is no endogeneity

between {eit} and {Xit} while allowing for cross–sectional dependence between them. A

future topic is to accommodate such endogeneity in a semiparametric model.
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Appendix A: Proofs of the main results

Let C be a generic positive constant whose value may vary from place to place throughout

the rest of this paper.

Proof of Theorem 3.1. Note that

β̂ − β =
(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤M∗Ỹ ∗ − β
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=
(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤M∗

(
INT − S̃

) (
X̃β + f̃ +Dα+ ẽ

)
− β

=
(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤M∗f̃∗ +

(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤M∗D∗α

+
(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤M∗ẽ∗ (A.1)

=: ΠNT (1) + ΠNT (2) + ΠNT (3),

where f̃∗ =
(
INT − S̃

)
f̃ and ẽ∗ =

(
INT − S̃

)
ẽ.

As
N∑
i=1

αi = 0, we have

ΠNT (2) =
(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤M∗D∗α

=
(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤D∗α−

(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤D∗

(
D∗⊤D∗

)−1
D∗⊤D∗α

=
(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤D∗α−

(
X̃∗⊤M∗X̃∗

)−1
X̃∗⊤D∗α = 0d, (A.2)

where 0d is a d× 1 vector of zeros.

The asymptotic distribution in Theorem 3.1 can be proved via the following two propositions.

Proposition A.1. Under A1–A3 and A5, we have

ΠNT (1) = oP
(
(NT )−1/2

)
.

Proof. Note that X̃∗⊤M∗X̃∗ = X̃∗⊤X̃∗−X̃∗⊤D∗
(
D∗⊤D∗

)−1
D∗⊤X̃∗. Hence, to prove Proposition

A.1, it suffices for us to prove

1

NT
X̃∗⊤X̃∗ = Σv +

1

N

N∑
i=1

xix
⊤
i + oP (1), (A.3)

1

NT
X̃∗⊤D∗

(
D∗⊤D∗

)−1
D∗⊤X̃∗ =

1

N

N∑
i=1

xix
⊤
i + oP (1), (A.4)

X̃∗⊤M∗f̃∗ = oP (
√
NT ). (A.5)

Step (i). Proof of (A.3). By the definition of X̃∗ and the notation s(τ) = (1, 0)S(τ) in (2.2), we

have

1

NT
X̃∗⊤X̃∗ =

1

NT
X̃⊤

(
INT − S̃

)⊤ (
INT − S̃

)
X̃

=
1

NT

N∑
i=1

T∑
t=1

(
Xit − X̃⊤s⊤

(
t

T

))(
Xit − X̃⊤s⊤

(
t

T

))⊤

=
1

NT

N∑
i=1

T∑
t=1

(vit + xi) (vit + xi)
⊤

+
1

NT

N∑
i=1

T∑
t=1

(
gt − X̃⊤s⊤

(
t

T

))
(vit + xi)

⊤
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+
1

NT

N∑
i=1

T∑
t=1

(vit + xi)

(
gt − X̃⊤s⊤

(
t

T

))⊤

+
1

T

T∑
t=1

(
gt − X̃⊤s⊤

(
t

T

))(
gt − X̃⊤s⊤

(
t

T

))⊤

=: Π∗
NT (1) + Π∗

NT (2) + Π∗
NT (3) + Π∗

NT (4). (A.6)

We first consider Π∗
NT (1). Note that

Π∗
NT (1) =

1

NT

N∑
i=1

T∑
t=1

(vit + xi) (vit + xi)
⊤

=
1

T

T∑
t=1

(
1

N

N∑
i=1

vitv
⊤
it

)
+

1

NT

N∑
i=1

T∑
t=1

xix
⊤
i +

1

NT

N∑
i=1

T∑
t=1

(
vitx

⊤
i + xiv

⊤
it

)

=
1

T

T∑
t=1

(
1

N

N∑
i=1

vitv
⊤
it −E

[
1

N

N∑
i=1

vitv
⊤
it

])
+

1

T

T∑
t=1

E

[
1

N

N∑
i=1

vitv
⊤
it

]

+
1

NT

N∑
i=1

T∑
t=1

xix
⊤
i +

1

NT

N∑
i=1

T∑
t=1

(
vitx

⊤
i + xiv

⊤
it

)
=: Π∗

NT (1, 1) + Π∗
NT (1, 2) + Π∗

NT (1, 3) + Π∗
NT (1, 4). (A.7)

By the moment condition in A2 and the Markov inequality, we have, for any ϵ > 0,

P {|Π∗
NT (1, 1)| > ϵ} ≤ 1

ϵ2
E [Π∗

NT (1, 1)]
2

=
1

ϵ2T 2

T∑
t=1

Var

(
1

N

N∑
i=1

vitv
⊤
it

)
=

1

ϵ2TN2
Var

(
N∑
i=1

vitv
⊤
it

)
= O

(
1

T

)
.

Hence, as T → ∞, we have

Π∗
NT (1, 1) = oP (1). (A.8)

By A2, it is easy to check that

Π∗
NT (1, 2) = Σv + oP (1) (A.9)

as N,T → ∞ simultaneously.

On the other hand, as {vit, t ≥ 1} is a sequence of i.i.d. random vectors for each i ≥ 1, we have

max
1≤i≤N

∥∥∥∥∥
T∑
t=1

vit

∥∥∥∥∥ = oP (T ). (A.10)

The detailed proof of (A.10) is relegated to Appendix B. In view of (A.10) and max
i

∥xi∥ = OP (1),

we get

∥Π∗
NT (1, 4)∥ ≤ 2

NT

N∑
i=1

(
∥xi∥

∥∥∥∥∥
T∑
t=1

vit

∥∥∥∥∥
)

= oP (1).

This combined with (A.7)–(A.9) and Π∗
NT (1, 3) =

1
N

N∑
i=1

xix
⊤
i yields

Π∗
NT (1) = Σv +

1

N

N∑
i=1

xix
⊤
i + oP (1). (A.11)
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For Π∗
NT (4), we use the uniform consistency result:

sup
0≤τ≤1

∥∥∥g(τ)− X̃⊤s⊤(τ)
∥∥∥ = OP

h2 +
√

log(NT )

NTh

 . (A.12)

The detailed proof of (A.12) will be given in Appendix B. From (A.12), it is easy to show

Π∗
NT (4) = oP (1). (A.13)

Noting that
N∑
i=1

xix
⊤
i = OP (N), by (A.11), (A.13) and the Cauchy–Schwarz inequality,

Π∗
NT (2) = oP (1) and Π∗

NT (3) = oP (1). (A.14)

With (A.6), (A.11), (A.13) and (A.14), we have shown that (A.3) holds.

Step (ii). Proof of (A.4). As S̃D = 0, we have

D∗⊤D∗ = D⊤
(
INT − S̃

)⊤ (
INT − S̃

)
D = D⊤D. (A.15)

Furthermore,

D⊤D =



2T T · · · T

T 2T · · · T

...
... · · ·

...

T T · · · 2T


=



T T · · · T

T T · · · T

...
... · · ·

...

T T · · · T


+ diag(T, · · · , T ). (A.16)

Letting A = diag(T, · · · , T ), B = (1, · · · , 1)⊤, C = T and P = (1, · · · , 1), and applying the

result about the inverse matrix (Poirier 1995):

(A+BCP )−1 = A−1 −A−1B
(
PA−1B + C−1

)−1
PA−1,

we have

(
D∗⊤D∗

)−1
=
(
D⊤D

)−1
=



1
T − 1

NT − 1
NT · · · − 1

NT

− 1
NT

1
T − 1

NT · · · − 1
NT

...
... · · ·

...

− 1
NT − 1

NT · · · 1
T − 1

NT


. (A.17)

Meanwhile, by the definitions of X̃∗ and D∗, we have

X̃∗⊤D∗ = X̃∗⊤D = (AT (2), · · · , AT (N)) , (A.18)

where AT (k) = −
T∑
t=1

X1t +
T∑
t=1

Xkt, k ≥ 2.
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Letting A∗
T (k) =

1
T AT (k)− 1

NT

N∑
k=2

AT (k), by (A.17) and (A.18), we then have

1

NT
X̃∗⊤D∗

(
D∗⊤D∗

)−1
D∗⊤X̃∗ =

1

NT

(
N∑
k=2

A∗
T (k)A

⊤
T (k)

)

=
1

N

N∑
k=2

(
1

T
AT (k)

)(
1

T
A⊤

T (k)

)
−
(

1

N

N∑
k=2

1

T
AT (k)

)(
1

N

N∑
k=2

1

T
A⊤

T (k)

)
.

By (A.10) and the definition of AT (k), we can show that

1

T
AT (k) = xk − x1 + oP (1) (A.19)

uniformly for 2 ≤ k ≤ N , which implies

1

N

N∑
k=2

(
1

T
AT (k)

)(
1

T
A⊤

T (k)

)
=

1

N

N∑
k=2

xkx
⊤
k +

N + 1

N
x1x

⊤
1 + oP (1) (A.20)

and (
1

N

N∑
k=2

1

T
AT (k)

)(
1

N

N∑
k=2

1

T
A⊤

T (k)

)
= x1x

⊤
1 + oP (1). (A.21)

With (A.20) and (A.21), we have show that (A.4) holds.

Step (iii). Proof of (A.5). Note that

X̃∗⊤M∗f̃∗ = X̃∗⊤f̃∗ − X̃∗⊤D∗
(
D∗⊤D∗

)−1
D∗⊤f̃∗.

We first prove that

X̃∗⊤f̃∗ = oP (
√
NT ). (A.22)

By the definition of X̃∗ and f̃∗, we have

X̃∗⊤f̃∗ =
N∑
i=1

T∑
t=1

(
Xit − X̃⊤s⊤

(
t

T

))(
f

(
t

T

)
− s

(
t

T

)
f̃

)

=
N∑
i=1

T∑
t=1

(
vit +

[
g

(
t

T

)
− X̃⊤s⊤

(
t

T

)])(
f

(
t

T

)
− s

(
t

T

)
f̃

)

=
N∑
i=1

T∑
t=1

vit

(
f

(
t

T

)
− s

(
t

T

)
f̃

)
−

N∑
i=1

T∑
t=1

ṽ⊤s⊤
(
t

T

)(
f

(
t

T

)
− s

(
t

T

)
f̃

)

+
N∑
i=1

T∑
t=1

(
g

(
t

T

)
− g̃⊤s⊤

(
t

T

))(
f

(
t

T

)
− s

(
t

T

)
f̃

)

+
N∑
i=1

T∑
t=1

xi

(
f

(
t

T

)
− s

(
t

T

)
f̃

)
+

N∑
i=1

T∑
t=1

x⊤s⊤
(
t

T

)(
f

(
t

T

)
− s

(
t

T

)
f̃

)
=: Π∗

NT (5) + Π∗
NT (6) + Π∗

NT (7) + Π∗
NT (8) + Π∗

NT (9), (A.23)

where g̃ = iN⊗(g1, g2, · · · , gT )⊤, ṽ = (v11, · · · , v1T , v21, · · · , v2T , · · · , vNT )
⊤ and x = (x1, · · · , xN )⊤⊗

iT .
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Following the argument in the proof of (A.12) in Appendix B and by A2 and A3, we have

sup
0≤τ≤1

∣∣∣f(τ)− s(τ)f̃
∣∣∣ = O

(
h2
)
,

sup
0≤τ≤1

∥∥∥g(τ)− g̃⊤s⊤(τ)
∥∥∥ = O

(
h2
)
,

sup
0≤τ≤1

∥∥∥ṽ⊤s⊤(τ)∥∥∥ = OP

√ log(NT )

NTh

 ,

which, together with A5, imply

Π∗
NT (5) = OP

(√
NTh2

)
= oP (

√
NT ), (A.24)

Π∗
NT (6) = OP

(√
NT log(NT )h3

)
= oP (

√
NT ), (A.25)

Π∗
NT (7) = OP

(
NTh4

)
= oP (

√
NT ). (A.26)

On the other hand, noticing
N∑
i=1

xi = 0d and the fact that s
(
t
T

)
is independent of i, we have

Π∗
NT (8) = 0d = oP (

√
NT ) and Π∗

NT (9) = 0d = oP (
√
NT ). (A.27)

By (A.23)–(A.27), we have shown that (A.22) holds. Following the argument in Step (ii), we

can also show

X̃∗⊤D∗
(
D∗⊤D∗

)−1
D∗⊤f̃∗ = oP (

√
NT ). (A.28)

Then, with (A.22) and (A.28), we prove (A.5).

In view of (A.3)–(A.5), the proof of Proposition A.1 is completed.

Proposition A.2. Let A1–A5 hold. Then we have

√
NTΠNT (3)

d−→ N
(
0d,Σ

−1
v Σv,eΣ

−1
v

)
. (A.29)

Proof. To prove (A.29), it suffices for us to show

1

NT
X̃∗⊤M∗X̃∗ P−→ Σv (A.30)

and
1√
NT

X̃∗⊤M∗ẽ∗
d−→ N (0,Σv,e) . (A.31)

By (A.3) and (A.4) in the proof of Proposition A.1, we can easily obtain (A.30). For the proof

of (A.31), observe that

X̃∗⊤M∗ẽ∗ = X̃∗⊤ẽ∗ − X̃∗⊤D∗
(
D∗⊤D∗

)−1
D∗⊤ẽ∗ =: Π∗

NT (10) + Π∗
NT (11). (A.32)

25



For Π∗
NT (10), we have

1√
NT

Π∗
NT (10) =

1√
NT

N∑
i=1

T∑
t=1

viteit +
1√
NT

N∑
i=1

T∑
t=1

xieit

+
1√
NT

N∑
i=1

T∑
t=1

(
g

(
t

T

)
− X̃⊤s⊤

(
t

T

))
eit

− 1√
NT

N∑
i=1

T∑
t=1

vits

(
t

T

)
ẽ− 1√

NT

N∑
i=1

T∑
t=1

xis

(
t

T

)
ẽ

− 1√
NT

N∑
i=1

T∑
t=1

(
g

(
t

T

)
− X̃⊤s⊤

(
t

T

))
s

(
t

T

)
ẽ

=:
6∑

j=1

Π∗
NT (10, j). (A.33)

Following the proof of (A.12) in Appendix B, and by A2, A4 and A5, we have

Π∗
NT (10, 3) = OP

h2 +
√

log(NT )

NTh

 = oP (1), (A.34)

Π∗
NT (10, 4) = OP

√ log(NT )

NTh

 = oP (1), (A.35)

Π∗
NT (10, 6) = OP

√NT

h2 +
√

log(NT )

NTh

√ log(NT )

NTh

 = oP (1). (A.36)

Similarly to the proof of (A.27), we have

Π∗
NT (10, 5) = 0d = oP (1). (A.37)

By (A.33)–(A.37), we have

1√
NT

Π∗
NT (10) =

1√
NT

N∑
i=1

T∑
t=1

viteit +
1√
NT

N∑
i=1

T∑
t=1

xieit + oP (1). (A.38)

On the other hand, by (A.17), (A.18) and a standard calculation, we have

Π∗
NT (11) =

1

T

N∑
k=2

AT (k)BT (k)−
1

NT

(
N∑
k=2

AT (k)

)(
N∑
k=2

BT (k)

)
,

where AT (k) =
T∑
t=1

Xkt −
T∑
t=1

X1t and BT (k) =
T∑
t=1

ekt −
T∑
t=1

e1t. Observe that

AT (k) =
T∑
t=1

Xkt −
T∑
t=1

X1t

=

(
T∑
t=1

vkt −
T∑
t=1

v1t

)
+ T (xk − x1)

=: AT (k, 1) +AT (k, 2).
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Hence,

Π∗
NT (11) =

1

T

N∑
k=2

(AT (k, 1) +AT (k, 2))BT (k)

− 1

NT

(
N∑
k=2

AT (k, 1) +AT (k, 2)

)(
N∑
k=2

BT (k)

)

=
1

T

N∑
k=2

AT (k, 1)BT (k)−
1

NT

(
N∑
k=2

AT (k, 1)

)(
N∑
k=2

BT (k)

)

+
1

T

N∑
k=2

AT (k, 2)BT (k)−
1

NT

(
N∑
k=2

AT (k, 2)

)(
N∑
k=2

BT (k)

)
=: Π∗

NT (12) + Π∗
NT (13). (A.39)

By the identification condition on {xi}, we have

Π∗
NT (13) =

N∑
i=1

T∑
t=1

xieit.

We then consider Π∗
NT (12). Define AT (k) =

T∑
t=1

vkt and BT (k) =
T∑
t=1

ekt for k = 1, · · ·, N .

Then,

Π∗
NT (12) =

1

T

N∑
k=2

AT (k, 1)BT (k)−
1

NT

(
N∑
k=2

AT (k, 1)

)(
N∑
k=2

BT (k)

)

=
1

T

N∑
k=2

AT (k)BT (k)−
1

T
BT (1)

N∑
k=2

AT (k)−
1

T
AT (1)

N∑
k=2

BT (k)

+
N − 1

T
AT (1)BT (1)−

1

NT

(
N∑
k=2

AT (k)

)(
N∑
k=2

BT (k)

)

+
N − 1

NT
BT (1)

N∑
k=2

AT (k) +
N − 1

NT
AT (1)

N∑
k=2

BT (k)−
(N − 1)2

NT
AT (1)BT (1)

=
1

T

N∑
k=2

AT (k)BT (k)−
1

NT

(
N∑
k=2

AT (k)

)(
N∑
k=2

BT (k)

)

− 1

NT
BT (1)

N∑
k=2

AT (k)−
1

NT
AT (1)

N∑
k=2

BT (k) +
N − 1

NT
AT (1)BT (1)

=:
5∑

j=1

Π∗
NT (12, j). (A.40)

By A2 and A4, we have, as N,T → ∞ simultaneously,

E
(
Π∗

NT (12, 1)Π
∗⊤
NT (12, 1)

)
=

1

T 2
E

( N∑
k=2

T∑
t=1

T∑
s=1

ektvks

)(
N∑
k=2

T∑
t=1

T∑
s=1

ektvks

)⊤
27



=
1

T 2

T∑
t=1

T∑
s=1

N∑
k1=2

N∑
k2=2

E (ek1tek2t)E
(
vk1sv

⊤
k2s

)

=
N∑

k1=2

N∑
k2=2

E (ek1,1ek2,1)E
(
vk1,1v

⊤
k2,1

)
= O(N),

E
(
Π∗

NT (12, 2)Π
∗⊤
NT (12, 2)

)
=

1

N2T 2
E

 N∑
k1=2

T∑
t1=1

ek1t1

2

E


 N∑

k2=2

T∑
t2=1

vk2t2

 N∑
k2=2

T∑
t2=1

vk2t2

⊤


=
1

N2T 2

 N∑
k1=2

N∑
j1=2

T∑
t1=1

E (ek1t1ej1t1)

 N∑
k2=2

N∑
j2=2

T∑
t2=1

E
(
vk2t2v

⊤
j2t2

)
=

1

N2

 N∑
k1=2

N∑
j1=2

E (ek1,1ej1,1)

 N∑
k2=2

N∑
j2=2

E
(
vk2,1v

⊤
j2,1

) = O(1),

and similarly,

E
(
Π∗

NT (12, 3)Π
∗⊤
NT (12, 3)

)
= O

(
1

N

)
,

E
(
Π∗

NT (12, 4)Π
∗⊤
NT (12, 4)

)
= O

(
1

N

)
,

E
(
Π∗

NT (12, 5)Π
∗⊤
NT (12, 5)

)
= O(1).

Hence,

Π∗
NT (12, j) = oP (

√
NT ), j = 1, · · · , 5. (A.41)

Combining (A.39)–(A.41), we have

Π∗
NT (11) =

N∑
i=1

T∑
t=1

xieit + oP (
√
NT ). (A.42)

By (A.32), (A.38) and (A.42), we have

X̃∗⊤M∗ẽ∗ =
N∑
i=1

T∑
t=1

viteit + oP (
√
NT ). (A.43)

We next prove that

1√
NT

N∑
i=1

T∑
t=1

viteit
d−→ N (0,Σv,e) . (A.44)

As both T and N tend to infinity, we next prove (A.44) by the joint limit approach (see Phillips

and Moon 1999 for example). Letting Zt,N (v, e) = 1√
N

N∑
i=1

viteit, we have

1√
NT

N∑
i=1

T∑
t=1

viteit =
1√
T

T∑
t=1

Zt,N (v, e).
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By A2 and A4, {Zt,N (v, e), t ≥ 1} is a sequence of i.i.d. random vectors. Hence, we apply the

Lindeberg–Feller central limit theorem to prove (A.44). For any ϵ > 0,

1

T

T∑
t=1

E
(
∥Zt,N (v, e)∥2 I

{
∥Zt,N (v, e)∥ ≥ ϵ

√
T
})

= E
(
∥Z1,N (v, e)∥2 I

{
∥Z1,N (v, e)∥ ≥ ϵ

√
T
})

→ 0

as N,T → ∞ simultaneously, which implies that the Lindeberg condition is satisfied, which in turn

implies the validity of (A.44). Hence, the proof of Proposition A.2 is completed.

Proof of Theorem 3.2. By the definition of f̂(τ) in (2.6), we have

f̂(τ)− f(τ) = s(τ)
(
Ỹ − X̃β̂ −Dα̂

)
− f(τ)

= s(τ)

(
INT −D

(
D∗⊤D∗

)−1
D∗⊤(INT − S̃)

)
(Ỹ − X̃β̂)− f(τ)

=

(
s(τ)

(
INT −D

(
D∗⊤D∗

)−1
D∗⊤(INT − S̃)

)
f̃ − f(τ)

)
+s(τ)

(
INT −D

(
D∗⊤D∗

)−1
D∗⊤(INT − S̃)

)
ẽ

+s(τ)

(
INT −D

(
D∗⊤D∗

)−1
D∗⊤(INT − S̃)

)
X̃(β − β̂)

=: Π∗
NT (14) + Π∗

NT (15) + Π∗
NT (16). (A.45)

Note that

s(τ)D = (1, 0)
(
Z̃⊤(τ)W̃ (τ)Z̃(τ)

)−1
Z̃⊤(τ)W̃ (τ)D = 0⊤N−1.

Hence, by (A.12) and standard argument for local linear fitting, we have

Π∗
NT (14) = s(τ)f̃ − f(τ) =

1

2
f ′′(τ)µ2h

2 + oP (h
2). (A.46)

By the Lindeberg–Feller central limit theorem and following the proof of Proposition A.2, we

have
√
NThΠ∗

NT (15) =
√
NThs(τ)ẽ

d−→ N(0, ν0σ
2
e). (A.47)

By Theorem 3.1, we have

Π∗
NT (16) = s(τ)X̃(β − β̂) = OP

(
(NT )−1/2

)
= oP

(
(NTh)−1/2

)
. (A.48)

Hence, by (A.45)–(A.48), we have completed the proof of (3.8).

Appendix B: Proof of some uniform consistency results

Proof of (A.12). By the identification condition
N∑
i=1

xi = 0, we have

g(τ)− X̃⊤s⊤(τ) =
(
g(τ)− g̃⊤s⊤(τ)

)
− ṽ⊤s⊤(τ) =: ΞNT,1(τ)− ΞNT,2(τ), (B.1)
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where g̃ = iN ⊗ (g1, g2, · · · , gT )⊤, in which iN is the N × 1 vector of ones.

We first prove that

sup
0≤τ≤1

∥ΞNT,2(τ)∥ = OP

√ log(NT )

NTh

 . (B.2)

By the definition of s(τ) in Section 2, we have

Ξ⊤
NT,2(τ) = (1, 0)S(τ)ṽ = (1, 0)

(
Z̃⊤(τ)W̃ (τ)Z̃(τ)

)−1
Z̃⊤(τ)W̃ (τ)ṽ.

Note that
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)2
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(
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)
 .

By the definition of Riemann integral, we have

1

Th

T∑
t=1

(
t− τT

Th

)j

K

(
t− τT

Th

)
= µj(τ) +O

(
1

Th

)
,

uniformly for 0 ≤ τ ≤ 1, where µj(τ) = µj =
∫ 1
−1 u

jK(u)du if h ≤ τ ≤ 1−h; µj(τ) =
∫ 1
−c u

jK(u)du

if τ = ch (0 ≤ c ≤ 1); and µj(τ) =
∫ c
−1 u

jK(u)du if τ = 1− ch (0 ≤ c ≤ 1). Hence, we have

sup
0≤τ≤1

∥∥∥∥ 1

NTh
Z̃⊤(τ)W̃ (τ)Z̃(τ)− Λµ

∥∥∥∥ = O

(
1

Th

)
= o(1), (B.3)

where

Λµ =

 µ0(τ) µ1(τ)

µ1(τ) µ2(τ)

 .

In view of (B.3), to prove (B.2), we need only to prove

sup
0≤τ≤1
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NTh
Z̃⊤(τ)W̃ (τ)ṽ

∥∥∥∥ = OP
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Note that

1

NTh
Z̃⊤(τ)W̃ (τ)ṽ =
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Hence, to prove (B.4), it suffices to show that for j = 0, 1,
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∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

(
t− τT

Th

)j

K

(
t− τT

Th

)
vit

∥∥∥∥∥ = OP

√ log(NT )

NTh

 . (B.5)

Define Qt,N (v) = 1
N

N∑
i=1

vit. It is easy to see that (B.5) is equivalent to

sup
0≤τ≤1
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Let l(·) be any positive function that satisfies l(n) → ∞ as n → ∞. Then to prove (B.6), it

suffices to prove

sup
0≤τ≤1

∥∥∥∥∥ 1
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T∑
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)j
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(
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 . (B.7)

We then cover the interval [0, 1] by a finite number of subintervals {Bl} that are centered at bl

and of length δNT = o(h2). Denoting UNT the number of such subintervals, then UNT = O
(
δ−1
NT

)
.

Define Kt,j(τ) =
1
Th

(
t−τT
Th

)j
K
(
t−τT
Th

)
. Observe that

sup
0≤τ≤1
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∥∥∥∥∥ =: ΞNT,3 + ΞNT,4. (B.8)

By A1 and taking δNT = O

(
(l(NT ))1+δ

√
log(NT )
NTh h2

)
, we have

ΞNT,3 = OP

(
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h2
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∥∥∥Q1,N (v)
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log(NT )

NTh

 . (B.9)

For ΞNT,4, we apply the truncation technique. Define

Q̃t,N (v) = Qt,N (v)I
{∥∥∥Qt,N (v)

∥∥∥ ≤ N−1/2T 1/δl(NT )
}
,

Q̃c
t,N (v) = Qt,N (v)− Q̃t,N (v).

Note that

ΞNT,4 ≤ max
1≤l≤UNT

∥∥∥∥∥
T∑
t=1

Kt,j(bl)Q̃t,N (v)
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T∑
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c
t,N (v)
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=: ΞNT,5 + ΞNT,6. (B.10)

For ΞNT,6, applying the Markov inequality and A2, we have for any ϵ > 0
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which implies
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 . (B.11)

31



For ΞNT,5, observe that∥∥∥Kt,j(bl)Q̃t,N (v)
∥∥∥ ≤ N−1/2T−1+1/δh−1l(NT ).

Applying A2, A5 and Bernstein’s inequality for i.i.d. random vectors, we have

P

ΞNT,5 > ϵl(NT )

√
log(NT )

NTh


≤ Cδ−1

NT exp

{
− ϵ2l2(NT ) log(NT )

C + CϵT 1/δ−1/2h−1/2l2(NT )(log(NT ))1/2

}
(B.12)

≤ Cδ−1
NT exp{−M log(NT )} = o(1),

where C > 0 is a constant and M is a sufficiently large positive constant. The second inequality

above holds by letting l(·) satisfy

l(NT ) → ∞ and
T 1− 2

δ h

l4(NT ) log(NT )
→ ∞.

Hence,

ΞNT,5 = oP

l(NT )

√
log(NT )

NTh

 . (B.13)

From (B.8)–(B.13), we can see that (B.7) holds, which in turn implies the validity of (B.2).

Meanwhile, following standard argument in local linear fitting (see, for example, Fan and Gijbels

1996), we can show

sup
0≤τ≤1

∥ΞNT,1(τ)∥ = OP

(
h2
)
. (B.14)

In view of (B.1), (B.2) and (B.14), it has been shown that (A.12) holds.

Proof of (A.19). By Burkholder’s inequality for i.i.d. random vectors, we have

E
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T∑
t=1

vit

∥∥∥∥∥
δ

≤ CδT
δ/2, (B.15)

where Cδ is a positive constant which only depends on δ and is independent of i. By A5, (B.15)

and the Markov inequality, we have, for any ϵ > 0,

P

(
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∥
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δ

ϵδT δ
= O(T−δ/2N) = o(1), (B.16)

which implies that (A.19) holds.
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