SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES

Sang Cheol Lee and Rezvan Varmazyar

Abstract

Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever $I^{n} K \subseteq Q$, where $I \subseteq h(R), n$ is a positive integer, and $K \subseteq h(M)$, then $I K \subseteq Q$. We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if $\operatorname{grad}(Q) \cap h(M)=Q \cap h(M)$. Furthermore if M is finitely generated, then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if

$$
\begin{aligned}
& (\operatorname{grad}(Q) \cap h(M)) \backslash\left(\operatorname{grad}\left(0_{M}\right) \cap h(M)\right) \\
= & (Q \cap h(M)) \backslash\left(\operatorname{grad}\left(0_{M}\right) \cap Q \cap h(M)\right) .
\end{aligned}
$$

Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that $Q+K \neq M$ and $Q \cap K \subseteq M_{g}$ for all $g \in G$, then we prove that $Q+K$ is almost semiprime in M.

1. Introduction

Let G be a group. Then we define a G-graded ring R and a G-graded module over R in the same way as in [2], [3], and [5]. The notations which the authors use are slightly different but basically the same.

Throughout this paper G is a group, R is a G-graded commutative ring with identity and M is a G-graded module over R. From now on, by graded we mean G-graded, unless otherwise indicated.

Lemma 1.1. Let R be a graded ring.
(i) If \mathfrak{a} and \mathfrak{b} are graded ideals of R, then $\mathfrak{a}+\mathfrak{b}$, $\mathfrak{a} \cap \mathfrak{b}$, and $\mathfrak{a b}$ are graded ideals of R.
(ii) If a is an element of $h(R)$, then the cyclic ideal $a R$ of R is graded.

Received April 27, 2011; Revised June 21, 2011.
2010 Mathematics Subject Classification. 13C13, 13A02, 16W50.
Key words and phrases. graded multiplication module, semiprime submodule, almost semiprime.

Let $M=\oplus_{g \in G} M_{g}$ be a graded R-module. Let N be a submodule of M. The factor R-module M / N becomes a G-graded module over R with g-component $(M / N)_{g}=\left(M_{g}+N\right) / N$ for $g \in G$. A submodule N of M is called to be graded if $N=\oplus_{g \in G} N_{g}$ where $N_{g}=N \cap M_{g}$ for $g \in G$. Clearly, 0 is a graded submodule of M.

If N and K are submodules of an R-module M, the set of all elements $r \in R$ satisfying $r K \subseteq N$ becomes an ideal of R and is denoted by $\left(N:_{R} K\right)$ as usual.

Lemma 1.2. Let R be a graded ring and M be a graded R-module.
(i) If N and K are graded submodules of M, then $N+K$ and $N \cap K$ are graded submodules of M.
(ii) If a is an element of $h(R)$ and x is an element of $h(M)$, then $a M$ and $R x$ are graded submodules of M.
(iii) If N is a graded submodule of M and K is a graded submodule of M, then $\left(N:_{R} K\right)$ is a graded ideal of R.

Proof. Clearly, (i) holds. See [3, Lemma 2.2] for (ii). For the proof of (iii), see [2, Lemma 2.1] and [5, Lemma 1(ii)]. We give a proof of (iii) for our record.

To show that $\left(N:_{R} K\right)$ is a graded ideal of R, let $I=\left(N:_{R} K\right)$. We show $I=\oplus_{g \in G} I_{g}$. For all $g \in G, I_{g}=I \cap R_{g} \subseteq I$. Hence $\oplus_{g \in G} I_{g} \subseteq I$. Conversely, let x be any element of I. Since R is graded, there exist $g_{1}, g_{2}, \ldots, g_{n} \in G$ such that $x=\sum_{j=1}^{n} x_{g_{j}}$. To show that $I \subseteq \oplus_{g \in G} I_{g}$, it suffices to show that $x_{g_{j}} \in I$ since then $x_{g_{j}} \in R_{g_{j}} \cap I=I_{g_{j}}$. In turn, it suffices to show that $x_{g_{j}} K \subseteq N$.

Since K is graded, $x K \subseteq N$, and N is graded, we have

$$
\begin{aligned}
x_{g_{j}} K & =x_{g_{j}}\left(\oplus_{h \in G} K_{h}\right)=\oplus_{h \in G} x_{g_{j}} K_{h} \\
& \subseteq \oplus_{h \in G}(x K)_{g_{j} h} \subseteq \oplus_{h \in G} N_{g_{j} h} \subseteq N,
\end{aligned}
$$

as required.
Corollary 1.3. Let R be a graded ring. If \mathfrak{a} and \mathfrak{b} are graded ideals of R, then $\left(\mathfrak{a}:_{R} \mathfrak{b}\right)$ is a graded ideal of R.

Let R be a graded ring and M be a graded R-module. We recall that a proper graded submodule P of M is prime if whenever $r m \in P$, where $r \in h(R)$ and $m \in h(M)$, then either $r \in\left(P:_{R} M\right)$ or $m \in P$.

Definition 1.4. Let R be a graded ring and M be a graded R-module. A proper graded submodule Q of M is semiprime if whenever $I^{n} K \subseteq Q$, where $I \subseteq h(R), n$ is a positive integer, and $K \subseteq h(M)$, then $I K \subseteq Q$.

Remark 1.5. It is easy to check that a proper graded ideal I of a graded ring R is semiprime if and only if whenever $x^{t} y \in I$, where $x, y \in h(R)$ and t is a positive integer, then $x y \in I$.

Proposition 1.6. Let R be a graded ring and M be a graded R-module. Then every graded prime submodule of M is semiprime. Moreover, every graded prime ideal of R is semiprime.

Proof. Assume that $I^{n} K \subseteq N$, where n is a positive integer, $I \subseteq h(R)$ and $K \subseteq$ $h(M)$. Now, since N is a graded prime, we have either $I \subseteq(N: M) \subseteq(N: K)$ or $I^{n-1} K \subseteq N$. In the first case $I K \subseteq N$ and we are done. If $I^{n-1} K \subseteq N$, then $I \subseteq(\bar{N}: M)$ or $I^{n-2} K \subseteq N$. In this way we have $I K \subseteq N$. Hence N is a graded semiprime submodule of M.

For basic properties of a multiplication module one may refer to [1], [4] and [6].

A graded R-module M is said to be a graded multiplication module if for every graded submodule N of M, there exists a graded ideal \mathfrak{a} of R such that $N=\mathfrak{a} M$. Let M be a graded R-module. Assume that M is a graded multiplication module. If N and K are graded submodules of M, then there exist graded ideals \mathfrak{a} and \mathfrak{b} of R such that $N=\mathfrak{a} M$ and $K=\mathfrak{b} M$. Then the product of N and K is defined to be $(\mathfrak{a b}) M$ and is denoted by $N \cdot K$. It is wellknown in [1, Theorem 3.4] and [5, Theorem 4] that the product is well-defined. In fact, $\mathfrak{a b}$ is a graded ideal of R by Lemma 1.1 and $N \cdot K$ is independent of the choices of \mathfrak{a} and \mathfrak{b}. Also, for every positive integer k, N^{k} is defined to be

$$
\overbrace{N \cdot N \cdots \cdots N}^{k \text { times }}
$$

Let R be a graded ring and M be a graded multiplication module over R. The graded radical of a graded submodule N of M is the set of all elements m of M such that $(R m)^{k} \subseteq N$ for some positive integer k and is denoted by $\operatorname{grad}(N)$.
Remark 1.7. There were several authors who would like to define the product $x \cdot y$ of two elements x and y of M to be $R x \cdot R y$ and then they used the notation " $x^{n} \subseteq N$ for some positive integer n " in their papers, such as in [1, Theorem 3.13] and in [5, Corollary 4 to Theorem 12]. If $n=1$, then $x \subseteq N$. This does not make sense, because $x \in M$. Hence it is natural not to define the product of two elements of M. However, we define the product of two submodules of M as in the second paragraph just posterior to the proof of Proposition 1.6.

Let R be a graded ring and M be a graded multiplication module over R. A graded submodule N of M is called nilpotent if $N^{t}=0$ for some positive integer t. If a graded submodule N of M is nilpotent, then $\operatorname{grad}(0)=\operatorname{grad}(N)$.

A nonempty subset S of M is said to be multiplicatively closed if $(R x)^{n} \cap S \neq$ \emptyset for each positive integer n and each $x \in S$.

The present paper will proceed as follows. Let R be a graded ring and M be a graded multiplication module over R.

In Section 2, we characterize graded semiprime submodules of M as follows.
(1) (Theorem 2.1 and its corollary) The following ten statements are equivalent for a proper graded submodule P of M.
(i) P is semiprime.
(ii) If $(R x)^{n} \subseteq P$, where $x \in h(M)$ and n is a positive integer, then $x \in P$.
(iii) If $K^{n} \subseteq P$, where K is a graded submodule of M and n is a positive integer, then $K \subseteq P$.
(iv) If L is a graded submodule of M such that $P \subset L \subseteq M$, then $\left(P:_{R} L\right)$ is a graded semiprime ideal of R.
(v) $\left(P:_{R} M\right)$ is a graded semiprime ideal of R.
(vi) $\operatorname{grad}(P)=P$.
(vii) If $R x \cdot R y \subseteq P$, where $x, y \in h(M)$, then $R x \cap R y \subseteq P$.
(viii) The factor R-module M / P has no nonzero nilpotent submodule.
(ix) There exits a graded semiprime ideal \mathfrak{p} of R with $\left(0:_{R} M\right) \subseteq \mathfrak{p}$ such that $P=\mathfrak{p} M$.
(x) $M \backslash P$ is multiplicatively closed.

Moreover, if M is regular, then we show that every proper graded submodule of M is semiprime.

We give an example showing that the condition " M being a multiplication module" cannot be omitted.

Using the result above, we show that the three statements are true.
(2) (Theorem 2.6) If K is a graded submodule of M and S is a multiplicatively closed subset of M such that $K \cap S=\emptyset$, then there is a graded semiprime submodule P of M which is maximal with respect to the properties that $K \subseteq P$ and $P \cap S=\emptyset$.
(3) (Proposition 2.8) If N is a graded semiprime submodule of M, then it contains a minimal graded semiprime submodule.
(4) (Theorem 2.9) If N is a proper graded submodule of M and M is finitely generated, then there exists a graded semiprime submodule of M that contains N.

In Section 3, we define an almost semiprime submodule of M.
(5) (Theorem 3.5) Let Q, K be graded submodules of M. If Q and K are almost semiprime in M such that $Q+K \neq M$ and $Q \cap K \subseteq M_{g}$ for all $g \in G$, then we prove that $Q+K$ is almost semiprime in M.

2. Semiprime submodules

In this section, we deal with graded multiplication modules over graded rings. We define a semiprime submodule of a graded multiplication module over a graded ring to characterize it. And then we discuss several properties of semiprime submodules.

Let M be a multiplication module over a ring R. Let K be a submodule of M. Then there exists an ideal I of R such that $K=I M$. Consider the following descending chain of ideals of R :

$$
I \supseteq I^{2} \supseteq \cdots
$$

Then we can get a descending chain of submodules of M

$$
K \supseteq K^{2} \supseteq \cdots
$$

From this, we can see the following: if $K \subseteq N$, where N is a submodule of M, then $K^{n} \subseteq N$ for every positive integer n. In view of this it is natural to ask a question: when $K^{n} \subseteq N$, where n is a positive integer, under what conditions can we get $K \subseteq N$? The following result deals with this question.

Theorem 2.1. Let M be a graded multiplication module over R and P be a proper graded R-submodule of M. Then the following statements are equivalent.
(i) P is semiprime.
(ii) If $(R x)^{n} \subseteq P$, where $x \in h(M)$ and n is a positive integer, then $x \in P$.
(iii) If $K^{n} \subseteq P$, where K is a graded submodule of M and n is a positive integer, then $K \subseteq P$.
(iv) If L is a graded submodule of M such that $P \subset L \subseteq M$, then $\left(P:_{R} L\right)$ is a graded semiprime ideal of R.
(v) $\left(P:_{R} M\right)$ is a graded semiprime ideal of R.
(vi) $\operatorname{grad}(P)=P$.
(vii) If $R x \cdot R y \subseteq P$, where $x, y \in h(M)$, then $R x \cap R y \subseteq P$.
(viii) The factor R-module M / P has no nonzero nilpotent submodule.
(ix) There exits a graded semiprime ideal \mathfrak{p} of R with $\left(0:_{R} M\right) \subseteq \mathfrak{p}$ such that $P=\mathfrak{p} M$.

Proof. (i) \Rightarrow (ii) Let P be a graded semiprime submodule of M. Assume that $(R x)^{n} \subseteq P$, where $x \in h(M)$ and n is a positive integer. Since M is a multiplication module, there exists a graded ideal \mathfrak{a} of R such that $R x=\mathfrak{a} M$. Then

$$
\mathfrak{a}^{n} M=(\mathfrak{a} M)^{n}=(R x)^{n} \subseteq P
$$

Since P is a graded semiprime submodule of M, we have $R x=\mathfrak{a} M \subseteq P$. Therefore $x \in P$.
(ii) \Rightarrow (iii) Assume that $K^{n} \subseteq P$, where K is a graded submodule of M and n is a positive integer. To show that $K \subseteq P$, it suffices to show that every element x of $h(K)$ belongs to P. Let x be an arbitrary element of $h(K)$. Then $x \in h(M)$ and $(R x)^{n} \subseteq K^{n} \subseteq P$. By (ii), $x \in P$.
(iii) \Rightarrow (iv) Assume that (iii) is true. Assume that L is a graded submodule of M such that $P \subset L \subseteq M$. Then $\left(P:_{R} L\right)$ is proper. By Lemma $1.2,\left(P:_{R} L\right)$ is graded.

Also, assume that $\mathfrak{a}^{n} \mathfrak{b} \subseteq\left(P:_{R} L\right)$, where n is a positive integer and \mathfrak{a} and \mathfrak{b} are graded ideals of R. Then

$$
((\mathfrak{a b}) L)^{n}=(\mathfrak{a b})^{n} L=\mathfrak{b}^{n-1}\left(\left(\mathfrak{a}^{n} \mathfrak{b}\right) L\right) \subseteq \mathfrak{b}^{n-1} P \subseteq P
$$

Notice that $(\mathfrak{a b}) L$ is a graded submodule of M. Then by (iii) we have $(\mathfrak{a b}) L \subseteq P$. This shows that $\mathfrak{a b} \subseteq\left(P:_{R} L\right)$. Hence $\left(P:_{R} L\right)$ is a semiprime ideal.
(iv) \Rightarrow (v) Assume that (iv) is true. Taking L by M, we can see that $\left(P:_{R} M\right)$ is a graded semiprime ideal of R.
$(\mathrm{v}) \Rightarrow(\mathrm{vi})$ Assume that (v) is true. Clearly, $P \subseteq \operatorname{grad}(P)$. Conversely, assume that $(R x)^{n} \subseteq P$ for some positive integer n. Then we need to show
that $x \in P$. If $n=1$, then $x \in P$; we are done. Assume that $n>1$. Since M is a graded multiplication module, there is a graded ideal \mathfrak{a} of R such that $R x=\mathfrak{a} M$. Then

$$
\mathfrak{a}^{n} M=(R x)^{n} \subseteq P
$$

So, $\mathfrak{a}^{n-1} \mathfrak{a}=\mathfrak{a}^{n} \subseteq\left(P:_{R} M\right)$. Since $\left(P:_{R} M\right)$ is graded semiprime, we get $\mathfrak{a} \subseteq\left(P:_{R} M\right)$. Hence

$$
x \in R x=\mathfrak{a} M \subseteq\left(P:_{R} M\right) M=P,
$$

as required.
(vi) \Rightarrow (vii) Assume that (vi) is true. Assume that $R x \cdot R y \subseteq P$, where $x, y \in h(M)$. Let m be an arbitrary element of $R x \cap R y$. Then $R m \subseteq R x$ and $R m \subseteq R y$. Hence

$$
(R m)^{2} \subseteq(R x) \cdot(R y) \subseteq P
$$

By (vi), $R m \subseteq P$. Hence $m \in P$. This shows that $R x \cap R y \subseteq P$.
(vii) \Rightarrow (viii) Assume that (vii) is true. Let $x+P$ be an arbitrary nilpotent element of M / P. Then there exists a positive integer n such that $((R x+$ $\left.P)^{n} / P\right)=0$ in M / P. There exists a graded ideal \mathfrak{a} of R such that $R x=\mathfrak{a} M$. So,

$$
\left((R x)^{n}+P\right) / P=\left(\mathfrak{a}^{n} M+P\right) / P=\mathfrak{a}^{n}(M / P)=\left((R x+P)^{n} / P\right)=0
$$

This implies that $(R x)^{n} \subseteq P$. By (vii),

$$
x \in R x=\overbrace{R x \cap R x \cap \cdots \cap R x}^{n \text { times }} \subseteq P .
$$

Hence $x+P=0+P$.
(viii) \Rightarrow (ix) Assume that (viii) is true. Since M is a graded multiplication module, there exists a graded ideal \mathfrak{p} of R such that $P=\mathfrak{p} M$. To show that \mathfrak{p} is semiprime, assume that $\mathfrak{a}^{n} \mathfrak{b} \subseteq \mathfrak{p}$, where \mathfrak{a} and \mathfrak{b} are graded ideals of R. Then $(\mathfrak{a b})^{n} \subseteq \mathfrak{p}$. So,

$$
((\mathfrak{a b}) M)^{n}=(\mathfrak{a b})^{n} M \subseteq \mathfrak{p} M=P
$$

This means that

$$
(((\mathfrak{a b}) M+P) / P)^{n}=\left(((\mathfrak{a b}) M)^{n}+P\right) / P=\{0+P\} .
$$

By (viii), $((\mathfrak{a b}) M+P) / P=\{0+P\}$. This implies that

$$
(\mathfrak{a b}) M \subseteq((\mathfrak{a b}) M+P=P=\mathfrak{p} M
$$

Since M is multiplication, it follows that $\mathfrak{a b} \subseteq \mathfrak{p}$. Therefore \mathfrak{p} is semiprime.
Also, let a be an arbitrary element of $\left(0:_{R} M\right)$. Then $a M=0 \subseteq \mathfrak{p} M$. Since M is multiplication, it follows that $a \in \mathfrak{p}$. Hence $\left(0:_{R} M\right) \subseteq \mathfrak{p}$.
(ix) \Rightarrow (i) Assume that (ix) is true. To show that P is semiprime, assume that $\mathfrak{a}^{n} K \subseteq P$, where \mathfrak{a} is a graded ideal of R and K is a graded submodule of M, and n is a positive integer. Since M is a graded multiplication module, there exists a graded ideal \mathfrak{b} of R such that $K=\mathfrak{b} M$. Then

$$
\left(\mathfrak{a}^{n} \mathfrak{b}\right) M=\mathfrak{a}^{n} K \subseteq P=\mathfrak{p} M
$$

Since $\mathfrak{p}+\left(0:_{R} M\right)=\mathfrak{p}$, it follows from [6, Theorem 9, p. 231] that either $\mathfrak{a}^{n} \mathfrak{b} \subseteq \mathfrak{p}$ or $M=\left(\mathfrak{p}:_{R} \mathfrak{a}^{n} \mathfrak{b}\right) M$. If $\mathfrak{a}^{n} \mathfrak{b} \subseteq \mathfrak{p}$, then we have $\mathfrak{a b} \subseteq \mathfrak{p}$ since \mathfrak{p} is semiprime. Hence $\mathfrak{a} K=\mathfrak{a}(\mathfrak{b} M)=(\mathfrak{a b}) M \subseteq \mathfrak{p} M=P$; we are done. Or, assume that $M=\left(\mathfrak{p}:_{R} \mathfrak{a}^{n} \mathfrak{b}\right) M$. Notice that

$$
\mathfrak{a}^{n}\left(\mathfrak{p}:_{R} \mathfrak{a}^{n} \mathfrak{b}\right) \mathfrak{b}=\left(\mathfrak{p}:_{R} \mathfrak{a}^{n} \mathfrak{b}\right) \mathfrak{a}^{n} \mathfrak{b} \subseteq \mathfrak{p}
$$

Since \mathfrak{p} is semiprime, we have $\left(\mathfrak{p}:_{R} \mathfrak{a}^{n} \mathfrak{b}\right) \mathfrak{a b} \subseteq \mathfrak{p}$. Hence

$$
\mathfrak{a} K=\mathfrak{a}(\mathfrak{b} M)=(\mathfrak{a b}) M=\left(\left(\mathfrak{p}:_{R} \mathfrak{a}^{n} \mathfrak{b}\right) \mathfrak{a b}\right) M \subseteq \mathfrak{p} M=P
$$

Hence P is semiprime.
Corollary 2.2. Let R be a graded ring and M be a graded multiplication module over R. Then a proper graded submodule P of M is semiprime if and only if $M \backslash P$ is multiplicatively closed.
Proof. Let P be a graded semiprime submodule of M and let $x \in M \backslash P$. Since P is graded semiprime, it follows from Theorem 2.1 that $(R x)^{n} \nsubseteq P$ for every positive integer n. Hence $(R x)^{n} \cap(M \backslash P) \neq \emptyset$. This shows that $M \backslash P$ is multiplicatively closed.

Conversely, assume that $M \backslash P$ is multiplicatively closed. To show that P is semiprime, assume that $(R x)^{n} \subseteq P$, where n is a positive integer and $x \in h(M)$. We need to show that $x \in P$. Suppose on the contrary that $x \notin P$. Then $x \in M \backslash P$. By our assumption, $(R x)^{n} \cap(M \backslash P) \neq \emptyset$. Take $y \in(R x)^{n} \cap(M \backslash P)$. Then $y \in(R x)^{n} \subseteq P$. This contradiction shows that $x \in P$, as needed.

Let M be a graded multiplication module over a graded ring R. Then $N \cdot K \subseteq N \cap K$ for each pair of graded submodules N and K of M. M is said to be regular if for each pair of graded submodules N and K of M, $N \cdot K=N \cap K$.

Corollary 2.3. Let R be a graded ring and M be a regular graded multiplication module over R. Then every proper graded submodule of M is semiprime.

The condition " M being multiplication" in Theorem 2.1 cannot be omitted. The example of this is given below.

Example 2.4. First, consider the set \mathbb{Z} of all integers. Then $(\mathbb{Z},+)$ is a group with additive identity 0 and $(\mathbb{Z},+, \cdot)$ is a commutative ring with identity 1. Take $G=(\mathbb{Z},+)$ and $R=(\mathbb{Z},+, \cdot)$. Define

$$
R_{g}= \begin{cases}\mathbb{Z} & \text { if } g=0 \\ 0 & \text { otherwise }\end{cases}
$$

Then each R_{g} is an additive subgroup of R and R is their internal direct sum. In fact, $1 \in R_{0}$ and $R_{g} R_{h} \subseteq R_{g+h}$. That is, $R=\oplus_{g \in G} R_{g}$. Hence R is a G graded ring. In other words, the ring $(\mathbb{Z},+, \cdot)$ of integers is a $(\mathbb{Z},+)$-graded ring.

Next, let M be the set $\mathbb{Z} \times \mathbb{Z}$. Then M can be given a \mathbb{Z}-module structure. Define

$$
M_{g}= \begin{cases}\mathbb{Z} \times 0 & \text { if } g=0 \\ 0 \times \mathbb{Z} & \text { if } g=1 \\ 0 \times 0 & \text { otherwise }\end{cases}
$$

Then $M=\oplus_{g \in G} M_{g}$. Hence M is a G-graded R-module. In other words, the \mathbb{Z}-module $(\mathbb{Z} \times \mathbb{Z},+, \cdot)$ is a \mathbb{Z}-graded \mathbb{Z}-module.

Now, consider a submodule $N=9 \mathbb{Z} \times 0$ of M. Then it is a graded submodule. $\left(N:_{R} M\right)=0$ and so it is a graded semiprime ideal of R. But the graded submodule N is not graded semiprime in M, since $3^{2}(2,0) \in N$ but $3(2,0) \notin N$.

By Theorem 2.1, we can see that the \mathbb{Z}-module $(\mathbb{Z} \times \mathbb{Z},+, \cdot)$ is not a multiplication module.

Lemma 2.5. Let R be a graded ring and M be a graded R-module. If P is a graded submodule of M and $x \in h(M)$, then both $R x$ and $P+R x$ are graded submodules of M.
Proof. This follows from Lemma 1.2.
Theorem 2.6. Let R be a graded ring and M be a graded multiplication module over R. Let K be a graded submodule of M and S be a multiplicatively closed subset of M such that $K \cap S=\emptyset$. Then there is a graded semiprime submodule P of M which is maximal with respect to the properties that $K \subseteq P$ and $P \cap S=\emptyset$.

Proof. Let Ω be the set of all graded submodules L of M such that $K \subseteq L$ and $L \cap S=\emptyset . K \in \Omega$, so in particular $\Omega \neq \emptyset$. By the Zorn lemma Ω has a maximal element, say P. It is enough to show that P is semiprime. To show that P is semiprime, assume that $(R x)^{n} \subseteq P$, where n is a positive integer and $x \in h(M)$. Then we need to show that $x \in P$. Suppose on the contrary that $x \notin P$. Then $P \subset P+R x$. By Lemma $2.5, P+R x$ is graded. By the maximality of $P, P+R x \notin \Omega$. Hence $(P+R x) \cap S \neq \emptyset$. Take $y \in(P+R x) \cap S$. Then $y \in P+R x$ and $y \in S$. Since M is a multiplication module and $(R x)^{n} \subseteq P$, we can show that

$$
(P+R x)^{n} \subseteq P+(R x)^{n}=P
$$

Also, since S is multiplicatively closed and $y \in S$, we have $(R y)^{n} \cap S \neq \emptyset$. Hence

$$
\emptyset \neq(R y)^{n} \cap S \subseteq(P+R x)^{n} \cap S \subseteq P \cap S
$$

contradicting the disjointness of P and S. This shows that $x \in P$. Therefore P is a graded semiprime submodule.

Lemma 2.7. Let R be a graded ring and M be a graded multiplication module over R. Let Ω be a nonempty family of graded submodules of M.
(i) If each member of Ω is semiprime in M, then so is $\cap_{Q \in \Omega} Q$.
(ii) If each member of Ω is semiprime in M, Ω is totally ordered by inclusion, and $\cup_{Q \in \Omega} Q \neq M$, then $\cup_{Q \in \Omega} Q$ is a proper graded semiprime submodule of M.

Proof. (i) Assume that each member of Ω is semiprime in M. Then by Theorem 2.1,

$$
\begin{aligned}
\operatorname{grad}\left(\cap_{Q \in \Omega} Q\right) \cap h(M) & \subseteq\left(\cap_{Q \in \Omega} \operatorname{grad}(Q)\right) \cap h(M) \\
& =\cap_{Q \in \Omega}(\operatorname{grad}(Q) \cap h(M)) \\
& =\cap_{Q \in \Omega}(Q \cap h(M)) \\
& =\left(\cap_{Q \in \Omega} Q\right) \cap h(M) .
\end{aligned}
$$

It is clear that the converse inclusion holds. Hence by Theorem 2.1 again, $\cap_{Q \in \Omega} Q$ is semiprime.
(ii) Assume that Ω is totally ordered by inclusion and $\cup_{Q \in \Omega} Q \neq M$. Then it is clear that $\cup_{Q \in \Omega} Q$ is a proper graded submodule of M. Now assume that each member of Ω is semiprime in M. Then by Theorem 2.1,

$$
\begin{aligned}
\operatorname{grad}\left(\cup_{Q \in \Omega} Q\right) \cap h(M) & \subseteq\left(\cup_{Q \in \Omega} \operatorname{grad}(Q)\right) \cap h(M) \\
& =\cup_{Q \in \Omega}(\operatorname{grad}(Q) \cap h(M)) \\
& =\cup_{Q \in \Omega}(Q \cap h(M)) \\
& =\left(\cup_{Q \in \Omega} Q\right) \cap h(M) .
\end{aligned}
$$

It is clear that the converse inclusion holds. Hence by Theorem 2.1 again, $\cup_{Q \in \Omega} Q$ is semiprime.

A graded semiprime submodule P of a graded R-module M is said to be minimal if whenever $N \subseteq P$ and N is graded semiprime, then $N=P$.
Proposition 2.8. Let R be a graded ring and M be a graded multiplication module over R. If N is a graded semiprime submodule of M, then it contains a minimal graded semiprime submodule.

Proof. Consider the set Σ of all graded semiprime submodules P of M such that $N \supseteq P$. Since $N \in \Sigma$ we see that Σ is not empty. Also \supseteq is a partial order on Σ. Let Ω be a non-empty subset of Σ which is totally ordered by \supseteq. Therefore by Lemma $2.7(\mathrm{i}), \cap_{P \in \Omega} P$ is a graded semiprime submodule of M. Now the result holds by applying the Zorn lemma.

Theorem 2.9. Let R be a graded ring and M be a graded multiplication module over R. If N is a proper graded submodule of M and if M is finitely generated, then there exists a graded semiprime submodule of M that contains N.
Proof. Assume that N is a proper graded submodule of M and M is finitely generated. Let Σ be the collection of all proper graded submodules of M that contains N. Then $N \in \Sigma$. In particular, $\Sigma \neq \emptyset$. Order Σ by inclusion. Then Σ is partially ordered. Let Ω be any chain of Σ. Take $Q^{*}=\cup_{Q \in \Omega} Q$. Then by Lemma 2.7(ii), $Q^{*} \in \Sigma$. Ω has an upper bound in Σ. By the Zorn lemma, Σ has a maximal member, say P. It remains to prove that P is semiprime.

Suppose that $\operatorname{grad}(P) \cap h(M) \neq P \cap h(M)$. Then we can take an element $x \in(\operatorname{grad}(P) \cap h(M)) \backslash(P \cap h(M))$. Then $x \notin P$, so $P \subset P+R x$. By

Lemma 2.7(ii) and by the maximality of P, we must have $P+R x=M$. Since $x \in \operatorname{grad}(P)$, there exists a positive integer n such that $x^{n} \in P$. Hence

$$
M=M^{n}=(P+R x)^{n} \subseteq P+(R x)^{n} \subseteq P,
$$

so $M=P$. This contradiction shows that $\operatorname{grad}(P) \cap h(M)=P \cap h(M)$. Therefore it follows from Theorem 2.1 that P is semiprime.

3. Almost semiprime submodules

In this section we define an almost semiprime submodule of a graded multiplication module over a graded ring and discuss the sum of two almost semiprime submodules.

Let R be a graded ring and M be a graded multiplication module over R. Let Q be a proper graded submodule of M. Then $Q \cap h(M) \subseteq \operatorname{grad}(Q) \cap h(M)$. The following two statements are true:

$$
\begin{aligned}
& \operatorname{grad}\left(0_{M}\right) \cap h(M) \subseteq \operatorname{grad}(Q) \cap h(M), \\
& \quad \operatorname{grad}\left(0_{M}\right) \cap Q \cap h(M) \subseteq Q \cap h(M) .
\end{aligned}
$$

More precisely, we can draw their lattice diagram as follows:

Then it is easy to see that

$$
\begin{gathered}
\quad(Q \cap h(M)) \backslash\left(\operatorname{grad}\left(0_{M}\right) \cap Q \cap h(M)\right) \\
\subseteq \\
\subseteq(\operatorname{grad}(Q) \cap h(M)) \backslash\left(\operatorname{grad}\left(0_{M}\right) \cap h(M)\right) .
\end{gathered}
$$

Remark 3.1. This statement is the same as the following one but the following one is much easier for us to make sure if it is true.

$$
\left(Q \backslash\left(Q \cap \operatorname{grad}\left(0_{M}\right)\right) \cap h(M) \subseteq\left(\operatorname{grad}(Q) \backslash \operatorname{grad}\left(0_{M}\right)\right) \cap h(M) .\right.
$$

Definition 3.2. Let R be a graded ring and M be a graded multiplication module over R. A proper graded submodule Q of M is said to be almost semiprime if

$$
\begin{align*}
& (\operatorname{grad}(Q) \cap h(M)) \backslash\left(\operatorname{grad}\left(0_{M}\right) \cap h(M)\right) \\
= & (Q \cap h(M)) \backslash\left(\operatorname{grad}\left(0_{M}\right) \cap Q \cap h(M)\right) . \tag{3.1}
\end{align*}
$$

Let $g \in G$. Likewise, a proper graded submodule Q_{g} of the R_{e}-module M_{g} is said to be almost g-semiprime if

$$
\begin{equation*}
\left(\operatorname{grad}\left(Q_{g}\right) \cap M_{g}\right) \backslash\left(\operatorname{grad}\left(0_{M_{g}}\right) \cap M_{g}\right)=Q_{g} \backslash\left(\operatorname{grad}\left(0_{M_{g}}\right) \cap Q_{g}\right) . \tag{3.2}
\end{equation*}
$$

It is immediate that the zero submodule of a graded multiplication module is graded and almost semiprime.

Let R be a graded ring and M be a graded multiplication module over R. Let Q be a proper graded submodule of M. Assume that Q is semiprime. Then it follows from Theorem 2.1 that $\operatorname{grad}(Q) \cap h(M)=Q \cap h(M)$, so that $\operatorname{grad}\left(0_{M}\right) \cap h(M)=\operatorname{grad}\left(0_{M}\right) \cap Q \cap h(M)$. Hence Q is almost semiprime. This shows that every semiprime submodule of M is almost semiprime. Conversely, if Q is almost semiprime and $\operatorname{grad}\left(0_{M}\right) \cap h(M)=\operatorname{grad}\left(0_{M}\right) \cap Q \cap h(M)$, then Q is semiprime.
Proposition 3.3. Let R be a graded ring, M be a graded multiplication module over R and Q be a proper graded submodule of M. If Q is almost semiprime, then for every $g \in G, Q_{g}$ is almost g-semiprime in M_{g}.
Proof. Assume that Q is almost semiprime. Then the equality (3.1) holds. Let $g \in G$. Note that $Q=\oplus_{g \in G} Q_{g}$. Then taking the intersection of the equation (3.1) with M_{g}, we can get (3.2). Hence Q_{g} is almost semiprime.

Lemma 3.4. Let R be a graded ring, M a graded multiplication module over R and K, Q graded submodules of M such that $K \subseteq Q$. Then the following statements are true.
(i) If Q is almost semiprime such that $K \subseteq M_{g}$ for all $g \in G$, then Q / K is almost semiprime in M / K.
(ii) If K and Q / K are almost semiprime in M and M / K, respectively, then Q is almost semiprime in M.
Proof. If $K \subseteq Q$, then we have already known that M / K and Q / K are Ggraded.
(i) Assume that Q is almost semiprime such that $K \subseteq M_{g}$ for all $g \in G$. Then $K \subseteq \cup_{g \in G} M_{g}=h(M)$ and

$$
h(M / K)=\cup_{g \in G}\left(\left(M_{g}+K\right) / K\right)=\cup_{g \in G}\left(M_{g} / K\right)=h(M) / K .
$$

Now since the equality (3.1) holds, direct computation gives

$$
\begin{align*}
& (\operatorname{grad}(Q / K) \cap h(M / K)) \backslash\left(\operatorname{grad}\left(0_{M / K}\right) \cap h(M / K)\right) \\
= & (Q / K \cap h(M / K)) \backslash\left(\operatorname{grad}\left(0_{M / K}\right) \cap Q / K \cap h(M / K)\right) . \tag{3.3}
\end{align*}
$$

Hence Q / K is almost semiprime.
(ii) In order to show that Q is almost semiprime, we show that (3.1) holds. Let x belong up in the equality (3.1). Then $(R x)^{s} \subseteq Q$ for some positive integer s. This implies that $(R(x+K))^{s}=\left((R x)^{s}+K\right) / K$ is in Q / K. Hence $x+K \in \operatorname{grad}(Q / K)$. Now, there are two cases to consider.

Case 1. Assume that $x+K$ is in $\operatorname{grad}\left(0_{M / K}\right)$. Then there exists a positive integer t such that $(R(x+K))^{t}=0$ in M / K. So, $(R x)^{t} \subseteq K$. This implies that $x \in \operatorname{grad}(K)$. Since K is almost semiprime, we have

$$
\begin{aligned}
x & \in(\operatorname{grad}(K) \cap h(M)) \backslash\left(\operatorname{grad}\left(0_{M}\right) \cap h(M)\right) \\
& =(K \cap h(M)) \backslash\left(\operatorname{grad}\left(0_{M}\right) \cap K \cap h(M)\right) .
\end{aligned}
$$

Hence since $K \subseteq Q, x$ belongs down in the equality (3.1).
Case 2. Assume that $x+K$ is not in $\operatorname{grad}\left(0_{M / K}\right)$. Then $x+K$ belongs up in the equality (3.3). Since Q / K is almost semiprime, the equality (3.3) holds. Hence $x+K$ belongs down in the equality (3.3). This implies that $x+K \in Q / K$. Then there exists an element $y \in Q$ such that $x+K=y+K$. This implies that $x-y \in K$, so that $x=(x-y)+y \in K+Q=Q$ since $K \subseteq Q$. Hence x belongs down in the equality (3.1). This shows that the equality (3.1) holds. Therefore Q is almost semiprime.

Theorem 3.5. Let R be a graded ring, M be a graded multiplication module over R and K, Q be graded submodules of M. If K and Q are almost semiprime in M such that $Q+K \neq M$ and $Q \cap K \subseteq M_{g}$ for all $g \in G$, then $Q+K$ is almost semiprime in M.
Proof. Assume that Q and K are almost semiprime in M such that $Q+K \neq M$ and $Q \cap K \subseteq M_{g}$ for all $g \in G$. Then Lemma 3.4(i), $Q /(Q \cap K)$ is also almost semiprime in $M /(Q \cap K)$. Notice that $Q /(Q \cap K) \cong(Q+K) / K$ by the second isomorphism theorem for modules. Then $(Q+K) / K$ is almost semiprime in M / K. Hence by Lemma 3.4(ii), $Q+K$ is almost semiprime.

Acknowledgements. The authors would like to appreciate the referees for giving us the several corrections.

References

[1] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003 (2003), no. 27, 1715-1724.
[2] S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33 (2006), no. 1, 3-7.
[3] S. E. Atani and F. Farzalipour, On graded secondary modules, Turkish J. Math. 31 (2007), no. 4, 371-378.
[4] A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178.
[5] K. H. Oral, U. Tekir, and A. G. Ağargün, On graded prime and primary submodules, Turk J. Math. 35 (2011), 159-167.
[6] P. F. Smith, Some remarks on multiplication module, Arch. Math. (Basel) 50 (1988), no. 3, 223-235.

Sang Cheol Lee
Department of Mathematics Education
Chonbuk National University
Jeonju 561-756, Korea
AND
Department of Mathematics
The University of Colorado at Boulder
395 UCB
Boulder, Colorado 80309-0395, USA
E-mail address: scl@jbnu.ac.kr, Sang.C.Lee@Colorado.EDU

Rezvan Varmazyar
Department of Mathematics
Islamic Azad University, Khoy Branch
Khoy 58168-44799, Iran
E-mail address: varmazya@iaukhoy.ac.ir

