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1 Introduction

The main theorem of this paper is that semisimple varieties of modal algebras

can be characterized by two properties: they are weakly transitive and cyclic.

(The proof offered in [3] contains a fatal mistake.) Both notions are well–

known and interesting in their own right. The notion of weak transitivity

(going back to Wim Blok) generalizes the notion of transitivity in the right

way. Algebraically, it amounts to EDPC. Many results in modal logic do not

depend on transitivity, they only depend on weak transitivity. Examples are

the existence of a deduction theorem for the global frame consequence, finite

equivalentiality, and the existence of many splitting algebras. A variety is

cyclic if every operator possesses (or is included in) a converse. Cyclicity

generalizes the notion of symmetry.

2 Modal Logic

The set of formulae, Fmκ (otherwise referred to as terms over the given set

of variables), is the smallest set such that

1. {pi : i ∈ ω} ⊆ Fmκ

2. ⊥ ∈ Fmκ.

3. If ϕ, χ ∈ Fmκ then ¬ϕ, ϕ ∧ χ ∈ Fmκ.

4. If ϕ ∈ Fmκ and i < κ also �iϕ ∈ Fmκ.

(ϕ ∨ χ) and (ϕ → χ) are abbreviations. A subset L ⊆ Fmκ is a (normal)

modal logic if

1. L contains all tautologies of classical logic.

2. L is closed under substitution.

3. For every i < κ: �i(p0 → p1) → .�ip0 → �ip1 ∈ L
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4. For every i < κ, if ϕ ∈ L then �iϕ ∈ L.

The smallest normal modal logic in κ operators is called Kκ. In what is to

follow we write

�ϕ := ϕ ∧
∧
i<κ

�iϕ(1)

This is only meaningful if κ is finite. This is an example of a compound

modality, where a compound modality is any term δ(p) over one variable

that does not contain ¬ or ⊥. (This is slightly less general than the definition

given in [3], but this is inessential here.) Examples are p ∧ �1(p ∧ �0�2p),

non–examples are �0(p ∧ q) and �1(�1p ∨ �0p). Note that p itself is a

compound modality. (There is a slight and harmless confusion here between

the formula and the modality that it denotes.) We shall denote compound

modalities by �, �, that make them look like modal operators. For if � is a

compound modality, then for any normal modal logic L the following holds:

• L ` �(p → q). → . � p → �q

• If L ` ϕ then L ` �ϕ

So, a compound modality has all properties of a modal operator. We say

that � contains � in L if L ` �p → �p.

The methods we are outlining here also work for polyadic operators. The

generalization to operators of arity > 1 is straightforward. Basically, it is

required that if O is an n–ary operator, then the derived unary operators

(2) Oi(p) := O(>, . . . ,>, p, . . . ,>)

(where p is placed in ith argument position) are normal operators. Now

define

(3) [O]p :=
∧
i<n

Oi(p)
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Then, rather than looking at the signature 〈Ok : k < κ〉, we look in stead at

the signature 〈Ok
n(k) : k < κ〉, where n(k) is the arity of Ok. This reduces the

polyadic signature to a monadic signature.

A modal algebra is an algebra 〈A, 1,−,∩, 〈�i : i < κ〉〉 such that

〈A, 1,−,∩〉 is a boolean algebra and for every i < κ: �i1 = 1 and �i(a∩b) =

�ia ∩ �ib. An example is the algebra obtained by Fmκ /ΘL, where ϕ ΘL χ

iff L ` ϕ ↔ χ. It is more convenient to regard a modal algebra as a pair

〈A, 〈�i : i < κ〉〉, where A = 〈A, 1,−,∩〉 is the underlying boolean algebra.

A filter is called open if from a ∈ F follows �ia ∈ F . The map γ 7→ 1/γ is a

lattice isomorphism between congruences and open filters. If κ is finite, put

(4) �a := a ∩
⋂
i<κ

�ia

Furthermore, for a polymodal algebra A, let A◦ := 〈A, �〉. This is a monomodal

algebra. For a variety V we put V◦ := {A◦ : A ∈ V}. It is not hard to show

the following.

Lemma 1 Con A = Con A◦.

This is because a congruence of A is a congruence of A◦ and conversely. It

does not hold, however, that every subalgebra of A◦ is a subalgebra of A. So,

V◦ is not a variety, but SV◦ is, because (−)◦ commutes with products. The

following is reformulation of a theorem found in [4].

Lemma 2 (Rautenberg) A is subdirectly irreducible iff A◦ is subdirectly

irreducible iff there is a c < 1 such that for every a < 1 there is an n ∈ ω

such that

(5) �na ≤ c

(Notice that �a ≤ a, by definition.) c is any element that generates the

unique smallest filter 6= {1}. In a simple algebra, this filter is A itself.

Corollary 3 A is simple iff A◦ is simple iff for each a ∈ A with a < 1 there

is a n ∈ ω such that �na = 0.
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A Kripke–frame is a structure F = 〈F, 〈�i : i < κ〉〉 where �i ⊆ F × F

for every i < κ. β : Var → ℘(F ) is a valuation. 〈F, β, x〉 � ϕ is defined

inductively.

(6) 〈F, β, x〉 � �iϕ ⇔ for all y �i x : 〈F, β, y〉 � ϕ

Write 〈F, β〉 � ϕ if for all x: 〈F, β, x〉 � ϕ.

The relations for compound modalities are defined as follows. The rela-

tion corresponding to p itself is the identity; furthermore, the relation corre-

sponding to �iχ(p) is R(�i) ◦ R(χ). Finally, the relation corresponding to

χ(p) ∧ χ′(p) is R(χ) ∪ R(χ′). In particular, the relation corresponding to �

is

(7) R(�) = ∆ ∪
⋃
i<κ

R(�i)

Hence, R(�) is always reflexive (even in the monomodal case). It is easy to

see that for a compound modality �:

(8) 〈F, β, x〉 � �χ ⇔ for all y such that x R(�) y: 〈F, β, y〉 � χ

3 Weakly Transitive Logics

Consider the rules MP: ϕ, ϕ → χ/χ and Necessitation: ϕ/�iϕ. Let L be a

modal logic.

1. The local consequence relation of L. ∆ `L ϕ iff ϕ can be proved

from ∆ ∪ L using only Modus Ponens.

2. The global consequence relation of L. ∆ 
L ϕ iff ϕ can be derived

from ∆ ∪ L using Modus Ponens and Necessitation.

∆ 
L ϕ iff for all modal algebras A such that A � L and all valuations β: if

β(δ) = 1 for all δ ∈ ∆ then β(ϕ) = 1. A monomodal logic L is transitive if

it contains �p → ��p. Weak transitivity generalizes this notion as follows.
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Definition 4 L is weakly transitive if there is a compound modality contain-

ing all �i in L such that �p → � � p.

Proposition 5 A polymodal logic L is weakly transitive iff there is an n such

that L ` �np → �n+1p.

(Recall that � is reflexive!) Notice that a variety V of polymodal algebras of

finite type is weakly transitive iff there is an n such that

(9) V � �nx = �n+1x


L has a deduction theorem iff there is a formula τ(p, q) such that χ 
L ϕ

iff 
L τ(χ, ϕ). In general, one can choose τ(p, q) := �(p → q) for some

compound modality �. Hence L is weakly transitive iff 
L has a deduction

theorem. A logic is equivalential if there is a set ∆(p, q) of terms in two

variables satisfying

➀ `L ∆(p, p)

➁ ∆(p, q) `L ∆(q, p)

➂ ∆(p, q), ∆(q, r) `L ∆(p, r)

➃ p, ∆(p, q) `L q

➄
⋃

i<Ω(f) ∆(pi, qi) `L ∆(f(~p), f(~q))

L is finitely equivalential if ∆ can be chosen finite. Every modal logic

is equivalential via ∆(p, q) := {p ↔ q}. K is not finitely eqivalential. The

following is from [1].

Theorem 6 (Blok, Pigozzi) For a modal logic L the following are equiv-

alent:

• L is weakly transitive.

• 
L has a deduction theorem.
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• `L is finitely equivalential.

• Alg L has equationally definable principal congruences.

• Alg L has definable principal open filters.

Given a variety V, an algebra A is called finitely presentable if there is a

finite set E of equations such that

FrV(var(V ))/Θ(E) ∼= A

where Θ(E) is the congruence generated by E. (In particular, finite algebras

are finitely presentable.) A is splitting if there is a logic L such that for

every logic L′ ⊇ Th V: either L′ ⊆ Th A or L′ ⊇ L, but not both. The

following is from [2].

Theorem 7 Suppose that V is weakly transitive. Then every subdirectly ir-

reducible A which is finitely presentable is splitting.

4 Cyclic Varieties

Let � be a modal operator. � is called a conjugate of � in L if p → ��p ∈
L. Intuitively, this means that for every x in a Kripke–frame, if x � y then

y J x. V is called cyclic if every modal operator has a conjugate.

Proposition 8 The following are equivalent.

➀ Every compound modality has a conjugate.

➁ Every basic modality has a conjugate.

➂ � has a conjugate.

It follows that V is cyclic iff V◦ is cyclic. Obviously, V is cyclic iff p → �♦np

for some n. (In which case V is called n–cyclic.)
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Proposition 9 If V is cyclic then every finite subdirectly irreducible algebra

is simple.

This need not hold for infinite algebras. Take F := 〈Z, �〉, where x � y iff

|x − y| = 1. Then the algebra Z of finite and cofinite subsets is subdirectly

irreducible. The subset of cofinite sets forms an open filter. It is not hard to

see that Con Z ∼= 3. The variety generated by Z is cyclic.

Theorem 10 Suppose V is weakly transitive and cyclic. Then every subdi-

rectly irreducible algebra is simple.

5 Discriminator Varieties

A discriminator term for A is a term t(x, y, z) such that for all elements

a, b, c: t(a, b, c) = c if a = b and a otherwise. An algebra with a discriminator

term is simple. A variety is discriminator if it is generated from algebras

with the same discriminator term. Put u(a) := −t(1, a, 0). Then u(a) = 1 if

a = 1 and u(a) = 0 else.

Proposition 11 A modal algebra has a discriminator term if there is a term

such u that u(a) = 0 iff a < 1, and u(1) = 1.

Such a u is often called a unary discriminator. Let V be m–transitive

and cyclic. Then τ(p) := �mp is a (unary) discriminator term for every

subdirectly irreducible member. Conversely, suppose that V is discriminator.

Then if V is not weakly transitive, for every n there is An and an < 1 such

that �nan > �n+1an. Put n the modal degree of u. Then u(a) ↔ u(1) > 0.

Contradiction.

Theorem 12 (κ < ω.) V is discriminator iff it is weakly transitive and

cyclic.

The condition κ < ω is essential. For suppose that κ is infinite. Then let

Hi = 〈H, 〈�i : i < κ〉〉 be the following algebra. H is the 4–element boolean
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algebra. �j is the diagonal if j 6= i and the full relation otherwise. Now, let P

be an ultraproduct of the Hi over a nonprincipal ultrafilter. Then ~x�i~y iff for

a set F of U : for all j ∈ F : ~x(j)�i~y(j). This is easily seen to be equivalent to

~x = ~y modulo U . Hence, P is directly decomposable, but the Hi are simple.

In fact, it is isomorphic to the four element algebra in which x = �ix for all x.

Now, the variety generated by the Hi is cyclic and weakly transitive. But it

is not a discriminator variety, as the example shows. By Jónsson’s theorem,

the subdirectly irreducible algebras are in HS({Hi : i < κ} ∪ {P}). They

all have at most four elements. Every two element algebra is simple, hence

there is only one nonsimple algebra in this class: P, which is not subdirectly

irreducible. Therefore the variety is semisimple.

6 Semisimple Varieties of Finite Type

A variety is semisimple if every subdirectly irreducible member is simple.

Theorem 13 (κ < ω.) The following are equivalent:

➀ V is semisimple.

➁ V is discriminator.

➂ V is weakly transitive and cyclic.

We have seen ➁ ⇔ ➂. Also ➁ ⇒ ➀ is generally true. ➂ ⇒ ➀ is Theorem 10.

The really hard part is to show that ➀ implies weak transitivity. For suppose

the variety n–transitive but not cyclic. Then there is a s.i. A and a such that

a � ��na. So, �na 6= 1. Its complement −a therefore generates an open

filter F = {x : x ≥ �n − a} 6= A. Contradiction.

Now we shall show that for modal algebras of finite type semisimplicity

implies weakly transitivity. The problem can be simplified at the outset by

looking at V◦ (or SV◦ for that matter). So, from now on we assume that V is

a variety of monomodal algebras satisfying x ≤ �x. Then V is n–transitive
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iff V � �n+1x = �nx. In what is to follow we assume that V is a nontrivial

semisimple variety of modal algebras of finite type.

Let A be an algebra in V such that for a nonzero element a ∈ A we have

�na < 1 for every n ∈ ω. Such an algebra obviously exists: for instance

the free algebra FrV(x) on one generator x must be such, as otherwise V

would satisfy �nx = 1 for some n ∈ ω, and therefore also �n0 = 1, and

thus 0 = 1, forcing V to be trivial, contrary to the initial assumption. Put

α := CgA(a, 0). By assumption on A, 0 < α < 1. As α is principal, there

must be a congruence β with β ≺ α, that is, β is a lower cover of α.

Lemma 14 For every congruence β with β ≺ α there is an m ∈ ω such that

(i) �m+1a ≡β �ma, and

(ii) −�ma ≡β �− �ma.

Proof. Consider the set Γ := {θ ∈ Con A : θ ≥ β, θ 6≥ α}. Observe that if

Γ = {β}, then A/β is si but not simple. So there is a θ ∈ Γ such that θ 6= β.

By congruence distributivity, γ :=
∨

Γ is a member of Γ. Therefore, A/γ

is si hence simple. From this and congruence permutability it follows that

α◦γ = 1. Thus, (0, 1) ∈ α◦γ, and there must be a c ∈ A with (0, c) ∈ α and

(c, 1) ∈ γ; hence also (−c, 0) ∈ γ. Now, (0, c) ∈ α iff for some m ∈ ω we have

�ma ≥ c. Thus, −�ma ≤ −c and therefore (−�ma, 0) ∈ γ. We can then

assume c = �ma. By definition we have α ∩ γ = β, i.e., 0/α ∩ 0/γ = 0/β.

Now, to prove (i), take �m+1a∩−�ma. This belongs to 0/α∩0/γ = 0/β and

thus we obtain �m+1a ≡β �ma. Then, for (ii), take �ma ∩ � − �ma. This

again belongs to 0/α ∩ 0/γ = 0/β; therefore −�ma ≡β �− �ma. a

Now, consider the following condition on V.

(?) For every k ∈ ω there are r, ` ∈ ω such that V � x ≤ �`�k�rx.

Notice that (?) is a weakened form of cyclicity.

Lemma 15 All p–cyclic varieties of modal algebras satisfy (?) for r = kp

and ` = 0.
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Proof. p–cyclic varieties satisfy x ≤ ��px. We will show that this forces

x ≤ �k�kpx, for every k ∈ ω. For k = 0, 1 this is trivial. Suppose it holds

for k.

�k+1�(k+1)px = �(�k�kp(�px))(10)

= �(�k�kp(�px))

≥ ��px

≥ x

Thus, x ≤ �0�k+1�(k+1)px, as required. a
Suppose now that V falsifies (?). Then there is a k ∈ ω such that for all

r, ` ∈ ω our variety V falsifies x ≤ �`�k�rx. Let K be the smallest such k;

note that for all k′ ≥ K the variety V also falsifies x ≤ �`�k′
�rx.

In FrV(x), the algebra freely generated by x, we have x 6≤ �`�K�rx, for

all r, ` ∈ ω. For each r ∈ ω define θr := CgFrV(x)(�K�rx, 0). Since �K�rx ≤
�K�r+1x, the family of congruences {θr : r ∈ ω} forms an increasing chain.

Put α := CgFrV(x)(x, 0) and Θ :=
∨

r∈ω θr.

Lemma 16 0 < Θ < α.

Proof. If Θ = 0, then, since the reasoning takes place in the one–generated

free algebra in V, we get that V � �K�rx = 0, for all r ∈ ω. In particular,

substituting 1 for x we obtain V � 1 = �K�r1 = 0. This means V is trivial,

contradicting the initial assumptions.

That Θ ≤ α is clear from the definitions. Since α is principal, Θ = α iff

there is a finite set S ⊆ {θr : r ∈ ω} with
∨

S = α. However, as {θr : r ∈ ω}
is an increasing chain there is an r ∈ ω such that θr = α. Now, both θr and

α are principal, and thus θr = α iff there is an ` ∈ ω with x ≤ �`�K�rx. As

we reason in the free algebra, it means that V satisfies x ≤ �`�K�rx. This

contradicts our assumption that V falsifies (?). a

Lemma 17 All semisimple varieties of modal algebras satisfy (?).
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Proof. Since our fixed variety V has been chosen arbitrarily, it suffices to

prove that it satisfies (?). We proceed by reductio. Suppose V falsifies (?)

and let K be the smallest number witnessing that, precisely as in Lemma 16.

In view of that lemma, we can choose a congruence β such that Θ ≤ β ≺ α.

Then, by Lemma 14, we obtain �mx ≡β ��mx, for some m ∈ ω. Since

θm ≤ Θ ≤ β, this gives us �mx ≡β �K�mx ≡β 0. Therefore, x ≡β 0 and

thus β ≥ α contradicting the choice of β. a
From now on we assume that V satisfies (?). Define a function r : ω → ω,

by taking r(i) to be the smallest number such that there exists an ` ∈ ω with

V � �`�i�r(i)x ≤ x.

Lemma 18 The function r is nondecreasing.

Proof. Suppose the contrary. Then, for a certain i ∈ ω, we have r(i) >

r(i + 1). By definition of r there is an ` ∈ ω such that

(11) x ≤ �`�i+1�r(i+1)x ≤ �`�i�r(i+1)x

This is a contradiction, since r(i) is by definition the smallest number for

which a suitable ` exists, yet r(i + 1) is strictly smaller. a
Now let us define another function ` : ω → ω by taking `(i) to be the

smallest number such that V � �`(i)�i�r(i)x ≤ x. Thus, ` depends on i via

r(i).

Lemma 19 Let V be semisimple. If V is not weakly transitive then for each

i ∈ ω there is a simple algebra Ai in V and an element ai ∈ Ai such that

�r(i)ai < 1 but �r(i)+1ai = 1.

Proof. Suppose otherwise. Then there is an i ∈ ω such that for each

simple algebra A ∈ V and each element a ∈ A we have: �r(i)+1a = 1 implies

�r(i)a = 1. By Corollary 3 this gives �r(i)a = 1 if a > 0. This in turn forces

V to satisfy �n+1x = �nx for n = r(i), contrary to the assumption. a
Now suppose V is not weakly transitive and let Ai and ai ∈ Ai be as in

the lemma above, for each i ∈ ω. Then put bi := −�r(i)ai and fix a k ∈ ω.
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Lemma 20 For every i ≥ k we have: �kbi < 1 and �`(k)+r(k)+1 − �kbi = 1.

Proof. To prove the first statement of the claim, suppose the contrary, and

note that �kbi = 1 forces �ibi = 1, since i ≥ k. By the definition of bi, we

have �i −�r(i)ai = 1, thus �i�r(i)ai = 0. Therefore, �`�i�r(i)ai = 0, for any

` ∈ ω. This falsifies �`(i)�i�r(i)ai ≥ ai.

For the second part, applying the definition of bi we get

�`(k)+r(k)+1 − �kbi = �`(k)+r(k)+1 − �k − �r(i)ai(12)

= �`(k)+r(k)+1�k�r(i)ai

= �`(k)+r(k)+1�k�r(k)(�r(i)−r(k)ai)

Then, from the inequality �`(k)�k�r(k)x ≥ x, which holds in V, we get

�`(k)+r(k)+1�k�r(k)x ≥ �r(k)+1x, by applying � repeatedly r(k) + 1 times

to both sides. Now a substitution yields:

(13) �`(k)+r(k)+1�k�r(k)(�r(i)−r(k)ai) ≥ �r(k)+1(�r(i)−r(k)ai)

Rewriting both sides back, we obtain

(14) �`(k)+r(k)+1�k�r(i)ai ≥ �r(i)+1ai = 1

This is as required. a
Now take the ultraproduct B :=

∏
i∈ω Ai/U , over a nonprincipal ultrafil-

ter U on ω. Put b := 〈bi : i ∈ ω〉/U .

Lemma 21 For every k ∈ ω we have �kb < 1 and �`(k)+r(k)+1 − �kb = 1.

Proof. For any fixed k ∈ ω, it follows by Lemma 20 that the i for which

�kbi < 1 and �`(k)+r(k)+1 − �kbi = 1 form a cofinite set; namely of all these

with i ≥ k. The claim then follows by properties of ultraproducts. a

Lemma 22 If V satisfies (?) it is weakly transitive.

Proof. We will show that assuming otherwise leads to a contradiction.

Suppose V falsifies �n+1x = �nx for all n ∈ ω. Given that, the preceding
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three lemmas show how to produce an algebra B ∈ V and an element b ∈ B

which for all k ∈ ω satisfies �kb < 1 and �`(k)+r(k)+1−�kb = 1. Then, putting

α := CgB(b, 0), and taking β as in Lemma 14, we get

(15) −�mb ≡β �− �mb ≡β �`(m)+r(m)+1 − �mb = 1

Thus, �mb ≡β 0 and therefore b ≡β 0. It follows that β ≥ α, contradicting

the choice of β as a lower cover of α. a
By Lemma 17 all semisimple varieties satisfy (?).

Theorem 23 (κ < ω.) All semisimple varieties of modal algebras are weakly

transitive. a

It follows that semisimple varieties have a deduction theorem, that every

finitely presentable subdirectly irreducible algebra is splitting. This has use-

ful applications in tense logic. By definition, tense logics are cyclic. K4.2t

also is 2–transitive. It follows that its variety is semisimple. A fortiori,

tense logics of linear transitive structures define semisimple varieties. By

contrast, the variety of K4t–algebras is not weakly transitive and therefore

not semisimple.

Let us note some corollary of our result.

Corollary 24 A semisimple variety V of modal algebras (BAOs) of finite

type is canonical iff V is closed under canonical extensions of its simple mem-

bers.

Proof. V is discriminator, by our result. Thus, every algebra is V is a

Boolean product of simple algebras. The canonical extension of a Boolean

product is (isomorphic to) the product of canonical extensions of the factors

(Gehrke). Hence, if canonical extensions of simple members of V belong to

V, the same holds for every algebra in V. �

This is however also a special case of the following

Theorem 25 Let V be weakly transitive. Then V is canonical iff V is closed

under canonical extensions of its subdirectly irreducible members.
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Proof. Every algebra in V is a subdirect product of si algebras. Every

product can be rendered as a Boolean product of ultraproducts of the factors

of the original product (folklore, or maybe Jonsson). Thus, every algebra in V

is a Boolean product of ultraproducts of si algebras. By EDPC, ultraproducts

of si algebras are si themselves. So, their canonical extensions are in V. Then

by Gehrke’s theorem, and the fact that canonical extensions commute with

subalgebras, the conclusion follows. �

7 Conclusion

We have shown that weak transitivity and cyclicity together characterize

semisimplicity. Weak transitivity and cyclicity are important notions in

modal logic, which basically generalize the notions of transitivity and sym-

metry.
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