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SEMISIMPLE REPRESENTATIONS OF QUIVERS

LIEVEN LE BRUYN AND CLAUDIO PROCESI

Abstract. We discuss the invariant theory of the variety of representations of
a quiver and present generators and relations.

We connect this theory of algebras with a trace satisfying a formal Cayley-
Hamilton identity

1. Introduction

After the work of P. Gabriel [Ga], it became clear that a wide variety of
problems from linear algebra could be formulated and studied in a uniform
way in the context of representations of quivers. We will briefly recall the
setting:

Throughout this paper, we work over an algebraically closed field of charac-
teristic zero and call it C. A quiver Q is a fourtuple (Q0 ,Qx,t ,h) consisting
of a finite set Q0 = {I, ... ,n} of vertices, a finite set Qx = {tp G O} of arrows
between these vertices and two maps t,h: Qx —* Q0 assigning to an arrow </>
its tail t((f>) and its head h(tf>) respectively. Note that we do not exclude loops
or multiple arrows. However, we will always assume that the underlying graph
of the quiver is connected.

A representation V of a quiver Q is a family {V(i): ieQ0} of finite dimen-
sional vector spaces over C together with a family of linear maps {V(<p): V(t((p))
-» V(h(<p));4> e Ö,}- The «-tuple of integers dim(P") = (dim(V(i)))i e
N" is called the dimension vector of the representation V. A morphism
between two representations /: V —* W is a family of linear morphisms
{/(/): V(i) -* W(i) ; i e Q0} such that for all arrows tf> e Qx we have that
W(<p) o f(t(<j>)) = f(h(4>)) o V(<f>). A morphism / is an isomorphism if all the
components /(/) are isomorphisms.

For a fixed dimension vector a = (a(l), ... ,a(n)) e N" we define the rep-
resentation space R(Q,a) of the quiver Q to be the set of all representations
V of Q such that V(i) = CU) for all i G Q0. Because V e R(Q,a) is
completely determined by the linear morphisms V(tp) we have that

R(Q,a) = 0 Homc(Ca(,W) ,Ca{hm) = 0 A/,(C)
4>e<2i </>eöi
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586 LIEVEN LE BRUYN AND CLAUDIO PROCESI

where for each <peQx we denote by Af^(C) the vectorspace of all a(h(tf>)) by
a(t(<p)) matrices with entries in C.

We will consider the vectorspace R(Q, a) as an affine variety with coordinate
ring C[Q,a] and functionfield C(Q,a). There is a canonical action of the
linear reductive group

n

GL(a) = l[GLa{i)(C)
¡=i

on the representation space R(Q,a) determined for all representations V e
R(Q,a) and all group elements g = (g(l), ... ,g(n)) e GL(a) by the rule

(g-V)(<t>) = g(h(<p))V(cp)g(t(<p))-1.

It is clear that the (7L(a)-orbits in R(Q,a) are precisely the isomorphism
classes of representations.

As we will recall in the next section, every representation V e R(Q,a) can be
written (but not necessarily uniquely) as V = V$ + V~n where V is a semisimple
representation and Vn is such that the zero representation lies in the closure of
the orbit of V~n under the stabilizer subgroup of Vs. We then call V = Vs + Vn a
Jordan decomposition of the representation V. Therefore the classification of
the orbit structure of GL(a) on R(Q,a) can be divided up in two subproblems:

(I): the study of all semisimple representations of Q and
(II): the study of nilpotent representations of Q with respect to certain linear

reductive subgroups of GL(a).
In this paper we aim to apply the étale slice machinery of D. Luna [Lu 1 ] in

order to get a fairly complete answer to problem (I). Concerning problem (II)
we will determine the finitely many linear reductive subgroups of GL(a) which
occur as the stabilizer subgroup of a semisimple representation.

Since semisimple representations are precisely those representations V e
R(Q,a) such that the corresponding orbit GL(a) • V is closed, it follows from
Mumford's theory [Mu] that their isomorphism classes are parametrized by
the quotient variety V(Q,a) = R(Q,a)/GL(a). In §3 we will show that the
coordinate ring of this variety (the ring of polynomial invariants) is generated
by traces of oriented cycles in the quiver Q and we give a bound on the length
of the cycles required.

In §4 we will see that the quotient variety V(Q,a) admits a finite stratifica-
tion into locally closed smooth irreducible subvarieties corresponding to the dif-
ferent types of semisimple decompositions of dimension vector a. Moreover,
one stratum lies in the closure of another if the corresponding representations
are deformations.

Using these two result we will determine in §5 all dimension vectors which
occur as the dimension vector of a simple representation. This problem can
be viewed analogous to (but much easier than) the corresponding problem for
indecomposable representations which has been solved by V. Kac [Ka]. Our
description is expressed in terms of the bilinear Ringel form R(a,ß) whose
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SEMISIMPLE REPRESENTATIONS OF QUIVERS 587

symmetrization is the Tits quadratic form corresponding to the root system of
the quiver Q. Therefore, we obtain a purely combinatorial method to deter-
mine all types of semisimple decompositions of dimension vector a and hence
of all the linear reductive subgroups which occur in the problem (II) mentioned
above.

In §6 we will concentrate on the analytic local structure of the quotient variety
V(Q, a). For a given semisimple representation type t = (ex,ßx; ... ;e¡ ,ßf
we will construct a new quiver Qz with vertex set {1, ... , /} such that there are
¿( - R(ßt, ß ) arrows pointing from / to j and we consider a new dimension
vector ar = (ex, ... ,ef . We then prove that there is an étale morphism from a
neighborhood of the origin in the quotient variety V(QT,af to a neighborhood
of any point £ in V(Q,a) of representation type t. This result simplifies
the study in all points except for an m-dimensional subspace where m is the
number of loops in the quiver Q.

In the last section we will compute the Krull dimension of the quotient vari-
ety V(Q,a) and determine its singular locus. Both answers are given in terms
of the generic semisimple representation type (i.e. the unique open stratum
in the stratification of §4) and we will present a combinatorial method to de-
termine this generic type. Note that the corresponding problem for arbitrary
representations is still open, although A. Schofield [Sc] has recently obtained
some encouraging results.
Acknowledgment. We thank C. M. Ringel for his stimulating interest in the
topic of this paper and for his generous help in proving the results of §5.

2. The étale slice machinery

In this section we will briefly recall some of the general results due to D. Luna
[Lui, Lu2] which will be used throughout this paper.

Let G be a linear reductive group which acts linearly on a finite dimensional
vectorspace A over C. As we mentioned in the introduction, there exist Jordan
decomposition(s) for any element in A. An element x e X is said to be
semisimple (resp. nilpotent) with respect to G iff the orbit G-x is closed (resp.
0 G G ■ x , the Zariski closure of the orbit in A ). We say that x = xs + xn is a
Jordan decomposition for x e X if xs is a semisimple element with respect to
G, xn is a nilpotent element with respect to the stabilizer subgroup of xs, Gx ,
which is again a linear reductive group by a result of Matsuchima [Ma or Lui],
and if G = Gr n Gr where as always G„ denotes the stabilizer subgroup
of the element y. Using results of Luna [Lu2], V. Kac has shown that every
element xeX admits a Jordan decomposition [Ka2, p. 161].

From now on we will restrict attention to the study of the semisimple ele-
ments. Since G acts linearly on X, G acts as a group of automorphisms on
the coordinate ring C[A]. Because G is reductive we know that the fixed ring
C[ A] for this action is affine and hence is the coordinate ring of a variety which
we denote X/G and call the quotient variety of A under the action of G. The
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588 LIEVEN LE BRUYN AND CLAUDIO PROCESI

natural embedding C[A]C —► C[A] gives rise to a morphism n: X -+ X/G
which is shown to be surjective and for each point £ e X/G the fiber n~X(<A,)
contains precisely one closed orbit [Mu]. That is, the quotient variety X/G
parametrizes the orbits of semisimple elements in A.

In general, the quotient variety X/G will have lots of singularities. Still it
is possible to find a nice stratification of it. Take an arbitrary point Ç e X/G;
then the fiber contains precisely one closed orbit which we will call T(Ç) and
take x e T(Ç). Then, the stabilizer subgroup Gx is a reductive subgroup of
G. Moreover, the conjugacy class of this subgroup depends only on the closed
orbit T(<A). Conversely, if H is a reductive subgroup of G we can look at
(X/G)H which we define to be the set of all points «j; e X/G such that, with
notations as above, the stabilizer subgroup Gx is conjugated in G to H. Luna
[Lui] then proves that all these sets (X/G)H for H a reductive subgroup of G
form a finite (i.e. only finitely many conjugacy classes H admit a nonempty
(X/G)H) stratification of X/G into locally closed smooth irreducible algebraic
subvarieties. Moreover, the stratum (X/G)H lies in the closure of the stratum
(X/G)H, if and only if //' is conjugated to a subgroup of H, see also [Sw].

Next, we want to describe the local structure of the quotient variety X/G
near a point ¿;. Again, let x e 7*(£) and let Ax be the normal space to the
orbit T(£) in x . Then, the stabilizer subgroup Gx acts linearly on this normal
space N and we can consider the quotient variety for this action Nx/Gx.
Luna's main result then states that there is a neighborhood V of 0 in Nx/Gx
and a neighborhood U of £ in X/G such that there is an étale morphism
V —» U. In particular, this implies that the quotient variety X/G near the
point c; is analytically isomorphic to the (simpler) quotient variety Nx/Gx
near the origin.

3. The coordinate ring

By Mumford's theory [Mu] the coordinate ring of the quotient variety V(Q,a)
= R(Q, a)/GL(a) is equal to the ring of polynomial invariants of the action
of GL(a) on R(Q,a), C[Q,a] (" . In this section we will give the following
description of the coordinate ring:

Theorem 1. The ring of polynomial invariants for the action of GL(a) on the
representation space R(Q,a) is generated by traces of oriented cycles in the
quiver Q of length at most N   where N = Y?,=\ Q(0 •

Let us recall some basics from the theory of finite dimensional representa-
tions. Let R be an associative algebra over C. For every commutative C-
algebra B we denote by XR N(B) the set of all C-algebra morphisms </>: R —»
MN(B). From [Pr2, Pr3] we recall that XR N(—) is a representable functor
and thus we have a commutative C-algebra AR N and a universal represen-
tation j: R —» MN(AR N).   The group  GLN(C)  acts functorially on the set
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MN(B) by conjugation and induces an action on the scheme XR N, an ac-
tion on AR N and an action on the polynomial maps MN(AR N) from XR N
to MN(C). Then, j: R —* MN(AR N) maps R into the subring of GLN(C)-
equivariant maps MN(AR N) N . If R is moreover an algebra with a trace,
i.e. Tr : R —> R is k-linear satisfying Tr(ab) = Tr(ba), Tr(a)b = bTr(a) and
TrÇTr(a)b) = Tr(a)Tr(b), then the map ;': R -» Mn(Arn)GLn{C) is surjective
and an isomorphism if R satisfies the Cayley-Hamilton polynomials for A by
A matrices, see [Pr3].

Assume in addition that R has a decomposition of 1 as a sum of orthogonal
idempotents ex,e2, ... ,en. Then we define an algebra Sn = C[ex, ... , en]/J
where / is the ideal generated by the relations c; = 0, c;c = 0 and Yfi=x ei =
1 ; then the scheme Xs N is the disjoint union of the homogeneous varieties
GLN(C)/GL(a) where a is a dimension vector such that ¿~2"=i a(i) = N, i.e.
Xs N = \Ja Xa . The inclusion Sn -» R induces a mapping co: XR N -* Xs N
so we can decompose XR N = \Ja of Xa . Let AR a be the coordinate ring of

o>~\Xa); then ARN = @aARa and MN(ARN) = @aMN(ARa) and since
GLN(C) acts separately on each summand we also have R = 0a/?Q and the
projections to Rit of the idempotent c. have trace a(i).

From now on we will restrict attention to one of these components Ra.
Consider the decomposition of A by A matrices associated to A = *Ca(/).
Thus we decompose 1 = X)", where u; is the diagonal matrix with 1 in
the positions from a(l) + ■ ■ ■ + a(i - 1) + 1 to q(1) + ■ • ■ + a(i) and zeros
elsewhere and for any B, MN(B) = ®; . u¡MN(B)uj is the corresponding block

decomposition. Now, define a subfunctor XR (B) = {cp: Ra —► MN(B)\tp(ei) =
uf . Then this subfunctor is also representable but now only the centralizer of
the idempotents ui in GLN(C) which is equal to GL(a) acts on this scheme.
Moreover, we claim that Ra is isomorphic to the ring of (7L(a)-equivariant
maps from XR to MN(C). For, Ru is the ring of CLA,(C)-equivariant maps
from XR> N to"MN(C). w: XK N -> Xn(C) is GL^iCJ-equivariantand Xa(C)
is a homogeneous variety; the stabilizer of the point p e A ,C) corresponding
to the elements ui is GL(a). Therefore, the GLA,(C)-equivariant maps from
XR  N to MN(C)  coincide with the C7L(a)-equivariant maps from the fiber
co~l(p) = XR   to MN(C), finishing the proof of our claim. Further, if AbR   is
the coordinate ring of A*_ then GL(a) acts on it and Ra = (AbR®MN(C))GL{a)
and this isomorphism is compatible with the block decomposition.

Let us return to the case of interest to us. Let CQ be the path algebra
of the opposite quiver (i.e. the quiver obtained by reversing the orientation
of all the arrows of Q). Then we can think of R(Q,a) as the variety of
A = y^Q(/)-dimensional representations of CQ   in block form. Consider the
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590 LIEVEN LE BRUYN AND CLAUDIO PROCESI

algebra TQ obtained from CQ by adding traces, imposing the relations com-
ing from Cayley-Hamilton polynomials for A by A matrices and then impos-
ing the relations Tr(c() = u¡ where e¡ is the idempotent corresponding to
vertex i. Then R(Q,a) is exactly the fiber to~ (p) considered above. There-
fore, TQ° is the ring of C7L(a)-equivariant maps from R(Q,a) to MN(C)
and interpreting further the results mentioned above we may say:

(i) The ring of C7L(a)-invariants on R(Q,a) (and hence the coordinate ring
of the quotient variety) is generated by the traces of oriented cycles in the
quiver. The bound A on the length of cycles required to generate comes from
the Razmyslov result [Fo].

(ii) Given two vertices i,j the 6\L(a)-equivariant maps from R(Q,a) to
Hom(C ,C ) are generated as a module over the invariants by the paths
starting from i and ending in j .

(Hi) All relations among the previously defined invariants and covariants can
be deduced from the Cayley-Hamilton polynomials for A by A matrices.

4. The stratification

In this section we will give a concrete description of Luna's general strati-
fication result for quotient varieties in the special case of the quotient variety
V(Q,a) = R(Q,a)/GL(a). The points ¿; G V(Q,a) are in one-to-one cor-
respondence with the isomorphism classes of semisimple representations of Q
of dimension vector a.   Let  V, be a semisimple representation in the fiber
n~ (£). Then we can decompose V( in its simple components

v^ = w^@.--®w®ek

where Wi is a simple representation of the quiver Q of dimension vector ßi
which occurs in V with multiplicity e¡. We will say that ¿; is then a point of
representation type x = (ex,ßx; ... ;ek,ßk). Note that we will give in the next
section a purely combinatorial method to describe all possible representation
types. Further, with V(Q,a)r we will denote the set of all points ¿; of V(Q,a)
of representation type f (¿;) = x.

Theorem 2. {V(Q,a)T:x a representation type} is a finite stratification of the
quotient variety V(Q, a) into locally closed irreducible smooth subvarieties.

Proof. In view of Luna's result mentioned in §2 we have to verify that the
representation type determines the stabilizer subgroup up to conjugation. So,
let Ç be a point of representation type x = (ex ,/?, ; ... ;ek ,ßk) where ßi =
(blX,..., bj e N" and we denote bi = £"=1 btj. As above, let V = 0 wfe'
be a semisimple representation lying in the fiber n (<";). Now, we can choose
a basis of ©/€Q C"(/) in the following way: the first exbx vectors give a basis
of the simple components of type Wx , the next e2b2 vectors give a basis for
the simple components of type W2 and so on.
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In this basis, the subring of MN(C) where A = *Ca(/) generated by the
representation V is

(Mbl{C)®Iei \
\    0
o'-.

V ' Mbk(C)®Iek)
The stabilizer subgroup GL(a)v is easily seen to be the group of units of the
centralizer of this ring which is

(MeSC®hf \'*. o
0 '.

V '   Mek(C®Ih)j
whence GL(a)v = GLe (C) x • • ■ x GLe (C) which is embedded in GL(a) (with
respect to the particular choice of basis) as

(GLefC®Ibf \•.   0

o'\
V '   GLek(C®Ibk).)

Now, it is fairly easy to see that the conjugacy class of GL(a)v depends only
on the representation type x, finishing the proof.

Further, one can verify that a stabilizer subgroup GL(a)x, corresponding to
a representation type x is conjugated to a subgroup of the stabilizer subgroup
GL(a)r corresponding to representation type x if and only if x is a successor
of x for the following order relation:

Two representation types

x = (ex,ax; ... ;ek,ak)   and    x = (e'x,a\; ... ;e'k,a'k,)

are said to be direct successors t < x   iff
(1) k' = k + 1 and for all but one 1 < i < k we have (e^af = (efa'f

for precisely one j and for the remaining i we have corresponding to it
(ei, a] ; e,, a'j where a¡ = a] + a'm , or

(2) k! = k - 1 and for all but one I < i < k' we have (efa'f = (e., a.)
for precisely one j and for the remaining i we have corresponding to it
(el,af,em,a\) where e, + em=e\.

Two types x and x are said to be successors x <c x if there exist types
Tj, ... , t/ such that t = t, < ■■■ <x¡ = x . Combining this with Luna's result
mentioned in §2 we get

Theorem 3. The stratum V(Q,a)T, lies in the closure of the stratum V(Q,a)r
if and only i/r«:'.

Therefore, Luna's stratification of the quotient variety V(Q,a) can be de-
scribed completely by representation theoretic features. The remaining problem
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592 LIEVEN LE BRUYN AND CLAUDIO PROCESI

of determining which representation types can occur, which comes down to the
description of the dimension vectors of simple representations, will be solved
in the next section.

5. The simple representations

A full subquiver Q' of Q is said to be strongly connected if and only if each
couple from its vertexset belongs to an oriented cycle. It is clear that we can
divide Q into maximal strongly connected components, say Gx, ... ,Gk . The
direction of all arrows between elements of Gi and elements of G is the same
by the maximality condition and hence can be used to define an orientation
between G; and G . The strongly connected component quiver, SC(Q) of
the quiver Q, has as its vertices the maximal strongly connected components
and there is an arrow from G; to G if and only if there is an arrow in the
quiver Q from an element of G( to an element of G . Remark that SC(Q)
is always a connected quiver without oriented cycles.

It is easy to deduce necessary conditions on the dimension vectors of sim-
ple representations. Let V e R(Q,a) be a simple representation. Then we
first claim that the support of a is a strongly connected subquiver. Assume
otherwise; then we can consider the strongly connected quiver .SC(supp(a)) of
the support and consider a sink in it, say H. Then we can construct a proper
subrepresentation W of V by

(1) For / G H0 let W(i) = V(i) and W(i) = 0 otherwise.
(2) For tp e Hx let W(<p) = V(cp) and W(<p) = 0 otherwise.
In order to state the second necessary condition, let us recall some facts about

the Ringel bilinear form R(-, -) on Z" which is defined by

R(a¡,aJ) = Su-r¡j

where  r    is the number of directed arrows from vertex  i to vertex j andij
ai = (ôr) are the standard basis vectors for Z". If K e R(Q,y¡) then we
have

R(yx, y2) = dimcHomiF, , Vf) - dimc Ext'(P" , Vf).
We now claim that for V a simple representation of dimension vector a we
have R(a,at) < 0 and R(a¡,a) < 0 for all \ < i < n. For, R(ai,a) =
a(i) - 'C/-,, rijaU) so if R(<*j,ot) > 0 then the natural morphism

0   V(<p): V(i) ̂   0   V(j)<t>: i->j <t>: i—j
has a nontrivial kernel say K which determines a proper subrepresentation W
of V by W(i) = K, W(j) = 0 for ; ^¿ i and W(<p) = 0 for all cf> e Qx.
Similarly, if R(a,af = a(i) - *C,_, rjta(j) > 0 then the image of the natural
morphism

0 (0):    0   V(j)^V(i)
4>: j-*i <j>: j-*i
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is a proper subspace of V(i). Therefore, we have a proper subrepresentation
IF of F by W(i) = Im(© V(<p)), W(j) = V(j) if ; / i and rV(<f>) = V(<f>)
for all <¡>eQx.

These conditions are however not sufficient to imply that a is the dimension
vector of a simple representation. For take the extended Dynkin diagram An
with the cyclic orientation. Then a = a • (I, ... ,1) satisfies the conditions
for all a e N - 0. However, it is well known that the only nontrivial simple
representation has dimension vector ( 1, ... , 1 ). Nevertheless, we will now
show that these are the only exceptions.

Theorem 4. a G N" is the dimension vector of a simple representation of the
quiver Q if and only if either supp(a) is the extended Dynkin diagram An and
a\ supp(a) = ( 1, ... , 1) or supp(a) is a noncyclic strongly connected subquiver
and B(a, af < 0, R(a¡, a) < 0 for all l<i<n

The proof uses double induction both on the number n of vertices in the
quiver Q and on A = ^2a(i). First, we need some extra (nonstandard) termi-
nology: we call a vertex i a focus (resp. a prism) iff there is a unique 4> e Qx
such that t(<p) = i (resp. h(<p) = i). A vertex / is said to be large iff a(i) is
maximal among the {a(j): 1 < j < n} . Further, we call a vertex / good if and
only if i is large and it has no large direct successor which is a prism or a large
direct predecessor which is a focus.

Lemma \. If Q is strongly connected and not the Dynkin diagram An, then
there does not exist a cycle of prism (resp. focus) vertices.
Proof. Suppose there is a cycle of prisms (/,,..., if). Then for each I < j < k
the unique arrow coming into i. belongs to the cycle. However, Q itself is not
a cycle so there is at least one extra vertex i. But, there is no path from i to
any of the /   contradicting strong connectness of Q.

Using this lemma we can find either a good vertex or a large prism i which
has no large prism direct successors. If we are in the second case, then the
unique predecessor j of i has to be a large focus and we can apply a shrinking
process:

Lemma 2. If we have a prism vertex i with unique predecessor a focus vertex j
and a(i) = a(j) then a is the dimension vector of a simple representation of
Q if and only if a = (a(l), ... ,a(i - l),a(i + 1), ... ,a(n)) e N"_1 is the
dimension vector of a simple representation of the quiver Q' obtained from Q
by identifying the vertices i and j
Proof. If <p is the unique arrow from j to i and if F is a simple representation
with dimension vector a then it is easy to see that V(tp) is an isomorphism,
so we can identify V(i) with V(j) and obtain a simple representation of Q'.

Conversely, if V' is a simple representation of Q1, then we can form a
representation V of Q such that V'(k) = V(k) for all k f=- i and V(i) =
V'U) > V{.<!>) - IV'(j) anc* a^ otner morphisms are the ones from V'. Then it
is easy to check that V is indeed a simple representation.
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The foregoing lemma finishes the proof of Theorem 4 in case we do not have
a good vertex by induction on the number of vertices (note that the Ringel form
condition is preserved in passing from Q to Q' by the fact that a(i) = a(j)).
Therefore, we are left to consider the case in which there exists a good vertex
/. If a(i) = 1 then for all j e supp(a) we have a(j) = 1 . Then, if we put for
all V(tp) = Ic we get a simple representaton V because supp(a) is supposed
to be strongly connected.

If a(i) > 1 then we replace the dimension vector a by a where a (j) = a(j)
for all j # i and a'(i) = a(i) = 1 . Clearly supp(a') = supp(a) so it is strongly
connected and we claim that still R(a ', a.) < 0 and R(a,a) < 0 for all
1 < J < n . The only possible vertices j where things might go wrong are direct
predecessors and direct successors of i. Suppose for one of them R(a-, a) > 0.
Then a (j) > J2.^krjka'(k) > a (i) whence a (j) = a(j) = a(i) whence j
must be a large vertex and a focus with end point i, contradicting the goodness
of vertex /.

So, by induction on A we may assume that there exists a simple represen-
tation of the quiver Q of dimension vector a . Take such a representation
V' g R(Q,a). Then since R(a ', af < 0 and R(a¡,a) < 0 we know that
Ext'(F' ,Sf / 0 / Ext (S¡, V1) where S¡ is the trivial simple representation
in vertex i. Now, look at the space of all representations V e R(Q,a) hav-
ing the property that V\a = V'. This is an affine space Xv, of dimension
Yli^i rJia'(J) + Z)/_; r,ja'(J) ■ Loosely speaking, Xv, consists of those repre-
sentations which are worse than V' ® S¡. We can choose the representation V'
in such a way that Xv, contains representations with a trace of an oriented cy-
cle different from the corresponding trace of V' © S¡. This can be done because
being simple is an open condition in R(Q,a). Therefore, the Jordan-Holder
factors of these representations cannot be V' and 5( (see §3) but still they
degenerate to V' © A( ; hence by the stratification result they must be simple,
finishing the proof of Theorem 4.

Recall that a representation F of a quiver Q is called a Schur representation
if its endomorphism ring is C ; the dimension vector of a Schur representation
is called a Schur root. V. Kac conjectured a purely combinatorial description of
these Schur roots in [Ka2]. He defines a vector a e N" to be indecomposable
if a cannot be written as a sum ß + y with R(ß ,y) > 0 and R(y,ß) > 0.
He then conjectured that Schur roots and indecomposable vectors coincide. In
general, this conjecture is false, see [LB]. However, it is clear from [KR, Lemma
3.2] and Theorem 4 that the Schur roots which are dimension vectors of simple
representations are indeed indecomposable.

6. The local structure

In this section we will apply Luna's étale slice theorem (see §2) in order to
study the étale local structure of the quotient variety V(Q, a) = R(Q, a)/GL(a).
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Suppose that £ e V(Q, a) is of representation type x = (ex,ßx; ... ;ek,ßk).
We will construct a new quiver Qx in the following way:   (Qf0 = {1, ••• ,k}
and there are precisely ^  - R(ßi,ßf directed arrows from / to j. Consider

kthe dimension vector ar = (ex ; ... ; ef) e N  . Then we will prove the following
result

Theorem 5. If ¡A, e V(Q,a) is of representation type x, then (with notations
as above) there is an étale morphism from a neighborhood of the origin in the
quotient variety V(Qr,af to a neighborhood of £, in V(Q,a).

In view of the Luna slice theorem, it suffices to show that the normal space to
the orbit of a semisimple representation V corresponding to ¿; is isomorphic as
a GL(a)^-representation to the representation space R(Qx,af (note that we
have shown in §4 that the stabilizer subgroup in V is isomorphic to GL(af).
We know that the tangentspace to the GL(a)-orbit in V is equal to the image
of the natural linear map

Lie(GL(a))-+ic(ß,a)

sending an element y e Lie(GL(a)) to the representation determined by the
commutator [y, V] = y • V - V ■ y , that is each V(<p) can be extended with
zero blocks to an A by A matrix which we call W(tp) and then [y, V](tp) =
[y, W(4>)] e MN(C). The kernel of this map is clearly the centralizer of the
subalgebra of MN(C) generated by the representation V (i.e. by the matrices
W((p) mentioned above).

Let us choose a basis of C as in the proof of Theorem 2. Then this cen-
tralizer is

ÍMe¡(C®Ibf 0 \

V 0 'Mek(C®Ibk)¡
and therefore we obtain an exact sequence of GL(a)v-modules

0 _> Cv -» Lie(GL(a)) - Ty(GL(a)v) - 0

where the action of GL(a)y is of course by conjugation in MN(C). Note also
that Lie(GL(a)) has to be viewed as a subalgebra of MN(C) depending on
the particular choice of basis (which complicates the computations somewhat).
A typical element y e GL(a)v = GL(af = n*=1 GLe¡(C) will be written as
(yx > • • • > yk ) and tne actions will be expressed in terms of the y. 's. It is easy to
see that Cv consists of

1 cr-dimensional representation with y,    • y, -action,
2    • — 11 e2 -dimensional representation with y2   • y2-action,

2 — 11 ek -dimensional representation with yk   • yk-action.
If we recall our notation that  ßt = (biX, ... ,b¡ )  then one can verify that
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Lie(GL(a)) consists of
Yf]=\ bXj c,-dimensional representations with y"~  ■ y,-action,
Yfj=\ b2j c2-dimensional representations with y2_1 • y2-action,

Yfj=\ bkj ek -dimensional representations with yfl ■ yk -action.
Moreover, there are

YfJ=\ bXjb2j ex x c2-dimensional representations with y~~  • y2-action,

¿~2"j=i bkjbk_XJ ek x ek_x -dimensional representations with yk ■ y^j-action.
From these descriptions and the exact sequence it is then easy to give a full
description of Tv(GL(a)V) as a GL(a)y-module. Next, the normal space to
the orbit and its GL(a) K-action is determined by the exact sequence of GL(a) v-
modules

0^Tv(GL(a)V)-+R(Q,a)-+Nv^0.
In order to complete the proof we have to give a detailed description of the
action of GL(a)v on the representation space R(Q,a). One can verify that
the part of R(Q,a) corresponding to a directed arrow <j> from vertex i to
vertex j consists of

bXlbXj ex x c,-dimensional representations with y~  • y,-action,
bXlb2j ex x e2-dimensional representations with y"1 • y2-action,

bkibkj ek x ek-dimensional representations with yfl ■ yk-action.
Repeating this for every arrow tf> e Qx we get a full description of the GL(a)v-
module structure of R(Q,a) and hence using the exact sequence and the de-
scription obtained above of Tv(GL(a)V) we get the GL(a)^-module structure
of the normalspace Nv . We leave it to the reader to check that this action
coincides with the natural action of GL(c*T) = GL(q)k on the representation
space R(QT,af.

7. Odds and ends

In view of the stratification result (Theorem 2) there is precisely one semisim-
ple representation type x such that the corresponding stratum V(Q,a)x is an
open subvariety of the quotient variety V(Q,a). We call x the generic repre-
sentation type. We will now indicate how it can be determined: given the quiver
Q and the dimension vector a we can consider as before the strongly connected
component quiver 5'C(supp(a)). A simple subrepresentation of a generic repre-
sentation in R(Q, a) must live on one of the sinks of 5C(supp(a)). So, restrict
attention to one of these strongly connected components. Then there is exactly
one maximal dimension vector ß < a living on it such that R(ß,af < 0
and Ä(a( ,ß)<0 for all i. The generic representation type on this strongly
connected component is then easily seen to be

(l,ß;a(ix)-ß(ix),aii;...;a(ij)-ß(ij),aif
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if {/.,...,*'.} are the vertices in the strongly connected component. Having
determined the generic representation type in one of the sinks of the strongly
connected component quiver, we delete this sink from it and repeat the above
procedure until we reach the empty graph. The generic representation type x
will then be the sum of the generic types of the maximal strongly connected
components. So, there is a purely combinatorial procedure to determine the
generic representation type

xg = (ex,yx;... ;e,,y,).

Now, consider the étale local structure in a point of generic representaiton
type. In view of the structure of the strongly connected component quiver
5C(supp(a)) one can verify that the quiver O has no oriented cycles other
than loops occurring in vertices i such that aT (i) = 1 (corresponding to the
nontrivial simples living in the maximal strongly connected components). So,
combining Theorems 1 and 5 we see that the coordinate ring of V(QT ,ax )
is a polynomial ring in as many variables as there are loops in such vertices.
Hence we have proved

Theorem 6. // x   = (c,, y,;...; e¡, y¡) is the generic (semisimple) representation
type, then the quotient variety V(Q,a) has dimension "C,=i(l _ R(y, >}*,)) ■

From the above discussion it follows also that points of generic representation
type are smooth points on V(Q,a). Moreover, in the quivers Qz correspond-
ing to nongeneric representation types there are always oriented cycles. So, if all
dimensions a(i) are sufficiently large, they will lead to extra relations between
the generators of the coordinate ring of V(Qr ,af so it cannot be a polynomial
ring. In view of the étale local structure result this proves

Theorem 7. Except for low dimensional anomalies, the singular locus of the
quotient variety V(Q,a) coincides with the complement of the generic stratum
V(Q,a)Tg.

Let us give an example of an exceptional case: consider the quiver on two
vertices with corresponding Ringel form determined by the matrix

( -'. "O
and consider a dimension vector a = (n , 2) with n > 2 . Then the generic type
is (1 ,(2,2); «-2,(1,0)). Now, consider the nongeneric type x = (1 ,(1,1); 1,
( 1,1 ) ; n - 2, ( 1,0)) Then the quiver Qx has its Ringel form determined by the
matrix

and the corresponding dimension vector is ar = ( 1,1, n - 2), so the coordinate
ring of the quotient variety  V(Qr,af is a polynomial ring in 5 variables (4
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coming from the loops and 1 from the only extra oriented cycle). So, points of
type x are also smooth points of V(Q, a) ; in fact it can be shown that V(Q, a)
is affine 5-space. However, if we replace the dimension vector a by a = (n, 3)
with n > 3 one can show that the singular locus of V(Q,a) coincides with
the complement of the generic stratum.
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