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SEMIRINGS  OF FUNCTIONS DETERMINE
FINITE T0 TOPOLOGIES

MELVIN  C.  THORNTON

Abstract. An analogue of the Stone-Gelfand-Kolmogoroff

theorem for compact Hausdorff spaces is proven for finite T0 topo-

logical spaces. Let C(X) be the semiring of continuous functions

from finite T0 X into Z, the nonnegative integers with open sets of

the form {0, 1, 2, • • • , m}. Products and sums in C(X) are defined

pointwise. Denote the set of nonzero semiring homomorphisms of

C(X) into Z by H(X) and give it the compact-open topology where

C(X) is considered discrete. Then (1) Xand H(X) are homeomorphic.

(2) C(X) is semiring isomorphic to C( Y) iff X is homeomorphic to

Y. (3) The topology of X can be completely recovered from the in-

clusion relations among the ideals of C{X) which are kernels of the

elements in H{X).

The study of finite topological spaces may at first seem somewhat

contrived. However finite spaces do naturally occur and they can be useful

for something other than nice counterexamples. For instance, recently in

[1] they were used in a metrization problem. Since computers (and perhaps

even the entire universe) are finite, some finite spaces may have application

to practical physical problems.

A natural question is the extent to which maps on a space determine its

topology. For example, the classical result for compact Hausdorff spaces

is that the topology is determined by the algebraic structure of the ring of

real valued continuous functions. In this paper it is shown that the semi-

ring C(X) of continuous functions from a finite T0 space X into the non-

negative integers Z with an order induced ,4-space topology characterizes

the topology of A. The method of proof is to first show Ais homeomorphic

to the set H(X) of nontrivial semiring homomorphisms from C(X) to Z.

Here C(X) is considered discrete and H(X) has the compact open topology.

It then follows that C(X) and C( Y) are semiring isomorphic if and only if

X and Y are homeomorphic.

The following facts about finite spaces and ^-spaces will be used. Good

references are [3] and [4]. A partial order on a set A determines a topology

on X by defining the minimal open set containing i to be those/ withy'—;'.
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X is F0 iff i<j and/</ implies i=j. Any finite F0 topology can be deter-

mined in this manner. A function /: X-*- Y, with the topologies of X and

Y defined by partial orders, is continuous iff i<j in X implies f(i)^f(j)

in Y. Hereafter X={1, 2, ■ • • , n} has some fixed partial order such that

Zis a finite F0 space. LetZ={0, 1, 2, • • •, n, n+l, • ■ ■}. Using the natural

order as a partial order the topology has open sets 0, Z, and all sets of the

form {0, 1, • • • , m).

Let C(X) denote the set of continuous functions from X into Z. Then a

typical element / e C(X) will be viewed as an ordered «-tuple /=

(/i> t2, • • • , /„) of nonnegative integers where /(/)=/¿. Thus C(X) is the set

of ordered «-tuples with /<_/'in Ximplying /,5i/3-. C(X) becomes a semiring

by defining sums and products componentwise. Thus (/+5)i = /i+j, and

(ts)i=tisi. It is easy to check that sums and products of continuous func-

tions are again continuous. C(X) has a partial order given by t<s iff /,^í¿

for all /. The compact-open topology on C(X) is the same as the topology

determined by this order. Under this topology addition and multiplication

are continuous.

The following result shows that if the elements of C(X) are given as

ordered «-tuples, the topology of X can be recovered from the set C(X).

In fact, only continuous functions into the subspace {0, 1} need be

considered.

Lemma 1.   In X, i<j ifft^tjfor all t e C(X).

Proof. By continuity, for any /, i<j implies /¿^/3. Conversely,

suppose /<_/. Define f.X-^-Z by /(/)=1 for Í2í/ and t(l)=0 otherwise.

Then /^({O, 1, • • • , r})=X for rj>l. Suppose « e /-x(0) and k<h in X.

If t(k)=\ then /fS/c<« which contradicts A e r](0). Thus t(k)=0,

k e /_1(0) and t~x(0) is an open set. Hence / is continuous. But /¡= 1 and

/3=0 so /¿£/3 for all / e C(X).

Define H(X) to be the set of nonzero semiring homomorphisms from

C(X) into Z where addition and multiplication in Z are the usual ones.

The next two results are needed to study H(X).

Theorem 2. Let C be a set of ordered n-tuples of nonnegative integers

closed under coordinatewise addition and multiplication. Assume C contains

a nonzero element of the form (a, a, ■ ■ • , a). Then f:C^-Z preserves sums

and products iff fis the projection on some fixed coordinate.

Proof. The projection p¡ onto the y'th coordinate clearly preserves

sums and products. Suppose f:C-*Z also preserves both operations

and f(tx, t2, • • • , t„)=r. Consider the polynomial equation P(x)=

(x—tx)(x—t2)- • -(x—t„)=0. If« is even, define Q(x) to be the sum of the

even degree terms in P(x) and R(x) to be minus the sum of the odd degree
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terms. If« is odd, interchange the roles of Q(x) and R(x). In either case the

coefficients of Q(x) and R(x) are all positive and P(x)=0 iff Q(x)=R(x).

Since/preserves products/(i?, t\, • • • , i*)=ra. Since/also preserves sums,

fiQih), Qih), • • • , QiQ) = Qir) and f(R(tx), R(t2), ■■■ , R(tn))=R(r).
But since Q(tl)=R(ti) for /=1, • • • , n it follows that Q(r)=R(r). Thus

P(r) = 0 or r=t} for some/

Now suppose/is not projection on any coordinate. Then for each i=

1, 2, • • • , n there exists an element i—(ix, i2, ■ • • , in) in C such that

f(i)=rt with /¿t^/v By adding (a, a, • ■ ■ , a) if necessary, we can assume

r¿^0and/35^0foralh'and/ Since products are preserved, f(lai2"'1- ■ ■/ia")=

/•"'/•a2- • •/•£" for all positive exponents ax, a2, ■ • ■ , an. For fixed ax, a2, ■ ■ • ,

ât, • ' • , &„ there is at most one value of at for which l?^"2- • -i"1- ■ ■nain=

raxlr22 ■ • •/•"<• • •/■"". If there were two such values it would follow that

/—/•; which is a contradiction. Now consider the set of {ax, a2, ■ ■ • , an}

with l^ai=«-rT. This set has («+l)n elements.

For a fixed i there are (n-r-l)"-1 possible choices of ax, aa, • • • ,ât, • • • ,

an and hence only («+1)"_1 possible times that r^ff- • -rl" could equal

l?1- • •/'"'• • -ni". Thus there are only «-(«-l-l)"-1 possible times r?1- • -r°"

could equal a coordinate of T1- • ■na". But «•(«-r-l)"-1<(«-|-l)" which

contradicts the fact that f(tx, ■ • ■ , tn) is some t¡. Therefore / must be a

projection on some fixed factor.

Lemma 3. Let C(X) have the discrete topology. Then the compact open

topology on H(X) is the same as the topology defined by the partial order

f<g ifffit)úgit)for all t e CÍA).

Proof. By Theorem 2, the elements of H(X) are exactly the pro-

jections onto the coordinates, /?,, /=1, • • • , «. By Lemma 1, /?¿</?3 iff

(•'</ Let F={/?J|y'_/'} be a minimal open set in the partial order topology.

Define i:A-*Z by f(/)=0 if /=/' and r(/)=l otherwise. Clearly t e C(X).

Then U={pk\pk(t) e {0}} is open in the compact open topology and U= V.

Conversely consider U={pk\pk(s) e {0, 1, • • • , /■'}} a subbasic open set in

the compact open topology. Let pke U and suppose p¡^pk. Then /?3(s)=

pk(s) so pj(s) e {0, 1, • • • , r} hence p¡ e U and U is open in the partial

order topology.

Theorem 4. H(X) with the compact open topology is homeomorphic to

X.

Proof. Define <¡>:X^>-H(X) by 4>ii)=p(, projection onto the ith co-

ordinate. Suppose (j>(i)=(f>(j). Then /,=/, for all t e C(X). By Lemma 1 this

means i<j and j<i. Since X is assumed to be T0, i=j and <¡> is one-to-one.

By Theorem 2, <j> is onto. To show <f> is continuous suppose i<j in X.
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Then t^t, for all / e C(X). But this means p^Pj in H(X). By Lemma 3

the topology on H(X) is determined by the order. Thus i<j implies

rf)(i)-^cb(j) so <f> is continuous. Conversely 0(¡')^<£(j) implies /¿^/3- implies

i<j so (jr1 is continuous and ^ is a homeomorphism.

With this result we can immediately obtain the next theorem. The proof

is exactly that of [2, p. 290].

Theorem 5. Let X and Y be finite F0 spaces and h:C(Y)-^C(X) a

semiring homomorphism. Then there exists a unique continuous function

X:X-*Y which induces h by h(tx, t2, ■ ■ ■ , tn) = (tM), tm), • • , tMn)). If h is

an isomorphism, X is a homeomorphism.

The final theorem shows that the topology of X can be recovered from

inclusion relations among some of the ideals in the semiring C(X). Note

that the ideals which work are not maximal ideals as one might expect.

Theoremó.    Let M ibe the kernel of pi e H(X). Theni<jinXiffMp> M¡.

Proof. If i<j then Pi<p¡. Suppose t e Mj<^C(X). Then pt(t)fí

p.(t)=0 so / e M¿. Conversely suppose i^y. Then define s e C(X) by

s(l)=l if ii:/ and s(l)=0 otherwise. Then s(j)=0 and s(i)=l so A^ibM,.
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