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Semiquantal molecular dynamics simulations of hydrogen-bond dynamics
in liquid water using multi-dimensional Gaussian wave packets

Junichi Onoa) and Koji Ando
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

(Received 10 July 2012; accepted 9 October 2012; published online 5 November 2012)

A semiquantal (SQ) molecular dynamics (MD) simulation method based on an extended Hamil-
tonian formulation has been developed using multi-dimensional thawed Gaussian wave packets
(WPs), and applied to an analysis of hydrogen-bond (H-bond) dynamics in liquid water. A set of
Hamilton’s equations of motion in an extended phase space, which includes variance-covariance
matrix elements as auxiliary coordinates representing anisotropic delocalization of the WPs, is de-
rived from the time-dependent variational principle. The present theory allows us to perform real-
time and real-space SQMD simulations and analyze nuclear quantum effects on dynamics in large
molecular systems in terms of anisotropic fluctuations of the WPs. Introducing the Liouville op-
erator formalism in the extended phase space, we have also developed an explicit symplectic al-
gorithm for the numerical integration, which can provide greater stability in the long-time SQMD
simulations. The application of the present theory to H-bond dynamics in liquid water is carried
out under a single-particle approximation in which the variance-covariance matrix and the corre-
sponding canonically conjugate matrix are reduced to block-diagonal structures by neglecting the
interparticle correlations. As a result, it is found that the anisotropy of the WPs is indispensable
for reproducing the disordered H-bond network compared to the classical counterpart with the
use of the potential model providing competing quantum effects between intra- and intermolec-
ular zero-point fluctuations. In addition, the significant WP delocalization along the out-of-plane
direction of the jumping hydrogen atom associated with the concerted breaking and forming of
H-bonds has been detected in the H-bond exchange mechanism. The relevance of the dynamical WP
broadening to the relaxation of H-bond number fluctuations has also been discussed. The present SQ
method provides the novel framework for investigating nuclear quantum dynamics in the many-body
molecular systems in which the local anisotropic fluctuations of nuclear WPs play an essential role.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762840]

I. INTRODUCTION

It has been recognized that the three-dimensional (3D)
hydrogen-bond (H-bond) network formed by water molecules
plays a fundamental role in varied chemical and biologi-
cal processes,1–8 and extensive theoretical and experimental
efforts have been devoted to elucidating its mechanism to
date.9–24 The 3D H-bond network is also responsible for well-
known peculiar properties of water such as density maximum
at 4.0 ◦C and high melting temperature (0.0 ◦C).1 In these
properties, nuclear quantum effects are found to be signif-
icant; for instance, the densities of deuterated water (D2O)
and tritiated water (T2O) become maximum at 11.2 ◦C and
13.4 ◦C, respectively.1 The isotopic differences are also no-
table in the melting points: 3.8 ◦C and 4.5 ◦C for D2O and
T2O, respectively.25 These observations indicate that nuclear
quantum fluctuations of the hydrogen atoms have a strong in-
fluence on energy and structure of the 3D H-bond network
and then result in the significant isotope effects on macro-
scopic properties of water. Although the physical origin of
these quantum effects has long been interpreted as zero-point
energy,26 a molecular-level description of nuclear quantum

a)Electronic mail: ono@kuchem.kyoto-u.ac.jp.

fluctuations in terms of dynamical proton delocalization and
its relevance to reorganization dynamics of the H-bond net-
work still remains elusive.

Developing the theoretical framework for the accurate
description of real-time quantum dynamics in condensed
phases remains one of the most challenging problems in
physics and chemistry. Although the exact thermodynamic
and structural properties in many-body molecular systems
can be practically obtained from imaginary-time path-integral
(PI) simulations,26–33 the exact calculation of quantum dy-
namical properties is still limited to small systems with a few
degrees of freedom coupled to a simple bath.34, 35 Instead,
classical molecular dynamics (MD) simulations are widely
employed in order to investigate dynamical quantities from
a microscopic perspective in large molecular systems with
thousands of degrees of freedom.36 However, nuclear quan-
tum effects such as zero-point energy and delocalization of
wave packets (WPs), which are indispensable for the accurate
description of the dynamical fluctuations of light particles, are
neglected in the usual classical MD simulations. Thus, there
has been considerable interest in the development of com-
putationally manageable approximation schemes for calculat-
ing quantum dynamical properties, and a number of different
methods have been proposed; for example, the centroid MD

0021-9606/2012/137(17)/174503/18/$30.00 © 2012 American Institute of Physics137, 174503-1
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method,37–40 the ring polymer MD (RPMD) method,41–44 and
the linearized semiclassical initial value representation (LSC-
IVR)45–47 were developed as approximation schemes for com-
puting quantum mechanical real-time correlation functions
and applied to liquid water.38–40, 42–44, 46, 47

The Gaussian WPs (GWPs) are useful tools for de-
scribing the approximate real-time quantum dynamics of
nuclear WPs; for instance, the thawed GWPs48, 49 can
directly capture the dynamical delocalization of quantum par-
ticles and provide the intuitive mechanism of the dynami-
cal fluctuations of WPs, whereas the frozen GWPs are suit-
able as a basis set for quantum propagation.50, 51 In particular,
the approximation schemes based on the multi-dimensional
thawed GWPs for the real-time WP dynamics were de-
rived from the local harmonic approximation48 and the vari-
ational principle.49, 52–54 The thawed GWPs were also ex-
ploited in the multi-configuration time-dependent Hartree
schemes55–57 which are now extending applicability to large
systems.58 Furthermore, these ideas were recently extended
to the imaginary-time GWP dynamics for efficient calculation
of quantum static properties in clusters.59, 60 In these methods,
however, the resulting equations of motion (EOMs) for some
of the time-dependent Gaussian parameters (i.e., the width pa-
rameters) are not canonical form, and thus the time evolution
of these variables is described in non-Hamiltonian dynamical
systems in which symplectic structures33, 61, 62 are absent.

Based on the time-dependent variational principle
(TDVP),63–66 the semiquantal (SQ) GWP methods within
the framework of the Hamiltonian formulation were devel-
oped in a variety of forms mostly in the field of nuclear
physics,67–71 and applied to chemical problems with the time-
dependent Hartree (TDH) ansatz of the squeezed coherent
state functions.72–76 In the SQGWP schemes, the real-time
quantum dynamics in the Hilbert space is approximately re-
placed by the classical Hamiltonian dynamics in the extended
phase space which includes auxiliary coordinates and mo-
menta representing the WP widths.72 The resulting extended
Hamiltonian has a simple separable form, and thus the intu-
itive interpretation of the WP dynamics based upon the poten-
tial concept in the extended phase space can be provided.72

Interestingly, the SQGWP theory is closely related to the
second-order quantized Hamilton dynamics (QHD-2),77–80

and is essentially equivalent to the second-order quantal cu-
mulant dynamics (QCD-2).81–84 It is also intriguing to note
that the SQGWP framework has recently been extended to
describe many electron systems85, 86 and electron-nuclear sys-
tems in the non-Born-Oppenheimer framework.87

Although the SQMD simulation method with the
TDH ansatz can treat large molecular systems, the rota-
tional invariance of WPs should be retained within the
Hartree approximation.88 Indeed, the spherically symmetric
constraints67 were adopted in the previous works,71, 74–76 in
which the GWP of each of the quantum particles is restricted
to the spherically symmetric structure at any time. However,
the spherically symmetric assumption is apparently invalid in
molecular systems such as water where the local directional
interactions play an important role; in liquid water, for exam-
ple, the molecules form the distorted tetrahedral H-bond net-
work which continuously fluctuates,4, 5, 7, 8 and thus it is rea-

sonable to suppose that the nuclear WPs form the anisotropic
structure due to the local 3D interactions. Hence, it is desir-
able to extend the SQGWP theory without the spherically
symmetric constraints in order to describe the anisotropic
fluctuations of WPs with the rotational invariance.

The purposes of the present study are (i) to develop the
SQGWP theory in a form suitable for general anisotropic sys-
tems, (ii) to formulate an explicit symplectic algorithm for
robust time propagations by exploiting the canonical Hamil-
tonian form of the theory, and (iii) to implement the SQMD
simulation of liquid water and examine the molecular jump
mechanism of H-bond exchange dynamics.

First, we develop the theory along the previously sug-
gested line,89 or generalize the previous SQGWP theory us-
ing the correlated multi-dimensional thawed GWPs within the
framework of the Hamiltonian formulation; in addition to
the center coordinates of WPs and the conjugate momenta,
the variance-covariance matrix and the corresponding con-
jugate matrix of the GWPs are introduced as the additional
dynamical variables, so that it becomes possible to describe
the anisotropic dynamical delocalization of WPs with the ro-
tational invariance. We can then derive a set of Hamilton’s
EOMs in the extended phase space on the basis of the TDVP.
As a result, the present theory enables us to carry out the real-
time and real-space SQMD simulations in the extended phase
space without the spherically symmetric constraints and to an-
alyze the nuclear quantum dynamics in molecular systems in
terms of the anisotropic fluctuations of WPs.

Second, we develop the explicit symplectic algorithm
with the time reversibility for the numerical integration
in the SQMD simulations based on the Liouville opera-
tor formalism in the extended phase space. The presence
of symplectic algorithm, which can provide the long-time
stability of trajectories, is one of the advantages of the
Hamiltonian formulation.61, 62, 90–93 However, the develop-
ment of explicit symplectic algorithm in the present the-
ory is not trivial since the resulting extended Hamiltonian
is inevitably non-separable70 due to the existence of the off-
diagonal elements in the matrices. Here, we derive the time-
reversible explicit symplectic algorithm using the symmetric
Trotter theorem33, 94 and discuss the conserved Hamiltonian
in the second-order symplectic algorithm in detail (see also
Appendix B).

Third, we construct a practical approximation, which will
be referred to as the single-particle approximation, in order
to reduce the number of degrees of freedom which is pro-
portional to the square of the system size.52, 54, 59, 60 In the
single-particle approximation, the variance-covariance matrix
and the corresponding conjugate matrix are reduced to block-
diagonal structures by only considering correlations between
the different degrees of freedom in one particle and neglect-
ing the interparticle correlations. As a result, the number of
degrees of freedom scales linearly with the system size and
the computational costs of the matrix operations are signifi-
cantly reduced.

The present paper is organized as follows. After brief
discussion on the previous SQMD implementations with the
TDH ansatz, the generalization into the correlated multi-
dimensional GWP dynamics within the framework of the
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Hamiltonian formulation is provided in Sec. II. Approxima-
tion schemes for evaluating the potential expectation are also
given in this section. In Sec. III, the explicit symplectic algo-
rithm with the time reversibility for the numerical integration
in the current SQMD simulations is presented. In Sec. IV, the
single-particle approximation based upon the single-particle
ansatz is introduced, and then the simulation procedures are
outlined. In Sec. V, discussion on the present results of liquid
water is described. The paper finally concludes in Sec. VI.

II. GENERALIZED SEMIQUANTAL TIME-DEPENDENT
THEORY

A. Correlated multi-dimensional Gaussian wave
packet dynamics: Hamiltonian formulation

The implementation of the SQGWP theory for 3D many-
body systems has previously been provided using two kinds
of trial wave functions: a Hartree product of uncorrelated 3D
GWPs74 and that of spherically symmetric 3D GWPs.74–76

Note that the rotational invariance of the WPs is broken un-
der the former approximation since the WP width variables
of each of the quantum particles are allowed to independently
fluctuate only along the coordinate axes fixed in a simula-
tion box. For this reason, all the previous applications were
in fact carried out using the latter approximation in which the
spherically symmetric constraints are imposed upon the 3D
GWPs.74–76

Here, we discuss the generalization for a 3D many-body
system within the framework of the Hamiltonian formulation.
Consider the system consisting of N distinguishable particles
described by the Hamiltonian

H =
N∑

j=1

|pj |2

2mj

+ V (q1, . . . , qN ), (1)

where mj, qj ≡ (qjx, qjy, qjz), and pj ≡ (pjx, pjy, pjz) de-
note the mass, the 3D Cartesian position vector, and the cor-
responding conjugate momentum vector of the jth quantum
particle, respectively, and V is the (Born-Oppenheimer) po-
tential function of the system. In the present study, we assume
the trial wave function of the system to be a correlated multi-
dimensional thawed Gaussian function89 as

�(q, t) = (2π )−3N/4{det(G)}−1/4

× exp

[
�qTA�q +

i

¯
pT

r �q

]
, (2)

where �q ≡ (q − r) describes the 3N-dimensional displace-
ment vector, q ≡ (q1, . . . , qN ) represents the 3N-dimensional
Cartesian position vector of the system, and A is the 3N × 3N

complex symmetric matrix defined by

A = −
1

4
G−1 +

i

¯
K. (3)

This function is specified by the time-dependent variational
parameters: the 3N-dimensional real vectors r ≡ (r1, . . . , rN )
and pr ≡ (pr1 , . . . , prN

), and the 3N × 3N real symmetric ma-
trices G and K. Here, the number of independent degrees of
freedom in each of the matrices is equal to 3N(3N + 1)/2.
Note that the matrix G is also positive definite. Then, the

physical meaning of these parameters can be seen from the
following relations:

〈qjμ〉 = rjμ, (4)

〈pjμ〉 = prjμ
, (5)

〈�qjμ�qkν〉 = Gjμ,kν, (6)

〈�pjμ�pkν〉 = ¯2

4 (G−1)jμ,kν + 4(KGK)jμ,kν, (7)

〈(�qjμ�pkν)s〉 = 2(GK)jμ,kν, (8)

where 〈. . . 〉 indicates the quantum mechanical expectation
value defined by the trial function in Eq. (2), μ labels the
spatial Cartesian components (i.e., μ = {x, y, z}), and (. . .)s

denotes a symmetrized product; i.e., (XY )s = (XY + YX)/2.
Clearly, Eq. (6) shows that the matrix G is the variance-
covariance matrix of the multivariate Gaussian distribution
function. Moreover, the uncertainty relations can be obtained
from Eqs. (6)–(8) as follows:

〈�q�qT〉〈�p�pT〉 − 〈S〉2 =
¯2

4
1, (9)

where we introduce the 3N × 3N real (non-symmetric) ma-
trix S defined as Sjμ,kν = (�qjμ�pkν)s, and the 3N × 3N

identity matrix 1. Now, the trial function in Eq. (2) includes
direct correlations between the different degrees of freedom,
and preserves the rotational invariance of the WPs without the
requirements of the spherical constraints.

The time development of the dynamical variables can be
derived from the TDVP.63–66 The quantum mechanical La-
grangian is now expressed as

L ≡ 〈�, t |
(

i¯
∂

∂t
− H

)
|�, t〉 (10)

= pT
r ṙ − Tr {GK̇} − Hext, (11)

with the extended Hamiltonian function,

Hext =
1

2
pT

r M−1pr + 2Tr {M−1KGK}

+
¯2

8
Tr {M−1G−1} + 〈V 〉, (12)

where M denotes the 3N × 3N diagonal mass matrix of the
system; i.e., Mjμ, kν = mjδjkδμν . Note that Hext in Eq. (12) is
equal to the expectation value of the Hamiltonian in Eq. (1).
The first term of Hext in Eq. (12) is the kinetic energy associ-
ated with the center variables of WPs, and thus it corresponds
to the classical kinetic energy. The second term is the homo-
geneous quadratic form in the generalized momentum (i.e.,
quadratic in Kjμ, kν and linear in Gjμ, kν), and thus it is regarded
as the (generalized) kinetic energy95 associated with the width
variables of WPs. The last two terms in Eq. (12) depend only
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on the generalized coordinates and, for the later convenience,
will be referred to as the extended potential function Vext,

Vext =
¯2

8
Tr {M−1G−1} + 〈V 〉. (13)

The stationary condition of the action integral (i.e., δ
∫

dtL =
0) leads to the following coupled first-order differential equa-
tions:

ṙjμ =
prjμ

mj

, (14)

ṗrjμ
= −

∂〈V 〉
∂rjμ

, (15)

Ġjμ,kν = 2Pjμ,kν, (16)

K̇jμ,kν = −2(KM−1K)jμ,kν + Fjμ,kν, (17)

with the 3N × 3N symmetric matrices P and F defined by

P = GKM−1 + M−1KG, (18)

Fjμ,kν = −ξjμ,kν

∂Vext

∂Gjμ,kν

=
¯2

8
(G−1M−1G−1)jμ,kν

− ξjμ,kν

∂〈V 〉
∂Gjμ,kν

, (19)

where ξ jμ, kν = (1 + δjkδμν)/2. With Hext in Eq. (12), these
EOMs can be rewritten in the classical Hamiltonian formula-
tion as

ṙjμ =
∂Hext

∂prjμ

, Ġjμ,kν = ξjμ,kν

∂Hext

∂Kjμ,kν

,

(20)

ṗrjμ
= −

∂Hext

∂rjμ

, K̇jμ,kν = −ξjμ,kν

∂Hext

∂Gjμ,kν

.

Therefore, the real-time SQ dynamics of the N-particle system
in terms of the multi-dimensional thawed GWPs can be ex-
pressed by specifying the 9N(N + 1)-dimensional phase space
vector consisting of canonical variables,

Ŵ = (r1x, r1y, . . . , rNz,

G1x,1x,G1y,1y, . . . , GNz,Nz,
√

2G1x,1y,
√

2G1y,1z, . . . ,
√

2GNz,Nx,

pr1x
, pr1y

, . . . , prNz
,

K1x,1x,K1y,1y, . . . , KNz,Nz,
√

2K1x,1y,
√

2K1y,1z, . . . ,
√

2KNz,Nx),

(21)

where the additional factor
√

2 appearing in the off-diagonal
elements arises from the symmetric condition of the matrices
(e.g., G1x, 1y = G1y, 1x). Note that both the direct correlations
between the different degrees of freedom in one particle and
the interparticle correlations are entirely included as canonical
variables in the phase space vector.

We now introduce the Liouville operator formalism.33 In
the present framework, the time evolution of any arbitrary
phase space function f (Ŵ) can be described by the classical
Liouville operator,

iLext = −{Hext, . . .}PB

=
N∑

j=1

∑

μ

(
∂Hext

∂prjμ

∂

∂rjμ

−
∂Hext

∂rjμ

∂

∂prjμ

)

+
N∑

j=1

∑

μ

N∑

k=1

∑

ν

ξ 2
jμ,kν

×
(

∂Hext

∂Kjμ,kν

∂

∂Gjμ,kν

−
∂Hext

∂Gjμ,kν

∂

∂Kjμ,kν

)
, (22)

where {. . . , . . . }PB is the generalized Poisson bracket in the
extended phase space. The time derivative of the function
f (Ŵ) is then given by df/dt = iLextf. For example, the set
of Hamilton’s EOMs can be simply expressed as dŴ/dt

= iLextŴ. Moreover, it is now straightforward to show that
Hext in Eq. (12) is conserved; dHext/dt = iLextHext = 0. The
time evolution of the function f (Ŵ(t)) ≡ f (t) from the time t

to t + �t is formally described as

f (t + �t) = exp[iLext�t]f (t), (23)

where exp[iLext�t] is a time propagator.33 The approximate
evaluation of the action of the time propagator will be dis-
cussed in Sec. III.

B. Expectation values for potential functions

Next, we discuss the remaining task of evaluating the
potential expectation. For some functional forms such as
Gaussian functions, it is possible to perform Gaussian in-
tegrals analytically and obtain the exact potential expecta-
tion 〈V (q)〉. Otherwise it is necessary to estimate the po-
tential expectation using appropriate approximation schemes.
In the present work, we employ two different approximation
schemes to assess the potential expectation: (i) a Gaussian fit-
ting scheme and (ii) Taylor series expansion.72 Since the for-
mer approximation has widely been utilized in various forms,
we here focus on describing the latter approximation (see also
Appendix A).

We consider the expansion of the general N-body poten-
tial V (q) in terms of a Taylor series around 〈q〉 = r as

V (q) = V (r + �q)

= exp

[
�qT ∂

∂r′

]
V (r′)

∣∣∣∣
r′=r

. (24)

Substituting Eq. (24) into 〈V (q)〉 and performing the Gaus-
sian integral formally, we can obtain the analytical expression
for the potential expectation as

〈V (q)〉 = exp

[
1

2
∇TG∇

]
V (r), (25)

where ∇ ≡ (∂/∂r1, . . . , ∂/∂rN ) denotes the 3N-dimensional
gradient vector with respect to the WP centers. In practice,
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the Taylor series of the exponential function of the differen-
tial operators in Eq. (25) is truncated at a finite order.72 Note
that the nth-order truncation of the Taylor series of the expo-
nential function in Eq. (25) corresponds to the 2nth-order ex-
pansion of the potential V (q) with respect to �q in Eq. (24).
For example, if we truncate the Taylor series of the exponen-
tial function in Eq. (25) at second-order, we can obtain the
fourth-order expansion of the potential expectation as

〈V (q)〉 ≃

[
1 +

1

2
∇TG∇ +

1

2!

(
1

2
∇TG∇

)2
]

V (r)

≡ V (0) + V (2) + V (4). (26)

Note that the zeroth-order term V (0) in the above expansion
depends only on the center coordinates and represents the
corresponding classical potential function. In contrast, the
higher-order terms V (2) and V (4) depend on both the cen-
ter and the width coordinates, and give rise to quantum ef-
fects; especially, the combination of these higher-order terms
and the first term in Vext [Eq. (13)] reproduces the zero-
point energy.72 Note that although the zero-point energy in
the present framework is exact only in the case of a harmonic
potential, the fourth-order truncation has been found to be ac-
curate enough for the Lippincott-Schroeder potential of an-
harmonic H-bond.73

III. SYMPLECTIC AND TIME-REVERSIBLE
INTEGRATOR

From a practical perspective, it is essential to develop
stable and efficient numerical algorithms for integrating the
EOMs in molecular simulations. Now, it is widely recog-
nized that a symplectic algorithm for the numerical integra-
tion of the canonical EOMs has an outstanding advantage
that the secular deviation of the total energy is extremely
suppressed.33, 61, 62, 90–93 In this section, we derive the explicit
symplectic algorithm with the time reversibility for the nu-
merical integration of the Hamilton’s EOMs in Eq. (20).

The presence of a symplectic algorithm is one of the ad-
vantages of the Hamiltonian formulation.61, 62 Computation-
ally, it is desired to find an explicit (non-iterative) symplectic
algorithm rather than iterative implicit ones. This is, however,
not a trivial task for a non-separable Hamiltonian like Hext in
Eq. (12) where the canonically conjugate variables are cou-
pled in the kinetic energy term 2Tr {M−1KGK}. Nonetheless,
we can construct the explicit algorithm in the following way.
We first decompose the extended Hamiltonian in Eq. (12) into
the following two sub-Hamiltonians:

Hext = H1 + H2, (27)

H1 =
1

2
pT

r M−1pr + 2Tr {M−1KGK}, (28)

H2 = Vext. (29)

Then, the Liouville operator in Eq. (22) can be divided into
the following two operators:

iLext = iL1 + iL2. (30)

Explicit forms of operators iL1 and iL2 are expressed as

iL1 = −{H1, . . .}PB

=
N∑

j=1

∑

μ

prjμ

mj

∂

∂rjμ

+ 2
N∑

j=1

∑

μ

N∑

k=1

∑

ν

ξjμ,kν

×
[
Pjμ,kν

∂

∂Gjμ,kν

− (KM−1K)jμ,kν

∂

∂Kjμ,kν

]
, (31)

iL2 = −{H2, . . .}PB

=
N∑

j=1

∑

μ

(
−

∂〈V 〉
∂rjμ

)
∂

∂prjμ

+
N∑

j=1

∑

μ

N∑

k=1

∑

ν

ξjμ,kνFjμ,kν

∂

∂Kjμ,kν

. (32)

In order to factorize the time propagator exp[iLext�t], we
employ the symmetric Trotter theorem for a single time step
�t.33, 94 The second-order formula with respect to �t is ex-
pressed as

eiLext�t ≃ eiL2�t/2eiL1�teiL2�t/2. (33)

This factorization is a short time approximation in which the
error is proportional to (�t)3. The higher-order formulas that
retain the time reversibility via the symmetric structure of op-
erators can be obtained in a similar manner.90

To begin with, consider the action of the operator
exp [iL1�t] on the vector r and the matrices G and K. The
action on r is as simple as that of a shift operator, whereas
that on G and K is not. However, the latter can be worked
out by employing the following two relations. First, in the
time evolution by the sub-Hamiltonian H1, the matrix KGK

is conserved

exp[iL1�t] KGK = KGK. (34)

Second, in the time evolution of the inverse matrix K−1, only
terms up to �t appear as

exp[iL1�t] K−1 = K−1 + 2�tM−1. (35)

From Eqs. (34) and (35), we find

exp[iL1�t] G = ZT(�t)GZ(�t), (36)

exp[iL1�t] K = Z−1(�t)K = K(ZT(�t))−1, (37)

where the 3N × 3N matrix Z(�t) is defined by

Z(�t) = 1 + 2�t KM−1, (38)

with the 3N × 3N identity matrix 1. Note that the matrix
Z(�t) depends on the time step �t explicitly.
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Next, consider the action of the operator exp [iL2�t] on
the vector pr and the matrix K. There is no canonically con-
jugate pair in the sub-Hamiltonian H2, and therefore the op-
erator exp [iL2�t] can be regarded as the shift operator for pr

and K. Consequently, the time evolution of pr and K by the
sub-Hamiltonian H2 can be obtained straightforwardly.

Finally, the combined action of the three operators in the
second-order Trotter factorization in Eq. (33) leads to the fol-
lowing second-order explicit symplectic algorithm with the
time reversibility for integrating the Hamilton’s EOMs:

1. Update the vector pr and the matrix K according to

prjμ
←− prjμ

−
∂〈V 〉
∂rjμ

�t

2
, (39)

Kjμ,kν ←− Kjμ,kν − ξjμ,kν

∂Vext

∂Gjμ,kν

�t

2
. (40)

2. Using the new vector pr and the new matrix K, evaluate
the matrix Z(�t) and update the vector r and the matri-
ces G and K according to

r ←− r + M−1pr�t, (41)

G ←− ZT(�t)GZ(�t), (42)

K ←− Z−1(�t)K. (43)

3. Calculate the new generalized forces using the new vec-
tor r and the new matrix G.

4. Update the vector pr and the matrix K according to

prjμ
←− prjμ

−
∂〈V 〉
∂rjμ

�t

2
, (44)

Kjμ,kν ←− Kjμ,kν − ξjμ,kν

∂Vext

∂Gjμ,kν

�t

2
. (45)

Note that the symbol “←−” indicates that the variables on the
left-hand side are overwritten by those on the right-hand side
in a computer program.

It should be noted that, as in the usual classical MD simu-
lations, we can utilize a multiple time-scale algorithm in order
to reduce the computational costs since the present integration
scheme is based upon the Liouville operator formalism.33, 94

For instance, we can achieve it by separating the potential ex-
pectation 〈V 〉 into the rapidly varying intramolecular interac-
tions with a small time step δτ and the slowly varying inter-
molecular interactions with a large time step �τ = nδτ using
the further Trotter factorization of the propagator.33, 94

IV. COMPUTATIONAL DETAILS

A. Single-particle approximation

Thus far, we have discussed the real-time SQ dynamics
of the N-particle system in terms of the multi-dimensional
thawed GWPs in which correlations between the different de-
grees of freedom are fully taken into account by introducing

the off-diagonal matrix elements. In this framework, the 3N-
dimensional quantum system is variationally approximated
as the 9N(N + 1)-dimensional classical Hamiltonian system.
Although the present theory is more accurate than the previ-
ous SQGWP theory in this regard, there exist two drawbacks:
an expensive computational cost and complexity of analysis.
Since the number of degrees of freedom in the matrices G

and K scales with N2, and the matrix operations (i.e., the ma-
trix inversion and multiplication) at each time step scale with
N3, the required computational cost soon becomes prohibitive
for condensed phase simulations. In addition, it is generally a
nontrivial task to extract a small number of essential modes
characterizing a target phenomenon from numerous degrees
of freedom in such ∼N2-dimensional systems when we ana-
lyze nuclear quantum effects from microscopic viewpoints.

In order to avoid the above-mentioned drawbacks in the
practical SQ simulations, we employ the single-particle ap-
proximation in which the matrices G and K are reduced to
block-diagonal structures by only considering correlations be-
tween the different degrees of freedom in the same particle
and neglecting the remaining interparticle correlations. As a
result, the reduced matrices consist of N blocks of 3 × 3
real symmetric matrices along the diagonal, and the number
of independent degrees of freedom in each of these matrices
becomes 6N. Note that the analogous approximations have
previously been suggested within the framework of the non-
Hamiltonian formulation.52, 54, 59, 60, 84

In the single-particle approximation, we assume that the
trial wave function of the system can be factorized into a di-
rect product of correlated 3D Gaussian functions as

�(q, t) =
N∏

j=1

�j (qj , t), (46)

in which each � j has the same form as Eq. (2) with N = 1,
representing the WP of the jth particle. The 3D vectors �qj ,
rj , and prj

and the 3 × 3 matrices Aj , Gj , and Kj are de-
fined accordingly. The rotational invariance of the WPs is still
retained in the single-particle approximation due to the exis-
tence of the off-diagonal elements in the matrices. Thus, it is
possible to describe the anisotropic fluctuations of the jth WP
with the rotational invariance in this approximation.

As was done in Sec. II, the TDVP yields the classical
Hamilton’s EOMs in the extended phase space. The extended
Hamiltonian is now given by

Hext =
N∑

j=1

[
|prj

|2

2mj

+
2

mj

Tr {Kj Gj Kj }

]
+ Vext, (47)

with the extended potential function,

Vext =
N∑

j=1

¯2

8mj

Tr
{
G−1

j

}
+ 〈V 〉, (48)

in which the quantum mechanical expectation value 〈. . . 〉 is
defined by the trial function in Eq. (46). Note that the ex-
tended Hamiltonian in Eq. (47) is still not separable, and
thus the symplectic integrator described in Sec. III is appli-
cable. The resulting set of Hamilton’s EOMs is analogous to
Eqs. (14)–(17) and Eq. (20) (and thus not presented here).96
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Consequently, the real-time SQ dynamics of the N-particle
system under the single-particle approximation can be
expressed by specifying the 18N-dimensional phase space
vector.

In order to clarify the physical meaning of the width co-
ordinates in the single-particle approximation, we consider an
eigen-decomposition of the variance-covariance matrix. The
jth variance-covariance matrix can be represented in terms of
its eigenvalues and eigenvectors

Gj = RT
j G̃j Rj , (49)

where G̃j ≡ diag (λjx, λjy, λjz) is the diagonal matrix whose
elements are composed of the eigenvalues, and Rj is the ro-
tation (or orthogonal) matrix consisting of the eigenvectors,
which transforms a 3D Cartesian coordinate vector in the
space-fixed axes into that in the principal axes. Then, the ro-
tation matrix Rj can be expressed in terms of the Euler angles
{φj, θ j, ψ j} in the usual manner.33, 95 As a result, the width co-
ordinates {Gjxx, Gjyy, Gjzz} and {

√
2Gjxy,

√
2Gjyz,

√
2Gjzx}

are transformed into the generalized coordinates {λjx, λjy, λjz}
and {φj, θ j, ψ j}; here, square roots of the eigenvalues corre-
spond to the widths of the ellipsoidal GWPs (EGWPs) in the
principal axes, and the Euler angles represent the rotational
degrees of freedom of the EGWPs.

In the eigen-decomposition representation, the extended
Hamiltonian in Eq. (47) is rewritten as

Hext =
N∑

j=1

∑

μ

[
p2

rjμ

2mj

+
2λjμ

mj

p2
λjμ

+
l2
jμ

2Ijμ

]
+ Vext, (50)

with the extended potential function,

Vext =
N∑

j=1

∑

μ

¯2

8mjλjμ

+ 〈V 〉, (51)

where pλjμ
and ljμ denote the canonically conjugate momen-

tum of the eigenvalue λjμ and the angular momentum in the
principal frame, respectively. Here, the effective moments of
inertia {Ijx, Ijy, Ijz} in Eq. (50) are defined by97

Ijx = mj

(λjy − λjz)2

λjy + λjz

,

Ijy = mj

(λjz − λjx)2

λjz + λjx

, (52)

Ijz = mj

(λjx − λjy)2

λjx + λjy

.

Note that the angular momenta {ljx, ljy, ljz} in Eq. (50) are not
canonically conjugate momenta of Euler angles; indeed, the
conjugate momenta {pφj

, pθj
, pψj

} are related to the angular
momenta as
⎛
⎜⎝

pφj

pθj

pψj

⎞
⎟⎠ =

⎛
⎜⎝

sin θj sin ψj sin θj cos ψj cos θj

cos ψj − sin ψj 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

ljx

ljy

ljz

⎞
⎟⎠.

(53)

Now, the physical meaning of the kinetic energy in the ex-
tended Hamiltonian in Eq. (50) is obvious; the total kinetic
energy is composed of (i) the translational kinetic energy

of the EGWPs corresponding to the classical kinetic energy,
(ii) the vibrational kinetic energy representing the spreading
motions of the EGWPs, and (iii) the angular kinetic energy
describing the rotational motions of the EGWPs.

In molecular liquids, a single-molecule approximation
that includes all the intramolecular correlations but disre-
gards the intermolecular correlations would be more appro-
priate than the single-particle approximation. It would also
be reasonable to examine intermediate approximations which
include some of intramolecular correlations: for example, a
water model that consists of 6 × 6 and 3 × 3 blocks by in-
troducing correlations between the hydrogen atoms within the
same molecule in addition to the intraparticle correlations and
by neglecting the remaining interparticle correlations (i.e., the
intramolecular O–H and intermolecular correlations). Never-
theless, we employ only the single-particle approximation in
the current work as a first approximation incorporating the
anisotropy of the GWPs, and concentrate exclusively on the
comparison of it with the corresponding spherical and classi-
cal approximations.98

B. Flexible SPC water model

The previous applications of the SQGWP theory to liq-
uid water were performed using the SPC/Fd model74, 75 de-
veloped by Dang and Pettitt99 and the q-SPC/Fw model76

developed by Voth and co-workers.100 In these flexible and
non-polarizable water models, the interaction of the in-
tramolecular O–H stretch is described by a simple harmonic
potential.101 As a result, nuclear quantum effects yield a
structural shift toward shorter O–H bond lengths in liquid
water.74, 76 However, these results are inconsistent with the
recent experimental observation which has indicated that the
average O–H bond length in liquid H2O is larger than the aver-
age O—D bond length in liquid D2O by approximately 3%,15

and also with several theoretical results.27, 29, 43

Manolopoulos and co-workers have recently found the
competition between intra- and intermolecular quantum ef-
fects in liquid water using imaginary-time PI and RPMD sim-
ulations with the q-TIP4P/F model including an anharmonic
intramolecular O–H interaction; that is, intramolecular zero-
point fluctuations arising mainly from the anharmonic O–H
stretching motion increase the average O–H bond length and
the average molecular dipole moment, and then result in
stronger intermolecular interactions, whereas intermolecular
quantum fluctuations disorder the H-bond network.43 Note
that only the latter quantum effects have long been focused
on since most of the previous works are based on a rigid-body
model26 or a flexible model with a harmonic O–H stretch-
ing potential.100 Then, competing nuclear quantum effects in
H-bond systems have systematically been investigated using
imaginary-time ab initio PI simulations.30 Now, these studies
shed light on the importance of the anharmonicity of the O–H
stretch in quantum simulations of water.31, 32

In the present work, we employed the anharmonic flexi-
ble SPC (f-SPC) model developed by Toukan and Rahman102

instead of the SPC/Fd and q-SPC/Fw models in order to take
into account the anharmonic O–H interaction and to avoid
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technical complexities of quantizing the bending potential
function depending explicitly on the H–O–H angle.103 In this
latter respect, the merit of this model for our SQMD scheme
lies in the fact that all the potential functions are described in
terms of the distances between particles; the intramolecular
interactions for the Jth molecule are given by

Vintra = Vstretch(rOH1 ) + Vstretch(rOH2 )

+Vbend(rHH) + Vcross(rOH1 , rOH2 , rHH), (54)

where rOH and rHH indicate the O–H and H–H distances in
the Jth water molecule, respectively. The potential functions
Vstretch, Vbend, and Vcross denote the anharmonic quartic poten-
tial for the O–H stretching,104 the simple harmonic potential
for the H–O–H bending, and the cross term describing cou-
pling between the internal coordinates in the quadratic form,
respectively.102 Note that the simple harmonic form of Vstretch

has also been proposed in the original f-SPC model,102 which
will be referred to as the harmonic f-SPC model. This har-
monic model has been used in a previous PIMD simulation
study,105 to which we will compare our results in Sec. V A.
The intermolecular part of this model, Vinter, consists of a 12-6
Lennard-Jones (LJ) potential between oxygen atoms, VLJ, and
an electrostatic Coulomb potential between the point charges
on atoms, Vel.102

In order to evaluate the potential expectation in the
f-SPC model, we adopted the Gaussian fitting scheme for
the anharmonic quartic stretching potential (Vstretch), and the
fourth-order Taylor expansion [Eq. (26)] for the remaining in-
tramolecular potential functions (Vbend and Vcross) and the in-
termolecular potential functions (VLJ and Vel).

C. Semiquantal molecular dynamics simulations

We applied the present theory to liquid water under the
single-particle approximation, in which both the hydrogen
and oxygen atoms were treated as the EGWPs. Despite the
fact that the hydrogen atoms play a central role in nuclear
quantum effects due to the lightest atomic mass, a recent ex-
perimental investigation has shown that quantum effects of
the oxygen atoms are also non-negligible in the H-bond struc-
ture of water under ambient conditions.14 This experimental
finding has motivated us to quantize all the atoms in water.76

The SQMD simulations were performed with the use of
the f-SPC model in the microcanonical (NVE) ensemble at a
density of 0.997 g cm−3 and a target temperature of 298 K
with 256 water molecules in a cubic simulation box in which
periodic boundary conditions were applied using the mini-
mum image convention. The classical part of the long-range
electrostatic interaction, V

(0)
el , was calculated using the stan-

dard Ewald summation, whereas the remaining intermolecu-
lar interactions (i.e., V

(2)
el , V

(4)
el , and the LJ interactions) were

spherically truncated with the use of the smooth function106

at the cutoff distance of half the box length (i.e., 9.87 Å).
The numerical integration of the Hamilton’s EOMs was per-
formed using the time-reversible second-order explicit sym-
plectic integrator (SI2) proposed in Sec. III with a time step of
�t = 0.04 fs. Note that although the time step used here is
relatively small due to the fast fluctuations of the WP width

variables of the hydrogen atoms, it is found that even larger
time steps (e.g., 0.10 fs) also enable us to obtain stable trajec-
tories as described in Appendix B. The initial conditions of
the WP center variables {rj } and {prj

} were obtained from the
corresponding classical trajectory, and those of the WP width
momenta {Kj } were chosen as the zero matrices in order to
satisfy the minimal uncertainty at the initial time,69 whereas
those of the WP width coordinates {Gj } were determined by
optimizing the extended potential function [Eq. (48)] to intro-
duce the least quantal effects at this time.69 In the optimization
process, the conjugate gradient method was performed using
a Cholesky decomposition of {Gj } so that the positive def-
initeness is automatically assured,107 instead of implement-
ing constrained optimization. For comparison, we also car-
ried out the additional SQMD simulation using the spherical
GWPs (SGWPs) adopted in our previous studies74–76 and the
corresponding classical MD simulation with a time step of
�t = 0.10 fs under otherwise identical conditions described
above.

The methodology for generating statistical mechanical
ensembles in the extended phase space has not been com-
pletely understood.80 In the present study, we employed the
equilibration method used in the previous simulations,74–76 in
which we adjust the classical degrees of freedom by rescaling
only classical velocities and then compute NVE trajectories
in the absence of the thermostat. In this equilibration process,
other degrees of freedom freely evolve according to the time
propagator. After sufficiently long equilibration in this way,
the system reaches the thermal equilibrium state due to heat
conduction between the different degrees of freedom in the
extended phase space. In this simulations, equilibrium NVE

trajectories were calculated for 1 ns during which the struc-
tural and dynamical properties were computed, after the care-
ful cooling and equilibration runs for more than 200 ps.

V. RESULTS AND DISCUSSION

A. Static equilibrium properties

We first compare the ensemble-averaged static monomer
properties in liquid water obtained from SQ and classical
simulations listed in Table I: the O–H bond length rOH, the
H–O–H bond angle θHOH, and the molecular dipole mo-
ment μ. The monomer properties in the SQMD simulations
were calculated from the corresponding expectation values.
Clearly, there are significant differences in the average ge-
ometries between the SQ and classical models. The O–H bond
lengths of the EGWP and SGWP models are greater than
that of the classical model by approximately 0.034 and 0.041
Å, respectively. In addition, the H–O–H bond angle of the
EGWP model is larger by 1.4◦, whereas that of the SGWP
model is smaller by 0.5◦ when compared to its classical coun-
terpart. As a result of these structural changes, the average
molecular dipole moments of the EGWP and SGWP mod-
els become larger than the classical one by 1.7% and 4.9%,
respectively.

In order to evaluate the contribution of intramolecular
zero-point fluctuations to the quantum geometric changes
of water molecules, we calculated the optimized monomer
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TABLE I. Ensemble-averaged static monomer properties in liquid water ob-
tained from the SQ and classical simulations with the f-SPC model. Opti-
mized monomer properties of the isolated water molecule obtained from the
SQ simulations are also listed alongside the classical geometric parameters
for the f-SPC model. The number in parentheses represents the standard er-
rors in the final digits.

Model System rOH (Å) θHOH (deg) μ (D)

EGWP Liquid 1.0565(1) 106.99(1) 2.4776(1)
SGWP Liquid 1.0638(1) 105.08(1) 2.5544(1)
Classical Liquid 1.0225(1) 105.56(1) 2.4353(1)
EGWP Gas 1.0248 110.46 2.3030
SGWP Gas 1.0352 109.07 2.3729
Classicala Gas 1.0000 109.47 2.2740

aReference 102.

properties in an isolated water molecule using the SQ mod-
els; the results are listed in Table I alongside the geometric
parameters for the f-SPC model. It is obvious that, despite
the absence of surrounding molecules, the structural differ-
ences between the SQ and classical models in gas phase are
comparable to those in liquid, indicating that nuclear quan-
tum effects on the average monomer geometry mainly arise
from the intramolecular zero-point fluctuations. By compar-
ing the EGWP and SGWP models, we can also find that the
anisotropy of WPs slightly reduces the quantum elongation of
the O–H distance and gives rise to the opposite structural shift
of the H–O–H angle (see Table I). Therefore, the quantum ge-
ometry resulting mainly from the intramolecular zero-point
energy is sensitive to the anisotropic fluctuations of WPs.

The quantum elongation of the O–H bond length ob-
served in the present study is now consistent with the ex-
perimentally observed isotope effect already mentioned in
Sec. IV B,15 and also with some of the previous theoretical
results.27, 29, 43 In contrast, the high sensitivity of the H–O–H
bond angle to the nuclear quantization is inconsistent with the
theoretical result which has shown that the average bond angle
in the quantum liquid obtained from PI simulations with the
q-TIP4P/F model is slightly smaller than in the corresponding
classical liquid by only 0.1◦.43 In addition, the analogous re-
sult for the water monomer has been reported using PI simula-
tions combined with ab initio molecular orbital theory.28 This
discrepancy may stem from the current approximation level of
the GWPs, or from the difference in the potential functions.
Further investigation will be required to clarify this issue.

In order to quantify nuclear quantum effects on the local
H-bond structure in liquid water, we next consider the radial
distribution functions (RDFs). Figure 1 shows the O–O, O–H,
and H–H RDFs of liquid water calculated from the expecta-
tion values using the SQ models (see also Appendix D), along
with those obtained from the classical model and those fitted
to experimental x-ray108 and neutron109 diffraction data in re-
ciprocal space using the reverse Monte Carlo (RMC) method
without H-bond constraints.110 Here, we mainly focus on the
O–H RDF (Fig. 1(b)) since its intramolecular and the first in-
termolecular peaks are directly associated with the covalent
bond and H-bond, respectively, which can provide the most
fundamental information on the local structures of water. In
the intramolecular region of the O–H RDF, both the EGWP

FIG. 1. Radial distribution functions (RDFs) for (a) O–O, (b) O–H, and
(c) H–H atom pairs of liquid water calculated from the expectation values
using the SQ models. Also shown are the RDFs obtained from the classical
(CL) model and those fitted to experimental x-ray (Ref. 108) and neutron
(Ref. 109) diffraction data in reciprocal space using the reverse Monte Carlo
(RMC) method without H-bond constraints (Ref. 110). The insets show the
magnifications of the corresponding first peaks.

and SGWP models yield the significantly broader distribu-
tions than the classical one, and the difference between the
SQ models is rather minor. In the intermolecular region of the
O–H RDF, the first peak of the EGWP model, which directly
represents the local H-bond, exhibits a considerable reduc-
tion of the height and a slight shift of the position toward the
larger distance compared to the classical peak: 1.10 located at
1.78 Å and 1.61 at 1.73 Å for the EGWP and classical models,
respectively. In contrast, the first peak of the SGWP model has
the almost identical intensity (1.57) and the position shifted
toward the slightly shorter distance (1.70 Å) compared to the
corresponding classical peak. The similar behavior is also ob-
served in the O–O and H–H RDFs; for example, the first peak
heights of the O–O RDFs for the EGWP, SGWP, and clas-
sical models give values of 2.40, 3.23, and 3.14, which are
located at 2.78, 2.73, and 2.73 Å, respectively (Fig. 1(a)).
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FIG. 2. Same as Fig. 1 except that the RDFs for the SQ models are calculated
with respect to the WP centers.

These results indicate that the anisotropy of WPs has a strong
impact upon the local H-bond structure.

The differences in the RDFs between the SQ and clas-
sical models stem from both the broadening of distributions
due to the WP delocalization and the structural changes of
the WP centers.76 In order to assess the latter contribution,
we also calculated the O–O, O–H, and H–H RDFs with re-
spect to the WP centers using the SQ models (i.e., the zeroth-
order truncation of the Taylor series around the WP centers in
Eq. (D1)); the results are displayed in Fig. 2. In the in-
tramolecular region of the O–H RDF, both the EGWP and
SGWP models have the sharp distributions comparable to
the classical one due to the lack of the WP spreading effects
(Fig. 2(b)). Interestingly, the deviation between the SQ mod-
els is now clearer, indicating that the combination of the
difference in the WP centers and that in the WP widths
results in the almost identical full-order distributions be-
tween the SQ models in this radial region (see the insets of
Figs. 1(b) and 2(b)). In the intermolecular region of the O–H
RDF, the opposite quantum behavior can be seen between the

SQ models in comparison with the classical one; that is, the
first intermolecular peak of the EGWP model has the smaller
height (1.37) and the position shifted toward the larger dis-
tance (1.76 Å), whereas that of the SGWP model has the
larger height (1.96) and the position shifted toward the shorter
distance (1.68 Å) when compared to the classical peak (1.61
located at 1.73 Å). The analogous behavior can also be ob-
served in the intermolecular peaks of the O–O and H–H
RDFs. These results mean that the anisotropic fluctuations of
the WPs play a critical role in the quantum disruption of the
H-bond network formed by the WP centers, which competes
with the stronger intermolecular interactions coming from the
larger molecular dipole moments (Table I).

In the case of the EGWP model, the contribution of the
WP delocalization and the disorder in the WP centers gives
rise to the significantly less structured RDFs (Fig. 1) which
are in reasonable agreement with the reference results ob-
tained from the RMC method110 which can optimally repro-
duce the experimental x-ray108 and neutron109 data in recip-
rocal space,111 except that the intramolecular peaks for the
EGWP model are lower and the positions of these peaks are
at longer distances than those from the RMC method proba-
bly due to the lack of the intramolecular quantum correlations
particularly between the hydrogen atoms. In contrast, the can-
cellation between the broadening of the distribution and the
overstructuring of the WP centers leads to the classical-like
intermolecular peaks for the SGWP model (Fig. 1), which are
apparently incompatible with the experimental data. There-
fore, these findings highlight the importance of incorporating
the anisotropy into the WPs in liquid water described by po-
tential models accounting for the O–H anharmonicity. In or-
der to further improve the agreement with the experiments,
the current EGWP model (i.e., the single-particle approxi-
mation) could be remedied by adopting more general GWPs
such as the single-molecule approximation described in
Sec. IV A.

The direct comparison between the real-time SQMD
and imaginary-time PIMD simulations for the same poten-
tial model is essential to obtain a more quantitative as-
sessment of the accuracy of the static properties in the
present approximation. The numerically exact RDFs obtained
from the imaginary-time PIMD simulation with the harmonic
f-SPC model have been reported in Ref. 105, which will
provide the benchmark reference with a notion on the dif-
ference between the harmonic and anharmonic f-SPC mod-
els. It can be seen from Figs. 1–3 of Ref. 105 that the
heights of the first intermolecular peaks of the O–O, O–H, and
H–H PIMD RDFs give values of approximately 2.72, 1.23,
and 1.21, which are located at approximately 2.79, 1.79, and
2.43 Å, respectively, whereas the corresponding peak heights
for the EGWP model are 2.40, 1.10, and 1.16, which are lo-
cated at 2.78, 1.78, and 2.45 Å, respectively (Fig. 1). These
underestimates of the peak heights seem to imply that nuclear
quantum effects on the local H-bond structures are overesti-
mated in the single-particle approximation. Again, construct-
ing more precise GWPs as well as more appropriate potential
model should be done in future in an effort to obtain more
rigorous quantum descriptions within the present theoretical
framework (see also Sec. VI).
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FIG. 3. (a) Optimized energies of the water dimer as a function of the O–O
distance obtained from the SQ and classical (CL) simulations without in-
tramolecular constraints and (b) those with the fixed intramolecular geome-
try (see text), where the energy is defined as the deviation from the energy of
two isolated water molecules and the O–O distance is calculated with respect
to the WP centers. The insets show the magnifications of the corresponding
minimum regions.

To gain further insights into the structural aspects of nu-
clear quantum effects, we carry out an energetic analysis of
an isolated water dimer. Figure 3(a) compares the optimized
energies of the water dimer as a function of the O–O distance
between the SQ and classical models. Note that this energy
is defined as the deviation from the energy of two isolated
water molecules,112 and the O–O distance is calculated with
respect to the WP centers. The Cs symmetry configurations
of the water dimer112 are found to be the most stable for all
the models over the whole range of O–O distances consid-
ered in the current study. It is found that the global minimum
which corresponds to the dimer binding energy varies from
−6.85 to −6.51 kcal/mol and the location shifts from 2.74 to
2.75 Å when the classical nuclei are quantized by the EGWP
model, which is contrary to the behavior of the SGWP model
(−7.47 kcal/mol located at 2.72 Å). Surprisingly, the mini-
mum energy path for the SGWP model lies below that for
the classical model despite the presence of the intermolecular
zero-point energy, for the reasons described next. These ener-
getic profiles are consistent with the first intermolecular peaks
of the O–H RDFs for the WP centers plotted in Fig. 2(b); in-

deed, the optimized donor-acceptor separations of the water
dimer with respect to the WP centers for the EGWP, SGWP,
and classical models are 1.73, 1.67, and 1.72 Å, respectively,
which are compatible with the corresponding peak position of
the O–H RDFs (Fig. 2(b)).

The energetic differences between the SQ and classical
models described above originate from several quantum fac-
tors; in particular, one important origin is the intramolecular
geometric changes induced by the intramolecular zero-point
energy. In order to clarify its role in the intermolecular in-
teractions, we calculated the optimized energies of the water
dimer with the constraint in which the intramolecular geome-
tries with respect to the WP centers are fixed at the classi-
cal monomer geometry (Table I) so that the molecular dipole
moments with respect to the WP centers become equivalent
among all the models; the results are depicted in Fig. 3(b) as
a function of the O–O distance. We can see that the global
minima are −6.35, −6.54, and −6.61 kcal/mol and the min-
imum positions are 2.77, 2.76, and 2.75 Å for the EGWP,
SGWP, and classical models, respectively. The systematic dif-
ferences (i.e., the destabilization of the H-bond and the elon-
gation of the O–O distance), which are pronounced mostly in
the EGWP model, are mainly attributed to the quantization of
the intermolecular potential function (i.e., V (2)

inter and V
(4)

inter). By
comparing Figs. 3(a) and 3(b), it is now evident that the inter-
molecular zero-point energy make a large contribution toward
the destructuring of the H-bond in the EGWP model, while
the intramolecular geometric changes with respect to the WP
centers are dominant in the SGWP model and thus result in
the stabilization of the H-bond.

As has been reported in the previous work, when the
Coulomb potential function is quantized by the SGWP model,
all the higher-order terms in the Taylor series (i.e., V

(2)
el , V

(4)
el ,

and so on) are equal to zero due to the spherical symmetry
(see the Appendix of Ref. 76); instead, the direct quantization
can be performed using the Gaussian integral.74 In this case,
its quantum contribution is characterized by the error function
(erf) whose argument consists of the interparticle distance di-
vided by the WP widths. In the present SQMD simulation of
liquid water calculated from the SGWP model, it is found that
the erf term gives the saturated value of unity (i.e., classical
limit) since the WP widths are smaller than the intermolecular
separations by more than an order of magnitude; indeed, the
deviation (1 − erf) is smaller than 10−15 during the 1 ns tra-
jectory, and thus nuclear quantum effects arising directly from
the intermolecular Coulomb potential are essentially negligi-
ble. In fact, the small quantum differences between the SGWP
and classical models shown in Fig. 3(b) stem from the quanti-
zation of the intermolecular LJ potential (i.e., V

(2)
LJ and V

(4)
LJ ),

and are counterchanged by the stronger intermolecular poten-
tial, V (0)

inter, coming from the intramolecular geometric changes
in the SGWP model (Fig. 3(a)). In contrast, the quantization
of the intermolecular Coulomb potential has a significant in-
fluence on the disordering of the H-bond in the EGWP model
as shown in Figs. 3(a) and 3(b). Therefore, the anisotropy of
the WPs is indispensable for quantizing the intermolecular
Coulomb potential when the WP widths are localized com-
pared to the intermolecular distances by approximately one
order of magnitude.
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B. H-bond exchange dynamics

Next, we investigate the molecular jump mechanism in
the H-bond exchange process which is originally proposed
by Laage and Hynes as an elementary mechanism of the col-
lective H-bond network rearrangement in liquid water using
classical MD simulations; they suggested that the H-bond
donor (O∗H∗) suddenly performs a large-amplitude angular
jump from the initial oxygen acceptor (Oa) toward the final
one (Ob) at the intermediate state where the rotating donor
forms a symmetric bifurcated H-bond with its initial and fi-
nal acceptors, and in this way the breaking and forming of
H-bonds occur concertedly.9 Note that the analysis is based on
averaged H-bond exchange trajectories in which a large num-
ber of H-bond switching events are sampled.9 Recently, the
experimental development of two-dimensional infrared spec-
troscopy has also provided further insights into the H-bond
exchange dynamics of water in solution.13

We here focus on nuclear quantum effects on the time de-
velopment of several structural parameters along the H-bond
exchange trajectories: the jump angle θ , the OaO∗Ob angle ψ ,
and the O–O distances for the O∗Oa, O∗Ob, and OaOb pairs,
where θ is defined as the angle between the projection of the
O∗H∗ vector on the OaO∗Ob plane and the bisector of ψ . Note
that all the structural parameters were calculated with respect
to the WP centers in the SQMD simulations. In addition, the
time evolution of the WP widths of the H∗ atom for the EGWP
model is also calculated, which is one of the most primary re-
sults of the present work. The points at which θ = 0 are taken
to be the time origin of the H-bond exchange trajectories (i.e.,
t = 0), and ca. 84 500, 45 100, and 67 000 H-bond exchange
events were averaged from the microcanonical simulations
of 1 ns for the EGWP, SGWP, and classical models, respec-
tively. The formation of the H-bond was evaluated on the basis
of the geometric criteria with respect to the WP centers: the
O–O distance smaller than 3.50 Å, the intermolecular O–H
distance smaller than 2.45 Å, and the H–O–O angle smaller
than 30◦.10

Figure 4 shows the averaged H-bond exchange trajecto-
ries of the jump angle θ and the OaO∗Ob angle ψ . It is clear
from Fig. 4(a) that nuclear quantum effects on the jump angle
θ are relatively minor; in the initial and final H-bond states,
both the magnitude of the average value and the standard de-
viation (SD) for the EGWP model are slightly greater than the
classical counterparts by approximately 1◦, which is opposite
to the behavior for the SGWP model. Each of the results can
be reasonably expressed as a sum of two error functions,13

and is found to be composed of two kinds of angular motions;
the faster components which correspond to the angular jumps
at the intermediate state have the amplitudes of 50◦, 46◦, and
48◦ with a time scale of approximately 120 fs, and the slower
reorientational components have the amplitudes of 19◦, 17◦,
and 18◦ with a time scale of approximately 2 ps for the EGWP,
SGWP, and classical models, respectively. The analogous dif-
ferences in the time development of ψ among the SQ and
classical models are found over the whole range of time plot-
ted in Fig. 4(b).

The behavior of ψ in Fig. 4(b) is related to that of the
O–O distances displayed in Fig. 5. The averaged H-bond ex-
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FIG. 4. Averaged H-bond exchange trajectories of (a) the jump angle θ and
(b) the OaO∗Ob angle ψ . The standard deviations are also plotted as error
bars. The insets show the corresponding magnifications.

change trajectories for O∗Oa and O∗Ob are symmetric with
regard to the midpoint t = 0 (Fig. 5(a)). In the initial H-bond
state (t < 0), nuclear quantum effects on the H-bonded O∗Oa

distance are comparatively small; the time-averaged values
from t = −2.0 to −0.4 ps are 2.87, 2.83, and 2.84 Å for
the EGWP, SGWP, and classical models, respectively. In con-
trast, the quantum effects are notable for the O∗Ob distance
in this time region; the slopes of the O∗Ob distances within
the time range from −2.0 to −0.4 ps, which correspond to the
averaged relative velocities of the Ob atoms coming from the
second coordination shell, are −0.35, −0.16, and −0.25 Å/ps
for the EGWP, SGWP, and classical models, respectively. The
analogous quantum effects on the OaOb distances are also
found in Fig. 5(b). In the intermediate H-bond state (t ≃ 0),
the quantum differences in the O–O distances between the SQ
and classical models are relatively small.

Since the present SQMD simulations are based upon the
real-time and real-space SQ theory, the dynamical broaden-
ings of the WP widths can be directly monitored. Figure 6
exhibits each component of the WP width fluctuations of
the jumping hydrogen atom H∗ in the body-fixed axes ob-
tained from the averaged H-bond exchange trajectories for the
EGWP model; here, the WP width fluctuation δρ is defined
as the deviation from the corresponding statistical average,113

and the body-fixed axes are introduced so that the water
molecule lies in the xy plane, with the x-axis along the O∗H∗
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direction and the z-axis pointing to the out-of-plane of the
molecule (see Fig. 6). Note that the principal axes of the
EGWP of the H∗ atom are equivalent to the body-fixed axes
on average. It is found that the behavior of the WP width fluc-
tuations is symmetric with respect to t = 0; the WP widths
along the y- and z-axes shrink compared to the average values
in the initial H-bond region and then sharply broaden toward
the intermediate state, while that along the x-axis is close to
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FIG. 6. Averaged H-bond exchange trajectories of the WP width fluctuations
of the jumping hydrogen atom H∗ in the body-fixed axes obtained from the
SQ simulation with the EGWP model. Also shown is the graphical definition
of the body-fixed axes for the H∗ atom.

the average value in the initial H-bond region and then sud-
denly shrinks toward the intermediate state. In particular, the
WP delocalization along the z-axis is significant; the varia-
tion of the WP width along the z-axis for the EGWP model
is much larger than that of the isotropic WP width for the
SGWP model by approximately two orders of magnitude (see
Fig. 8 of Ref. 76). Furthermore, it is obvious from Fig. 6 that
the WP of the H∗ atom becomes the most anisotropic at the
intermediate state. The anisotropic WP width fluctuations at
the intermediate state are due to the weaker intermolecular
interactions among the bifurcated H-bonds compared to the
stable H-bond interactions at the initial and final states; that
is, in the absence of the strong local intermolecular interac-
tions, the WP widths along the x- and y-axes at the interme-
diate state are predominantly affected by the intramolecular
stretching and bending interactions, respectively,114 whereas
that along the z-axis is almost immune to the intramolecular
interactions owing to the steric effect for this axis and thus
significantly broadens just as in the free particle.

C. H-bond number fluctuation

Finally, we analyze nuclear quantum effects on the lo-
cal H-bond coordination number NHB. The statistical average
values of NHB are 3.38, 3.71, and 3.55 for the EGWP, SGWP,
and classical models, respectively. These results are consis-
tent with the quantum effects on the structural properties de-
scribed in Sec. V A (i.e., the destructuring and overstructuring
for the EGWP and SGWP models, respectively).

The dynamical aspect of NHB can be obtained from the
normalized classical time-correlation functions (TCFs),115

CHB(t) = 〈δNHB(t)δNHB(0)〉0/
〈
δN2

HB

〉
0, (55)

where δNHB(t) = NHB(t) − 〈NHB〉0, and 〈. . . 〉0 denotes the
statistical average. Here, although the TCFs computed with
respect to the WP centers corresponds to the zeroth-order ap-
proximation of the quantum mechanical TCFs (i.e., the clas-
sical TCFs), the zero-point energy is primarily introduced in
the TCFs since the time development of the WP centers is
explicitly affected by the WP width variables. As shown in
Fig. 7(a), the TCFs for the EGWP, SGWP, and classical mod-
els show the initial fast decay with time scales of approxi-
mately 50, 100, and 80 fs, respectively, followed by the slower
decay with time constants of approximately 0.5, 1.0, and
0.7 ps, respectively. These results indicate that the anisotropy
of the WPs accelerates the decay, whereas the spherical sym-
metry of the WPs decelerates. The quantum differences in the
longer time region are closely related with the deviations of
the power spectra in the lower frequency range (see the inset
of Fig. 7(a)).

In order to estimate the dynamical WP spreading effects
on dynamics of the H-bond number fluctuations, we further
calculated CHB(t) with the frozen GWPs (FGWPs) in which
only the rotational and translational degrees of freedom of the
WPs are allowed to fluctuate and the breathing motions of the
WPs along the principal axes are prohibited; that is, the eigen-
values {λjμ} in Eq. (50) are always fixed at the corresponding
statistical average values. In this approximation, the rotational
and translational EOMs for the FGWPs can be straightfor-
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wardly derived from Hext in Eq. (50) in a manner analogous
to the derivation of the classical EOMs for a rigid body.95

Note that we numerically solved the rotational EOMs for the
quaternion instead of the Euler angles in the usual manner.92

As shown in Fig. 7(b), the difference in the decay between
the frozen EGWP and classical models is significantly small,
while that between the frozen SGWP and classical models
is still pronounced and slightly enhanced. Therefore, the dy-
namical breathing motions of the EGWPs, which include the
anisotropic WP delocalization in the H-bond exchange pro-
cess shown in Fig. 6, give rise to the acceleration of the de-
cay, whereas the spherically symmetric broadenings of the
SGWPs play a minor role in the deceleration of the decay.

VI. CONCLUSIONS

In the present paper, we have proposed the novel real-
time and real-space SQ theory within the framework of
the Hamiltonian formulation using the correlated multi-
dimensional thawed GWPs including direct correlations be-
tween the different degrees of freedom which are neglected
in the previous SQGWP theory. In addition to the classi-
cal degrees of freedom (i.e., the WP centers), the variance-
covariance matrix elements and the corresponding conjugate

matrix elements are introduced as auxiliary canonical vari-
ables. The classical Hamilton’s EOMs in the extended phase
space have been derived from the TDVP, which has made it
possible to perform the real-time and real-space SQMD sim-
ulations and to analyze nuclear quantum effects on dynamics
in many-body molecular systems in terms of the anisotropic
fluctuations of nuclear WPs with preserving the rotational in-
variance. The form of the trial GWP function is different from
the well-known Heller’s one but was originally suggested in
the field of nuclear physics,89 whose application to realistic
molecular systems with the explicit derivation of the canoni-
cal EOMs and the symplectic integrator algorithm (see next)
has been first reported to our knowledge.

Based on the Liouville operator formalism in the ex-
tended phase space, we have also developed the explicit sym-
plectic algorithm with the time reversibility for integrating the
Hamilton’s EOMs. The time-reversible symplectic algorithm
guarantees the preservation of the phase space volume, the
conservation of the approximate Hamiltonian, and the time
reversibility, during the time evolution of the phase space vec-
tor. As a result, it can provide the long-time stability of trajec-
tories in the SQMD simulations with even larger time steps
(see also Appendix B).

In order to reduce the number of total degrees of free-
dom in the extended phase space which is proportional to N2,
we have adopted the single-particle approximation in which
the variance-covariance matrix and the corresponding conju-
gate matrix are reduced to block-diagonal forms by only tak-
ing into account correlations between the different degrees of
freedom in one particle and disregarding the remaining inter-
particle correlations. In this approximation, we explored the
physical meaning of the generalized coordinates in the ex-
tended phase space by means of the eigen-decomposition of
the variance-covariance matrix; thus, the SQ particles can be
regarded as the EGWPs which have the translational, the vi-
brational, and the rotational degrees of freedom.

Employing the single-particle approximation, we have
carried out the SQMD simulations of liquid water with the
potential model including the O–H anharmonicity. The ad-
vantage of describing real-time and real-space dynamics al-
lows us to directly quantize the H-bond exchange trajectories
in the present SQMD simulations. As a result, the significant
WP delocalization, particularly along the out-of-plane direc-
tion, of the jumping hydrogen atom has been found at the in-
termediate state in the H-bond exchange process, indicating
the anisotropic nature of nuclear WPs in the H-bond network
reorganization of liquid water.

In the current methodology, difficulty in quantizing gen-
eral potential functions restricts ourselves to selecting the
specific potential models compatible with the Gaussian inte-
grals in Cartesian coordinates, and thus developments of pre-
cise and compact representation of the potential in a suitable
form for this methodology should be accomplished. From
this standpoint, a simple WP modeling of electrons in chem-
ical bonding has recently been exploited using floating and
breathing SGWPs, and reasonably accurate molecular po-
tential energy surfaces have been obtained.85, 86 The unifica-
tion of this electron WP modeling and the current SQGWP
theory enables us to perform ab initio SQMD simulations
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of molecular systems and processes including chemical re-
actions, and further work along these lines is certainly to
be desired. Moreover, developing the analogous theoreti-
cal framework for an approximate assessment of quantum
mechanical TCFs (e.g., the standard and Kubo-transformed
TCFs) would provide more quantitative information on quan-
tum dynamical properties, for instance, the self-diffusion
coefficient of the benchmark systems such as liquid para-
hydrogen116–120 and the infrared linear absorption spectrum
of liquid water.38, 39, 43, 44, 46, 47 The application of it to comput-
ing the multi-time correlation function21–24, 121–123 would also
be of interest.
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APPENDIX A: GAUSSIAN FITTING SCHEME

We here present an efficient numerical scheme to evalu-
ate Gaussian integrals in the potential expectation in Eq. (13),
assuming the total potential function of the system to be a sum
of pair potential functions as

V (q) =
N∑

j>k

Vjk(qjk), (A1)

where Vjk(qjk) ≡ Vjk(|qj − qk|) denotes the pair potential
function depending only on the distance between the jth and
kth atoms. Based on the facts that any central potential can be
fitted by a sum of Gaussian functions centered at the origin
and that a Gaussian in the distance qjk centered at the origin
remains to be a Gaussian after transformation into the Carte-
sian coordinates, the pair potential can be approximated in
terms of a sum of Gaussians as52, 54, 59, 60, 84

Vjk(qjk) =
∑

p

c
(p)
jk exp

(
− α

(p)
jk q2

jk

)
, (A2)

with fitting parameters {c(p)
jk } and {α(p)

jk }. The evaluation of the
potential expectation is now reduced to that of the following
Gaussian integral:59, 84

〈
exp

(
− α

(p)
jk q2

jk

)〉
=

{
det

(
2α

(p)
jk Bjk + I

)}−1/2

× exp
[
− rT

jkCjkrjk

]
, (A3)

with the 3D vector rjk = (rj − rk), the 3 × 3 identity matrix
I, and the 3 × 3 matrices Bjk and Cjk defined by

Bjk = Gjj + Gkk − Gjk − Gkj , (A4)

Cjk = α
(p)
jk I − 2

(
α

(p)
jk

)2(
2α

(p)
jk I + B−1

jk

)−1
, (A5)

where Gjk is the corresponding 3 × 3 block of the matrix
G.59, 84 It is possible to straightforwardly obtain analytical
expressions for the generalized forces (first-order derivatives
with respect to the generalized coordinates).96

APPENDIX B: CONSERVED HAMILTONIAN

In the time evolution described by the symplectic algo-
rithm based upon factorized propagators with a finite time
step, there exists a formally exact conserved quantity called
a shadow Hamiltonian in a form slightly modified from
the original Hamiltonian. This in general guarantees non-
divergent stability in large-scale and long-time MD simula-
tions.

In the second-order symplectic algorithm proposed in
Sec. III, the shadow Hamiltonian up to order (�t)2 is given
by33

H̃ (Ŵ; �t) = Hext(Ŵ) + H̃ (1)(Ŵ)(�t)2 + O((�t)4), (B1)

where the quantity H̃ (1) is expressed as96

H̃ (1) = −
1

24
{H2 + 2H1, {H2,H1}PB}PB, (B2)

with the generalized Poisson bracket [Eq. (22)] and the two
sub-Hamiltonians [Eqs. (28) and (29)].

In order to assess the accuracy and the long-time stabil-
ity of trajectories, we performed the additional SQMD sim-
ulations using SI2 and the fourth-order Runge-Kutta method
(RK4) with several time steps under otherwise identical con-
ditions described in Sec. IV C. Note that RK4 is neither time-
reversible nor symplectic algorithm. It should also be noted
that RK4 requires four updates of the generalized forces at
each time step, while SI2 requires just one update.

Figure 8 illustrates the time series of the deviation of the
extended Hamiltonian in Eq. (47) from its initial value, de-
fined by δH (t) = Hext(t) − Hext(0), using SI2 and RK4 with
a time step of 0.02 fs. It is clear that, in contrast with RK4 that
exhibits monotonic energy drift typical of the non-symplectic
algorithms, SI2 demonstrates good conservation of Hext for as
long as 1 ns. Small fluctuations around the initial value with-
out systematic drift are observed owing to the existence of
the shadow Hamiltonian in Eq. (B1). In this case, the SD of
the total Hamiltonian is approximately 0.001 kcal/mol, whose
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FIG. 8. Time series of the deviation of the total Hamiltonian from its ini-
tial value in liquid water calculated from the EGWP model using the time-
reversible second-order explicit symplectic integrator (SI2) and the fourth-
order Runge-Kutta method (RK4) with a time step of �t = 0.02 fs. The inset
shows the time step versus the standard deviation (SD) of the total Hamilto-
nian in kcal/mol using SI2; here, notice the logarithmic scales of the axes.
Also shown in the inset is the linear fitting with a slope of 2.00 (dotted line).
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ratio to the SD of the classical kinetic energy is approximately
0.0001. Furthermore, the SD of the total Hamiltonian is found
to be proportional to (�t)2 as expected (see the inset of
Fig. 8). Therefore, the SI2 developed in Sec. III is confirmed
to be a robust and efficient integration scheme for long-time
SQMD simulations, yielding the time evolution confined on
the constant energy hypersurface described by the shadow
Hamiltonian in Eq. (B1) and preserving the phase space
volume.

APPENDIX C: PRESERVATION OF ZERO-POINT
ENERGY

It has been found that the diffusion coefficient of liq-
uid water obtained from the RPMD simulation with the q-
TIP4P/F model under ambient conditions is only slightly
larger than the classical counterpart due to the competition be-
tween intra- and intermolecular quantum effects as described
in Sec. IV B,43 whereas that obtained from the LSC-IVR sim-
ulation under identical conditions is three times larger than the
classical one.44 This discrepancy has been ascribed to the un-
physical leakage of initially quantized zero-point energy from
the intramolecular to the intermolecular modes in the LSC-
IVR simulation where completely classical trajectories are de-
veloped from an initially quantized phase space distribution.44

Here, we confirm that the current methodology can avoid the
leakage of the zero-point energy.

Figure 9 shows the time development of the intra- and
intermolecular potential energies obtained from the SQMD
simulation with the EGWP model; in this simulation, both the
intra- and intermolecular potential energies fluctuate around
the average values and no unphysical drifts take place, in con-
trast to the LSC-IVR simulation where an increase in the in-
termolecular potential energy of approximately 3.3 kcal/mol
occurs during the initial 1 ps.44 The preservation of the zero-
point energy in our methodology is owing to the stable trajec-
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FIG. 9. Time development of the intra- and intermolecular potential ener-
gies obtained from the EGWP model. The average values (the SDs) of the
intra- and intermolecular potential energies are 15.0 (0.23) and −10.5 (0.17)
kcal/mol, respectively.

tories in the extended phase space including the WP width
variables. The preservation has also been confirmed in the
previous study with the SGWP model.74

APPENDIX D: RADIAL DISTRIBUTION FUNCTIONS

Here, we describe the quantum mechanical evaluation of
the RDF with the SQ wave function [Eq. (2)] in a single-
component system consisting of N identical particles for sim-
plicity. Note that generalization to a multi-component system
is straightforward. If the system is homogeneous, the spatial
correlation between two particles is described by the quantum
mechanical expectation value of the pair distribution function
in the δ-function representation,

g(x) =
1

Nd

〈
∑

j =k

δ(x − (qj − qk))

〉

=
1

Nd

1

(
√

2π )3

∑

j =k

{det(Bjk)}−1/2

× exp

[
−

1

2
(x − rjk)TB−1

jk (x − rjk)

]
, (D1)

where d denotes the number density of the system, and the 3
× 3 real symmetric matrix Bjk is given in Eq. (A4). Finally,
if the system is also spatially isotropic, the pair distribution
function in Eq. (D1) can be reduced to the RDF which de-
pends only on the magnitude |x|.
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