
Semismooth Support Vector Machines∗

Michael C. Ferris†

Todd S. Munson‡

November 29, 2000

Abstract

The linear support vector machine can be posed as a quadratic pro-

gram in a variety of ways. In this paper, we look at a formulation using

the two-norm for the misclassification error that leads to a positive defi-

nite quadratic program with a single equality constraint when the Wolfe

dual is taken. The quadratic term is a small rank update to a positive def-

inite matrix. We reformulate the optimality conditions as a semismooth

system of equations using the Fischer-Burmeister function and apply a

damped Newton method to solve the resulting problem. The algorithm

is shown to converge from any starting point with a Q-quadratic rate of

convergence. At each iteration, we use the Sherman-Morrison-Woodbury

update formula to solve a single linear system of equations. Significant

computational savings are realized as the inactive variables are identified

and exploited during the solution process. Results for a 60 million variable

problem are presented, demonstrating the effectiveness of the proposed

method on a personal computer.

1 Introduction

The support vector machine is used to construct a (linear or nonlinear) surface
that “optimally” partitions measurements taken from representative subsets of
known populations. The surface is then used to “determine” the origins of
unknown observations. The technique is one example of a supervised learning
process from the machine learning community. We will be considering the case
where we have two populations and want to construct a linear surface. One
example application is in the determination of malignant and benign tumors [6,

∗This work partially supported by NSF grant number CCR-9972372; AFOSR grant number
F49620-01-1-0040; the Mathematical, Information, and Computational Sciences Division sub-
program of the Office of Advanced Scientific Computing, U.S. Department of Energy, under
Contract W-31-109-Eng-38; and Microsoft Corporation.

†Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madi-
son, Wisconsin 53706

‡Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass
Avenue, Argonne, Illinois 60439

1

18, 19], which are the two populations. Several models exist for the calculation
of an optimal partitioning surface. In this paper, we will consider one such
model that leads to a positive definite quadratic program with bounds and a
single equality constraint.

Our main goal in this paper is to present an algorithm for solving the re-
sulting optimization problem that converges from any starting point and, near
a solution, has a quadratic rate of convergence. For this purpose, we present a
semismooth method [4] for solving the optimality conditions for the problem and
prove the necessary results. In particular, we show that for every x, all elements
of the generalized Jacobian are nonsingular, and the sequence produced by the
algorithm contains an accumulation point. We then apply standard theory to
show that the algorithm actually converges to a solution at a Q-quadratic rate.

Other algorithms have been proposed for solving these types of problems,
including an interior-point method in [7] and an active set method in [17]. The
proposed semismooth algorithm solves only linear systems of equations and ex-
ploits an “active” set implicitly defined by the algorithm in the linear algebra
computation. The resulting semismooth code scales well to large sample pop-
ulations. We target sample populations with 1-60 million observations. We
note that 60 million observations corresponds to a random sampling of 100% of
the current population of Britain, 20% of the current population of the United
States, and 1% of the current world population. Therefore, we believe the 60
million observation problem to be a reasonable test problem. To achieve scalabil-
ity, we use the Sherman-Morrison-Woodbury update formula in the calculation
of the direction and use asynchronous I/O to retrieve the observation data from
disk. The resulting code uses a small number of vectors with memory and disk
requirements suitable for a personal computer.

The first section of this paper derives the linear support vector machine
formulation we use for the subsequent analysis and testing. The problem is
posed as a mixed complementarity problem where the mixed components are
equality constraints. Specifically, let L and E be a partition of the indices
{1, 2, . . . , n}, implicitly corresponding to lower bounded and free variables, and
let F : <n → <n be a given function. Let m = card (L) and c = card (E). The
mixed complementarity problem considered is to find an z∗L ∈ <

m and z∗E ∈ <
c

such that

0 ≤ FL(zL, zE) ⊥ zL ≥ 0
FE(zL, zE) = 0,

(1)

where ⊥ is defined componentwise as 0 ≤ a ⊥ b ≥ 0 if and only if a ≥ 0, b ≥ 0,
and ab = 0. This problem is the standard nonlinear complementarity problem
when c = 0 and a square system of nonlinear equations when m = 0. See
[8] for definitions of general mixed complementarity problems and applications.
In this paper we concentrate on mixed complementarity problems that are a
combination of lower bounded variables and free variables. The extension of
the algorithms to cases where the variables are lower and upper bounded is
straightforward and is given in [21].

2

The second section details a damped Newton method for semismooth equa-
tions [4, 21] for solving such complementarity problems. The proposed method
uses the Fischer-Burmeister function [9] to reformulate the complementarity
conditions as a system of semismooth equations. The basic theory for these
methods is given with appropriate citations to the literature. We further prove
that the method converges when applied to our support vector machine formu-
lation. In particular, we demonstrate how to compute the Newton direction
at any arbitrary point using applications of the Sherman-Morrison-Woodbury
update formula [22].

The final section discusses an implementation of the method using out-of-
core computations. We present some results for a large test problem containing
60 million points and compare them with the interior-point method results given
in [7].

2 Linear Support Vector Machine

The linear support vector machine attempts to separate two finite point sets
with a hyperplane such that the separation margin is maximized. Before delving
into the exact problem formulation, we first present the basic notation used
throughout this paper. Consider two populations P+ and P− that have been
sampled, and let P+ ⊆ P+ and P− ⊆ P− denote finite sample sets and P ≡
P+ ∪ P− the entire set of sampled elements. Let m = card (P) denote the size
of the total population for the remainder of this paper. We associate with each
p ∈ P a vector a(p) ∈ <f that measures f features for the particular element.
Furthermore, let A(P) ∈ <m×f denote the matrix formed by the measured
observations for each p ∈ P , and let A+ := A(P+) and A− := A(P−).

Assuming the two point sets are disjoint, (co ∪p∈P+ a(p))∩(co ∪p∈P− a(p)) =
∅, we can select w ∈ <f and γ ∈ < such that A+w < γ and A−w > γ. We
note that the hyperplane {x ∈ <f | xT w = γ} strictly separates the two point
sets and that the separation margin [2, 26, 28], the minimum distance from
the hyperplane to the convex hulls of the point sets, is 2

‖w‖22
. Therefore, an

optimization problem to maximize the separation margin would be

maxw,γ
2

‖w‖22
subject to A+w < γ

A−w > γ.

We note that maximizing 2
‖w‖22

is the same as minimizing 1
2 ‖w‖

2
2 and that the

strict inequalities can be removed by normalizing the system [15]. Therefore,
we obtain the following quadratic optimization problem:

minw,γ
1
2 ‖w‖

2
2

subject to A+w − γe ≥ 1
A−w − γe ≤ −1.

(2)

3

The constraints can be more succinctly written if we define an “indicator” func-
tion, d(p), as follows:

d(p) :=

{

1 if p ∈ P+

−1 if p ∈ P−

with D denoting the diagonal matrix formed from d(p) for all p ∈ P . Then, we
can write the single constraint

D(Aw − γe) ≥ 1.

The reason for maximizing the separation margin is to improve the generaliza-
tion ability [14] of the computed separating surface.

Unfortunately, the underlying assumption above that the two point sets are
disjoint is typically not satisfied, and (2) is infeasible. In this case, a surface is
constructed that minimizes the error in satisfying the inequalities, termed the
misclassification error in the machine learning community [13]. The resulting
optimization problem in this case becomes

minw,γ,y
1
2 ‖y‖

2
2

D(Aw − γe) + y ≥ 1
y ≥ 0,

(3)

where we have used the two norm of the misclassification error. We note that
the constraint y ≥ 0 is unnecessary and will be dropped from the problem.
Other norms can be used for the misclassification error, which lead to other
problem formulations.

We now combine the two problems, (2) and (3), by introducing a parameter
ν > 0 that weights the two competing goals, maximizing the separation margin
and minimizing the misclassification error. The resulting optimization problem,
termed a support vector machine, is

minw,γ,y
1
2 ‖w‖+ ν

2 ‖y‖
2
2

D(Aw − γe) + y ≥ 1,
(4)

which is a convex quadratic program that is feasible with the objective bounded
below by zero. Hence, (4) has a solution, (w∗, γ∗, y∗). The support vectors are
the points where D(Aw∗ − γ∗e) ≤ 1, that is the misclassified points and the
points on the bounding hyperplanes generated.

The Wolfe dual [12] of (4) is the strongly convex quadratic program

minx
1
2ν

xT x + 1
2xT DAAT DT x− eT x

eT DT x = 0
x ≥ 0

, (5)

which has a unique solution, x∗. We note that the quadratic term consists of
a rank-f update to a positive definite matrix, which will become useful in the
algorithm development and necessary linear algebra calculations.

4

The final step in the problem derivation is to write first order necessary and
sufficient optimality conditions for (5), which form the mixed linear complemen-
tarity problem:

0 ≤
(

1
ν
I + DAAT DT

)

x−Deµ− e ⊥ x ≥ 0
eT DT x = 0.

(6)

Theorem 2.1 Let card (P+) > 0 and card (P−) > 0. Then (6) has a unique
solution.

Proof: Since (5) is a strongly convex quadratic program that is feasible and
bounded below, it has a unique solution. Let x∗ denote this solution. Fur-
thermore, there must exist a µ∗ such that (x∗, µ∗) is a solution to (6). The
remainder of this proof shows that µ∗ is unique.

Assume that x∗ = 0. Therefore, any µ∗ solving (6) must satisfy −Deµ∗−e ≥
0. Recalling the definition of D and using the fact that card (P+) > 0 and
card (P−) > 0 by assumption, we have µ∗ ≤ −1 and µ∗ ≥ 1, a contradiction.
Therefore, x∗ 6= 0.

Since x∗ solves (5) and x∗ 6= 0, we must have that x∗i > 0 for some i, since
x∗ must also be feasible for (5). Therefore, any µ∗ solving (6) must satisfy
[(

1
ν
I + DAAT DT

)

x∗ −Deµ∗ − e
]

i
= 0. Hence, µ∗ is uniquely determined by

this equation, and the proof is complete.
Q.E.D.

3 Algorithm

The preceding section developed the support vector machine formulation we
consider. This section develops a semismooth method [4, 24] based on the
Fischer-Burmeister merit function [9] in order to solve the linear mixed comple-
mentarity problems defined by the necessary and sufficient first order optimality
conditions found in (6). Essentially, the semismooth method reformulates this
complementarity problem as a system of nonlinear, nonsmooth equations and
applies a generalized Newton method to find a solution. We start by defin-
ing a basic semismooth method and the convergence theory and then discuss
the Fischer-Burmeister function and its properties. Finally, we specialize the
method for the support vector machine problem and prove convergence. The
proofs here tell us how to perform the linear algebra in the implementation.

3.1 Basic Semismooth Method

The class of semismooth functions [20, 23, 25] are a generalized notion of contin-
uously differentiable functions that are both Lipschitzian and directionally dif-
ferentiable. To define the class of semismooth functions precisely, we introduce
the notion of the B-subdifferential and generalized Jacobian. Let G : <n → <n

5

be a Lipschitzian function and DG denote the set of points where G is differen-
tiable. This definition for DG is appropriate because, by Rademacher’s theorem,
G is differentiable almost everywhere.

Before proceeding, we describe some notation used in the sequel. If F :
<n → <n, we denote its Jacobian at a point by F ′(x) and let ∇F (x) denote the
transposed Jacobian. In particular:

[F ′(x)]i,j := ∂Fi(x)
∂xj

[∇F (x)]i,j :=
∂Fj(x)

∂xi
.

Furthermore, F ′(x; d) will denote the directional derivative of F at x in the
direction d. Finally co (X) will denote the convex hull of a set X . We then
have the following definitions:

Definition 3.1 (B-subdifferential [25]) The B-subdifferential of G at z is

∂BG(z) :=

{

H | ∃ {zk} → z, zk ∈ DG, and lim
{zk}→z

G′(zk) = H

}

.

Definition 3.2 (Generalized Jacobian [3]) The Clarke generalized Jacobian
of G at z is

∂G(z) := co ∂BG(z).

Definition 3.3 (Semismooth) Let G : <n → <n be locally Lipschitzian at
z ∈ <n. Then G is semismooth at z if:

lim
H∈∂G(z+td′)

d′→d,t↓0

Hd′ (7)

exists for all d ∈ <n. In particular, G is directionally differentiable at z with
G′(z; d) given by the limit in (7). If, in addition, for any d → 0 and any
H ∈ ∂G(z + d),

Hd−G′(z; d) = O
(

‖d‖2
)

,

then G is said to be strongly semismooth at z. Furthermore, G is a (strongly)
semismooth function if G is (strongly) semismooth for all z ∈ <n.

We are interested in finding a solution to the system of equations G(z) = 0,
where G : <n → <n is a semismooth function. To solve this system we will use a
damped Newton method [24]. To this end, we define a merit function g : <n → <

as g(z) := 1
2 ‖G(z)‖22 and assume that g is continuously differentiable. The

algorithm follows.

Algorithm 3.4 (Damped Newton Method for Semismooth Equations)

6

0. (Initialization) Let z0 ∈ <n, ρ > 0, p > 2, and σ ∈
(

0, 1
2

)

be given. Set
k = 0.

1. (Termination) If g(zk) = 0, stop.

2. (Direction Generation) Otherwise, let Hk ∈ ∂BG(zk), and calculate dk ∈
<n solving the Newton system:

Hkdk = −G(zk). (8)

If either (8) is unsolvable or the descent condition

∇g(zk)T dk < −ρ ‖dk‖
p
2 (9)

is not satisfied, then set dk = −∇g(zk).

3. (Linesearch) Choose tk = 2−ik , where ik is the smallest integer such that

g
(

zk + 2−ikdk
)

≤ g(zk) + σ2−ik∇g(zk)T dk. (10)

4. (Update) Let zk+1 := zk + tkdk and k := k + 1. Go to 2.

We then have the following convergence theorem, whose proof can be found
in [24, 4]:

Theorem 3.5 Let G : <n → <n be semismooth for all z ∈ <n and g(z) be
continuously differentiable. Let {zk} be a sequence generated by Algorithm 3.4.
Then any accumulation point of {zk} is a stationary point for g(z). Further-
more, if one of these accumulation points, say z∗, solves the system G(z) = 0
and all H ∈ ∂BG(z∗) are invertible, then the following hold:

a. For all k sufficiently large, the Newton direction calculated in (8) exists
and satisfies both the descent condition (9) and linesearch rule (10) with
tk = 1.

b. {zk} converges to z∗ and the rate of convergence is Q-superlinear.

c. If in addition G is strongly semismooth at z∗, then the rate of convergence
is Q-quadratic.

3.2 Fischer-Burmeister Function

Complementarity problems such as the one in (6) can be solved by reformulating
them as (square) systems of semismooth equations and applying Algorithm 3.4
[4]. We will concentrate on one reformulation using the Fischer-Burmeister
function [9]. We define a function φ : <2 → < as follows:

φ(a, b) := a + b−
√

a2 + b2.

7

This function has the NCP-property that φ(a, b) = 0 ⇔ 0 ≤ a ⊥ b ≥ 0.
Therefore, letting n = m + c, we can define Φ : <n → <n as

Φ(z) :=

φ(z1, F1(z))
...

φ(xm, Fm(z))
Fm+1(z)

...
Fn(z)

, (11)

where we have m nonlinear complementarity constraints and c equation con-
straints. We summarize the properties of this function in the following theorem.

Theorem 3.6 ([1]) Let F : <n → <n be continuously differentiable. Then the
following hold:

a. Φ is a semismooth function. If in addition F is twice continuously differ-
entiable with Lipschitz continuous second derivatives, then Φ is a strongly
semismooth function.

b. Ψ(z) := 1
2 ‖Φ(z)‖22 is continuously differentiable with ∇Ψ(z) = HT Φ(z)

for any H ∈ ∂BΦ(z).

c. Φ(z∗) = 0 if and only if z∗ solves the complementarity problem defined by
F .

d. If z∗ is a stationary point of Ψ and there exists an H ∈ ∂BΦ(z∗) that
is invertible, then Φ(z∗) = 0 and hence, z∗ solves the complementarity
problem defined by F .

Methods for calculating an element of the B-subdifferential can be found
for example in [1, 4]. While we use these constructions in our algorithm, we
will be using an overestimate of the B-subdifferential (detailed in the following
theorem) for the proofs in the sequel.

Theorem 3.7 ([1, 4]) Let F : <n → <n be continuously differentiable. Then

∂BΦ(z) ⊆ {Da + DbF
′(z)} ,

where Da ∈ <n×n and Db ∈ <n×n are diagonal matrices with entries defined as
follows:

a. For all i ∈ {1, . . . , m}: If ‖(zi, Fi(z))‖ 6= 0, then

(Da)ii = 1−
zi

‖(zi, Fi(z))‖

(Db)ii = 1−
Fi(z)

‖(zi, Fi(z))‖
;

otherwise

((Da)ii, (Db)ii) ∈
{

(1− η, 1− ρ) ∈ <2 | ‖(η, ρ)‖ ≤ 1
}

.

8

b. For all i ∈ {m + 1, . . . , n}:

(Da)ii = 0

(Db)ii = 1.

Furthermore, we have for all i ∈ {1, . . . , n}, (Da)ii ≥ 0, (Db)ii ≥ 0, and
(Da)ii + (Db)ii > 0. In particular, Da + Db is positive definite.

3.3 Support Vector Machine Specialization

We have given an algorithm for solving semismooth systems of equations and
have shown how to pose the complementarity problem using the Fischer-Burmeister
function as a semismooth system of equations.

At this stage, it would be nice to present standard convergence material that
showed Algorithm 3.4 converges to a solution of (6), perhaps with a given rate.
Unfortunately, such results are not available. The typical results presented in the
literature assume that the equation in (6) can either be explicitly substituted
out of the model (which cannot be done in this case) or assume that F is a
uniform P-function (which is also not the case here). Instead of using these
results, we directly prove the necessary conditions for our particular model.

We now show that Algorithm 3.4 converges when applied to (6). The first
step is to establish that for all z ∈ <n, all H ∈ ∂BΦ(z) are invertible. To do this,
we will show how to compute the Newton direction from step 2 of Algorithm
3.4.

Recall that we want to solve the complementarity problem (6) using the
Fischer-Burmeister reformulation. Therefore, at every iteration of Algorithm
3.4, we solve the system of equations

[

Da + Db(
1
ν
I + DAAT DT) −DbDe

eT DT 0

][

x

µ

]

=

[

r1

r2

]

for some r1 and r2 and diagonal matrices Da and Db chosen according to The-
orem 3.7.

Proposition 3.8 Suppose the mixed complementarity problem and F are de-
fined as in (1). For all i ∈ {1, . . . , m}, if (Db)ii = 0, then zi = 0 and Fi(z) ≥ 0.

Proof: Let i be given with (Db)ii = 0. There are two cases to consider. If
‖(zi, Fi(z))‖ > 0, then

0 = (Db)ii = 1−
Fi(z)

‖(zi, Fi(z))‖
=⇒

Fi(z)

‖(zi, Fi(z))‖
= 1

=⇒ Fi(z) = ‖(zi, Fi(z))‖ > 0.

Furthermore, since Fi(z) > 0 and Fi(z) = ‖(zi, Fi(z))‖, we have that zi = 0. In
the other case, ‖(zi, Fi(z))‖ = 0, which implies zi = 0 and Fi(z) = 0. Therefore,
the conclusion of the proposition holds in both cases and the proof is complete.
Q.E.D.

9

Proposition 3.9 Let card (P+) > 0 and card (P−) > 0. Then for the model
considered in (6), Db 6= 0.

Proof: Assume Db = 0. Then by Proposition 3.8, for all i ∈ {1, . . . , m},
zi = 0 and Fi(z) ≥ 0. Looking at the definition of F (0, µ), we then have
that −eDT µ − e ≥ 0 with D defined in Section 2. Since card (P+) > 0 and
card (P−) > 0 by assumption, this reduces to a system of two inequalities,
µ − 1 ≥ 0 and −µ − 1 ≥ 0, which implies µ ≥ 1 and µ ≤ −1, a contradiction.
Therefore, the assumption was false, and the proposition is proved.
Q.E.D.

Theorem 3.10 Let card (P+) > 0, card (P−) > 0, and ν > 0. Then for the
model considered in (6) the following matrix system has a unique solution

[

Da + Db(
1
ν
I + DAAT DT) −DbDe

−eT DT 0

][

x

µ

]

=

[

r1

r2

]

for all Da and Db defined in Theorem 3.7 and arbitrary r1 and r2.

Proof: Since Da ≥ 0 and Db ≥ 0 with Da + Db positive definite by Theorem
3.7, it follows from ν > 0 that Da + 1

ν
Db is also positive definite.

Let D̄ := Da + 1
ν
Db, and note that I + AT DT D̄−1DbDA is a symmetric

positive definite matrix and therefore invertible. Hence, D̄ + DbDAAT DT is
invertible with the inverse defined by the Sherman-Morrison-Woodbury identity
as

(D̄ + DbDAAT DT)−1 = D̄−1 − D̄−1DbDA(I + AT DT D̄−1DbDA)−1AT DT D̄−1

and

x = (D̄ + DbDAAT DT)−1(DbDeµ + r1).

Substituting x out of the system, we are left with

eT DT (D̄ + DbDAAT DT)−1(DbDeµ + r1) = r2,

which simplifies to

eT DT (D̄ + DbDAAT DT)−1DbDeµ = r2 − eT DT (D̄ + DbDAAT DT)−1r1.

We now show that eT DT (D̄ + DbDAAT DT)−1DbDe is invertible.
Using the Sherman-Morrison-Woodbury identity for the inverse, we have the

following matrix:

eT DT (D̄−1 − D̄−1DbDA(I + DT AT D̄−1DbAD)−1AT DT D̄−1)DbDe.

Let D̂ := D̄−1Db, and rewrite this system as

eT DT (D̂ − D̂DA(I + AT DT D̂DA)−1AT DT D̂)De.

10

Since D̂ is a diagonal matrix with nonnegative diagonals, we can replace D̂

with D̂
1
2 D̂

1
2 to obtain the system

eT DT (D̂
1
2 D̂

1
2 − D̂

1
2 D̂

1
2 DA(I + AT DT D̂

1
2 D̂

1
2 DA)−1AT DT D̂

1
2 D̂

1
2)De

= eT DT D̂
1
2 (I − D̂

1
2 DA(I + DT AT D̂

1
2 D̂

1
2 DA)−1AT DT D̂

1
2)D̂

1
2 De

= eT DT D̂
1
2 (I + D̂

1
2 DAAT DT D̂

1
2)−1D̂

1
2 De,

where the last equality comes from the Sherman-Morrison-Woodbury identity.
The inner term, (I + D̂

1
2 DAAT DT D̂

1
2)−1, is a symmetric positive definite

matrix. Furthermore, since card (P+) > 0, card (P−) > 0 by assumption, it

follows that Db 6= 0. Hence, D̂
1
2 6= 0 and eT DT D̂

1
2 has full row rank. There-

fore, (12) is symmetric positive definite and invertible. If follows that (12) is
invertible and, therefore, µ and x are uniquely determined for any r1 and r2.
Q.E.D.

We know that the Newton direction exists for all z and all choices of Da and
Db. We now need to show that the sequence generated by Algorithm 3.4 has
an accumulation point.

Theorem 3.11 Suppose that card (P+) > 0 and card (P−) > 0. Then Algo-
rithm 3.4, applied to problem (6), has an accumulation point.

Proof: Our proof is adapted from [27]. We shall show that the level sets of Ψ(z)
are bounded, and hence by the descent properties of the algorithm, there must
be an accumulation point of the iterates. To show this, we show instead that
‖Φ‖ defined by (11) is coercive. This is sufficient to prove that the level sets of
Ψ(z) (where z = (x, µ)) are bounded. We will extensively use the fact that if
(u → −∞) or (v → −∞) or (u →∞ and v →∞), then ‖φ(u, v)‖ → ∞.

Suppose not; that is, suppose ‖Φ‖ is not coercive. Let {
∥

∥xk , µk
∥

∥} → ∞ such
that

∥

∥Φ(xk , µk)
∥

∥ < ∞. (12)

Without loss we can take a subsequence for which

(xk, µk)

‖xk, µk‖
→ (x̄, µ̄) 6= 0.

Furthermore, on this subsequence

F (xk, µk)

‖xk, µk‖
→

[

Qx̄−Deū

eT Dx̄

]

,

where Q is the positive definite matrix multiplying x in (6).
Define w̄i = Fi(x̄, µ̄) for i = 1, 2, . . . , m. If w̄ix̄i > 0 for some i, then

{xk
i } → ∞ and Qi·x

k −Diiµ
k − 1 →∞. In this case,

∥

∥φ(xk
i , Fi(x

k, µk))
∥

∥ →∞

and hence
∥

∥Φ(xk , µk)
∥

∥ → ∞, a contradiction to (12). Thus, w̄ix̄i ≤ 0 for each
i = 1, 2, . . . , m.

11

Now if w̄i < 0 for some i, then Fi(x
k , µk) → −∞, resulting in

∥

∥φ(xk
i , Fi(x

k, µk))
∥

∥ →
∞, a contradiction to (12). Similarly, whenever x̄i < 0. Thus, w̄ ≥ 0, x̄ ≥ 0,
and w̄T x̄ = 0.

Furthermore, if eT Dx̄ 6= 0, it follows that
∥

∥Φm+1(x
k , µk)

∥

∥ → ∞, also a
contradiction to (12). Thus, eT Dx̄ = 0.

Note that w̄T x̄ = 0 and eT Dx̄ = 0 imply that x̄T Qx̄ = 0. Since Q is pos-
itive definite, this implies that x̄ = 0. In this case, it follows from w̄ ≥ 0 that
−Deµ̄ ≥ 0. Now, because ‖P+‖ > 0 and ‖P−‖ > 0, this implies that µ̄ = 0.
However, this contradicts the fact that (x̄, µ̄) 6= 0. Thus, ‖Φ‖ is coercive, and
the proof is complete.
Q.E.D.

Note that Theorem 3.11 remains valid for any function φ that satisfies the
NCP-property and the simple implications given in the first paragraph of the
proof above.

Corollary 3.12 Suppose that card (P+) > 0 and card (P−) > 0. Algorithm
3.4 applied to (6) converges, and the rate of convergence is Q-quadratic.

Proof: We have established that Φ is strongly semismooth for this problem (F
is linear) and Ψ is continuously differentiable. Furthermore, by Theorem 3.11
and Theorem 3.5, there is an accumulation point of the sequence generated by
Algorithm 3.4 that is a stationary point for Ψ. Since all of the elements of the
B-subdifferential are invertible by Theorem 3.10, this stationary point solves the
system Φ(x) = 0 by Theorem 3.6. The conclusion then follows from Theorem
3.5.
Q.E.D.

4 Implementation and Computational Results

We have shown how to reformulate the support vector machine as a mixed com-
plementarity problem using the Fischer-Burmeister function. For this reformu-
lation, we have shown that Algorithm 3.4 can be applied, that it converges, and
that the rate of convergence is Q-quadratic. In this section we discuss the im-
plementational details and present some computational results on a randomly
generated test problem with 60 million observations where each observation
measures 34 features and each feature is an integer between 1 and 10 [7].

The main computation performed at each iteration of Algorithm 3.4 is to
compute the Newton direction given Φ(xk) and Hk ∈ ∂BΦ(xk). As shown in
Theorem 3.10, the required direction generation can be calculated by using

x = (D̄ + DbDAAT DT)−1(DbDeµ + r1)e
T DT (D̄ + DbDAAT DT)−1DbDeµ

= r2 − eT DT (D̄ + DbDAAT DT)−1r1.

12

We can see that there are two common components, so we define

y = (D̄ + DbDAAT DT)−1DbDe

z = (D̄ + DbDAAT DT)−1r1,

and we are left with the equivalent system of equations:

x = yµ + z

µ =
r2 − eT DT z

eT DT y
.

Our procedure calculates the direction by using the Sherman-Morrison-Woodbury
identity to calculate y and z simultaneously with two passes through the A ma-
trix. Having y and z, we can then easily construct (x, µ).

To calculate Hk and Φ(zk) is straightforward and uses two passes through
the A matrix. Whenever we find an element for which ‖zi, Fi(z)‖ = 0, we simply
set Da = 1

2 and Db = 1
2 . While, in this case, the resulting Hk may not be an

element of ∂BΦ(zk), we did not have any difficulty using this definition on our
test problems. We note that the theory from [1] can be used to calculate an
element of ∂BΦ(zk) in these cases using two additional passes through the A

matrix.
Therefore a complete iteration of the implemented code requires four passes

through the A matrix. We expect that the major amount of time is spent
calculating (I +DT AT D̄−1DbAD)−1, since this requires mf2 floating-point op-
erations, where m is typically very large. However, further inspection reveals
that the number of operations is a function of the number of active elements
for which (Db)ii > 0. By Proposition 3.8 the inactive elements (those with
(Db)ii = 0) have zi = 0 and Fi(z) ≥ 0. For the support vector machine applica-
tion, the active components at the solution correspond to the support vectors,
and the number of support vectors is typically much smaller than m. Therefore,
we would expect that near the solution most of the components of Db would
be equal to zero. Hence, as the iterations proceed, the amount of work per
iteration should decrease as a result of the removal of the inactive components.
This reduction in computational effort is similar to that found in active set
methods even though the algorithm does not explicitly use an active set. Fig-
ure 1 plots the percentage of elements per iteration where (Db)ii > 0. Toward
the beginning of the computation, all of the elements are active, leading to full
cost factor/solves. In later iterations, however, the potential support vectors
are reduced to 80% of the original problem data, leading to an 80% reduction
in the time to perform the factor. We used a zero tolerance of 10−10; that is,
components for which (Db)ii < 10−10 were treated as zero in the computations.

A comparison with the interior-point method in [7] shows that the linear al-
gebra performed is similar. However, the semismooth method can use the reduc-
tion in linear algebra performed above, whereas that interior-point method can-
not, because of the interiority condition. Furthermore, the semismooth method
performs only one solve per iteration, while the (predictor-corrector) interior-

13

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Iteration

P
er

ce
nt

 o
f E

le
m

en
ts

 A
ct

iv
e

Figure 1: Percentage of observations that are active per iteration on example
problem with 60 million observations and 34 features.

point method does two. We would therefore expect to obtain better performance
from the semismooth method than from the the interior-point method.

The main drawback of the semismooth method is in the number of function
evaluations that may be needed in order to satisfy the linesearch rule. Therefore,
a nonmonotone linesearch procedure [10, 11, 5] was used within the semismooth
implementation to limit the number of linesearches performed. The nonmono-
tone procedure allows for increases in the merit function by using a reference
value in the linesearch test that decreases on average. The use of such a tech-
nique affects neither the convergence nor rate of convergence results for the
algorithm. For all of the tests reported in this paper, the Newton direction was
always accepted, without resorting to the linesearch procedure. Furthermore,
the use of the gradient of the merit function was not encountered. As a result,
the code is optimized for the case where the Newton direction is accepted. We
plot the log of the residual in Figure 2 for a run using the full dataset of 60
million observations.

Our implementation of the semismooth algorithm for the support vector
machine application uses a total of five vectors with n elements, one f × f

matrix, and several vectors with f elements. A starting point of (x, µ) = 0
was used for all tests. As indicated above, four passes through the A matrix
are performed during each iteration of the algorithm. Access to the n vectors
and observation matrix is provided by the low-level routines developed for the

14

1 2 3 4 5 6 7 8 9 10 11
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Iteraton

Lo
g

of
 R

es
id

ua
l

Figure 2: Log of the residual per iteration on example problem with 60 million
observations and 34 features.

15

interior-point method in [7]. Access to the problem data (feature measurements)
and vectors is provided using asynchronous I/O constructs. All of the data is
stored on a large disk and sequentially accessed. While one block of data is
being read from the disk, we work on the data currently available. A buffer size
of 250,000 elements is used by this particular code. The buffer size corresponds
to the number of rows of the A matrix kept in-core, as well as the number
of elements of the vectors kept. For the interior-point method, this results in
an 11% increase in time over an in-core solution for a problem with 1 million
observations. For this problem, a total of 75 MB of RAM was used, which is
easily accommodated by most personal computers.

In principle, a conjugate gradient method could be used to solve the linear
system of equations. However, the number of operations per solve is of the same
order as our technique uses, while it is likely that many more passes through the
data will be required. For this reason, we prefer the implementation described
above using a direct factorization.

For the semismooth method on the 60 million point dataset, the number of
iterations remained constant as we varied the number of observations selected
between 1 and 60 million elements. In all cases, we performed a total of 11
function evaluations and 10 factor/solves. Furthermore, the inf-norm of the
residual at the solution was between 10−12 and 10−9 for all of the solves. We
used the same 60 million point data set from the interior-point methods paper
[7]. In Figure 3, we plot a comparison of the number of iterations and the
total time taken with the semismooth method and the interior-point method
for varying problem size. We note a reduction in time of over 60% for the
semismooth method. This reduction comes primarily from four sources. First,
there is a reduction in the number of iterations. Second, the amount of I/O
required per iteration is less for the semismooth method than for the interior-
point method. Third, each iteration of the semismooth method requires one
solve instead of two for the predictor-corrector interior-point code. Fourth, the
work involved in factorization is reduced by the (implicit) active set nature of
the semismooth method.

5 Conclusions

This paper presented a formulation for the support vector machine problem
and proved that the semismooth algorithm converges when applied to it. These
results extend the general theory to the special case of support vector machine
problems.

We observe that significant reductions in the direction generation time can be
obtained by using information related to the active components. Furthermore,
the algorithm identifies these active components automatically. The number of
active components is related to the number of support vectors in the model,
which is typically much smaller than the number of variables. Our results
indicate this to be the case and show substantial reductions in solution time by
exploiting this fact.

16

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

Problem Size (in Millions)

T
ot

al
 T

im
e

(in
 M

in
ut

es
)

Interior Point Method
Semismooth Method

(a) Total solution time

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

Problem Size (in Millions)

T
ot

al
 It

er
at

io
ns

Interior Point Method
Semismooth Method

(b) Iterations

Figure 3: Comparisons between an interior-point method and the semismooth
method for varying problem size.

17

Finally, we compared the method to an interior-point method applied to the
same model and realized a significant decrease in the total solution time. We
were able to solve a problem with 60 million variables on a standard workstation
(using only 75 MB of RAM) in around 9.5 hours. Parallel implementations of
the code are also possible, but we believe the main benefit to be that we do not
require a large machine with many processors and a huge amount of RAM to
obtain reasonable performance.

Other reformulations of the support vector machine that do not contain the
linear constraint can also be used. In this case, we realize more dramatic im-
provements in performance when compared with the interior-point method on
the same model. This formulation was not discussed here, as the theory is un-
interesting. For completeness, we just note that removing the linear constraint
gives a different model that is simply a bound constrained positive definite
quadratic program. When the semismooth method is used, the amount of com-
putation and number of iterations is about the same with or without the linear
constraint. However, for the interior-point code, the number of iterations grows
with problem size when there is no constraint, resulting in a quadratic (as op-
posed to linear) growth in time. Other techniques have been described for this
case in [16].

We remark also that while the semismooth reformulation given here out-
performs the interior-point method detailed in [7], the latter method is more
general in that even more formulations can be solved. A key requirement for
the interior-point method is that the general linear constraint matrix must have
full row rank. Some formulations of the support vector machine problem be-
come more difficult with the semismooth method because they involve a pos-
itive semidefinite quadratic term with two constraints. The proof technique
presented in this paper does not apply to this case. Even if we had a positive
definite quadratic term, we can demonstrate points where every element of the
B-subdifferential is rank deficient, even though the constraints have full row
rank.

References

[1] S. C. Billups. Algorithms for Complementarity Problems and Generalized
Equations. PhD thesis, University of Wisconsin–Madison, Madison, Wis-
consin, August 1995.

[2] C. J. C. Burges. A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[3] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons,
New York, 1983.

[4] T. De Luca, F. Facchinei, and C. Kanzow. A semismooth equation approach
to the solution of nonlinear complementarity problems. Mathematical Pro-
gramming, 75:407–439, 1996.

18

[5] M. C. Ferris and S. Lucidi. Nonmonotone stabilization methods for nonlin-
ear equations. Journal of Optimization Theory and Applications, 81:53–71,
1994.

[6] M. C. Ferris and O. L. Mangasarian. Breast cancer diagnosis via linear pro-
gramming. IEEE Computational Science and Engineering, 2:70–71, 1995.

[7] M. C. Ferris and T. S. Munson. Interior point methods for massive support
vector machines. Data Mining Institute Technical Report 00-05, Computer
Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.

[8] M. C. Ferris and J. S. Pang. Engineering and economic applications of
complementarity problems. SIAM Review, 39:669–713, 1997.

[9] A. Fischer. A special Newton–type optimization method. Optimization,
24:269–284, 1992.

[10] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search
technique for Newton’s method. SIAM Journal on Numerical Analysis,
23:707–716, 1986.

[11] L. Grippo, F. Lampariello, and S. Lucidi. A class of nonmonotone stabi-
lization methods in unconstrained optimization. Numerische Mathematik,
59:779–805, 1991.

[12] O. L. Mangasarian. Nonlinear Programming. McGraw–Hill, New York,
1969. SIAM Classics in Applied Mathematics 10, SIAM, Philadelphia,
1994.

[13] O. L. Mangasarian. Machine learning via polyhedral concave minimization.
In H. Fischer, B. Riedmueller, and S. Schaeffler, editors, Applied Mathemat-
ics and Parallel Computing - Festschrift for Klaus Ritter, pages 175–188.
Physica-Verlag A Springer-Verlag Company, Heidelberg, 1996.

[14] O. L. Mangasarian. Mathematical programming in machine learning. In
G. Di Pillo and F. Giannessi, editors, Nonlinear Optimization and Appli-
cations, pages 283–295, New York, 1996. Plenum Publishing.

[15] O. L. Mangasarian. Mathematical programming in data mining. Data
Mining and Knowledge Discovery, 1:183–201, 1997.

[16] O. L. Mangasarian and D. R. Musicant. Lagrangian support vector ma-
chines. Technical Report 00-06, Data Mining Institute, Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, 2000.

[17] O. L. Mangasarian and David R. Musicant. Active set support vector ma-
chine classification. Technical Report 00-04, Data Mining Institute, Com-
puter Sciences Department, University of Wisconsin, Madison, Wisconsin,
2000.

19

[18] O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast cancer diag-
nosis and prognosis via linear programming. Operations Research, 43:570–
577, 1995.

[19] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear pro-
gramming. SIAM News, 23:1 & 18, 1990.

[20] R. Mifflin. Semismooth and semiconvex functions in constrained optimiza-
tion. SIAM Journal on Control and Optimization, 15:957–972, 1977.

[21] T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow. The
semismooth algorithm for large scale complementarity problems. Mathe-
matical Programming Technical Report 99-06, Computer Sciences Depart-
ment, University of Wisconsin, Madison, Wisconsin, 1999.

[22] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equa-
tions in Several Variables. Academic Press, San Diego, California, 1970.

[23] L. Qi. Convergence analysis of some algorithms for solving nonsmooth
equations. Mathematics of Operations Research, 18:227–244, 1993.

[24] L. Qi and D. Sun. A survey of some nonsmooth equations and smoothing
Newton methods. In A. Eberhard, B. Glover, R. Hill, and D. Ralph, editors,
Progress in Optimization, volume 30 of Applied Optimization, pages 121–
146. Kluwer Academic Publishers, Dordrecht, 1999.

[25] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical
Programming, 58:353–368, 1993.

[26] B. Schölkopf, C. Burges, and A. Smola, editors. Advances in Kernel Meth-
ods: Support Vector Machines. MIT Press, Cambridge, MA, 1998.

[27] P. Tseng. Growth behavior of a class of merit functions for the nonlinear
complementarity problem. Journal of Optimization Theory and Applica-
tions, 89:17–37, 1996.

[28] V. N. Vapnik. The Nature of Statistical Learning Theory. John Wiley &
Sons, New York, 1996.

20

