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1 Introduction

It is the goal of this chapter to present basic foundations for the theory of
weighted automata: semirings and formal power series.

Weighted automata are classical automata in which the transitions carry
weights. These weights may model, e.g., the cost involved when executing the
transition, the amount of resources or time needed for this, or the probability
or reliability of its successful execution. In order to obtain a uniform model
of weighted automata for different realizations of weights and their computa-
tions, the weight structures are often modeled as semirings. A semiring con-
sists of a set with two operations addition and multiplication satisfying certain
natural axioms like associativity, commutativity and distributivity, just like
the natural numbers with their laws for sums and products. The behaviour of
weighted automata can then be defined as a function associating to each word
the total weight of its execution, see later chapters [13, 39] of this handbook.

Any function from the free monoid Σ∗ of all words over a given alphabet
Σ into a semiring S is called a formal power series. It is important to notice
that each language over Σ can be viewed as a formal power series over B

and Σ∗ (by identifying the language with its characteristic series). Therefore
formal power series form a generalization of formal languages, and, similarly,
weighted automata generalize classical automata. For other semirings (like
the natural or real numbers), formal power series can be viewed as weighted,
multivalued or quantified languages in which each word is assigned a weight,
a number, or some quantity.

In this chapter, we will present the basics of the theory of semirings and
formal power series as far as they are used in the forthcoming chapters of this
Handbook. Now we give a summary of the contents of this chapter.

First, we consider various particular monoids and semirings. Many semi-
rings (like the natural numbers) carry a natural order. Also, when generalizing
the star operation (= Kleene iteration) from languages to formal power series,
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important questions on the existence of infinite sums arise. This leads to the
notions of ordered, complete or continuous monoids and semirings. Besides
these, we will consider the related concepts of star semirings and Conway
semirings, and also locally finite semirings.

Next, we introduce formal power series, especially locally finite families of
power series and cycle-free power series. It is a basic result that the collection
of all formal power series over a given semiring and an alphabet can be en-
dowed with addition and Cauchy multiplication yielding again the structure of
a semiring, as well as with several further useful operations like the Hadamard
product or the Hurwitz (shuffle) product. We prove that, under suitable as-
sumptions, certain equalities involving the Kleene-star of elements are valid.
Moreover, various important properties of the underlying semiring transfer to
the semiring of formal power series. In particular, this includes properties like
being ordered, complete, continuous or Conway. We also consider morphisms
between semirings of formal power series.

As is well-known, the set of transitions of a classical finite automaton can
be uniformly represented by matrices with entries 0 or 1. A similar represen-
tation is also easily possible for the transitions of a weighted automaton: here
the matrices have entries from the underlying semiring, viz. the weights of the
transitions. This yields very compact representations of weighted automata
and often very concise algebraic proofs about their behaviors. We prove a
theorem on (infinite) matrices central for automata theory: In a complete
star semiring, the blocks of the star of a matrix can be represented by apply-
ing rational operations to the blocks of the matrix. Moreover, the Kronecker
(tensor) product of matrices is considered.

Finally, we consider cycle-free equations. They have a unique solution and
can be used to show that two expressions represent the same formal power
series. Again we obtain results on how to compute the blocks of the star of
a matrix, but now for arbitrary semirings, by imposing restrictions on the
matrix.

In the literature, a number of authors have dealt with the interplay between
semirings, formal power series and automata theory. The following books
and surveys deal with this topic: Berstel [2], Berstel, Reutenauer [3], Bloom,
Ésik [4], Carré [5], Conway [6], Eilenberg [9], Ésik, Kuich [10], Kuich [29],
Kuich, Salomaa [30], Sakarovitch [38], Salomaa, Soittola [40], Wechler [41].

Further books on semirings and formal power series are Golan [16] and
Hebisch, Weinert [21]. G lazek [14] is a bibliography on semirings and formal
power series.

Some ideas and formulations of this presentation originate from Kuich,
Salomaa [30] and Ésik, Kuich [12].
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2 Monoids and semirings

In this section we consider monoids and semirings. The definitions and re-
sults on monoids and semirings are mainly due to Bloom, Ésik [4], Eilen-
berg [9], Goldstern [17], Karner [23, 24], Krob [26, 27], Kuich [28, 29], Kuich,
Salomaa [30], Manes, Arbib [32], Sakarovitch [37]. Our notion of continuous
monoids and semirings is a specialization of the continuous algebras as defined,
e. g., in Guessarian [18], Goguen, Thatcher, Wagner, Wright [15], Adámek,
Nelson, Reiterman [1].

A monoid consists of a non-empty set M , an associative binary operation ·
on M and a neutral element 1 such that m ·1 = 1 ·m = m for every m ∈ M . A
monoid M is called commutative if m1 ·m2 = m2 ·m1 for every m1, m2 ∈ M .
The binary operation is usually denoted by juxtaposition and often called
product.

If the operation and the neutral element of M are understood, then we de-
note the monoid simply by M . Otherwise, we use the triple notation 〈M, ·, 1〉.
A commutative monoid M is often denoted by 〈M, +, 0〉.

The most important type of a monoid in our considerations is the free
monoid Σ∗ generated by a non-empty set Σ. It has all the (finite) words over
Σ

x1 . . . xn, with xi ∈ Σ, 1 ≤ i ≤ n, n ≥ 0 ,

as its elements, and the product w1 · w2 is formed by writing the string w2

immediately after the string w1. The neutral element of Σ∗ (the case n = 0),
also referred to as the empty word, is denoted by ε.

The elements of Σ are called letters or symbols. The set Σ itself is called
an alphabet. The length of a word w = x1 . . . xn, n ≥ 0, in symbols |w|, is
defined to be n.

A morphism h of a monoid M into a monoid M ′ is a mapping h : M → M ′

compatible with the neutral elements and operations in 〈M, ·, 1〉 and 〈M ′, ◦, 1′〉,
i. e., h(1) = 1′ and h(m1 · m2) = h(m1) ◦ h(m2) for all m1, m2 ∈ M .

If Σ is an alphabet and 〈M, ·, 1〉 is any monoid, then every mapping h :
Σ → M can be uniquely extended to a morphism h♯ : Σ∗ → M by putting
h♯(ε) = 1 and h♯(x1x2 . . . xn) = h(x1)·h(x2)·. . .·h(xn) for any x1, . . . , xn ∈ Σ,
n ≥ 1. Usually h♯ is again denoted by h.

Next we consider monoids with particular properties, like carrying an order
or having an infinite sum operation. For our purposes, it suffices to consider
commutative monoids. A commutative monoid 〈M, +, 0〉 is called idempotent,
if m + m = m for all m ∈ M , and it is called ordered if it is equipped
with a partial order ≤ preserved by the + operation. An ordered monoid
M is positively ordered, if m ≥ 0 for each m ∈ M . A commutative monoid
〈M, +, 0〉 is called naturally ordered if the relation ⊑ defined by: m1 ⊑ m2

if there exists an m such that m1 + m = m2, is a partial order. Clearly,
this is the case, i.e., ⊑ is antisymmetric, iff whenever m, m′, m′′ ∈ M with
m + m′ + m′′ = m, then m + m′ = m. Then in particular M is positively
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ordered. We note that if 〈M, +, 0〉 is idempotent, then M is naturally ordered
and for any m1, m2 ∈ M we have m1 +m2 = sup{m1, m2} in 〈M,⊑〉, further,
m1 ⊑ m2 iff m1 + m2 = m2. Morphisms of ordered monoids are monoid
morphisms which preserve the order.

If I is an index set, an infinitary sum operation
∑

I : M I → M associates
with every family (mi | i ∈ I) of elements of M an element

∑

i∈I mi of M .
A monoid 〈M, +, 0〉 is called complete if it has infinitary sum operations

∑

I

(for any index set I) such that the following conditions are satisfied:

(i)
∑

i∈∅ mi = 0,
∑

i∈{j} mi = mj ,
∑

i∈{j,k} mi = mj + mk, for j 6= k,

(ii)
∑

j∈J (
∑

i∈Ij
mi) =

∑

i∈I mi, if
⋃

j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′.

A morphism of complete monoids is a monoid morphism preserving all sums.
Note that any complete monoid is commutative.

Recall that a non-empty subset D of a partially ordered set P is called
directed if each pair of elements of D has an upper bound in D.

A positively ordered commutative monoid 〈M, +, 0〉 is called a continuous
monoid if each directed subset of M has a least upper bound and the +
operation preserves the least upper bound of directed sets, i.e., when

m + sup D = sup(m + D) ,

for all directed sets D ⊆ M and for all m ∈ M . Here, m + D is the set
{m + d | d ∈ D}.

It is known that a positively ordered commutative monoid M is continuous
iff each chain in M has a least upper bound and the + operation preserves
least upper bounds of chains, i. e., when m + sup C = sup(m + C) holds for
all non-empty chains C in M . (See Markowsky [33].)

Proposition 2.1. Any continuous monoid 〈M, +, 0〉 is a complete monoid
equipped with the following sum operation:

∑

i∈I

mi = sup{
∑

i∈F

mi | F ⊆ I, F finite} ,

for all index sets I and all families (mi | i ∈ I) in M .

A function f : P → Q between partially ordered sets is continuous if
it preserves the least upper bound of any directed set, i.e., when f(sup D) =
sup f(D), for all directed sets D ⊆ P such that sup D exists. It follows that any
continuous function preserves the order. A morphism of continuous monoids
is defined to be a monoid morphism which is a continuous function. Clearly,
any morphism between continuous monoids is a complete monoid morphism.

A semiring is a set S together with two binary operations + and · and
two constant elements 0 and 1 such that

(i) 〈S, +, 0〉 is a commutative monoid,
(ii) 〈S, ·, 1〉 is a monoid,
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(iii) the distributivity laws s1 · (s2 + s3) = s1 · s2 + s1 · s3 and (s1 + s2) · s3 =
s1 · s3 + s2 · s3 hold for every s1, s2, s3 ∈ S,

(iv) 0 · s = s · 0 = 0 for every s ∈ S.

A semiring S is called commutative if s1 · s2 = s2 · s1 for every s1, s2 ∈ S.
Further, S is called idempotent if 〈S, +, 0〉 is an idempotent monoid. By the
distributivity law, this holds iff 1 + 1 = 1.

If the operations and the constant elements of S are understood, then we
denote the semiring simply by S. Otherwise, we use the notation 〈S, +, ·, 0, 1〉.
In the sequel, S will denote a semiring.

Intuitively, a semiring is a ring (with unity) without subtraction. A typical
example is the semiring of nonnegative integers N. A very important semiring
in connection with language theory is the Boolean semiring B = {0, 1} where
1 + 1 = 1 · 1 = 1. Clearly, all rings (with unity), as well as all fields, are
semirings, e. g., the integers Z, rationals Q, reals R, complex numbers C etc.

Let N∞ = N ∪ {∞} and N = N ∪ {−∞,∞}. Then 〈N∞, +, ·, 0, 1〉,
〈N∞, min, +,∞, 0〉 and 〈N, max, +,−∞, 0〉, where +, ·, min and max are
defined in the obvious fashion (observe that 0 · ∞ = ∞ · 0 = 0 and
(−∞) + ∞ = −∞), are semirings.

Let R+ = {a ∈ R | a ≥ 0}, R∞
+ = R+ ∪ {∞} and R+ = R+ ∪ {−∞,∞}.

Then 〈R+, +, ·, 0, 1〉, 〈R∞
+ , +, ·, 0, 1〉 and 〈R∞

+ , min, +,∞, 0〉 are semirings. The
semirings 〈N∞

+ , min, +,∞, 0〉 and 〈R∞
+ , min, +,∞, 0〉 are called tropical semi-

rings or min-plus-semirings. Similarly, the semirings 〈N, max, +,−∞, 0〉 and
〈R+, max, +,−∞, 0〉 are called max-plus semirings or arctic semirings. A fur-
ther example is provided by the semiring 〈[0, 1], max, ·, 0, 1〉, called the Viterbi
semiring in probabilistic parsing.

We note that the tropical and the arctic semirings are very often employed
in optimization problems of networks, cf., e.g., Heidergott, Olsder, van der
Woude [22].

Let Σ be a finite alphabet. Then each subset of Σ∗ is called a formal
language over Σ. We define, for formal languages L1, L2 ⊆ Σ∗, the product
of L1 and L2 by

L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

Then 〈2Σ∗

,∪, ·, ∅, {ε}〉 is a semiring, called the semiring of formal languages
over Σ. Here 2U denotes the power set of a set U and ∅ denotes the empty
set.

If U is a set, 2U×U is the set of binary relations over U . Define, for two
relations R1 and R2, the product R1 · R2 ⊆ U × U by

R1 · R2 = {(u1, u2) |
(u1, u) ∈ R1 and (u, u2) ∈ R2}
there exists u ∈ U such that

and, furthermore, define

∆ = {(u, u) | u ∈ U}.
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Then 〈2U×U ,∪, ·, ∅, ∆〉 is a semiring, called the semiring of binary relations
over U .

Further semirings are the chain of nonnegative reals 〈R∞
+ , max, min, 0,∞〉

and any Boolean algebra, in particular the power set Boolean algebras
〈2U ,∪,∩, ∅, U〉 where U is any set. These examples can be generalized as
follows. Recall that a partially ordered set 〈L,≤〉 is a lattice if for any two
elements a, b ∈ L, the least upper bound a ∨ b = sup{a, b} and the greatest
lower bound a ∧ b = inf{a, b} exist in 〈L,≤〉. A lattice 〈L,≤〉 is distribu-
tive, if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L; and bounded, if
L contains a smallest element, denoted 0, and a greatest element, denoted
1. Now let 〈L,≤〉 be any bounded distributive lattice. Then 〈L,∨,∧, 0, 1〉
is a semiring. Since any distributive lattice L also satisfies the dual law
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L, the structure 〈L,∧,∨, 1, 0〉
is also a semiring. Such semirings are often used for fuzzy automata, see
Chapter 12 [36] of this book. Another semiring is the  Lukasiewicz semiring
〈[0, 1], max,⊗, 0, 1〉 where a ⊗ b = max{0, a + b − 1} which occurs in multi-
valued logic (see Hájek [19]).

Recall that in formal language theory, the Kleene-iteration L∗ of a lan-
guage L ⊆ Σ∗ is defined by L∗ =

⋃

n≥0 Ln. Later on, we wish to extend this
star operation to formal power series (i.e. functions) r : Σ∗ → S where S is a
semiring. For this, it will be useful to know which semirings carry such a star
operation like the semiring of formal languages. We will call a star semiring
any semiring equipped with an additional unary operation ∗. The following
semirings are star semirings:

(i) The Boolean semiring 〈B, +, ·, ∗, 0, 1〉 with 0∗ = 1∗ = 1.
(ii) The semiring 〈N∞, +, ·, ∗, 0, 1〉 with 0∗ = 1 and a∗ = ∞ for a 6= 0.

(iii) The semiring 〈R∞
+ , +, ·, ∗, 0, 1〉 with a∗ = 1/(1 − a) for 0 ≤ a < 1 and

a∗ = ∞ for a ≥ 1.
(iv) The tropical semirings 〈R∞

+ , min, +, ∗,∞, 0〉 and 〈N∞, min, +, ∗,∞, 0〉
with a∗ = 0 for all a ∈ R∞

+ resp. all a ∈ N∞.

(v) The arctic semirings 〈R+, max, +, ∗,−∞, 0〉 and 〈N, max, +, ∗,−∞, 0〉
with (−∞)∗ = 0∗ = 0 and a∗ = ∞ for a > 0.

(vi) The semiring 〈2Σ∗

,∪, ·, ∗, ∅, {ε}〉 of formal languages over a finite alpha-
bet Σ, as noted before, with L∗ =

⋃

n≥0 Ln for all L ⊆ Σ∗.

(vii) The semiring 〈2U×U ,∪, ·, ∗, ∅, ∆〉 of binary relations over U with R∗ =
⋃

n≥0 Rn for all R ⊆ U × U . The relation R∗ is called the reflexive and
transitive closure of R, i. e., the smallest reflexive and transitive binary
relation over S containing R.

(viii) The  Lukasiewiez semiring 〈[0, 1], max,⊗, ∗, 0, 1〉 with a∗ = 1 for all a ∈
[0, 1].

(ix) The idempotent naturally ordered commutative semiring
〈{0, 1, a,∞}, +, ·, ∗, 0, 1〉, with 0 ⊑ 1 ⊑ a ⊑ ∞, a · a = a, 0∗ = 1∗ = 1,
a∗ = ∞∗ = ∞.
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(x) The bounded distributive lattice semiring 〈L,∨,∧, ∗, 0, 1〉 with a∗ = 1
for all a ∈ L.

The semirings (i)–(v) and (viii)–(x) are commutative, the semirings (i),
(iv)–(x) are idempotent.

A semiring 〈S, +, ·, 0, 1〉 is called ordered if 〈S, +, 0〉 is an ordered monoid
and multiplication with elements s ≥ 0 preserves the order; it is positively
ordered, if, furthermore, 〈S, +, 0〉 is positively ordered. When the order on S is
the natural order, 〈S, +, ·, 0, 1〉 is automatically a positively ordered semiring.

A semiring 〈S, +, ·, 0, 1〉 is called complete if 〈S, +, 0〉 is a complete monoid
and the following distributivity laws are satisfied (see Bloom, Ésik [4], Con-
way [6], Eilenberg [9], Kuich [29]):

∑

i∈I

(s · si) = s ·
(

∑

i∈I

si

)

,
∑

i∈I

(si · s) =
(

∑

i∈I

si

)

· s .

This means that a semiring S is complete if it is possible to define “infinite
sums” (i) that are an extension of the finite sums, (ii) that are associative and
commutative and (iii) that satisfy the distributivity laws.

In complete semirings for each element s we can define the star s∗ of s by

s∗ =
∑

j≥0

sj ,

where s0 = 1 and sj+1 = s·sj = sj ·s for j ≥ 0. Hence, with this star operation,
each complete semiring is a star semiring called a complete star semiring. The
semirings (i)–(viii) are complete star semirings. The semiring (ix) is complete,
but it violates the above equation for s = a, hence it is not a complete star
semiring. The distributive lattice semiring L satisfies a∗ =

∨

j≥0 aj for each
a ∈ L, but is not necessarily complete. It is a complete semiring iff (L,∨,∧)
is a join-continuous complete lattice, i.e., any subset of L has a supremum in
L and a ∧

∨

i∈I ai =
∨

i∈I(a ∧ ai) for any subset {ai | i ∈ I} of L.
A semiring 〈S, +, ·, 0, 1〉 is called continuous if 〈S, +, 0〉 is a continuous

monoid and if multiplication is continuous, i.e.,

s · (sup
i∈I

si) = sup
i∈I

(s · si) and (sup
i∈I

si) · s = sup
i∈I

(si · s)

for all directed sets {si | i ∈ I} and s ∈ S (see Bloom, Ésik [4]). It follows
that the distributivity laws hold for infinite sums:

s · (
∑

i∈I

si) =
∑

i∈I

(s · si) and (
∑

i∈I

si) · s =
∑

i∈I

(si · s)

for all families (si | i ∈ I).

Proposition 2.2. Any continuous semiring is complete.
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All the semirings in (i)–(ix) are continuous.
We now consider two equations that are important in automata theory.

Let S be a star semiring. Then, for a, b ∈ S,

(i) the sum star identity is valid for a and b if (a + b)∗ = (a∗b)∗a∗;
(ii) the product star identity is valid for a and b if (ab)∗ = 1 + a(ba)∗b.

If the sum star identity (resp. the product star identity) is valid for all a, b ∈ S
then we say that the sum star identity (resp. the product star identity) is valid
(in the star semiring S).

A Conway semiring is now a star semiring in which the sum star identity
and the product star identity are valid (see Conway [6], Bloom, Ésik [4]). All
the star semirings in (i)–(x) are Conway semirings. The semiring
〈Q∞

+ , +, ·, ∗, 0, 1〉, with Q∞
+ = R∞

+ ∩ (Q ∪ {∞}) and operations defined as
in (iii), is a Conway semiring (since the sum star identity and product star
identity hold in R∞

+ ) but is not complete. Now we have:

Proposition 2.3. Let S be a star semiring. Then S is a Conway semiring
iff, for all a, b ∈ S,

(i) (a + b)∗ = (a∗b)∗a∗,
(ii) (ab)∗a = a(ba)∗,

(iii) a∗ = 1 + aa∗ = 1 + a∗a.

Proof. If S is a Conway semiring, we obtain (iii) from the product star identity
with b = 1 resp. a = 1. Then (ii) follows from the product star identity,
distributivity and (iii). Conversely, for the product star identity compute (ab)∗

by using (iii) and then (ii). ⊓⊔

Next we introduce conditions which often simplify the definition or the cal-
culation of the star of elements. A semiring S is k-closed, where k ≥ 0, if for
each a ∈ S,

1 + a + · · · + ak = 1 + a + · · · + ak + ak+1 .

It is called locally closed, if for each a ∈ S there is an integer k ≥ 0 such
that the above equality is valid. (See Carré [5], Mohri [34], Ésik, Kuich [11],
Zhao [42], Zimmermann [43].) If 〈S, +, ·, 0, 1〉 is a k-closed semiring, then define
the star of a ∈ S by

a∗ = 1 + a + · · · + ak .

An analogous equality defines the star in a locally closed semiring. With this
star operation, each k-closed (resp. locally closed) semiring is a star semiring
called a k-closed (resp. locally closed) star semiring. The semirings (i), (iv),
(viii), (x) are 0-closed star semirings; the semiring (ix) is a 1-closed semiring,
but not a 1-closed star semiring.

Theorem 2.4. Any locally closed star semiring is a Conway semiring.
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We now consider morphisms between semirings. Let S and S′ be semirings.
Then a mapping h : S → S′ is a morphism from S into S′ if h(0) = 0, h(1) = 1,
h(s1+s2) = h(s1)+h(s2) and h(s1 ·s2) = h(s1)·h(s2) for all s1, s2 ∈ S. That is,
a morphism of semirings is a mapping that preserves the semiring operations
and constants. A bijective morphism is called an isomorphism. For instance,
the semirings 〈R∞

+ , min, +,∞, 0〉 and 〈[0, 1], max, ·, 0, 1〉 are isomorphic via
the mapping x 7→ e−x, and the semiring 〈R∞

+ , max, min, 0,∞〉 is isomorphic
to 〈[0, 1], max, min, 0, 1〉 via the mapping x 7→ 1 − e−x. A morphism h of
star semirings is a semiring morphism that preserves additionally the star
operation, i. e., h(s∗) = h(s)∗ for all s ∈ S. Similarly, a morphism of ordered
(resp. complete, continuous) semirings is a semiring morphism that preserves
the order (resp. all sums, all suprema of directed subsets). Note that every
continuous semiring is an ordered semiring and every continuous semiring
morphism is an ordered semiring morphism.

Complete and continuous semirings are typically infinite. For results on
weighted automata, sometimes it is assumed that the underlying semiring is
finite or “close” to being finite. A large class of such semirings can be obtained
by the notion of local finiteness (which stems from group theory where it is
well-known).

A semiring S is locally finite (see Wechler [41], Droste, Gastin [7]) if each
finitely generated subsemiring is finite. We note that a semiring 〈S, +, ·, 0, 1〉
is locally finite iff both monoids 〈S, +, 0〉 and 〈S, ·, 1〉 are locally finite. Indeed,
if 〈S, +, 0〉 and 〈S, ·, 1〉 are locally finite and U is a finite subset of S, then
the submonoid V of 〈S, ·, 1〉 generated by U is finite and the submonoid W of
〈S, +, 0〉 generated by V is also finite. Now, it is easy to check that W ·W ⊆ W
and we deduce that the subsemiring of 〈S, +, ·, 0, 1〉 generated by U is the finite
set W .

For instance, if both sum and product are commutative and idempo-
tent, then the semiring is locally finite. Consequently, any bounded distribu-
tive lattice 〈L,∨,∧, 0, 1〉 is a locally finite semiring. In particular, the chain
〈[0, 1], max, min, 0, 1〉 and any Boolean algebra are locally finite. Further, the
 Lukasiewiez semiring 〈[0, 1], max,⊗, 0, 1〉 is locally finite, since its additive
and multiplicative monoid are commutative and locally finite. Moreover, each
positively ordered locally finite semiring is locally closed, and each positively
ordered finite semiring is k-closed where k is less than the number of elements
of the semiring.

Examples of infinite but locally finite fields are provided by the algebraic
closures of the finite fields Z/pZ for any prime p.

3 Formal power series

We now define formal power series (for expositions, see Salomaa, Soittola [40],
Kuich, Salomaa [30], Berstel, Reutenauer [3], Sakarovitch [38]). Let Σ be an
alphabet and S a semiring. Mappings r from Σ∗ into S are called (formal)
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power series. The values of r are denoted by (r, w), where w ∈ Σ∗, and r itself
is written as a formal sum

r =
∑

w∈Σ∗

(r, w)w.

The values (r, w) are also referred to as the coefficients of the series. The
collection of all power series r as defined above is denoted by S〈〈Σ∗〉〉.

This terminology reflects the intuitive ideas connected with power series.
We call the power series “formal” to indicate that we are not interested in
summing up the series but rather, for instance, in various operations defined
for series.

Given r ∈ S〈〈Σ∗〉〉, the support of r is the set

supp(r) = {w ∈ Σ∗ | (r, w) 6= 0}.

A series r ∈ S〈〈Σ∗〉〉 where every coefficient equals 0 or 1 is termed the char-
acteristic series of its support L, in symbols, r = char(L) or r = 1L. The
subset of S〈〈Σ∗〉〉 consisting of all series with a finite support is denoted by
S〈Σ∗〉. Series of S〈Σ∗〉 are referred to as polynomials. It will be convenient to
use the notations S〈Σ ∪{ε}〉, S〈Σ〉 and S〈ε〉 for the collection of polynomials
having their supports in Σ ∪ {ε}, Σ and {ε}, respectively.

Examples of polynomials belonging to S〈Σ∗〉 are 0 and aw, where a ∈ S
and w ∈ Σ∗, defined by:

(0, w) = 0 for all w,
(aw, w) = a and (aw, w′) = 0 for w 6= w′.

Often 1w is denoted by w or 1{w}.
We now introduce several operations on power series. For r1, r2, r ∈ S〈〈Σ∗〉〉

and s ∈ S we define the sum r1+r2, the (Cauchy) product r1·r2, the Hadamard
product r1⊙r2 and scalar products sr, rs, each as a series belonging to S〈〈Σ∗〉〉,
as follows:

• (r1 + r2, w) = (r1, w) + (r2, w)
• (r1 · r2, w) =

∑

w1w2=w(r1, w1)(r2, w2)
• (r1 ⊙ r2, w) = (r1, w)(r2, w)
• (sr, w) = s(r, w)
• (rs, w) = (r, w)s

for all w ∈ Σ∗.
It can be checked that 〈S〈〈Σ∗〉〉, +, ·, 0, ε〉 and 〈S〈Σ∗〉, +, ·, 0, ε〉 are semi-

rings, the semirings of formal power series resp. of polynomials over Σ and
S.

We just note that the structure 〈S〈〈Σ∗〉〉, +,⊙, 0, char(Σ∗)〉 is also a semi-
ring (the full Cartesian product of Σ∗ copies of the semiring 〈S, +, ·, 0, 1〉).

Clearly, the formal language semiring 〈2Σ∗

,∪, ·, ∅, {ε}〉 is isomorphic to
〈B〈〈Σ∗〉〉, +, ·, 0, ε〉. Essentially, a transition from 2Σ∗

to B〈〈Σ∗〉〉 and vice versa
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means a transition from L to char(L) and from r to supp(r), respectively. Fur-
thermore, the operation corresponding to the Hadamard product is the inter-
section of languages. If r1 and r2 are the characteristic series of the languages
L1 and L2, then r1 ⊙ r2 is the characteristic series of L1 ∩ L2.

This basic transition between 2Σ∗

and B〈〈Σ∗〉〉 will be very important in
all of the following as it often gives a hint how to generalize classical results
from formal language theory into the realm of formal power series (with an
arbitrary or suitable semiring S replacing B).

Let ri ∈ S〈〈Σ∗〉〉 (i ∈ I), where I is an arbitrary index set. Then, for
w ∈ Σ∗ let Iw = {i | (ri, w) 6= 0}. Assume now that for all w ∈ Σ∗, Iw is
finite. Then we call the family of power series {ri | i ∈ I} locally finite. In this
case we can define the sum

∑

i∈I ri by

(
∑

i∈I

ri, w) =
∑

i∈Iw

(ri, w)

for all w ∈ Σ∗. Also, in this case for each r ∈ S〈〈Σ∗〉〉, the families {r·ri | i ∈ I}
and {ri · r | i ∈ I} are also locally finite, and r ·

∑

i∈I ri =
∑

i∈I r · ri and
(
∑

i∈I ri

)

· r =
∑

i∈I ri · r. Indeed, let w ∈ Σ∗ and put J =
⋃

w=uv Iv, a finite
set. Then

(

r ·
∑

i∈I

ri, w
)

=
∑

w=uv

(r, u)
(

∑

i∈J

ri, v
)

=
∑

w=uv

∑

i∈J

(r, u) · (ri, v)

=
∑

i∈J

∑

w=uv

(r, u) · (ri, v) =
∑

i∈J

(r · ri, w) =
(

∑

i∈I

r · ri, w
)

,

as (r · ri, w) 6= 0 implies i ∈ J . This proves the first equation, and the second
one follows similarly.

A power series r ∈ S〈〈Σ∗〉〉 is called proper or quasiregular if (r, ε) = 0.
The star r∗ of a proper power series r ∈ S〈〈Σ∗〉〉 is defined by

r∗ =
∑

n≥0

rn .

Since r is proper we infer (rn, w) = 0 for each n > |w|. Hence, {rn | n ≥ 0}
is locally finite, (r∗, w) =

∑

0≤n≤|w|(r
n, w), and the star of a proper power

series is well-defined.
We generalize this result to cycle-free power series. A power series r ∈

S〈〈Σ∗〉〉 is called cycle-free of index k > 0 if (r, ε)k = 0. It is called cycle-free
if there exists a k ≥ 1 such that r is cycle-free of index k. Again, we define

the star of a cycle-free power series r ∈ S〈〈Σ∗〉〉 by

r∗ =
∑

n≥0

rn .

Since r is cycle-free of some index k ≥ 1, an easy proof by induction on the
length of w ∈ Σ∗ yields (rn, w) = 0 for n ≥ k · (|w| + 1). Hence, {rn | n ≥ 0}
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is locally finite, (r∗, w) =
∑

0≤n<k(|w|+1)(r
n, w), and the star of a cycle-free

power series is well-defined.
Next we wish to consider identities that are valid for a cycle-free power

series r, like, e. g., rr∗ + ε = r∗r + ε = r∗. Using the distributivity laws given
above for locally finite families, this follows from:

rr∗ + ε = r ·
∑

n≥0

rn + ε =
∑

n≥0

rn+1 + ε = r∗.

Theorem 3.1. Let r be a cycle-free power series. Then, for each n ≥ 0,

r∗ = rn+1r∗ +
∑

0≤j≤n

rj = r∗rn+1 +
∑

0≤j≤n

rj .

Proof. We obtain by substitutions

r∗ = rr∗ + ε = r(rr∗ + ε) + ε = r2r∗ + r + ε = . . . .

The proof of the second equality is analogous. ⊓⊔

Theorem 3.2. Let r, r′ ∈ S〈〈Σ∗〉〉 and assume that rr′ is cycle-free. Then r′r
is cycle-free and

(rr′)∗r = r(r′r)∗ .

Proof. Since rr′ is cycle-free, ((rr′)k, ε) = 0 for some k > 0. Hence,

((r′r)k+1, ε) = (r′, ε)((rr′)k, ε)(r, ε) = 0

and r′r is cycle-free. It follows that (rr′)∗r =
∑

n≥0

(

(rr′)n · r
)

=
∑

n≥0 r ·
(r′r)n = r · (r′r)∗. ⊓⊔

The Hurwitz product (also called shuffle product) is defined as follows. For
w1, w2 ∈ Σ∗ and x1, x2 ∈ Σ, we define w1 ⊔⊔ w2 ∈ S〈〈Σ∗〉〉 by

w1 ⊔⊔ ε = w1 , ε ⊔⊔ w2 = w2 ,

and
w1x1 ⊔⊔ w2x2 = (w1x1 ⊔⊔ w2)x2 + (w1 ⊔⊔ w2x2)x1 .

For r1, r2 ∈ S〈〈Σ∗〉〉, the Hurwitz product r1 ⊔⊔ r2 ∈ S〈〈Σ∗〉〉 of r1 and r2 is
then defined by

r1 ⊔⊔ r2 =
∑

w1,w2∈Σ∗

(r1, w1)(r2, w2)(w1 ⊔⊔ w2) .

Observe that

(r1 ⊔⊔ r2, w) =
∑

|w1|+|w2|=|w|

(r1, w1)(r2, w2)(w1 ⊔⊔ w2, w)
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is a finite sum for all w ∈ Σ∗. Hence, {
∑

w1w2=w(r1, w1)(r2, w2)w1 ⊔⊔ w2 |
w ∈ Σ∗} is locally finite and the Hurwitz product of two power series is
well-defined.

In language theory, the shuffle product is customarily defined for languages
L and L′ by

L ⊔⊔ L′ = {w1w
′
1 . . . wnw′

n | w1 . . . wn ∈ L, w′
1 . . . w′

n ∈ L′, n ≥ 1} .

If r1, r2 ∈ B〈〈Σ∗〉〉 then this definition is “isomorphic” to that given above for
formal power series.

When the semiring S is ordered by ≤, we may order S〈〈Σ∗〉〉, and thus
S〈Σ∗〉 by the pointwise order: We define r ≤ r′ for r, r′ ∈ S〈〈Σ∗〉〉 iff (r, w) ≤
(r′, w) for all w ∈ Σ∗. Equipped with this order, clearly both S〈〈Σ∗〉〉 and
S〈Σ∗〉 are ordered semirings.

If 〈S, +, ·, 0, 1〉 is a complete semiring, we can define an infinitary sum
operation on S〈〈Σ∗〉〉 as follows: If ri ∈ S〈〈Σ∗〉〉 for i ∈ I, then

∑

i∈I ri =
∑

w∈Σ∗

(

∑

i∈I(ri, w)
)

w. We obtain:

Proposition 3.3. Let S be a semiring.

(a) If S is complete, S〈〈Σ∗〉〉 is also complete.
(b) If S is continuous, S〈〈Σ∗〉〉 is also continuous.
(c) If S is a Conway semiring, then S〈〈Σ∗〉〉 is also a Conway semiring.

Here (a) and (b) follow straightforwardly by arguing element-wise for each
word w ∈ Σ∗, and for part (c) see Bloom, Ésik [4] and Ésik, Kuich [10].

Proposition 3.3 and the Hurwitz product are now used to prove that each
complete star semiring is a Conway semiring (see Kuich [28], Hebisch [20]).

Theorem 3.4. Each complete star semiring is a Conway semiring.

Proof. Let S be a complete star semiring and let a, b ∈ S. Let ā, b̄ be letters.
Note that to each word w̄ = c̄1c̄2 . . . c̄n, with c̄i ∈ {ā, b̄} for 1 ≤ i ≤ n,
there corresponds the element w = c1c2 . . . cn ∈ S. By Proposition 3.3,
〈S〈〈Σ∗〉〉, +, ·, 0, ε〉 is a complete semiring. Also, observe that ā 7→ a, b̄ 7→ b
induces a star semiring morphism from the complete star semiring S〈〈{ā, b̄}∗〉〉
to S.

Using induction, the following equalities can be shown for all n, m ≥ 0:

(ā + b̄)n =
∑

0≤j≤n

āj ⊔⊔ b̄n−j ,

ān ⊔⊔ b̄m =
∑

0≤j≤n

(āj ⊔⊔ b̄m−1)b̄ān−j

and
ā∗ ⊔⊔ b̄n =

∑

j≥0

āj ⊔⊔ b̄n = (ā∗b̄)nā∗ .
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Hence, we infer the equality

(ā + b̄)∗ =
∑

n≥0

∑

j≥0

āj ⊔⊔ b̄n ,

which implies immediately

(ā + b̄)∗ = (ā∗b̄)∗ā∗ .

Applying the star semiring morphism defined above we obtain the sum
star identity in S:

(a + b)∗ = (a∗b)∗a∗ .

The product star identity is clear by

(ab)∗ = 1 +
∑

n≥1(ab)n = 1 + a
(

∑

n≥0(ba)n
)

b =

1 + a(ba)∗b .

⊓⊔

Finally, we show that morphisms between two semirings and also particular
morphisms between free monoids induce morphisms between the associated
semirings of formal power series.

First, let Σ be an alphabet, S, S′ two semirings and h : S → S′ a mor-
phism. We define h̄ : S〈〈Σ∗〉〉 → S′〈〈Σ∗〉〉 by h̄(r) = h ◦ r for each r ∈ S〈〈Σ∗〉〉,
i. e.

(

h̄(r), w
)

= h((r, w)) for each w ∈ Σ∗. Often h̄ is again denoted by h. The
following is straightforward by elementary calculations.

Proposition 3.5. Let Σ be an alphabet, S, S′ two semirings and h : S →
S′ a semiring morphism. Then h : S〈〈Σ∗〉〉 → S′〈〈Σ∗〉〉 is again a semiring
morphism. Moreover, if r is cycle-free, so is h(r) and h(r∗) = (h(r))∗.

Second, let S be a semiring, Σ, Σ′ two alphabets and h : Σ∗ → Σ′∗ a
morphism. We define h−1 : S〈〈Σ′∗〉〉 → S〈〈Σ∗〉〉 by h−1(r′) = r′ ◦ h for each
r′ ∈ S〈〈Σ′∗〉〉, that is,

(

h−1(r′), v
)

=
(

r′, h(v)
)

for each v ∈ Σ∗. We call
h : Σ∗ → Σ′∗ length-preserving, if |v| = |h(v)| for each v ∈ Σ∗; equivalently,
h(x) ∈ Σ′ for each x ∈ Σ. Further, h is non-deleting, if h(x) 6= ε for each
x ∈ Σ; equivalently, |v| ≤ |h(v)| for each v ∈ Σ∗. If h is non-deleting or
if S is complete, we define h̄ : S〈〈Σ∗〉〉 → S〈〈Σ′∗〉〉 by letting

(

h̄(r), w
)

=
∑

v∈Σ∗,h(v)=w(r, v) for each r ∈ S〈〈Σ∗〉〉 and w ∈ Σ′∗. Observe that if h is

non-deleting, h−1(w) is a finite set for each w ∈ Σ∗, and hence h̄(r) is well-
defined.

Proposition 3.6. Let S be a semiring, Σ, Σ′ two alphabets and h : Σ∗ → Σ′∗

a morphism.

(i) Let h be length-preserving. Then the mapping h−1 : S〈〈Σ′∗〉〉 → S〈〈Σ∗〉〉
is a semiring morphism. Moreover, if r′ ∈ S〈〈Σ′∗〉〉 is cycle-free then so
is h−1(r′), and h−1(r′∗) = (h−1(r′))∗
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(ii) Let h be non-deleting, or assume that S is complete. Then h̄ : S〈〈Σ∗〉〉 →
S〈〈Σ′∗〉〉 is a semiring morphism. Moreover, if h is non-deleting and r ∈
S〈〈Σ∗〉〉 is cycle-free then so is h̄(r), and h̄(r∗) =

(

h̄(r)
)∗

.

Proof. Again, by elementary calculations. For (i), note that if v ∈ Σ∗ and
h(v) = w1w2 with w1, w2 ∈ Σ′∗, then since h is length-preserving, there are
v1, v2 ∈ Σ∗ with v = v1v2 and h(v1) = w1, h(v2) = w2. This implies that h−1

preserves the Cauchy product. ⊓⊔

4 Matrices

We now introduce (possibly infinite) matrices. These are important here since
the structure and the behaviour of weighted automata can often be compactly
described using matrices (see chapters [13, 35, 39]) and hence results from
matrix algebra can be used to derive results for weighted automata.

Consider two non-empty index sets I and I ′ and a set U . A mapping
A : I × I ′ → U is called a matrix. The values of A are denoted by Ai,i′ , where
i ∈ I and i′ ∈ I ′. The values Ai,i′ are also referred to as the entries of the
matrix A. In particular, Ai,i′ is called the (i, i′)-entry of A. The collection of

all matrices as defined above is denoted by U I×I′

.
If both I and I ′ are finite, then A is called a finite matrix. If I or I ′ is

a singleton, then AI×I′

is denoted by A1×I′

or AI×1, and A is called a row
or column vector, respectively. If A ∈ U I×1 (resp. A ∈ U1×I′

) then we often
denote the i-th entry of A for i ∈ I (resp. i ∈ I ′), by Ai instead of Ai,1 (resp.

A1,i). If I = {1, . . . , m} and I ′ = {1, . . . , n}, the set U I×I′

is denoted by
Um×n.

As before we introduce some operations and special matrices inducing a
monoid or semiring structure to matrices. Let S be a semiring. For A, B ∈
SI×I′

we define the sum A + B ∈ SI×I′

by (A + B)i,i′ = Ai,i′ + Bi,i′ for all

i ∈ I, i′ ∈ I ′. Furthermore, we introduce the zero matrix 0 ∈ SI×I′

. All entries
of the zero matrix 0 are 0. By these definitions, 〈SI×I′

, +, 0〉 is a commutative
monoid.

Let A ∈ SI×I′

. Consider, for i ∈ I, the set of indices {j | Aij 6= 0}. Then
A is called a row finite matrix if these sets are finite for all i ∈ I. Similarly,
consider, for i′ ∈ I ′, the set of indices {j | Aji′ 6= 0}. Then A is called a
column finite matrix if these sets are finite for all i′ ∈ I ′.

If A is row finite or B is column finite, or if S is complete, then, for
A ∈ SI1×I2 and B ∈ SI2×I3 , we define the product AB ∈ SI1×I3 by

(AB)i1,i3
=

∑

i2∈I2

Ai1,i2Bi2,i3 for all i1 ∈ I1, i3 ∈ I3.

Furthermore, we introduce the matrix of unity E ∈ SI×I . The diagonal entries
Ei,i of E are equal to 1, the off-diagonal entries Ei1,i2 (i1 6= i2) of E are equal
to 0, for i, i1, i2 ∈ I.
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It is easily shown that matrix multiplication is associative, the distributiv-
ity laws are valid for matrix addition and multiplication, E is a multiplicative
unit and 0 is a multiplicative zero. So we infer that 〈SI×I , +, ·, 0, E〉 is a semi-
ring if I is finite or if S is complete. Moreover, the row finite matrices in SI×I

and the column finite matrices in SI×I form semirings.
If S is complete, infinite sums can be extended to matrices. Consider SI×I′

and define, for Aj ∈ SI×I′

, j ∈ J , where J is an index set,
∑

j∈J Aj by its
entries:

(

∑

j∈J

Aj

)

i,i′
=

∑

j∈J

(Aj)
i,i′

, for all i ∈ I, i′ ∈ I ′.

By this definition, SI×I is a complete semiring.
If S is ordered, the order on S is extended pointwise to matrices A and B

in SI×I′

:
A ≤ B if Ai,i′ ≤ Bi,i′ for all i ∈ I, i′ ∈ I ′.

If S is continuous then so is SI×I .
Eventually, if S is a locally closed star semiring then Sn×n, n ≥ 1, is

again a locally closed star semiring (see Ésik, Kuich [11], Zhao [42]); and if
S is a Conway semiring then Sn×n, n ≥ 1, is again a Conway semiring (see
Conway [6], Bloom, Ésik [4], Ésik, Kuich [10]). Clearly, if S is locally finite,
then so is Sn×n for each n ≥ 1 (cf. [7]).

For the remainder of this chapter, I (resp. Q), possibly provided with
indices, denotes an arbitrary (resp. finite) index set. For the rest of this section
we assume that all products of matrices are well-defined.

We now introduce blocks of matrices. Consider a matrix A in SI×I . Assume
that we have a decomposition I =

⋃

j∈J Ij where J and all Ij (j ∈ J) are
non-empty index sets such that Ij1 ∩ Ij2 = ∅ for j1 6= j2. The mapping A,
restricted to the domain Ij1 × Ij2 , i. e., A ↾Ij1

×Ij2
: Ij1 × Ij2 → S is, of course,

a matrix in SIj1
×Ij2 . We denote it by A(Ij1 , Ij2) and call it the (Ij1 , Ij2 )-block

of A.
We can compute the blocks of the sum and the product of matrices A and

B from the blocks of A and B in the usual way:

(A + B)(Ij1 , Ij2 ) = A(Ij1 , Ij2) + B(Ij1 , Ij2),

(AB)(Ij1 , Ij2 ) =
∑

j∈J

A(Ij1 , Ij)B(Ij , Ij2).

In a similar manner, the matrices of SI×I′

can be partitioned into blocks.
This yields the computational rule

(A + B)(Ij , I
′
j′) = A(Ij , I

′
j′) + B(Ij , I

′
j′ ).

If we consider matrices A ∈ SI×I′

and B ∈ SI′×I′′

partitioned into compatible
blocks, i. e., I ′ is partitioned into the same index sets for both matrices, then
we obtain the computational rule
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(AB)(Ij , I
′′
j′′ ) =

∑

j′∈J′

A(Ij , I
′
j′)B(I ′j′ , I

′′
j′′ ).

Now let us assume that I and I ′ are finite, or that S is complete. In the sequel
the following isomorphisms are needed:

(i) The semirings

(SI′×I′

)
I×I

, S(I×I′)×(I×I′), S(I′×I)×(I′×I), (SI×I)
I′×I′

are isomorphic by the correspondences between

(Ai1,i2)
i′
1
,i′

2

, A(i1,i′
1
),(i2,i′

2
), A(i′

1
,i1),(i′

2
,i2), (Ai′

1
,i′

2
)
i1,i2

for all i1, i2 ∈ I, i′1, i
′
2 ∈ I ′.

(ii) The semirings SI×I〈〈Σ∗〉〉 and (S〈〈Σ∗〉〉)I×I
are isomorphic by the corre-

spondence between (A, w)i1,i2
and (Ai1,i2 , w) for all i1, i2 ∈ I, w ∈ Σ∗.

Moreover, analogous isomorphisms are valid if the semirings of row finite or
column finite matrices are considered. Observe that, in case S is complete,
these correspondences are isomorphisms of complete semirings, i. e., they re-
spect infinite sums. These isomorphisms are used without further mention.
Moreover, the notation Ai1,i2 , where A ∈ SI1×I2〈〈Σ∗〉〉 and i1 ∈ I1, i2 ∈ I2, is
used: Ai1,i2 is the power series in S〈〈Σ∗〉〉 such that the coefficient (Ai1,i2 , w)
of w ∈ Σ∗ is equal to (A, w)i1,i2 . Similarly, the notation (A, w), where

A ∈ (S〈〈Σ∗〉〉)I1×I2 and w ∈ Σ∗, is used: (A, w) is the matrix in SI1×I2 whose
(i1, i2)-entry (A, w)i1,i2 is equal to (Ai1,i2 , w) for each i1 ∈ I1, i2 ∈ I2.

For the proof of the next theorem we need a lemma.

Lemma 4.1. Let S be a complete star semiring. Then, for all s1, s2 ∈ S,

(s1 + s2)∗ = (s1 + s2s
∗
1s2)∗(1 + s2s

∗
1) .

Proof. Using Theorem 3.4, we have (s1+s2s
∗
1s2)∗(1+s2s

∗
1) = (s∗1s2s

∗
1s2)∗s∗1(1+

s2s
∗
1) =

∑

n≥0(s∗1s2)2ns∗1 +
∑

n≥0(s∗1s2)2n+1s∗1 = (s∗1s2)∗s∗1 = (s1 + s2)∗. ⊓⊔

The next theorem is central for automata theory (see Conway [6], Lehmann
[31], Kuich, Salomaa [30], Kuich [29], Bloom, Ésik [4], Kozen [25]). It allows
us to compute the blocks of the star of a matrix A by sum, product and star
of the blocks of A.

For notational convenience, we will denote in Theorem 4.2 and in Corol-
laries 4.3 and 4.4 the matrices A(Ii, Ij) by Ai,j , for 1 ≤ i, j ≤ 3.

Theorem 4.2. Let S be a complete star semiring. Let A ∈ SI×I and I =
I1 ∪ I2 with I1, I2 6= ∅ and I1 ∩ I2 = ∅. Then

A∗(I1, I1) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
,
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A∗(I1, I2) = (A1,1 + A1,2A
∗
2,2A2,1)∗A1,2A

∗
2,2,

A∗(I2, I1) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
A2,1A

∗
1,1,

A∗(I2, I2) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
.

Proof. Consider the matrices

A1 =

(

A1,1 0
0 A2,2

)

and A2 =

(

0 A1,2

A2,1 0

)

.

The computation of (A1 + A2A
∗
1A2)

∗
(E+A2A

∗
1) and application of Lemma 4.1

prove our theorem. ⊓⊔

Corollary 4.3. If A2,1 = 0 then

A∗ =

(

A∗
1,1 A∗

1,1A1,2A
∗
2,2

0 A∗
2,2

)

.

Corollary 4.4. Let I = I1 ∪ I2 ∪ I3 be a decomposition into pairwise disjoint
non-empty subsets. If A2,1 = 0, A3,1 = 0 and A3,2 = 0 then

A∗ =





A∗
1,1 A∗

1,1A1,2A
∗
2,2 A∗

1,1A1,2A
∗
2,2A2,3A

∗
3,3 + A∗

1,1A1,3A
∗
3,3

0 A∗
2,2 A∗

2,2A2,3A
∗
3,3

0 0 A∗
3,3





Next we consider an arbitrary partition of the index set I.

Theorem 4.5. Let S be a complete star semiring, and let I =
⋃

j∈J Ij be a
decomposition into pairwise disjoint non-empty subsets. Fix j0 ∈ J . Assume
that the only non-null blocks of the matrix A ∈ SI×I are A(Ij , Ij0), A(Ij0 , Ij)
and A(Ij , Ij), for all j ∈ J . Then

A∗(Ij0 , Ij0 ) =
(

A(Ij0 , Ij0 ) +
∑

j∈J, j 6=j0

A(Ij0 , Ij)A(Ij , Ij)∗A(Ij , Ij0)
)∗

.

Proof. We partition I into Ij0 and I ′ = I − Ij0 . Then A(I ′, I ′) is a block-
diagonal matrix and (A(I ′, I ′)

∗
)(Ij , Ij) = A(Ij , Ij)∗ for all j ∈ J − {j0}. By

Theorem 4.2 we obtain

A∗(Ij0 , Ij0) =
(

A(Ij0 , Ij0 ) + A(Ij0 , I
′)A(I ′, I ′)

∗
A(I ′, Ij0 )

)∗
.

The computation of the right side of this equality proves our theorem. ⊓⊔

We now introduce the Kronecker product (also called tensor product) A⊗
B ∈ S(I1×I2)×(I′

1
×I′

2
) for the matrices A ∈ SI1×I′

1 and B ∈ SI2×I′

2 , by defining
its entries:

(A ⊗ B)(i1,i2),(i′1,i′
2
) = Ai1,i′

1
Bi2,i′

2
, for all i1 ∈ I1, i′1 ∈ I ′1, i2 ∈ I2, i′2 ∈ I ′2 .
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Sometimes, the Kronecker product A ⊗ B is defined to be in (SI2×I′

2)I1×I′

1

with

((A ⊗ B)i1,i′
1
)i2,i′

2
= Ai1,i′

1
Bi2,i′

2
, for all i1 ∈ I1, i′1 ∈ I ′1, i2 ∈ I2, i′2 ∈ I ′2 .

Since the semirings S(I1×I2)×(I′

1
×I′

2
) and (SI2×I′

2)I1×I′

1 are isomorphic, this
will not make any difference in the computations.

Easy proofs show the following computational rules for Kronecker prod-
ucts.

Theorem 4.6. Let A, A′ ∈ SI1×I′

1 , B, B′ ∈ SI2×I′

2 , C ∈ SI3×I′

3 . Then

(i) (A + A′) ⊗ B = A ⊗ B + A′ ⊗ B,
(ii) A ⊗ (B + B′) = A ⊗ B + A ⊗ B′,

(iii) A ⊗ 0 = 0 and 0 ⊗ B = 0,
(iv) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

Theorem 4.7. Let A ∈ SI1×I2〈ε〉, B ∈ SI2×I3〈ε〉, C ∈ SI4×I5〈〈Σ∗〉〉 and
D ∈ SI5×I6〈〈Σ∗〉〉. Assume that S is complete or that (A, ε) and (C, w) are
row finite for all w ∈ Σ∗, or that (B, ε) and (D, w) are column finite for all
w ∈ Σ∗. Furthermore, assume that all entries of (B, ε) commute with those
of (C, w) for all w ∈ Σ∗. Then

(AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D) .

Proof. Let ij ∈ Ij for j = 1, 3, 4, 6. Then we obtain

((AB) ⊗ (CD))(i1,i3),(i4,i6)

= (AB)i1,i3(CD)i4,i6

=
∑

i2∈I2

∑

i5∈I5

Ai1,i2Bi2,i3Ci4,i5Di5,i6

=
∑

i2∈I2

∑

i5∈I5

Ai1,i2Ci4,i5Bi2,i3Di5,i6

=
∑

(i2,i5)∈I2×I5

(A ⊗ C)(i1,i4),(i2,i5)(B ⊗ D)(i2,i5),(i3,i6)

= ((A ⊗ C)(B ⊗ D))(i1,i4),(i3,i6) .

⊓⊔

5 Cycle-Free linear equations

Let Σ be an alphabet and S any semiring. Cycle-free linear equations over
S〈〈Σ∗〉〉 are a useful tool for proving identities in S〈〈Σ∗〉〉. Assume that two ex-
pressions are shown to be solutions of such an equation. Then, the uniqueness
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of the solution (shown below) implies that these two expressions represent the
same formal power series in S〈〈Σ∗〉〉.

A cycle-free linear equation (over S〈〈Σ∗〉〉) has the form

y = ry + r′ ,

where r, r′ ∈ S〈〈Σ∗〉〉 and r is cycle-free. A solution to this equation is given
by a power series σ ∈ S〈〈Σ∗〉〉 such that σ = rσ + r′.

Theorem 5.1. The cycle-free equation y = ry + r′ with r, r′ ∈ S〈〈Σ∗〉〉, r
cycle-free, has the unique solution σ = r∗r′.

Proof. By Theorem 3.1, we obtain

rσ + r′ = rr∗r′ + r′ = (rr∗ + ε)r′ = r∗r′ = σ .

Hence, σ is a solution.
Assume that r is cycle-free of index k, i. e., (r, ε)k = 0, and that ̺ is a

solution. Then, by substitution, we obtain, for all n ≥ 0,

̺ = r̺ + r′ = · · · = rn̺ +
∑

0≤j<n

rjr′ .

We now compute the coefficients (̺, w) for each w ∈ Σ∗:

(̺, w) = (rk(|w|+1)̺, w) +
∑

0≤j<k(|w|+1)

(rjr′, w) = (r∗r′, w) = (σ, w) .

Hence ̺ = σ. ⊓⊔

For power series over arbitrary semirings, the sum star identity and the
product star identity are valid only for some cycle-free power series.

Theorem 5.2. Let r, r′ ∈ S〈〈Σ∗〉〉 and assume that r, r∗r′ and r + r′ are
cycle-free. Then the sum star identity is valid for r and r′.

Proof. We show that (r∗r′)∗r∗ is a solution of the cycle-free equation
y = (r + r′)y + ε:

Indeed, by Theorem 3.2 we have (r + r′)(r∗r′)∗r∗ + ε = rr∗(r′r∗)∗ +
(r′r∗)(r′r∗)∗ +ε = rr∗(r′r∗)∗ +(r′r∗)∗ = r∗(r′r∗)∗ = (r∗r′)∗r∗. We now apply
Theorem 5.1. ⊓⊔

Theorem 5.3. Let r, r′ ∈ S〈〈Σ∗〉〉 and assume that rr′ is cycle-free. Then the
product star identity is valid for r and r′.

Proof. By Theorems 3.2 and 3.1, we obtain ε + r(r′r)∗r′ = ε + rr′(rr′)∗ =
(rr′)∗. ⊓⊔
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Corollary 5.4. Let r, r′ ∈ S〈〈Σ∗〉〉 and assume that r is cycle-free and r′ is
proper. Then the sum star identity and the product star identity are valid for
r and r′.

Compare the next lemma with Lemma 4.1.

Lemma 5.5. Let r, r′ ∈ S〈〈Σ∗〉〉 and assume that r, r + r′ and r + r′r∗r′ are
cycle-free. Then

(r + r′)∗ = (r + r′r∗r′)∗(ε + r′r∗) .

Proof. By our assumptions, the power series r∗, (r + r′)∗ and (r + r′r∗r′)∗

exist. By Theorem 3.1, we have

(r + r′)∗ = r(r + r′)∗ + r′(r + r′)∗ + ε .

Hence (r + r′)∗ is a solution of the equation y = ry + r′(r + r′)∗ + ε. By
Theorem 5.1 and the cycle-freeness of r, another representation of this unique
solution is r∗r′(r + r′)∗ + r∗. Substituting r∗r′(r + r′)∗ + r∗ into the third
occurrence in the above equality yields

(r + r′)∗ = (r + r′r∗r′)(r + r′)∗ + r′r∗ + ε .

This shows that (r + r′)∗ is a solution of the equation

y = (r + r′r∗r′)y + r′r∗ + ε .

By Theorem 5.1 and the cycle-freeness of r + r′r∗r′, another representation
for the unique solution of this equation is

(r + r′r∗r′)∗(ε + r′r∗) .

⊓⊔

Consider matrices A ∈ SI1×I2〈〈Σ∗〉〉 and B ∈ SI2×I3〈〈Σ∗〉〉 such that ei-
ther the matrices (A, w) ∈ SI1×I2 are row finite for all w ∈ Σ∗ or the matrices
(B, w) ∈ SI2×I3 are column finite for all w ∈ Σ∗. Then AB ∈ SI1×I3〈〈Σ∗〉〉
is well-defined. Hence, for a matrix A ∈ SI×I〈〈Σ∗〉〉 such that the matri-
ces (A, w) ∈ SI×I are row (resp. column) finite for all w ∈ Σ∗, all pow-
ers An ∈ SI×I〈〈Σ∗〉〉 are well-defined. If, furthermore, A is cycle-free then
A∗ ∈ SI×I〈〈Σ∗〉〉 is well-defined.

Lemma 4.1 is the main tool for proving the matrix identities of Theo-
rem 4.2. In an analogous manner, Lemma 5.5 is a main tool for proving—under
different assumptions—the same matrix identities in the next theorem.

For the rest of the section, let I = I1∪I2 with I1, I2 6= ∅ and I1∩I2 = ∅. The
notation is similar to that in Theorem 4.2, but with A ∈ SI×I〈〈Σ∗〉〉 instead
of A ∈ SI×I . For notational convenience, we will denote in Theorems 5.6, 5.7
and in Corollaries 5.8, 5.9 the matrices A(Ii, Ij) by Ai,j , for 1 ≤ i, j ≤ 3.
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Theorem 5.6. Assume that A ∈ SI×I〈〈Σ∗〉〉 is cycle-free and (A, w) is row
and column finite for all w ∈ Σ∗. Furthermore, assume that A1,1, A2,2, A1,1 +
A1,2A

∗
2,2A2,1 and A2,2 + A2,1A

∗
1,1A1,2 are cycle-free. Then

A∗(I1, I1) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
,

A∗(I1, I2) = (A1,1 + A1,2A
∗
2,2A2,1)∗A1,2A

∗
2,2,

A∗(I2, I1) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
A2,1A

∗
1,1,

A∗(I2, I2) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
.

Proof. Consider the matrices

A1 =

(

A1,1 0
0 A2,2

)

and A2 =

(

0 A1,2

A2,1 0

)

.

Since the blocks of the block-diagonal matrix A1 are cycle-free, the matrix A∗
1

exists and equals

A∗
1 =

(

A∗
1,1 0
0 A∗

2,2

)

.

This implies that

A1 + A2A
∗
1A2 =

(

A1,1 + A1,2A
∗
2,2A2,1 0

0 A2,2 + A2,1A
∗
1,1A1,2

)

.

Since the blocks of the block-diagonal matrix A1 +A2A
∗
1A2 are cycle-free, the

matrix (A1 + A2A
∗
1A2)∗ exists and equals

(A1 + A2A
∗
1A2)∗ =

(

(A1,1 + A1,2A
∗
2,2A2,1)∗ 0

0 (A2,2 + A2,1A
∗
1,1A1,2)∗

)

.

We now apply Lemma 5.5 with r = A1 and r′ = A2. The computation of

(A1 + A2A
∗
1A2)∗(E + A2A

∗
1)

proves the theorem. ⊓⊔

Theorem 5.7. Consider A ∈ SI×I〈〈Σ∗〉〉 such that (A, w) is row and column
finite for all w ∈ Σ∗. Furthermore, assume that A1,1 and A2,2 are cycle-free,
and A1,2 or A2,1 is proper. Then A is cycle-free and

A∗(I1, I1) = (A1,1 + A1,2A
∗
2,2A2,1)∗,

A∗(I1, I2) = (A1,1 + A1,2A
∗
2,2A2,1)∗A1,2A

∗
2,2,

A∗(I2, I1) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
A2,1A

∗
1,1,

A∗(I2, I2) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
.
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Proof. We only prove the case where A2,1 is proper. The proof of the other
case is similar. An easy proof by induction on j ≥ 1 shows that

(A, ε)j =

(

(A1,1, ε)j
∑

j1+j2=j−1(A1,1, ε)j1(A1,2, ε)(A2,2, ε)j2

0 (A2,2, ε)j

)

.

Now let A1,1 and A2,2 be cycle-free of index k. Then (A, ε)2k = 0 and A
is cycle-free. Furthermore (A1,1 + A1,2A

∗
2,2A2,1, ε) = (A1,1, ε) and (A2,2 +

A2,1A
∗
1,1A1,2, ε) = (A2,2, ε). Hence, the assumptions of Theorem 5.6 are sat-

isfied and our theorem is proved. ⊓⊔

Corollary 5.8. Consider A ∈ SI×I〈〈Σ∗〉〉 such that (A, w) is row and column
finite for all w ∈ Σ∗. Furthermore, assume that A1,1 and A2,2 are cycle-free
and that A2,1 = 0. Then A is cycle-free and

A∗ =

(

A∗
1,1 A∗

1,1A1,2A
∗
2,2

0 A∗
2,2

)

.

Observe that, for finite matrices, the row and column finiteness of (A, w) for
all w ∈ Σ∗ is satisfied and is not needed as assumption in Theorem 5.7. If A
is finite and proper, all assumptions of Theorem 5.7 are satisfied.

Corollary 5.9. Let I be finite and A ∈ SI×I〈〈Σ∗〉〉 be proper. Then

A∗(I1, I1) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
,

A∗(I1, I2) = (A1,1 + A1,2A
∗
2,2A2,1)

∗
A1,2A

∗
2,2,

A∗(I2, I1) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
A2,1A

∗
1,1,

A∗(I2, I2) = (A2,2 + A2,1A
∗
1,1A1,2)

∗
.
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