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Abstract

We produce an integral model for the modular curve X (Np™) over
the ring of integers of a sufficiently ramified extension of Z,, whose spe-
cial fiber is a semistable curve in the sense that its only singularities are
normal crossings. This is done by constructing a semistable covering
(in the sense of Coleman) of the supersingular part of X (Np™), which
is a union of copies of a Lubin-Tate curve. In doing so we tie together
non-abelian Lubin-Tate theory to the representation-theoretic point of
view afforded by Bushnell-Kutzko types.

For our analysis it was essential to work with the Lubin-Tate curve
not at level p™ but rather at infinite level. We show that the infinite-
level Lubin-Tate space (in arbitrary dimension, over an arbitrary nonar-
chimedean local field) has the structure of a perfectoid space, which is
in many ways simpler than the Lubin-Tate spaces of finite level.
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1 Introduction: The Lubin-Tate tower

Let K be a non-archimedean local field with uniformizer = and residue field
k= F,, and let n > 1. The Lubin-Tate tower is a projective system of for-
mal schemes M, which parameterize deformations with level 7™ structure
of a one-dimensional formal Og-module of height n over F,. (For precise
definitions, see 2.1k for a comprehensive historical overview of Lubin-Tate
spaces, see the introduction to [StrO8b].) After extending scalars to a separa-
ble closure of K, the Lubin-Tate tower admits an action of the triple product
group GL,,(K) x D* x W, where D/K is the central division algebra of in-
variant 1/n, and Wy is the Weil group of K. Significantly, the ¢-adic étale
cohomology of the Lubin-Tate tower realizes both the Jacquet-Langlands
correspondence (between GL,,(K) and D*) and the local Langlands corre-
spondence (between GL,,(K) and Wix). When n = 1, this statement reduces
to classical Lubin-Tate theory [LT65]. For n = 2 the result was proved by
Deligne and Carayol (see [Car83], [Car86]); Carayol conjectured the general
phenomenon under the name “non-abelian Lubin-Tate theory”. Non-abelian
Lubin-Tate theory was established for all n by Boyer [Boy99] for K of pos-
itive characteristic and by Harris and Taylor [HT01] for p-adic K. In both
cases, the result is established by embedding K into a global field and ap-
pealing to results from the theory of Shimura varieties or Drinfeld modular
varieties.

In this paper we focus on the case that n = 2 and ¢ is odd. We construct
a compatible family of semistable models M,, for each M,, over the ring
of integers of a sufficiently ramified extension of K. For our purposes this
means that the rigid generic fiber of M,y is the same as that of M,,, but that
the special fiber of M,, is a locally finitely presented scheme of dimension
1 with only ordinary double points as singularities. The weight spectral
sequence would then allow for the computation of the cohomology of the
Lubin-Tate tower of curves (along with the actions of the three relevant
groups), and one could recover the result of Deligne-Carayol in a purely
local manner, although we do not do this here.

The study of semistable models for modular curves begins with the
Deligne-Rapoport model for Xo(Np) in [DR73]. A semistable model for
Xo(Np?) was constructed by Edixhoven in [Edi90]. A stable model for
X (p) was constructed by Bouw and Wewers in [BWO04]. A stable model
for Xo(Np®) was constructed by Coleman and McMurdy in [CM10], using
the notion of semistable coverings of a rigid-analytic curve by “basic wide
opens”. The special fiber of their model is a union of Igusa curves which
are linked at each supersingular point of Xo(N) ® F,, by a certain config-



uration of projective curves, including in every case a number of copies of
the curve with affine model y? — y = 2. The same method was employed
by Tsushima [Tsull] and Imai-Tsushima [ITTI] for the curves Xo(p*) and
X1(p?), respectively; the curve y? 4+ y = 2P*! appears in the former. In
each of these cases the interesting part of the special fiber of the modular
curve is the supersingular locus. Inasmuch a Lubin-Tate curve (for K = Q,)
appears as the rigid space attached to the p-adic completion of a modular
curve at one of its mod p supersingular points, the problem of finding a
semistable model for a modular curve is essentially the same as finding one
for the corresponding Lubin-Tate curve. In this sense our result subsumes
the foregoing results; however our method cannot produce the “intersection
multiplicities” for the singular points of the special fiber.

We now summarize our main result. Let K™ be the completion of the
maximal unramified extension of K; then M, is defined over Spf Op.,.

Theorem 1.0.1. Assume that q is odd. For each m > 1, there is a finite
extension Lm/Knr for which M, admits a semistable model Mm,' every
connected component of the special fiber of M, admits a purely inseparable
morphism to one of the following smooth projective curves over Fq:

1. The projective line P,
The curve with affine model xy? — x%y = 1,
The curve with affine model y? +y = x94T,

The curve with affine model y? — y = z>.

e e

Remark 1.0.2. The mere existence of a semistable model of M,, (after
passing to a finite extension of the field of scalars) follows from the corre-
sponding theorem about proper (algebraic) curves. The formal scheme M,,
appears as the completion along a point in the special fiber of a proper curve
over Ok (e.g., the appropriate modular curve), and a semistable model of
the proper curve restricts to a semistable model of M,,. Furthermore, the
theorem Drinfeld-Carayol allows one to predict in advance the field L,, over
which a semistable model appears. The real content of the theorem is the
assertion about the equations for the list of curves appearing therein. A
semistable model is unique up to blowing up, so the above theorem holds
for all semistable models of M,, if it holds for one of them.

Remark 1.0.3. A purely inseparable morphism between nonsingular pro-
jective curves induces an equivalence on the level of étale sites and therefore
an isomorphism on the level of f-adic cohomology.



Remark 1.0.4. The equations for the curves appearing in Thm. [LO.1] were
known some time ago by S. Wewers to appear in the stable reduction of M,,
(unpublished work). Furthermore, it so happens that zy? — 2%y = 1 and
y? +y = 29! determine isomorphic projective curves, but we have listed
them separately because the nature of the group actions on these curves is
different.

Let us explain some more features of our semistable models M. Tt
is not the case that one can arrange for the semistable models M,, to be
compatible: there is no tower - - - — My — M, with finite transition maps.
Loosely speaking, the problem is that as m — oo, the singularities of the
M, accumulate around the CM points, that is, the points corresponding to
deformations of Gy with extra endomorphisms.

This problem can be remedied by removing the CM points entirely. Let

./\/lac1 be the geometric adic generic fibex] of M.,,,. The CM points constitute

a closed subset of Mad— whose topology is locally profinite. Let Mad ynon-CM

be the complement in ./\/ladf of the set of CM points. This is an adlc space

(indeed we give a covering of it by affinoids). Then ./\/l?iﬁnon M admits a
semistable model which varies compatibly in m. In fact much more is true.

Theorem 1.0.5. The tower of adic spaces Mad won-CM- o imits a tower of

semistable models ./\/lnon'CM with finite transition maps. Let Mnon M be the

special fiber of./\/l“mon CM " For each m, let C,, be an irreducible component of
./\;lnmof;'CM, such that the transition maps carry Cp+1 onto Cy,. Assume that
Con has positive genus for some m. Then for m large enough, the morphism
Cm+1 — Cypy, is purely inseparable, and L m C,, is the perfection of one of the
curves listed in Thm. [L.01.

Thm. allows us to associate a “dual graph” T to the tower of
semistable models M""CM  The vertices of 7 will correspond to towers
-+ Cma1 — Cpy — -+ of irreducible components of ./\;lnmor;CM, two of these
are adjacent when the corresponding irreducible components cross. The
graph 7 admits an action of the triple product group GLo(K) x D* x Wk,
and the stabilizer in this group of a vertex of T acts on the corresponding
scheme 1&1 Ch,.

In much of this paper we work with adic spaces rather than rigid spaces, because
presently we will be using adic spaces which do not come from rigid spaces. There is
a fully faithful functor (see [Hub96]) from the category of rigid analytic varieties to the
category of adic spaces, which identifies admissible opens with opens, and admissible open
covers with open covers. A separated adic space lies in the image of this functor if it is
locally topologically of finite type.



The geometric generic fiber of M,, is highly disconnected, owing to the
existence of the determinant morphism (see §2.5]). In the limit, the set of
connected components is a principal homogeneous space for K*. The graph
T has the same set of connected components. One connected component of
T is displayed in {7l where it is called T°.

In theory one could draw a picture of the special fiber of any particular
Mo, by forming the quotient of the pictures described in 7] by the con-
gruence subgroup 1 + 7™ Ms(Of). This would allow one to determine the
structure of the reduction of a semistable model of the appropriate modular
curve at level m, see {1l

1.1 Lubin-Tate space at infinite level

Before elaborating further, let us give some precise definitions. Much of our
notation has been borrowed from §2.1.1 of [Str08a].

Let Gy be a one-dimensional formal Og-module over Fq of heigh@ n.
Then Gg is unique up to isomorphism. Let Ky = K™ be the completion of
the maximal unramified extension of K. Let C be the category of complete
local Noetherian O, -algebras with residue field Fq. Let 5 € Z. We consider

the functor ./\/l(ég o Which associates to each R € C the set of pairs (G, ),

where G is a formal Og-module over R and ¢: Gy — G Qg Fq is a quasi-
isogeny of height j. An isomorphism between pairs (G,:) and (G',!) is a
quasi-isogeny of formal Og-modules f: G — G’ which intertwines ¢ with ¢

Since D = End Gy ®o, K is a division algebra, a quasi-isogeny from Gg
to another formal Ox-module over F, has height 0 if and only if it is an

(0)
G

isomorphism. Thus M/ , classifies formal Ox-modules G together with an

isomorphism ¢: Gy — G ®r F,. By [Dri74], Prop. 4.2, Mg)),o = Spf Ay,

0
where Ay is a (noncanonically) isomorphic to the formal power series ring
OK() [[ul, ‘o ,un_l]].
One adds level structures to the moduli problem (see 21]) to obtain

formal schemes Mgg s M > 1. We put

Meom = [[ MY ..

JEZ

We note that MY s isomorphic to MO though not canonically so.

Go,m Go,m>?

2Through the paper, the “height” of a formal Ox-module will be understood to mean
its height relative to K. The same convention holds for quasi-isogenies between formal
O g-modules.



In some of the paper we work with Mg, ,,, rather than Mg)g ms S0 that we

can take advantage of larger symmetry groups. When Gj is fixed in the
discussion, we will drop it from the notation and simply write ./\/l,(%)
M.

The formal schemes M,,, are rather mysterious. Even at level zero, M(()O)
is the formal open unit ball of dimension n — 1, but the action of the group

and

Of = Aut Gy on M((]O) is very difficult to write down. It turns out however
that the infinite-level deformation space

Moo = lim M.,

seems to be simpler than all of the spaces at finite level. To prove Thm.
[LOT it was indispensable to work at infinite level, where a surprisingly
nice description of M, emerges. Results gathered about M, can then be
translated into results about the individual M,,.

It will be helpful to first describe the case of n = 1, so that Méo) pa-
rameterizes lifts of a Lubin-Tate formal Og-module G over Fq. One can
find a coordinate T' on G with respect to which [r]q,(T) = T9. Gy lifts

uniquely to G/OK,,,, so that M(()O) = Spf Ofn,. For each m > 0 we have

M,(VO,,) = Spf Ok,,,, where Km/f(‘“r is the field obtained by adjoining a 7™"-
torsion element A, of G (chosen compatibly). Let Ko = Up>1 K, and let
Ko be its completion; then K, is the completion of the maximal abelian
extension of K. We have ./\/lg%) = Spf Of(oo‘ One finds in f(oo an element

t = limy, 00 )\?nm which admits arbitrary gth power roots. If K has pos-
itive characteristic, then in fact Oy = Fq[[tl/ 7] is a ring of fractional
power series in t. If K has characteristic 0, then we can form the inverse
limit OKgo = @OKOO /7 along the Frobenius map, and then once again
Oky = F,[t'/9°]. The fraction field K7, of Oks_ is the field of norms of

K, as in [FWT9]. In either case the field K. is an example of a perfectoid
field; see [Sch12]. See §2.3] for proofs of these claims.

Now return to the case of general n. Let A,, be the coordinate ring of
M,(VOL), so that M,@L) = Spf A,,. Each A,, is complete with respect to the
topology induced by the maximal ideal I of Ag. Let A be the completion of
lii>n A,, with respect to the I-adic topology, so that MSQ,) = Spf A. We show
in Cor. 2814l that if K has positive characteristic, then

A=TF X7 X

is a ring of fractional power series in n variables. This is defined as the
completion of Fq[Xll/q . ,X}L/q | with respect to the ideal (X1,...,X,).



If K has characteristic 0, then A contains topologically nilpotent elements
X1,..., X, admitting arbitrary gth power roots in A. We define A® =
@A/ 7, where the limit is taken with respect to the gth power Frobenius
map. Then

A= F X)L XM,

See Cor. 2.8.14]

In either case, the parameters Xq,..., X, arise from Drinfeld’s parame-
ters on A, through a limiting process. Furthermore, the action of the group
GL,(Ok) x OF, on these parameters can be determined directly from the
formal Ox-module Gy itself.

There is a continuous homomorphism Of(oo — A, which sends ¢ to a
rather complicated fractional power series in X1,..., X,. This power series
can be interpreted as the determinant of a formal vector space, see §2.61 Let
M(()(())); 4 be the geometric adic generic fiber of Mfﬁ?, where 77 = Spa(C, O¢)
and C/K is a complete algebraically closed field. That is, M(()(())); 4 is the set
of continuous valuations | | (in the sense of Huber, [Hub94]) on A®O¢ for
which |7| # 0. The above descriptions of A show that Mggﬁ is a perfectoid
space, see [Sch12]. In light of the above description of A it would appear that
Mggﬁ is a very simple sort of space, let alone that it encodes the Langlands
correspondence! In fact it is the complexity of the element ¢ € A which
accounts for the interesting cohomological behavior of Mggﬂ.

Much of the above was probably known to the experts, although perhaps
not in this precise form. In [FGLOS], an isomorphism between the Lubin-
Tate and Drinfeld towers is constructed. For this it is necessary to work
with the infinite-level versions of both towers. Roughly speaking, the au-
thors work with an integral model not of the whole Lubin-Tate space (as we
have done), but rather with an integral model of a “fundamental domain”,
whose coordinate ring carries the structure of a perfectoid affinoid algebra.
Certainly the important role of the determinant is recognized in [FGLOS].

All Rapoport-Zink spaces at infinite level are perfectoid spaces which
can be described in terms of p-adic Hodge theory, [SW13]. There we prove a
general duality theorem relating basic Rapoport-Zink spaces to one another,
and in particular we arrive at an isomorphism between the infinite-level
Lubin-Tate and Drinfeld spaces which does not require any integral models
at all.



1.2 Outline of the paper

In §2 we review the construction of the Lubin-Tate tower attached to a
one-dimensional formal Ox-module Gy over K,. We consider G = I'LmG

(limit along multiplication by 7), where G is any lift of G to @}}r Then G
does not depend on the choice of lift. G carries the structure of a K-vector
space object in the category of formal schemes. Following [FET11], we call G
a formal vector space. A choice of coordinate on Gy allows us to identify G
with Spf O ., [T 7].

We also review relevant results on determinants of formal Og-modules,
as these play an important role. Let A"Gg be the top exterior power of
Gpy. Then A"Gy is a formal Ox-module of height one and dimension one;
i.e. it is a Lubin-Tate formal Og-module. If Mg, ~ is the Lubin-Tate
deformation space of G at infinite level, and similarly for Mang, o, then
there is a determinant morphism Mg, oo = MarGy,0o- The main result of
the section is that there is a Cartesian diagram

May,00 —= MpnGg,o0

| |

Gn AmG

where the horizontal arrows are determinant morphisms (Thm. 2.7.3]). Pass-
ing to the geometric generic fiber, we arrive at the infinite-level Lubin-Tate
space MaGdOﬁ, which is a perfectoid space.

In §3] we review Carayol’s description of the cohomology of the Lubin-
Tate tower for GL2(K) (non-abelian Lubin-Tate theory), see Thm. Bl In-
formally, the cohomology splits up into a sum of representations of GLg(K) X
D* x Wi of the form 1T ® JL(IT) ® H(IT)’, where II runs over discrete se-
ries representations, JL is the Jacquet-Langlands correspondence and II —
H(II)" is a normalized local Langlands correspondence. We also review the
theory of Bushnell-Kutzko types for GLy(K) and its inner form D>, as these
play a major role in our work. This theory furnishes a classification of su-
percuspidal representations of these groups according to which “strata” they
contain. A stratum is essentially a one-dimensional character of a compact
subgroup of GLy(K) (or D*) which belongs to a certain explicit class.

In § we specialize to the case that G has height 2. Points in M?ﬁ) 0o
with CM by a quadratic extension L/K correspond to pairs of embeddings
L — M(K) and L — D. If x is a point with CM by L, then its stabilizer
in GLy(K) x D* is the diagonally embedded L*. To each such x and each

integer m > 0 we associate the following data:



1. An Op-order Ly, C My(K) x D, which is normalized by the diago-
nally embedded L*,

2. The group Kx;,m = L™ L5, and its subgroup IC,I(’m consisting of pairs
(91,92) € Kxm with det(g1) = N(g2), where N: D — K is the reduced
norm,

3. A smooth affine curve Cx,,/k equipped with an action of IC,lgm (only
given outside the case that L/K is ramified and m is even).

The orders Lx ,,, which we call “linking orders”, were first constructed
in [Weil0]. Their study links together the Bushnell-Kutzko type theories
for GLo(K) and D*. In Thm. B33 we show that if II is a supercuspidal
representation of GLy(K) with coefficients in Q, (£ 1 ), then there exists a
pair (x,m) (depending on the strata contained in II) such that IT ® JL(II)
is contained in the representation of GLa(K') x D* induced from the repre-
sentation of K}, on H}(Cym, Q).

In g5l we identify a family of special affinoid subspaces {Zx,,} of the
Mggﬁ, parameterized by pairs (x,m). These have the following properties

(Thm. BT.2):
1. Zx m is stabilized by KL . and

X,m?

2. There exists a nonconstant lC,lgm-equivariant map ?x,m — Cx,m, Where

Zx.m 1s the reduction of the affinoid Zx ,, (once again the case of L/K
ramified and m even is excluded).

The proof of Thm. is a long, delicate calculation, and we regret that
we could not find a coordinate-free method. The payoff of Thm. is the
observation that the special affinoids Z ,, exhaust the entire supercuspidal
part of the cohomology of the Lubin-Tate tower.

In §6, we translate the results of §0l back to finite level. We construct
a GLa(K) x D*-equivariant graph 7 whose vertices are equivalence classes
of pairs (x,m), and also a finite-level version 7(™). For every vertex v of

7™ we get an open affinoid Zi(,m) C M2 equal to the image of the corre-

miﬁ’

sponding Z; ,,. The cohomology of the Z exhausts all of H, LMz, Qy),

v
except for the part coming from the boundary. At this point our argument

starts to resemble the method employed in [CM10]. We find a covering of

./\/lamd’ﬁ by “wide opens”, whose underlying affinoids are the Zz(,m). For coho-
mological reasons this must be a semistable covering. This means that pairs

)

of wide opens intersect in annuli, and that the Zi(,m have smooth reduction.

10



By the general theory of [Col03], a semistable covering of M%im corresponds
to a semistable model M,,. The dual graph of this model is 7™ Finally,
we complete the proof of Thm.

The tree T (or rather one of its connected component 7°) is depicted in
g7l We note that 7° contains a copy of the Bruhat-Tits tree for PGLy(K):
this reflects the structure of fundamental domains in Mgg}m already observed
in [FGLO8|. The ends (infinite paths) of the Bruhat-Tits tree are in corre-
spondence with P'(K). On the other hand 7 has additional ends which are
in correspondence with the set of CM points. We sketch a procedure for
computing the special fiber of M.
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2 The Lubin-Tate deformation space at infinite
level

2.1 Moduli of one-dimensional formal modules

Let Ky = K™. Recall that the functor Mg, 0 is represented by the formal
scheme Spf Aj, where Ag is (noncanonically) isomorphic to a formal power
series ring Ok, [u1,...,up—1] in one variable. Thus there is a universal
formal Ox-module G"™Y defined over Ay. We follow the construction of
GV in [GH94], §5 and §12. Over the polynomial ring O, [v1,ve,...] we
can consider the universal p-typical formal Ox-module F', whose logarithm
f(T) =logp(T) satisfies Hazewinkel’s “functional equation”

f(T) =T+ Z %fq‘(XqL)

i>1

11



Here fqi is the series obtained from f(X) by replacing each variable v; by

v;?l. Then multiplication by 7 in F' satisfies the congruences

(7] p(T) = v, T (mod m,v1, ... 061, T7 ), (2.1.1)
as in [GH94], Prop. 5.7. Then G"™V is the push-forward of F' through the
homomorphism O, [v1,v2,...] = Ap which sends

u;, t=1,...,n—1
=<1, 1=n
0, <>n.
Let [m]quniv(T) = 1T + coT? 4 .... (Thus ¢; = 7.) It follows from Eq.
@I1) that in Ay = Ok, [u1,...,un—1] we have the congruences
g = w (mod )
g = up (mod 7, uy)
Cqn-1 = Up_1 (mod 7, u1,...,Uup—2)
cr = 1 (mod 7, uq,. .., Up_1).

These congruences have the following immediate consequence.

Lemma 2.1.1. The coefficients c1,cq, ..., -1 of [T]quiv(T) generate the
maximal ideal of Ay, and cgn € Ag is a unit.

2.2 Level structures

For an algebra R € C and a deformation (G,t) € Mg, 0(R), a Drinfeld level
7™ structure on G is an Og-module homomorphism

¢: (nTMOK /OK)®" = G(R)

for which the relation

[I & -d@)|rax)

z€(py' /OK)P

holds in R[X]. The images under ¢ of the standard basis elements (7=, 0)
and (0,7~™) of (p~™/Ok)®" form a Drinfeld basis of G[x™] over R.

12



Remark 2.2.1. Note that z1,...,z, is a Drinfeld basis of G[7™](R) if and
only if 7 1xy,..., 7™ 1z, is a Drinfeld basis of G[r](R).

Let ./\/l(égm denote the functor which assigns to each R € C the set of
deformations (G, ) € Mg;O(R) together with a Drinfeld level 7" structure
on G over R. Let Mg, m be the union of the M(égm jEeL.

By [Dri74], Prop. 4.3, the functor MO represented by a for-

Go,m
mal scheme Spf A,,, where A,, is finite, flat, and generically étale over
Ao = Ok, lu,- .. ,up—1]. The universal Drinfeld level structure on A,, cor-
responds to m topologically nilpotent elements X£m), . ,X,(Lm) € A,,. Drin-

feld shows that A,, is a regular local ring with parameters X£m), ... ,Xr(Lm).

2.3 The case of height one

In this paragraph we assume n = 1. Then Gg is a Lubin-Tate formal Og-
module over Fq, which admits a unique deformation G' to O, . In fact after
choosing a suitable coordinate on G, we may assume [7]q(T) = nT + T
For each m > 1, write ®,,(T) = [7™]|c(T)/[7"™ ]g(T). Then ®,,(T) is the
product of an Eisenstein polynomial of degree ¢"'(q — 1) and a unit in

Or, [T1]-

Lemma 2.3.1. Let R € C. An element x € G[n™](R) constitutes a Drinfeld
basis if and only if it is a root of ., (T).

Proof. By Remark 22.T] and because ®1([r" 1]|c(T)) = @,,(T), we may
assume m = 1. The condition for = to be is a Drinfeld basis of G[r](R) is
the condition that T[], ..« (T — [ala(x)) is divisible by [7]q(T) = T®(T).
This is equivalent to the condition that z is a root of ®1(7). O

Let K., be the field obtained by adjoining the 7™-torsion in G to Kj.
Lemma implies that M(ng’m = Spf Ok,,. Note that by local class field
theory, the union Ko = J,,, Km is the compositum of K¢ with the maximal
abelian extension of K. The following fact will be useful later.

Lemma 2.3.2. The qth power Frobenius map is surjective on Ok__ /7.

Proof. Let A1, A2, -+ € Ok__ be a compatible sequence of roots of [7™](T),
m > 1. Then \,, generates Ok, over Og,. Since \,, = [7]q(Am+1), and
[7]la(T) (mod 7) is a power series in T9, we have that every element of
Ok, /m is a gth power in Ok, ., /7. The result follows. O

13



Let KOO be the m-adic completion of K,

Proposition 2.3.3. If K has positive characteristic, then Oy = F, [t'/a,

where F[t1/97] is the t-adic completion of F,[t"/97]. If K has character-
istic 0, let OKgo = l'&l@Koo /7, where the inverse limit is taken with respect

to the qth power Frobenius map. Then OKEO = Fq[[tl/qoo]].

Proof. The element w = limy, o A%@mﬂ belongs to Koo and has an obvious
system of gth power roots, which we write as w?", m > 1. We have the
congruences A\, = A\ | = ?,32 = ... modulo 7Ok_, which shows that
Am = @4 (mod 7O Koo)’ and therefore (since O is generated by the
Am) there is a surjection Fy[t'/7] — Ok, /m which sends t to w.

Assume K has positive characteristic. Then there is a continuous Fq—
algebra homomorphism ¢: F,[t/7°] — O %.. Which sends ¢ to w and which
is a surjection modulo 7. In particular it is a surjection modulo w, because
in Ko we have |@| = |x|"/V. Thus any b € O can be written b =
d(ar) + wby = ¢lay) + ¢(t)by, with a; € Fy[t'/97] and by € Of_.. But
then we can write by = ¢(az) + ¢(t)be, and so forth, the result being that
b = ¢(a; +tag +...). Thus ¢ is surjective. The injectivity of ¢ follows
from the fact that any nonzero element of F, [t'/9] equals t* times a unit
for some a € Z[1/q], so that if ¢ has a nonzero kernel, we would have
d(t*) = w® = 0 for some «, which is absurd. Thus ¢ is an isomorphism.

Now assume K has characteristic 0. We have put Oy, = lim Ok /7
this makes O the ring of integers in a complete nonarchimedean valuation
field K containing F We have a continuous F ¢-algebra homomorphism
¢: Fy[t77] — Opes Whlch sends ¢ to the sequence @’ = (w,w'/4,...). We
have an isomorphism O Ko, J@® — O Ko /o given by projection onto the first
coordinate. We see that ¢ is once again surjective modulo w. The argument
now continues as in the previous paragraph. ]

2.4 Formal vector spaces

Suppose A is a topological ring which is separated and complete for the
topology induced by an ideal of definition I. For such a ring we write
Nil(A) for the set of topologically nilpotent elements of A, which is to say
that Nil(A) is the radical of I. Of course we allow for the trivial case in
which I = 0 and A is discrete, in which case Nil(A) is the set of nilpotent
elements of A. Let Alg 4 be the category of topological A-algebras R which
are separated and complete for the topology induced by an ideal J (which
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may be assumed to contain the image of I). Also let Modp,. be the category
of Og-modules, and let Vectg be the category of K-vector spaces.

Recall that Gy is a formal Og-module over Fq of dimension 1 and height
n. Gg induces a functor Algfq — Modp, whose value on an object R
is Nil(R) with the Og-module structure afforded by Gg. This functor is
representable by a formal scheme which we will simply call Gy. A choice of
coordinate on G is equivalent to a choice of isomorphism Gg & Spf Fq [X].
Now consider the functor Gy: Alqu — Vect i defined by

Go(R) = lim Go(R),

where the transition map is multiplication by a uniformizer 7. Let us call
G the formal K -vector space associated to G.

Proposition 2.4.1. G is representable by an affine formal scheme isomor-
phic to Spt F [ X1/7].

Proof. Since Gy has height n, we have [1]g,(X) = g(X9"), where g(X) =

a1 X +eX?+ ..., withep #0. Fori=1,2,..., let g;(X) = c‘{imX +

cgimX 24+ .... Then for R € Algfq we have an isomorphism of inverse

systems

lim Nil(R) = lim Nil(R)
[7lG, xzd”

(r1,22,...) +— (x,91(x), g2(g2(x)),...).

The functor R — l'&lmeqn Nil(R) is clearly representable by Spf F,[X/4™].
U

Now let A be an object of AlgoKO with ideal of definition I.

Proposition 2.4.2. Let G be a one-dimensional formal Ok-module over
A, and define a functor G: Alg, — Vectg by G(R) = @G(R) (inverse
limit along multiplication by ).

1. The natural reduction map G(R) — G(R/I) is an isomorphism.

2. If A/I is a perfect field, and if G @ A/I has finite height, then G is
representable by A[X/1].

Proof. Choose a coordinate on G, so that the G(R) may be identified with
Nil(R) of R. Let Ig be the extension of I to R, so that Iy is nilpotent. If
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(x1,29,...) € G(R) lies in the kernel of G(R) — Go(R/I), then each z; lies
in Ip. But the power series giving multiplication by 7 in G has # € I as
its linear terms, so it carries Iy onto Ig“rl. It follows that each x; lies in
ﬂmzllg =0.

We show that G(R) — Go(R/I) is surjective using the standard “Te-
ichmiiller lift”. Suppose (z1,z2,...) € Go(R/I). Since I is nilpotent in R,
we may lift each z; to an element y; € G(R). Then the sequence y;,7y;+1,
72yi1o,... must converge to an element z; € G(R). Then (21,22,...) €
G(R) lifts (x1,22,...) € G(R/I). This settles part (1).

For part (2), let Go = G®aA/I. By LemmaZZ41] the functor Gp: Algr/;r —
Vect  is representable by a formal scheme isomorphic to Spf(A/I)[X /7).
Thus if R is an A/I-algebra, then Go(R) may be identified with lim Nil(R)
(limit taken with respect to « — 7). Now suppose R is an object of Alg 4;
then by part (1) we have

G(R) = G(R/I)
= Go(R/I)
= lim Nil(R/I)
= x@i Nil(R).

In the last step, we have used the standard Teichmiiller lift procedure. This
functor is representable by Spf A[X/4™]. O

Remark 2.4.3. The first part of the proposition shows that the functor G
only depends on Gyp = G ®4 A/I, in a functorial sense. That is, there is a
functor

{Formal Og-modules over A/I} — {Formal schemes over Spf A}
Gy ~ é,

where G represents the functor R ~ Go(R/7) for any object R of Algy.
Then if G’ is a lift of G to a formal Ox-module over R, then we have a
canonical isomorphism of functors G' = G.

Remark 2.4.4. In the situation of the second part of the proposition, where
A/I is a perfect field and G is a formal Ox-module over A, we will often
use boldface letters, such as X, to denote elements of the K-vector space
G(R), where R is an object of Alg,. Such an element corresponds to a
compatible sequence (X1, X)) in the inverse limit @G(R). Assume
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that a coordinate on G has been chosen, so that G(R) may be identified
as a set with Nil(R). Then the proposition shows that X corresponds to a
topologically nilpotent element X € R admitting arbitrary gth roots, which
will simply be written X1/47.

Let us record the relationship between X and X. The formal module
Gy has height n, so [7]g,(T) is a power series in T". If A/I is algebraically
closed, we may even perform a change of coordinate so that [r]g,(T) = T7".
Then

B . (m) q77l7l

X = Jim (x)

This pattern (boldface for elements of G(R), Roman for elements of R) will
be useful later on.

2.5 Determinants of formal modules

Assume for the moment that K has characteristic 0. Let A"Gg be the formal
group whose (covariant) Dieudonné module is the top exterior power of the
Dieudonné module of Gy. Then A"Gg has height one and dimension one;
i.e. it is the Lubin-Tate formal Og-module over Fq. Therefore A"Gy admits
a unique deformation A"G to any R € C.

Now let (G, ) be a deformation of Gy to R € C.

Theorem 2.5.1. For every m > 1 there exists an alternating and multilin-
ear map of Ox-module schemes

Am: GIE™" — A"Gr™]

of formal O -module schemes over R, which is universal in the sense that
any alternating and multilinear map from G[r™]" into another Ok -module
scheme must factor through .

Proof. This is a special case of a theorem of Hedayatzadeh [Hed15l Thm.
4.3.4]. There the author constructs arbitrary exterior powers of arbitrary
m-divisible Og-modules G over arbitary locally Noetherian Og-schemes, so
long as dim G < 1. Hedayatzadeh shows that if dim G = 1 then AFG has
dimension <Z> and height <Z : i) Thus in our case, the nth exterior
power of G has dimension one and height one; i.e. it is isomorphic to the
unique Lubin-Tate formal module, which we have called A"G.

We briefly sketch the argument, which relies on Zink’s theory of displays
[Zin02]. A summary of the theory is found in [Hed15, Appendix BJ|. Let
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R Dbe a ring in which p is nilpotent. A display over R is a quadruple P =
(P,Q,F,V~1), where P is a finitely generated projective W (R)-module,
@ C P is a submodule, and F: P — P, V: Q) — P are Frobenius-linear
maps satisfying certain axioms. The idea is that a display is a generalization
of a Dieudonné module to a base other than a perfect field. Zink shows
that if R is an excellent local ring, there is an equivalence of categories
P — BTp between displays over R and formal p-divisible groups over R.
The theory extends easily from formal p-divisible groups to formal m-divisible
Ox-modules, when one adjusts the definition of display appropriately: P
becomes a module over the ramified Witt vectors Wo, (R).
The rth exterior power of a display P = (P,Q, F,V~!) is

NP = (AN"P,A"Q,N"F, A"V ).
This is still a display under the assumption that the corresponding p-divisible
group has dimension < 1. The alternating map P" — A"P induces an

alternating map BT — BT arp. In the case r = n, this is the family of
maps A, in the theorem. O

Proposition 2.5.2. Let R € C, let (G,1) be a deformation of Gy to R,
and let x1,...,z, € G[m™] be a Drinfeld level ™ level structure. Then
Am (21, ..., xn) € A"G[n™] is a Drinfeld level ™ structure.

Proof. 1t suffices to treat the universal case, where R = A,,, G is the univer-
sal deformation, and X,..., X, € G[r™](4,,) is the universal level struc-
ture. Let X = A\, (X1,...,Xy). By Remark [2.2.1] we can reduce to the case
that m = 1. It suffices to show that X is a primitive element of A"G[r](A1).
Now we appeal to the fact that A; is a domain: if X isn’t a primitive el-
ement, then it must be 0. But this would mean that A\; = 0, which would
contradict the fact that A"GJr] # 0. O

From Prop We deduce the existence of a morphism of formal
schemes ./\/lG m M/\"G .m- Recall from §2.3] that M/\"G m =5pt Ok,
After passing to the geometrlc generic fiber, it breaks up as the union of
¢™ (g — 1) points. The fibers of MY )m over each of these points are
connected; this is the main result of [Str08b]

Lemma 2.5.3. Let L/K be a separable extension of degree n, and suppose
that there is an action O — End G making G into a formal Or-module of
height 1. Then for all o € Op, and all m > 1 we have

Am(ary, ... ary) = N (@) (21, -+, T0), T1,..., 20 € G[E™].

Here Np i : L — K is the norm map.
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Proof. Let P = (P,Q, F,V~!) be the display corresponding to G. Then P
is a free Wo, (R) module of rank 1. If A"P is the top exterior power of P
considered as a Wo, (R)-module, then a € Of, acts on A\"P as Np (o),
which suffices for the lemma. O

2.6 Determinants of formal vector spaces

For an object R of Algfq, one has an injection

LGO ‘—)LGQ R)

Since Go(R) is a K-vector space, and lim ~ Go [7™](R) is a torsion-free Of-
module, this extends to an injective map of K-vector spaces

lim Golr™|(R) & K < Co(R).

Lemma 2.6.1. Suppose R is discrete. Then Jim Go[m™](R) ®o, K —

Go(R) is an isomorphism.

Proof. The only thing to check is surjectivity. Since R is discrete, every
element of Gy(R) is 7™-torsion for some m. Let x = (xg,x1,...) € Go(R).
If 729 = 0, then 7™z lies in lim ~ Go [T™](R). O

Now let R be an object of AlgOK0 with ideal of definition I which we

assume contains 7. Then R/I is a discrete F-algebra. Let G be a lift of
Gy ®F, R/I to R. Thm. 251 applied to Gy shows that there exists an
alternating O -multilinear map

Am: Go[m™|(R/I)" = A"Go[x™](R/T).

Taking inverse limits and tensoring with K, we get an alternating K-multilinear
map

A: @Go[ﬂ'm](R/I)n ®o, K = Im A"Go[r™|(R/I) ®o, K.

By Lemmas and [Z.6.1] there are isomorphisms
G(R) = Co(R/I) = = lim m Go[t™|(R/]) ®0, K

(and similarly for A"G). Thus we have defined an alternating K-multilinear
map 5 -
A G" = AG
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of formal K-vector spaces over Ok, . .
After choosing coordinates on G and A"G, we get isomorphisms G =
Spf O, [X1/97] and A"G = SpfOg,[T'/7"]. The morphism A above

amounts to having an element
5(X1,..., Xp) € O [X1/7, ..., X107

which comes equipped with a distinguished family of ¢"'th power roots for
m=1,2,.... These will simply be written §(X1,...,X,)"?".

Since the formal Qp-vector space G depends functorially only on Gy,
there is an action of D = End Gy ®p, K on G.

Lemma 2.6.2. Let o« € D*. Then
Mazxy,...,ax,) = N(@)A(z1,...,25),
where N: D — K is the reduced norm.

Proof. Let L C D be a maximal subfield containing «.. The statement does
not depend on the lift of Gy to R, so that we may assume that there is an
action O — End G turning G into a formal Or-module of rank 1. After
multiplying by a sufficiently large power of 7, we may assume that o € Oy,
in which case the statement follows from Lemma 2.5.3 O

2.7 The structure of the Lubin-Tate moduli problem at in-
finite level

Definition 2.7.1. Write Mgg m = Spf A%). Let AU be the completion of
)

ligA%) with respect to the topology induced by the maximal ideal of A((]j
(or any A%), it doesn’t matter). Let Mg) = Spf AW, and let Meay.oo =

0,00
Hjez MY M@y, 00 is the Lubin-Tate deformation space at infinite level.

Go,00"

Write A = A©),

Remark 2.7.2. The completion of a non-noetherian ring at an ideal [
is not necessarily I-adically complete. However, this is true if I is finitely
generated. Thus the AY) are complete, and Spf AU) makes sense as a formal
scheme. We have Spf AU) = h&lSpf A%) in the category of formal schemes
over Spf Ok, .

Recall that if Gy has height n, then A”Gq has height 1. By §2.3] we

have M(AOgGO,m = Spf Ok,,, where K,,/Kj is the totally ramified abelian
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extension of degree ¢™ (¢ —1). Let K be the r-adic completion of Ko, =
U,,, K- Then M(onzco,oo =Spt Oy _.

In §2.5 we constructed a morphism M(ng’m - MY

AN Glom* Taking inverse

limits with respect to m, we get a morphism ./\/lgg o MS\OQGO oo
Let G"™V be the universal deformation of Gy to Ag. Then over A,,, we
have a universal Drinfeld basis X£m), . ,X,(Lm) € G"V[r™|(A,,). In the

limit, we get n distinguished elements
X1,..., X, € G™V(A). (2.7.1)
Now suppose that G is an arbitrary lift of Gy to Ok,. Let Iy C Ay be the

maximal ideal, so that Ag/Iy = F,. We have G®0KO F, =GV ®y, Ao/l =
Gg. Twice applying part (1) of Prop. 2.4.2] we get isomorphisms

éuniv(A) ~ éuniv(A/IO) = éo(A/IO) = é(A/IO) = é(A)

Let Z; be the image of X; under the above isomorphism. By unwinding
the proof of Lemma [2.4.2] we can say what these are explicitly. Choose
coordinates on G and G", so that G(A) and G™V(A) may be identified

with Nil(4). Then Z; = (2, 2{%,...) € lim G(A), where

Z™ = lim [r"]g (XZ.(?”+ m)) . (2.7.2)

r—00

The tuple (Z1, ..., Z,) represents an A-point of G, which is to say a mor-
phism of formal schemes Mg)g — G" over Spf Ok,. Recall by Prop. 24.2]
G is representable by a formal scheme isomorphic to Spf O, [X/9™]. Thus
in fact we have a continuous Of,-algebra homomorphism O, [X'/77] — A
which sends Xil/qm to Zil/qm.

Applying the same constructions to A"GYp, we have a morphism of formal
schemes Mang, 00 — A"G. By the naturality of the determinant morphism,
the diagram

0 0
M) ——= MO (2.7.3)

Go,00

| l

G ————= jiG

commutes.
Theorem 2.7.3. The above diagram is Cartesian. That is, M(ng oo 18 150-
morphic to the fiber product of G and MS\O,zGO o Over A"G.

We remark there is a similar diagram for the entire space Mg, oo-
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2.8 Proof of Thm. 2.7.3

The fiber product of G" and MS\O,zGO ~ Over ARG is an affine formal scheme,
say Spf B, where B is a complete local ring. We have a homomorphism of
local rings ¢: A — B which we claim is an isomorphism. We need a few

lemmas.

Lemma 2.8.1. Let R be an object of C in which # = 0. Any n-tuple
of elements in Go[m™ Y (R) constitutes a Drinfeld basis for Go[n™](R).
Similarly, any element in A\"Go[n™ Y(R) constitutes a Drinfeld basis for

APGo[r™](R).

Proof. The claim for Gy is equivalent to the assertion that the n elements
0,...,0 constitute a Drinfeld basis for Go[n](R). This in turn is equivalent
to the assertion that 79" be divisible by [r]g,(T) in R[T]. But [r]g,(T)
equals 79" times a unit in F,[T], because Gg has height n. The claim for
A"Gy is proved similarly. O

Recall the parameters X }m), . ,Xr(Lm) € A,,, which represent the univer-
sal Drinfeld basis for the G"™V[71™](A,,). Let I C A; be the ideal generated

by (X}l), e fll)), which is to say that [ is the maximal ideal of A;. We
will often be considering the extension of I to the rings A,, and A, and we
will abuse notation in calling these ideals I as well. Note that I C A; is the
maximal ideal of Ay, so that A;/I = Fq. In particular m € I.

Recall that Ij is the maximal ideal of Ag. Thus Iy C I. In fact:

Lemma 2.8.2. [, C I>.
Proof. XF), e ,X,(LI) is a Drinfeld basis for G"™V[x](A;). Thus the polyno-
mial
1
[T (7= (@il (K)o - e [anlgun (X))

(at,...,an)€L™

is divisible by [7]univ (T') in A1 [T]. This product is congruent to 79" modulo
I?. Now we apply Lemma 2I.Tl Since the coefficient of 79" in []guniv(T)
is a unit, we find that the the coefficients of 7, 72,..., 79" =% in [7]quniv(T)
must lie in 72. But these coefficients generate I, whence the lemma. O

Lemma 2.8.3. In A{[T], The congruence [7]quniv(T) = [7]c(T') holds mod-
ulo I*[T7].

Proof. Indeed, both sides of the congruence lie in Ay[7] and are both con-
gruent to [7]g,(T) modulo IH[77, so this follows from Lemma O
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The next lemma describes the closed subscheme Spec A4, /1 of the formal
scheme Mg, m = Spf Ap,.

Lemma 2.8.4. There is an isomorphism of affine k-schemes Spec A, /I —
GO [ﬂ.m—l]n'

Proof. For an object R of C in which m = 0, we have that Hom¢(A,,/I, R)
is the set of deformations G’ of Gy to R equipped with a Drinfeld basis
r1,..., o, for G'[7™](R) which satisfy [ !g(x;) =0, =1,...,n. For
such a deformation we have

G = Guniv ®4 R = (Guniv 4, AO/[O) ®A0/10 R =Gy ®Fq R

Thus Home (A, /1, R) is the set of Drinfeld bases x1, ..., x, for Go[n™](R)
which satisfy 7™ 'z; = 0,3 = 1,...,n; that is, z1,...,2, € Go[r™'|(R).
But by Lemma 8T any such n-tuple is automatically a Drinfeld ba-

sis. Thus Hom¢(Ay, /I, R) is simply the set of n-tuples of elements of
Go[r™~!(R). This identifies Spec A,,,/I with Go[z™1]". O

We now turn to B, which by definition is the coordinate ring of the affine

o, (0)
formal scheme G X 5e Mg, o

Lemma 2.8.5. The qth power Frobenius map is surjective on B/m.

Proof. We have the following presentation of B:
1/ o0 o A
B O, [X)'" . XN 80, 1x1/e1O%, (2.8.1)

Since the Frobenius map is surjective on O /7 (Lemma 2.3.2]) and on

Ok,/m =F, , it is surjective on B/m. O

For an object R of Algo, ; Hom(B, R) is in bijection with the set of

n-tuples z1,...,x, € G(R) such that A(zy,...,x,), a priori just an element
of A"G(R), actually lies in T(A"G)(R) = lim A"G[r™](R), and consti-
tutes a Drinfeld basis for each A"G[7™](R). The identity homomorphism
Hom(B, B) corresponds to an n-tuple of universal elements Y7,...,Y, €
G(B). For i = 1,...,n, let us write ¥; = (Yi(l),Yi@), ...). After choosing
a coordinate on G, we can identify Yi(m)
element of B.

Let J C B be the ideal generated by 7 and by Yl(l), . ,Y,gl).

with a (topologically nilpotent)

Lemma 2.8.6. ¢(J) C I, and ¢ descends to an isomorphism B/J — A/I.
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Proof. For an Og,-algebra R in which 7 = 0, Hom(B/J, R) is in bijection
with the set of n-tuples z1,...,2, € Go(R) such that (a) :172(.1) = 0 for
i =1,...,n and such that (b) A(z1,...,x,) constitutes a compatible family
of Drinfeld bases for A"Go[n™]|(R). However, if condition (a) is satisfied,
then

MMz, ... ,xn)(l) = Al(xgl), ... ,x,(ll)) =0,

and 0 is always a Drinfeld basis for A"G[rn](R) by Lemma 2.81] so that
condition (b) is satisfied as well.

Therefore Spec B/J = Im G [x(m=D]". By Lemma 284 this is isomor-
phic to 1me Spec A, /I = Spec A/I. O

Lemma 2.8.7. ¢(J)A is a dense subset of I.
Proof. By Eq. (2.7.2]) we have

(V") = lim [7™]¢ (X.(m+">) .

v m—ro0 ¢

7

Since the limit converges [-adically, ¢ (Y;.(l)) = [ g, (X (m)) (mod 1?)
for some sufficiently large m. By Lemma 2.8.3] we have
1 m— m)\ _ r_m— m)\ __ 1
XV = [ g (X)) = 7" Mo (X)) =0 (V) (mod 17),
and therefore XZ.(I) € ¢(J)A + I?. Since the Xi(l) generate I, we have I C

#(J)A+ I?, which when iterated yields I C ¢(J)A+I™ for all m > 1. Since
I generates the topology on A, the closure of ¢(J)A must equal I. O

Lemma 2.8.8. The qth power Frobenius map on A/m has dense image.

Proof. Let A = A/, and let I be the image of I in A, so that I generates
the topology on A. Similarly define B and J. By Lemma we have
A/I = B/J, so the qth power Frobenius map is also surjective on A/I.
Thus A = A7 +T.

We will prove by induction that for all m > 1, A = AT+ T" and T =
(A*NT)+T". The first claim proves the lemma, since I generates the
topology on A. As for the base case m = 1, the first claim is discussed above,
and the second claim is vacuous. For the induction step, assume both claims

for m. By Lemma 287, ¢(J)A is dense in I, so that I = ¢(J)A + ey
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Since Frobenius is surjective on B (Lemma E8.5), we have ¢(J) C A NT.
Thus

~l

c @A'nNDA+T"
= A'NDA +T+T™
c @AnD+1"

The reverse containment is obvious, so that T = (A’ NT) + TmH, thus
establishing the second claim for m + 1. Inserting this into A = A% +T gives
A="A"+ 7m+1, which establishes the first claim for m + 1. U

Lemma 2.8.9. The qth power Frobenius map on A/7 is surjective.

Proof. Once again let A= A/m and let I be the image of I in A. The ideal
I is finitely generated; let fi,..., f, be a set of generators (e.g., the images

of the elements XZ.(l), i=1,...,n). Recall that for m > 0, T[qm} is the ideal

generated by the ¢™th powers of elements of I, so that 7"

by the fiqm, i=1,...,n. Obviously we have 79" c 77", But also we have
— N —[,m —__[m
I c1T la™] for NV large enough. Thus the sequence of ideals la™]
the topology on A.

Let a € A. By Lemma [Z.8.8] there exists b € A such that a — b9 € 79,
Let us write

is generated

generates

a= bq—l—Zaiff, a; € A.
i

For each i we may also find b; € A with a;—b} € T[q}; write a; = bg—l—zj aijf]q,
a;; € A. Thus

a=0b1+Y bIfI+Y ayfifl

( i,J

Continuing this process, we find a gth root of a in A, namely

b+zbifi+zbijfifj + ...

{ 2%

This completes the proof. O

Lemma 2.8.10. The induced map B/m — A/w is surjective.
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Proof. Let us write ¢: B — A for the induced map. Let a € A. By Lemma
286, there exists by € B and ag € [ with a = ¢(by) + agp. By Lemma
289 ap has a gth root in A, call it aé/q. Apply Lemma to write
aé/q = ¢(b1) + a1, with by € B, a; € I. Then ¢(b!) = ag — af € I, so that
(by Lemma 2.8.8) b € J. Similarly write ai/q = ¢(ba) + ag, and so on. We
have b, € J for all m > 1. Therefore the series by + b‘f + bgz + ... converges
to an element b with ¢(b) = a. O

Recall that A,, is a regular local ring. Let [, be the maximal ideal
of A,,. Then for m > 1, A,, is generated by the Drinfeld parameters

X}m), X5 We have [7] Guniv (Xi(mﬂ)) = Xi(m) for m > 1. Also recall
that we had set I = I.

n(m—1)]
Lemma 2.8.11. As ideals in A,, we have IA,, C IT[?L . Furthermore,

n(m—1)
I cIA,,.

Proof. From Lemma 283 we have [7]cuniv (T) = [7]g,(T) modulo I*[T].
Since Gy has height n, [7]quniv(T) is congruent to a power series in 79"
modulo Iy[T] C I?[T] (see Lemma Z8Z). Thus

()
[qn(m 1]

Since the Xi(l) generate I we have I C Ip, + I?A,,. Tterating this

n(mfl)]

qn(mfl)

= 7" oy (X)) = [ g (X)) = XY (mod 124,).

(2 (2

+ INA,, for any N. IA,, generates
Igg"(m—l)

containment shows that I C I,[Z
n(m—1)
Vs open, so that IN for

n(mfl)]

the topology on A,,, and I,[Z
sufficiently large N. Thus I A,, C IL‘{

For the second claim, note that I,,, has n generators Xfm), . ,X,(Lm), SO
n(m—1)
n(m—1) q

that I, is contained in the ideal generated by the (X -(m)) . The

1
above congruence shows that each of these elements lies in I A,,. O

Lemma 2.8.12. Let R be a regular local ring with maximal ideal M whose
residue field has characteristic p. Let Q be a power of p. Let n € R be
an element for which n® divides p in R. Suppose N > 1. If 9 € n®R +
MONFL then x € nR + MN*1,

Proof. For x € R, let v(x) € Z>p U {00} denote the maximal s > 0 such
that x € M?. If x satisfies the hypothesis of the lemma, then every element
of x + nR satisfies the hypothesis as well. Indeed if 2’ = x + ny for y € R,
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then (/)% € 29 + pR+ 7R C 29 + %R € n?R + MON*L. Similarly, if z
satisfies the conclusion of the lemma, then so does every element of z +nR.
Thus to prove the lemma, we assume that = satisfies v(x) > v(z+ny) for all
y € R. Under this assumption, we will show that z € M1, which suffices.

Assume otherwise, so that v(x) < N. Consider the graded ring GrR =
Do M?/M*+1. Since R is aregular local ring, Gr R is isomorphic to a power
series ring over the residue field of R. If z € R, define Z € GrR as follows. If
z € R is nonzero, let Z € GrR denote the image of z in Ifn(z)/lfn(z)ﬂ. Define
0 = 0. We have 2% € n®R + M@N*! and v(z?) < QN. This implies that
7% divides Z¥ in GrR, and therefore (since this ring is a unique factorization
domain) 77 divides Z. Thus we can find y € R with v(z — ny) > v(x). But
this contradicts our assumption about x. O

Lemma 2.8.13. For every r > 1, A contains an element n,. with n?TA =
wA. If f € A satisfies f € A, then f € n,A.

Proof. We have seen that A, contains the ring of integers O, in the Lubin-
Tate extension K, /Ky. A uniformizer m, of O, satisfies W?Tﬁl(q_l)oK =
7Ok, . Thus 7, = ﬂg;} satisfies n? A = wA.

Now suppose that f € A satisfies f¢ € wA. Let N > 1 be arbitrary.
Since A is the [-adic completion of the direct limit of the A,,, there exist

m > 1 and f, € A, such that f — f,, € I""'NT1A. Then f4 € wA,, +
TN+l A By Lemma 2.8.11] we have fﬁr: € wA,, + I,[gn(MJ)}(anNH) C
TAm +I%qr+n(mil)N+1. After possibly enlarging m we may assume that 7, €
Ap,. Applying Lemma, we find f,, € 9, A + I,"nqn(mil)NH. Applying
Lemma 81T again, we get fo € 17 Am+IVA. Thus f € n, A+ IV A. Since
N was arbitrary, f lies in the closure of 7, A, which is n, A itself. O

T

We are now ready to show that that ¢: B — A is an isomorphism. We
will first show it is surjective. If a € A, use Lemma 2.810l to find b € B
with a = ¢(bg) + a1, a1 € A. Write a3 = ¢(b1) + mag, and so on. Then
b= by + by + m2by + ... satisfies ¢(b) = a.

We now turn to injectivity. Suppose that b € B is an element with
¢(b) = 0. Let m > 1. Since Frobenius is surjective on B/7 (Lemma 2.8.5]),
we may write b = ¢?" (mod 7B), with ¢ € B. Then ¢(c)¢" € wA. By
Lemma2:813] ¢(c) € nmA. Since ¢ is an isomorphism B/J — A/I (Lemma
2.8.6), we have ¢ € 1,,B + J, and therefore b € 7B + JI¢"] for all m > 1.
Since B is J-adically complete, this implies that b lies in the closure of 7B,
which is 7B itself. This shows that ker ¢ C wB. But then b/m € ker ¢, so
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that in fact b € 72B. Inductively, we find b € 7B for all m > 1. Since B
is m-adically separated, b = 0. This completes the proof of Theorem 2.7.3]

Corollary 2.8.14. If K has positive characteristic, then
~ T 1/q> oo
AT X7 xe,

If K has characteristic 0, then put A° = @A/T{', where the limit is taken
with respect to the qth power Frobenius map. Then

A = F X, XM

Proof. By Thm. P73l we have an isomorphism of complete local (’)Kw—
algebras

O [ X777, ... XN @0, 1) Ok, — A (2.8.2)

In the tensor product appearing in Eq. (2.8.2]), the image of X € Ok, [X /4]
is 0(X1,...,X,) in the left factor and ¢ in the right. First assume that K
has positive characteristic. Then the map Ok, [X U Ok Is surjec-
tive with kernel generated by m — g(X) for some fractional power series
9(X) € F,[X'/9”] without constant term. Recalling that O, = F,[r], we
have

A = O [X)7 XY (- (X, X))
= F X/, x>
Now assume K has characteristic 0. We have
A/']T = Fq[[Xll/q PPN 7X1/1L/qoo]]®Fq[[X1/q°°]]0Koo/ﬂ-

Now take the inverse limit along the gth power Frobenius maps. In doing so,
the surjection F,[X /9™ ] — Og_ /7 becomes an isomorphism F,[X1/7™] —

OKgo' Thus A° = Fq[[Xll/qoo, e ,X,i/qoo]] as required. O

2.9 Group actions and geometrically connected components

Thm. 273 extends to the entire formal scheme Mg, o, so that we get a
cartesian diagram
MG(),OO I M/\”G(),Oo (291)

| |

G ———

28



The action of GL,(K) x D* on Mg, o can be described directly in terms
of this diagram. GL,(K) acts on the right on G™ via the usual right action
of matrices on row vectors. The determinant morphism A transforms the
action of g; € GL,(K) into det gy € K*, which preserves Mang, oo. Thus
g1 preserves Mg, co-

Recall that D = End Gy Qo K. An element go € D* determines an
autmorphism of Gy, hence of G by Prop. 4.2l The determinant morphism
transforms the action of gy into N(g2) € K , where N: D — K is the
reduced norm map. Thus go preserves Mg, ~ as well. However, in order to
get a right action of D* on Mg, o which is consistent with the previously
described action on the finite-level spaces, we define

X1y, Xn)g2 = (95 X1, 05 Xi),

whenever X, ..., X, are sections of G.

Let C be the completion of an algebraic closure of K. Choose an embed-
ding Ko < C. This is tantamount to choosing a generator t for the free
rank one Ox-module Jim A"G[r™](O¢). The inclusion lim A'G[r"](O¢) C
lim A"G(Oc) allows us to view t as an element of A"G(Og). This in turn
corresponds (see Rmk. [24.4) to a topologically nilpotent element ¢t € O¢
together with a compatible system of gth power roots t1/¢" for m > 1.

Let

Ay = An®o,. Oc,
and let A° be the completion of lim A7,. Let Mg, , = SpfA°. From
Thm. 273 we may identify Go.0o With the fiber of A: é’éc — /@éoc
over the single point t € A"G (Oc¢). Thus

A° 2 Oc[X7, . x Ve (5(X1, LX) tl/ﬂf”) L (292

The Oc-algebra A° admits an action of the group (GL,(K) x D*)det=N
consisting of pairs (g,b) with det g = N(b).

2.10 The Lubin-Tate space at infinite level as a perfectoid
space
We wish to take the adic generic fiber of the formal scheme Mé?} = Mg)g,oo

The construction of this generic fiber is as follows. Let MO Spa(A4, A)
be the set of continuous valuations on A, as in [Hub94]. This is fibered over

the two-point space Spa(Ok, Ok ), and we can let M(O) 24 be the fiber over
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n = Spa(K,Ok). The trouble with this is that the structure presheaf of

Spa(A, A) isn’t necessarily a sheaf, and therefore we don’t know a priori

that MY;2

that ./\/looma is a perfectoid space after passing to C. It is known that the

structure presheaf on a perfectoid affinoid is a sheaf ([Schi12], Thm. 6.3).
Let 77 = Spa(C, O¢), and let ./\/lig);‘d be the base change to C.

is an adic space. We will resolve this problem by observing

Lemma 2.10.1. ./\/l 77 can be covered by perfectoid affinoids (and there-
fore is a perfectoid space).

Proof. This is a consequence of the fact that Ap, = A®Oc is a reduced
complete flat adic Oc-algebra admitting a finitely generated ideal of defini-
tion I containing m, such that the Frobenius map is surjective on Ap /7.
Indeed, let f1,..., f, be a set of generators for I (such as the elements
Xi(l)) Then any Valuatlon | | belonging to M ﬁa must satisfy |f;| < 1 for
i=1,...,n. Since |r| # 0, there exists r > 1 for which |f| <|n|. Let R, =
Aog (ff/ﬂ [1/7], and let R C R, be the integral closure of Ao <ff/7r>
in R,. The Frobenius map is surjective on R, /7 (this follows quickly from
the corresponding property of A), and thus (R,, R;") is a perfectoid O oo
algebra, cf. [Sch12], Def. 6.1. The valuation | | extends uniquely to R, and
satisfies |R;}'| < 1, so it belongs to Spa(R,, R;}). We have thus shown that
M%O)’ad is the union of perfectoid affinoids Spa(R,., R;"). O

3 Representation-Theoretic preparations

3.1 Non-abelian Lubin-Tate theory

Let szﬁ be the adic geometric generic fiber of the formal scheme M,,,
and let

=l H' (M35, Qr)

where £ is a prime distinct from the residue characteristic of K.

Then H® admits an action of GL, (K) x D* x Wk, in which elements
of the form (a,a,1), a € K*, act trivially. (See [Str0O8a], §2.2.2 for a
detailed discussion of this action.) Non-abelian Lubin-Tate theory refers to
the realization of Langlands functoriality by the H®, as predicted by the
conjectures made in [Car90]. Carayol’s conjectures have been settled (at
least for supercuspidal representations) in [HTO01] as part of the proof of
the local Langlands conjectures for GL,, over a p-adic field. For a complete

30



historical account of non-abelian Lubin-Tate theory, see the introduction to
[Str08al.

For the remainder of this discussion we assume that n = 2. In that case,
a complete description of H' was given in [Car86], 12.4 Proposition. See
also [Car90], §3.3. We present it here because it will be indispensable to the
proof of our main theorem.

Let II — LLC(II) be the bijection between irreducible admissible rep-
resentations of GLg(K) (with complex coefficients) and two-dimensional
Frobenius-semisimple Weil-Deligne representations of K afforded by the lo-
cal Langlands correspondence. Write H(II) = LLC(II ® \det]_1/2); then
IT — H(II) is compatible under automorphisms of the complex field. Thus
IT — H(IT) may be extended unambiguously to representations with coeffi-
cients in any algebraically closed field of characteristic zero, e.g. Q,.

Let x: K* — QZX be a character, and let H'[x] be the subspace of H'
on which the center K* of GL2(K) acts as x.

Theorem 3.1.1. The representation H'[x] decomposes as the direct sum.:

H'ix]= P TeJLI)eHI),
e A2(x)

where I1 varies through the set A?(x) of discrete series representations of
GLo(K) with central character x. The representation H(II) is the unique
irreducible quotient of H(II).

Thus if IT is supercuspidal then H(II)) = H(II). The non-supercuspidal
discrete series representations of GLo(K) are exactly the representations
St ®(¢odet), where 1) is a character of K* and St is the Steinberg represen-
tation. We will write St ® as a shorthand for St ® (1 o det). Note that the
central character of St ® is ¥2. For II of this form we have dim H(IT)' = 1.

Proof. We use the notation of [Car90], §3.3. Carayol shows that if " is the
space of vanishing cycles in degree 1 attached to the tower of formal schemes
M, then the y-isotypic component of U¥ decomposes as in the theorem.

By using the comparison theorem of [Ber96], Prop. 2.4, U is isomorphic to
our H'. O

Let Mf},fiﬁ /7% denote the quotient of szﬁ by the subgroup of GL, (K)
generated by the central element diag(w, 7). Multiplication by this matrix
induces an isomorphism between M,(fb?’ﬁad and Mg?)’ad, so the quotient
./\/lamd’ﬁ / 7% is isomorphic to two copies of Mgrob?%ad. As a consequence of Thm.
B.ITlwe can give a formula for the dimension of the cohomology of szﬁ /2.
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Corollary 3.1.2. We have

dim H'(M3 /72 Q) = Y 2dimI'™) @ JL(II)
X (m)=1
+2¢" (g — D)(#PH(Ok /7™) — 1),

where 11 runs over supercuspidal representations of GLa(K) whose central
character x11 is trivial on w, and T'(7™) is the congruence subgroup 1 +
7" M2(Ok).

Proof. In Thm. BIT] taking I'(#™)-invariants and summing over all x with
x(IT) = 1 yields

H M /7% Q) = @ 1™ @ JL(I) @ H(1T).

xm(m)=1

For supercuspidal representations II we have dim H(II)’ = 2. All other
representations are of the form IT = St ®1, where 1 runs over characters of
K> with ¢(m) = £1. For such II, we have that dim JL(IT) = dim H(St)" = 1.

It remains to compute dim(St ®1)"' ™). Certainly this is only nonzero
if (1 4+ 7mOk) = 1. In that case, dim(St®1)'™™) = dim St"™™). Now
recall that St can be modeled on the space of all locally constant functions on
P'(K), modulo constants. It follows that dim St"(™) = #PY(Og /7™) — 1.
We conclude the proof by noting that the number of characters ¢ of K*
satisfying 1 (7) = £1 and ¥(1 + 7™Ok) = 1 is 2#(Ok /7™)* = 2¢™ 1 (q —
1). O

3.2 Chain orders and strata

We now review the theory of types for GLo(K) as presented in [BHOG].

A lattice chain is an K-stable family of lattices A = {L;}, with each
L; ¢ K ® K an Og-lattice and L;y1 C L; for all ¢ € Z. There is a unique
integer e(A) € {1,2} for which 7L; = L; .(n). Let Ax be the stabilizer in
My (K) of A. Up to conjugacy by GLa(K) we have

MQ(OK), exn =1,

Apr = Ok Ok
, exn =2

px Ok

Definition 3.2.1. A chain order in My(K) is an Og-order A C My(K)
which is equal to Ap for some lattice chain A. We say A is unramified or
ramified as ep is 1 or 2, respectively.
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Suppose A is a chain order in My(K); let B be its Jacobson radical.

Then P = 7 A if A is unramified and P = <pK Ox

) in the case that
Pk Pk

A= <OK OK). We have a filtration of A* by subgroups U’} = 1 + ‘B",
pr Ok
n > 1.

These constructions have obvious analogues in the quaternion algebra
D: If A = Op is the maximal order in D, then the maximal two-sided ideal
of A is generated by a prime element 7p of D. We let U} = 1+ 7},0p.

3.3 Characters and Bushnell-Kutzko types

In the following discussion, ¥: K — sz is a fixed additive character. We
assume that 1 is of level one, which means that ¥ (px) is trivial but ¢¥(Ok)
is not. (The choice of level of 1 is essentially arbitrary, but it has become
customary to use characters of level one.) Write 1, k) for the (addi-
tive) character of M(K) defined by s, (k) (%) = ¥(trz). Similarly define
Yp: D — C by ¢p(z) = ¢(trp/k(z)), where trp /g is the reduced trace.

Now let A be either My(K) or D. Let A C A be an Og-order which
equals a chain order (if A = M»(K)) or the maximal order in D (if A = D).
Let n > 1. We have a character 1, of U'{' defined by

UR/UGH = Qo
l+z — ¢(ax)

If 7 is an admissible irreducible representation of GLo(K), one may ask for
which « is the character i contained in W‘Uﬁl. This is the basis for the
classification of representations by Bushnell-Kutzko types, c.f. [BK93].

Definition 3.3.1. A stratum in A is a triple of the form S = (A, m,«),
where m > 1 and o € P,". Two strata (A,m,a) and (A,m,a’) are
equivalent if o = o’ (mod P1=—™).

Definition 3.3.2. Let S = (A, m,a) be a stratum.

1. Sis ramified simple if L = K («) is a ramified quadratic extension field
of K, m is odd, and a € L has valuation exactly —m.

2. S is unramified simple if L = K () is an unramified quadratic exten-
sion field of K, a € L has valuation exactly —m, and the minimal
polynomial of 7« over K is irreducible mod 7.
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3. S is simple if it is ramified simple or unramified simple.

If S =(A,m,«) is a stratum in Ms(K) (resp., D) and II is an admissible
representation of GLg(K) (resp., smooth representation of D*), we say that
II contains the stratum S if 7T|UXL contains the character v,,.

We call TI minimal if its conductor cannot be lowered by twisting by
one-dimensional characters of F'*.

From [BHOG] we have the following classification of supercuspidal repre-
sentations of GLo(K):

Theorem 3.3.3. A minimal irreducible admissible representation I1 of GLa(K)
1s supercuspidal if and only if one of the following holds:

1. II contains the trivial character of U]:\[42(OK) (i.e. II has “depth zero”).
2. 11 contains a simple stratum.
The analogous statement for D is:

Theorem 3.3.4. A minimal irreducible representation I1 of D™ of dimen-
ston greater than 1 satisfies exactly one of the following properties:

1. II contains the trivial character of U(lgD (i.e. II has “depth zero”).

2. 1I contains a simple stratum.

4 CM points and linking orders

4.1 CM points

Once again, let Gy be a one-dimensional formal Og-module of height 2
over k. Let L/K be a separable quadratic extension, which we consider
embedded in a fixed complete algebraically closed field C/K. In this section
we pay special attention to those deformations (G,t) of Gy which admit
endomorphisms by an order in L. These are investigated in [Gro86].

Definition 4.1.1. Let x be an Oc-point of My, = Mg, corresponding
to the triple (G, ¢, ¢), where (G, 1) is a deformation of G and ¢: K2 — V(G)
is a basis for its rational Tate module. Say that x has CM by L if G admits
endomorphisms by an order in L.
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Suppose x is a CM point. Recall that D is the quaternion algebra of
endomorphisms of Gy up to isogeny. Then x induces embeddings i1: L —
M, (K) and iy: L — D, characterized by the commutativity of the diagrams

K=V (G

)
il(a)l la
)

2o
K 5 V(G

and
Gy ——G

iz(a)l la

Go—/—G

for « € K. At the risk of minor confusion, from this point forward we will
usually suppress 71, i3 from the notation and instead think of L as a subfield
of M,(K) and D. Let Ax: L — M,(K) x D be the diagonal embedding.
The group GL,(K) x D* acts transitively on the set of C-points of M
with CM by L; the stabilizer of = is Ax(L*). We note that after replacing
G by an isogenous Og-module one can assume that End G is the maximal
order Or,.

Points in M (O¢) which have CM by some L/K will be called CM
points. These points give rise to C-points of the perfectoid space Mg;{ﬁ,
which we will also call CM points.

4.2 Linking Orders

To a CM point x and an integer m > 0 we will associate an Og-order
Lxm C My(K) x D which we have called a “linking order” in [Weil0].

The CM point x corresponds to a triple (G, ¢, ¢), where (G,¢) is a de-
formation of Gy to Oc such that EndG = Op and ¢: K2 — V(G) is an
isomorphism. The isomorphism ¢ allows us to identify My(K) with the
algebra of K-linear endomorphisms of V(G) = K2.

The integral Tate module T'(G) is a lattice in the V(G). Since G admits
endomorphisms by L up to isogeny, V(G) becomes an L-vector space of
dimension 1, and it makes sense to talk about the family of lattices p’ T'(G) C
V(QG), for i € Z. Observe that these form a lattice chain, cf. §3.2

Definition 4.2.1. Let Ax C M>(K) be the chain order corresponding to

the lattice chain {piLT(G)}iGZ.
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Up to conjugacy by an element of GLy(K) we have

M>(Ok), L/K unramified,
Ax = Ok Ok , L/K ramified.
pk Ok

Since T'(G) is an Or-module, Ax contains Op. It will be helpful to
give a basis for Ax as an Op-module. The basis of the Ox-module T'(G)
corresponding to ¢ takes the form {ojw,asw}, where w generates T'(G) as
an Or-module and aq, as is a basis for O /Ok. Let o be the nontrivial
automorphism of L/K. Define w; € Endp, T(G) by wi(w) = ofw,
i =1,2. Then we have

A=0r & Orw.
In fact this is an orthogonal decomposition with respect to the trace pairing
on My(K). Note that @w? = 1 in GLy(K).

Now we turn to the corresponding structures in the quaternion algebra
D. We have an L-linear pairing D x D — L given by the reduced trace,
which induces an orthogonal decomposition D = L & C. Then CNOp is a
free Op-module of rank 1, generated by an element ws, and then

Op =01 ® Opwos.

Since tI'D/K(WQ) = 0, we have w3 € O. Note that w3 lies in O if
L/K is ramified, and @3 is a uniformizer of O if L/K is unramified.

We are now ready to define the linking orders Lx,,. Let Ax: L —
M5(K) x D be the diagonal embedding o — (o, ).

Definition 4.2.2. Let m > 0 be an integer. The linking order of conductor
m associated to the CM point x is

Lxm = Ax(Or) + (p7 x 7 + <p21(m)wl % pZQ(m)w2> 7
where r1(m) = [(m + 1)/2]| and ryo(m) is defined by

(m) = [m/2], L/K unramified
e |(m+1)/2|, L/K ramified.

We also define a double-sided ideal E;m C L by
£ = Dulpr) + (7 0P 4 (0 ey g2 ).

Let Rxm = Lx,m/L%m> a finite-dimensional algebra over Of/py. Finally,
let R} ,,, be the image of £, N (GLy(K) x D*)4=Nin RX .

36



Remark 4.2.3. The values of r1(m) and ro(m) are the least possible such
that the expression given for Ly ,, is closed under multiplication. Also note
that if L/K is unramified then Ly ¢ is conjugate to M(Ok) x Op. Finally,
note that £, is normalized by Ax(L*).

The following Lemma is [Weil0], Prop. 4.3.4.

Lemma 4.2.4. The ring Rx,m and the subgroup R}gm C Ry take the
following values.

1. If L/K is unramified, then Rypo = Ma(Fy) X Fp2, and R} is the
subgroup of pairs (g1,g2) with det g1 = ggH.

2. If L/ K is unramified and m > 0, then Lx m/Ls , s isomorphic to the
ring of 3 X 3 matrices of the form

a B v
[CY?/B?’V] = aq /Bq
(6%

with o, 3,7 € ki, = Or/pr = Fp. The description of this isomor-
phism depends on the parity of m.

If m > 2 is even, then a typical element of Ly, is of the form
Ala) + (7™,0) + (72 By, 7™ %6ws), with o, B,7,0 € Op. The
isomorphism carries the image of this element in Ry, onto the ma-
triz [@, 3,7]. (The overline indicates reduction modulo pr.)

If m is odd, then a typical element of Ly, is of the form A(a) +
(0, 7) + (D255 £m=1/2 85 with a, B,7,0 € Or. The iso-
morphism carries the image of this element in Rx,, onto the matriz
[@, B,7].

In either case, the subgroup R,lcm C Rg.m corresponds to the group of
matrices [, B,7] with ay? + a9y = B4t1,

3. If L/K is ramified and m is odd, then we have an isomorphism Ry nm, =
kle]/e*. A typical element of Ly m is of the form A(a) + (877, 0) +
(AN 2y 7 HD/265)  with «,B,v,0 € Op. The isomorphism
carries the image of this element in Ry, onto @ + Be. We have
Rl = R

We will not be needing an explicit presentation for Ry ,, in the case that
L/K is ramified and m is even.
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Definition 4.2.5. Define groups K ,, and IC,lgm by

’CX,m = AX(LX)E;;m
Kym = KxmN(GLy(K) x D*)dt=N

We now construct a family of representations of the groups Kx ,,, as in
Thm. 5.0.3 of [Weil0)].

Definition 4.2.6. Let x be a CM point, and let .S be a simple stratum of
the form (Ax,m,«). We define a certain irreducible representation pg of
Kx.m with coefficients in Q,. The representation pg will have the following
properties:

1. The restriction of ps to L, factors through Ry .

2. The restriction of pg to A(K*) C Kx,, is a sum of copies of the trivial
representation.

3. The restriction of pg to Uj: x Ug'  is sum of copies of the character
(14 2,1 +y) — Yagx) () pp (az)

If L/K is ramified, then we have an isomorphism R}, = (k[e]/e?)*
under which U x Ug corresponds to 1+ ke. The stratum S determines
a nontrivial character of this group, which we extend to all of Rg,, by
requiring that it be trivial on £*. Inflate this to get a character pg of Lg,,.
Finally, extend pg to all of Ky m = Ax(L*)Ly ,,, by declaring ps(Ax(7r)) =
—1.

If L/K is unramified and m > 1, then R, is isomorphic to the group
of matrices of the form

a B v
[aaﬂufy]: aq Bq 7a€k£<7/87’yeklw
(6%

Under this isomorphism, the image of U{' XU in R i corresponds to the
subgroup U = {[0,0,7]|y € k1.}, which lies in the center of Ry ,,. The most
direct way to construct pg uses the ¢-adic cohomology of a curve admitting
an action by Rg,,. Recall that R,l(m is isomorphic to the subgroup of
GL3 (k) consisting of matrices of the form [a, 3,v] with B9t = a9y + ayi.
Observe that this group preserves the affine plane curve C' defined by the
equation Z{ + Z; = Zg“, under the action (Z1, Z2) — (Z1 + o~ 1397y +
a vy, 0?7 2y + a71B). Let C = Rym XRL C'. By inflation, we get an
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action of £, on C. Extend this action to all of Ky ,, by having Ax(7) act
trivially.

Let p be the action of Kx, on H}(C, Q). Since U lies in the center of
Rix.m> and 9 is a character of U, it makes sense to define pg as the ¢-isotypic
component of p. It is irreducible of dimension ¢. For proofs of these claims,
see [Weil0)], §5.1.

Finally, we turn to the case L /K unramified and m = 0. We have Ry =
M>(Ok) x k. Let 6 be a character of k; which does not factor through the
norm map k; — k*. There exists an irreducible cuspidal representation ny
of GLa (k) corresponding to 6. The character of this representation takes the
value —(0(a) 4+ 6(a?)) on an element g € GLo(k) with distinct eigenvalues
a,0f € kg not lying in k. Let pg be the character ny ® =1 of 72;0 =
GLa(k) x k;. Extend py to all of Ky o by having Ax(m) act trivially.

Theorem 4.2.7. Let x be a point with CM by L.

1. Let S be a simple stratum of the form (Ax,m,«), with o € L. Let pg

be the representation of Ky m described in Defn. [{.2.6. Let
IIg = IndgiiK)XDx ps

(compactly supported smooth induction). For a character x of K*,
let TIg[x] be the subspace of Ilg on which the center of GLo(K) acts
through x. Then Ig[x] is the direct sum of representations of GLa(K )X
D* of the form 11 @ JL(II), where I1 is a minimal supercuspidal rep-
resentation having central character x and containing the stratum S.
Every such 11 appears in Mg[x].

2. Now suppose L/K is unramified, and let 0 be a character of k which
does not factor through the norm map k; — k*. Let

Il = Ind,(éf:z(K)XDX PO,

and define Ty[x| as above. Then Ily[x] is the direct sum of representa-
tions of GLy(K) x D* of the form Il ® JL(II), where II is a minimal
supercuspidal representation of depth 0 and central character x. Every
such IT appears in some Tg[x].

Proof. This is a restatement of Thm. 6.0.1 of [WeilQ]. There, the center
is treated a little differently. In [WeilO] one first defines a representation
ps of L3 ,,, and then (after choosing a central character x) extends of pg
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to a representation pg, of (K™ x K*)Ly,, = (K> x {1})K{,, by having
K> x {1} act through x. Thm. 6.0.1 of [WeilQ] says that the representation
of GLy(K) x D* induced from pg , is a direct sum of representations IT ®
JLII as claimed in Thm. E27 But it is easy to see that the induced
representation of pg, is the same thing as our Ilg[x] above. The argument
for depth zero supercuspidals is similar. O

4.3 Curves over F, and the Jacquet-Langlands correspon-
dence

Definition 4.3.1. We define a smooth affine curve Cx ,, over Fq. In each
case we will define an action of lC,lgm on Cx,;,, whose restriction to £g,,

factors through the finite group Ry ,,,.

1. When L/K is unramified and m = 0, let Cx o be the affine plane curve
with equation Z1Z3 — Z{Zy = 1. An element of R} , corresponds to a

pair (g1, g2) in GLa(F,) x FqX2 satisfying det g1 = ggH. Suppose g1 =

<Z Z) This pair will act on Cx ¢ by sending (Z1, Z2) to g;l(aZl I
cZs,bZ1 + dZQ).

2. When L/K is unramified and m > 0 is even, let Cx,, be the affine
plane curve with equation Z{ + Z; = Zg“. An element of R}{m
corresponds to a matrix [, 3,7] € GL3(F,2) which satisfies ay? +
a4y = B9t1. This element will act on Cx,, by sending (Z1, Z2) to
o HaZy + B1Zs + v, a1 Zy + ).

3. When L/K is unramified and m > 01is odd, let Cx ,,, be the affine plane
curve with equation Z{ + Z; = Zg“. The action of Ky, is defined
as follows: [a, 1,1] acts as (Z1, Z2) +— (21,0971 Z5) (as it did in the m
even case), but [1, 8,7] 7! acts as (21, Z2) > (Z1+ B1Z5 +~9, Za + B).

4. When L/K is ramified and m is odd, let Cx ,, be the affine plane curve
with affine equation Z{ — Z; = Z2. An element of R,lcm corresponds
to an element a + be € Fyle]/e?, a # 0. This element will act on Cyx
by sending (Z1, Zs) to (Z1 + a~'b, Z3).

In each case Cxm has an action of Ry ,,, hence of L, . Extend this to
an action of K, by the following rule: if L/K is unramified, have Ax(7)
act trivially, and if L/K is ramified, with uniformizer 7z, have Ax () send
(Zl, ZQ) to (Zl, —Zg).
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The compactly supported cohomology H, Cl(me, Q) is a smooth repre-
sentation of Ky p,.

Proposition 4.3.2. Suppose m > 0. If S = (Ax, m,«) is a simple stratum
then ps|ky ~is a direct summand of H}(Cx.m, Qp)-

Now sﬁppose that L/K is unramified and m = 0. If 0 is character of
k[ which does not factor through the norm map kj — k*, then p9|,C>1c0 s a

direct summand of H}(Cx0, Q).

Proof. The proof proceeds by cases.

1. When L/K is ramified (so that m is odd), Cx y, is the curve Z{ — Z; =
Z22, and Ry ,,, acts through a quotient F, acting through substitutions
(Z1,Z3) = (Z1+a, Z3), with a € Fy. The claim is reduced to showing
that H}(Cx0,Qy) is the direct sum of the nontrivial characters of
F,. This is an exercise, see [Kat81], Cor. 2.2, which proves a more
general statement about curves of the form Z{—Z7; = Z{: the isotypic

component of a nontrivial character in H! has dimension N — 1.

2. When L/K is unramified and m is even, Cx ,, is the very curve Cct
used to define the representations pg in the first place: the pg were
defined as summands of Indgz':: H cl(C’x,m, Q,), inflated to Lx ., and

extended to Kx , by having Ax(7) act trivially. From this description
it is clear that pg|x1 is a direct summand of H}(Cx.m, Q).

3. When L/K is unramified and m is odd, Cx ,, carries a different action
of Ryxm as the curve C! used to define the pg, but the same repre-
sentations of R, appear in the cohomology H((Cx0,Qy). To prove
this, it is enough to show that the trace of an element of R ,, acting
on the Euler characteristic of C'! is the same in either action, and this
is easily done using the Lefschetz fixed-point formula.

4. When L/K is unramified and m = 0, Cx o is one connected component
of the Deligne-Lusztig curve associated to GLgy(k), which is Cp, =
R;O XRL Cx,0- The observation that H Y(Cpr, Qy) is the direct sum

of all representations of the form ng ® 07!, with § # 09, goes back
to Drinfeld. It follows that if 79 ® #~! is any such representation of
Ry then 7y ® 0~ 1 , is a direct summand of H}(Cx0,Qy) as a

representation of R,lgo. This shows that pg|x1 , 1s a direct summand

of H!(Cx0,Qy) as a representation of lC,l(’O.
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O

Theorem 4.3.3. Let x be a point with CM by L. Let m > 0, assumed odd
if L/K is ramified. The representation

Vim = Indj( 200 ey, Q)
(compactly supported smooth induction) contains

P e I,
I

where 11 runs over supercuspidal representations of GLa(K) whose central
character is trivial on 7, and which have the property that

1. if m > 1, then some twist of I contains a simple stratum of the form

(Az,m, ).
2. if m = 0, then some twist of 11 has depth zero.

Proof. Let II be a supercuspidal representation of GLo(K) whose central
character is trivial on w. Suppose that some twist of II, call it IT’, contains a
simple stratum S of the form (A, m, ). By Thm. EZ7 II' ® JL(IT)|k,,.
contains ps. By Prop. £3.2} ps|y ~is a summand of H}(Cx.m, Q). This
shows that 1T ® JL(1:[)|;C)1(7m =1II'® JL(I:[’)|;C}1(’m contains a summand of
HY(Cx.m,Qy). Therefore by Frobenius reciprocity, IT @ JL(IT)| kL, is con-
tained in Vi ,,. Now we observe that if II' contains S = (Ax,m,d), then it
also contains the distinct stratum S% = (A;, m,a?), where a? € L = K(«)
is K-conjugate to a. By repeating the argument we find that II ® JL(IT') is
contained in Vi ,, with multiplicity at least 2.

The argument for depth zero supercuspidals is similar. O

5 Special affinoids in the Lubin-Tate tower

5.1 Special affinoids: an overview

Let II be a supercuspidal representation of GLa(K) with coefficients in Q,.
Thm. BT shows that IT @ JL(IT) appears in H} of the Lubin-Tate tower.
On the other hand, Thm. [£.3.3] shows that there exists a nonsingular affine
curve Cy,p, over k admitting an action of a subgroup Ky ,, C (GLy(K) x
D>*)det=N “such that IT ® JL(II) is contained in the induced representation
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of H}(Cx.m, Q). (Here x is a CM point and m > 0 is an integer, both of
which depend on II.) The next theorem finds a link between the Lubin-Tate
tower and the curve Cyx,,. Essentially, the presence of I ® JL(II) in the
cohohomology of the Lubin Tate tower can be traced to the existence of an
open affinoid subset of ./\/l = Whose reduction is related to Ckx .

First we must define what we mean by the reduction of an affinoid.

Definition 5.1.1. Let Z = Spa(R,R") be an affinoid adic space over
Spa(C, O¢). The reduction of Z is Z = Spec Rt /mcgR™, where mc C O¢
is the maximal ideal. It is an affine scheme over k = O¢/mc.

Note that if Z is a perfectoid affinoid, then Z is the spectrum of a perfect
k-algebra.

To state the theorem premsely, it is convenient to work with one con-
nected component M2 of Mad Recall that ./\/lO ad admits an action of

(GL ( )XDX)det N.

Theorem 5.1.2. Assume that the residue characteristic of K is odd. Let
X € Mgz%((’)c) be a point with CM by a quadratic field L/K. Let m > 0 be
an integer, assumed to be odd if L/ K is ramified. Then there exists an open
affinoid subset Zx , C M ag with the following propoerties:

1. Zy m is stabilized by the action of IC,l(,m

2. There exists a nonconstant morphism §x7m — Cx,m which is equivari-
ant for the action of IC,I(’m

3. Forx fized, the Zx ,, form a decreasing sequence of open neighborhoods
of x, and Ny Zx m = {x}.

4. For g € (GLo(K) x D*)4=N we have Z% ., = Zxa.m.

Remark 5.1.3. If X = SpecR is a reduced affine scheme over k, we write
XPerf for the scheme Spec RPf, where RPe = @me , It is the perfect
closure of R. Since §x7m is the spectrum of a perfect ring, ?xm — Cxm
factors through a morphism Zy ,, — C’perf In fact, Zxm C’perf is an
isomorphism, but we can only prove this a posteriori. We w1ll also define an
affinoid Zx ,, when L/K is ramified and m is even, but we will not need to
analyze it as intensely. We will show that Zx ,, is the inverse limit of curves
whose completion has genus 0, also a posteriori.
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The proof of Thm. is a case-by-case calculation which we will
undertake in the following sections. This calculation fits the following pat-
tern. Recall that ./\/lggﬁ is isomorphic to a subspace of é%d X é%d. We
will first construct an open affinoid YVx,, C é%d X G%d, and then define
Zym = Yx,m N M%’ad. We will show that the group Ky ., stabilizes Yy m,
and therefore that IC,I(’m stabilizes Zy ,,,. For its part, Vx ,, may be described
as a “rectangle” centered around x: it is given by a pair of bounds on two
linear forms which vanish on x. As m — oo, the bounds decrease to 0, so
that NyYVxm = {x}.

The affinoids Yx,, will be defined in §5.4l In the meantime we need to
develop some language for the geometry of the formal vector space G.

5.2 Some convenient coordinate systems

In our calculations it will be helpful to fix coordinates on the formal Og-
modules G and A’G. By a coordinate on G mean an isomorphism G =2
Spf Ok [T7], or equivalently a collection of power series (a “law”) defining a
formal Og-module isomorphic to G.

For G we take the formal Og-module law whose logarithm is

This is the series obtained by setting v1 =0, v9 = 1 and v, = 0 for n > 3 in
Hazewinkel’s functional equation, cf. §2.11

The formal Og-module A?G is the (unique up to isomorphism) formal
Ogk-module over Ok, of dimension 1 and height 1. Let us fix NGy =
Spf Ok [T by specifying its logarithm as

Te T T
lOgAzG(T) =T — ? + ? - F

Lemma 5.2.1. 1. [7]a(T) = T modulo (x,TTT).

2. [mp2q(T) = =T modulo (m,TIH1).

3. X1 +¢ Xo = X1 + X2 modulo terms of total degree ¢>.

4. X1 +p2q Xo = Xy + Xo modulo terms of total degree q.

Proof. The first two claims are special cases of the congruences in Eq.
(211). For the third, note that logo (X1 +¢ X2) = loge(X1) + logq(X2)
and use the fact that log.(T) = T modulo terms of degree ¢?. The fourth
claim is similar. O
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Now we turn to formal vector spaces. Our choice of coordinate G =
Spf O, [T] gives rise to a coordinate G 2 Spf O, [T/, along the lines
of Rmk. 244 Suppose R € AlgoKO and X € G(R). Suppose X =
(Xo,X1,...) with X; € Nil(R) satisfying [r]¢(Xi+1) = Xi, i > 0. Let

X = lim X7

1—00

We call X the coordinate of X, and we write
X =[X]

Note that X comes equipped with a privileged root X 14" for every ¢ > 1.

Recall that D = End Gy ® K acts on G. It will be helpful to give an
approximation for this action in terms of coordinates. Let R be a Banach
C-algebra, with norm | |, and let R™ C R be the O¢-subalgebra of elements
f with |f| < 1. Assume that R* is bounded (and thus complete for the
m-adic topology). We say that X3, Xy € R are equal up to smaller terms
if | X1 — Xso| < |Xi| = |X2|. Finally, let 7p € D be the Frobenius element
T — T, which is a uniformizer for D.

Lemma 5.2.2. 1. Let X,Y € G(RY). Then X + Y] = [X] + [Y] up
to smaller terms. Let g € D*. Suppose that g = un’y}, with u € O,
m € Z. Let @ be the image of u in Op/np — k. Then [¢X] = u[X]?"
up to smaller terms. In particular [7X] = X7 plus smaller terms.

2. Similarly, suppose X, Y € /%(R) Then X+ Y] = [X]+[Y] up to
smaller terms. Let g € K*, with g = un™, v € O, m € Z. Then
[gX] = (=1)™a[X]9" up to smaller terms.

Proof. These statements follow easily from the corresponding statements
about the formal group laws G and A%G. For instance, if X, Y € G(R")
with X = [X], Y = [Y], then

X +Y] = lim (XY 44 YV/0)e
1—00
Thus for some i large enough, [X + Y] = (X/4" 45 Y/4)¢ up to smaller
terms. Since +¢ = + up to quadratic terms, and because exponentiation
by ¢ commutes with addition up to smaller terms, we get [X +Y] = X +Y
up to smaller terms. O
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5.3 An approximation for the determinant morphism

Recall from §25 that we have a determinant map A\: G x G — A2G. This
map corresponds to a continuous homomorphism from O, [T'/9™] into
OKO[[Xll/qOO,X;/qOO]]. Let 6(X1,X2) be the image of 7" under this homo-
morphism, and let 6(X;, X3)Y/9" be the image of TV/4" for m > 1. Let
do(X1, X32) be the image of §(X7, X3) in E[[Xll/qoo,X;/qoo]].

Proposition 5.3.1. Possibly after replacing 6y with [a]/@a(&)) for some
a € K*, the congruence

50(X1,X2) = Xng — Xng
holds modulo terms of total degree ¢>.

Proof. Let d be the least degree of any term appearing in do(X1, X2), and
let F' be the homogeneous part of d of degree d. We have that ¢ is Og-
alternating with respect to the operations +¢, and [g]g, (¢ € Ok), and
similarly for A2Gy. These operations are simply addition and scalar multi-
plication modulo quadratic terms. Thus F' is a k-bilinear alternating form,
which is to say it is of the form

_ q°1 yq*2
F= E Car,as X1 X3

(a1,a2)

where (a1, az) runs over pairs of integers with ¢% + ¢ = d, and ¢y, 4, € k

satisfies €4y 0, = —Cay.ay- After replacing 6y with [7Tm]/\2 e (60) for some m,
0
we may assume that F' contains a nonzero term of the form cp 4, X1 X7 2,
with ay > 1.
Since

o[y (X1), X2)) = [7]r26, (00 (X1, X2)),

we find (using Lemma[5.2.T)) that —d§ contains the term cg 4, X 112 X% which
shows that §y contains the term —6(1)7/ fQX H Xgarl. By definition of d we have
d < g+ ¢® ', but on the other hand d = 1 + ¢®2, which shows that ay = 1
and d =q+ 1.

The only integral solutions to ¢** +¢** = g+1 are (1,0) and (0,1). Thus

F = Co’l(Xng - XfXg)

By the above observation, dy contains the term —c(l)(foXg, which shows
that co1 = c&l, thus cp1 € k = F,. After replacing ép with some multiple
(] 26, (00), we can assume that co1 = 1, so that F = X1 X§ — X{Xo.
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Now consider the difference E = § — F. By Lemma [5.2.T] the addition
and scalar multiplication laws in Gy and AG( equal ordinary addition and
scalar multiplication up to degree ¢?. This shows that F is also O-bilinear
and alternating modulo degree ¢2. Suppose for the sake of contradiction
that the leading homogeneous part of E, call it F’, has degree d < ¢>.
Then F’ is k-bilinear and alternating. The foregoing argument shows that
[ p2g, (F) = X1X] — XX, for some o € K*. If o € Ok, this contradicts
d >d=q+1, and if o € O, this contradicts d < ¢°>. Thus the degree of
E is at least ¢°. O

We need to translate Prop. [(£.3.1] into an approximation for §. We have
shown that § = F + E modulo 7, where F(X1, X2) = X1 X4 — X{X5 and

E(X1,Xs) € Ok, [[Xll/qoo,Yll/qoo]] has degree > ¢?. Then

6= lim_ (F(Xll/q’”,X;/qm) + E(Xll/qm,X;/qm))q (5.3.1)
Lemma 5.3.2. Let R be a Banach C-algebra with multiplicative norm | |,
and let R C R be Oc-subalgebra of elements f with |f| < 1. Assume that
R™ is bounded (and thus complete for the m-adic topology). Let Y1,Yo €
C?(RJF), and let Y1,Ys € RT be the topologically nilpotent elements which
correspond to Y1,Ys. Finally, let A\ € RT be the topologically mnilpotent

element corresponding to the determinant \(Y1,Y2) € A2G(R™).
1. Suppose that |Ya|? < |Yi| < |Ya|. Then X\ = Y1Yy plus smaller terms.
2. Suppose that |Y1| = |Ya|. Then A = Y1Yy — Y'Y plus smaller terms.

3. In general, there exists a unique m € Z such that one of the following
inequalities holds:

—2m
() [Vo|" <" < [Y2

m

—2
(b)) T < |Ya" <1

—2m
(c) M =[¥a|" .
Then respectively we have

m—+1

m

(a) A= ()Y Yy
m+41 —
(b)) A= (-1)"y Yy
m 1—-m m—+1
(c) A= (_1)m(Y1q Yzq - qu

—m

Yy )
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plus smaller terms.

Proof. To prove the lemma we will show that F(Y1,Ys) — E(Y7,Y3) equals
the desired approximation plus strictly smaller terms. The same arguments
will apply to F(V{/7" v,}/7") — B(x}/" , X3)/")). Then Eq. (G3J) will
show that §(X,Y’) equals the desired approximation plus strictly smaller
terms.

We have A = 8(Y1,Ya). If [i| = |Yal, then |E(Y,Ya)| < [F(¥3,Y2)]
and we get claim (2). If |Y3|? < |Y3| < |Ya|, then F(Y1,Y3) = Y1Yy plus
smaller terms. Since F(X1,0) = E(0,X2) = 0 (this follows from the same
properties of dy and F') we observe that every term of E(Y],Y2) contains
both Y7 and Y, and therefore (since E has degree > ¢?) we have a strict
inequality | E(Y3,Ya)| < |Ya|?". This is bounded by [Ya|?" = Y7 Y37 "7 <
‘Yleqz_q‘ < 1Yy = |F(Y1,Y2)], which establishes claim (1).

In claim (3), the existence and uniqueness of m is easy to see. In the
first case, apply claim (1) to the pair Y1, 7~ "Y9 and note that A\(Y1,Ys) =
A7 7™Y1,Ys). For the second case, apply claim (1) to the pair Yo, 7Y
(and recall that A is alternating). For the third case, apply claim (2) to
Y, 7m7"Ys. |

5.4 Definition of the affinoids Y,

Let B be the coordinate ring of the affine formal scheme Goc X Goc, so that
Go 0 X G@C = Spf B. We have two distinguished elements Xy, Xy € G( ),
corresponding to the two projections G x G — G. Let X; = [X;] be their
coordinates; then we have

B~ Oc[X)/", x3/77].

Recall that GLo(K) x D* acts on the right of G x G. By our conventions,
an element g = (g1, g2) acts by the rule

(9(X1),9(X2)) = (95" X1, 95 ' Xo)gn

Let (x1,x2) € é(g’)c) X é(pc) denote the image of x under the mor-
phism Moo(Oc) — G(Oc¢) x G(Oc). Then there exists a basis a1, ag for
L/K and an element xg € G(O¢) for which x; = a;xg. Let A € GLy(L) be

the matrix
a1 Q9
A=
<a‘f 045) ’
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where o denotes the nontrivial automorphism of L/K. Then we have
(x0,0)A = (x1,%2).
Recall the elements wy € Ax and wo € Op from §4.2

Lemma 5.4.1. 1. Let a € L™, and let g be the image of a in GLy(K).
Then AgA~! = <a a”) (equality in GLo(L)).

2. We have Aw1 Al = <1 1> (equality in GLo(L)).

1
ered as a scalar matriz).

3. We have Awy A~ = < 1) wo (equality in GLa(D), with wy consid-

Proof. By the definition of the embedding of L* into GL2(K), we have
(x1,%2)g9 = (ax1,ax2), so that (ag,as)g = (aaq, aag). Applying o, we see
that (af,09)g = (a?af,a’ag), and so

Ag — a1 Q9 . ao [676%) [« A
g = OZJ OZJ 9= OéUOéJ OZJOZJ - OZJ )
1 2 1 2

proving (1).
Similarly, (2) and (3) follow from (a1, az)w = (af,a3) and (o1, a2)we =
wa(af,ag). O

Define elements Y1, Yy € G(B) through an affine change of variables
(X1,X3) = (x1,%x2) + (Y1,Y2)A. (5.4.1)
Let Y; = [Y], i = 1,2. Also let zp = [xq].
Definition 5.4.2. The affinoid Y, is defined by the inequalities
Vil < ool i = 1,2,
where s; and so are defined by the following table.

‘ S1 S92
L/K unramified ™ g™
L/K ramified, m even | ¢  ¢™/?
L/K ramified, m odd | ¢™ iglq(mﬂ)ﬂ
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Thus if we let Z; = Y; /2", then Yy », = Spa(R, RT), where
Rt = 0c (2", 2",

The reduction of Vx ,, is then yx m = Speck[Z, A 21/‘100] = A2’perf
We intend to prove Thm. 2] for the aﬂinmd Zxm = yx,m N Mo

0o,
under the assumption that m is odd if L/K is ramified. The calculatlor;?s
(presented in §5.5-45.8)) follow the same general pattern. First we verify that
YVx m is stabilized by the group K ,,, and we compute the action of K ,,, on
Y in terms of the variables Z;, Z,. In each case the formulas are identical
to the formulas given in Defn. 311

We then prove the existence of the claimed map §x7m — C’Efﬁf . Re-
call the determinant morphism G x G — A2G from 2.5l After choosing
coordinates on the formal groups G' and A?G, this morphism corresponds
to an element §(X7,X2) € B admitting arbitrary gth power roots. Let
t = d(x1,22) € Oc. The key calculation is an approximation for §(Xq, X2)
in terms of the variables Z1, Z, inside the ring R™:

0(X1,Xo) =t +1t"f(Z1,Z2) + smaller terms (5.4.2)

where r > 1 and f(Z1, Z2) a polynomial which (up to replacing the Z; with
gth powers) equals the polynomial defining the curve Cx ,, from Thm. 4.3.3]

By Thm. 2.7.3] Miﬁ% is the fiber of the determinant map é%d X é%d —
X\é%d over t. Thus 0(X1,X3) = ¢ on ./\/lgoa% Combining this fact with
Eq. (542) shows that f(Z1,Z2) = 0 holds in the coordinate ring of the
reduction Z. Since Z is the spectrum of a perfect ring, there must exist a
map Z — C’,E ,fm as claimed.

It will be helpful to record the action of element of GL2(K) x D* on the
elements Y1, Yy € G(B).

Lemma 5.4.3. Suppose g € GLa(K). Let g(Y1),9(Y2) denote the images
of Y1,Y2 € G(B) under the automorphism G(B) — G(B) coming from the
automorphism of B induced by g. Then

(9(Y1),9(Y2)) = (x0,00AgA™" — (x0,0) + (Y1, Y2)AgA™".
Now suppose g € D*, and define g(Y1),9(Y2) similarly. Then

(9(Y1),9(Y2)) = (x0,0)Ag " A — (x0,0) + (Y1, Ya)Ag t AL,
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Proof. Using Eqs. (5.4.1]) and (5.4.1]) we have
(Y1,Y3) = (X1, Xp)A™" — (x1,%x2) A7 = (X1, Xp) A7 — (x0,0).

We have

(9(Y1),9(Y2)) 9(X1),9(X2))A™" = (x0,0)
X1,Xs5)gA™ — (x0,0)

(x1,%2) + (Y1,Y2)A)gA™ — (x0,0)
(x0,0)A + (Yl,Yg)A)gA_1 — (x0,0)

x0,0)AgA™! — (x0,0) + (Y1, Y3)AgA™ L.

(
(
(
(
(

The case of g € D* is done the same way; the sign g—! appears because of

our convention concerning the right action of DX on G x G. O

5.5 Case: L/K ramified, m odd

Let 71, be a uniformizer of L. Then ny, is also a uniformizer of D. We may
assume 77 € Of, so that 79 = —mp. After replacing x with a GLg(K)-
translate we may also assume that the basis oy, ay for L/K is 1,7y,. Recall
that mp € D is the Frobenius endomorphism of Gy; let us write 77, = unp
for some u € Of.

We have the orthogonal decompositions

Ax = O & Orw;
Op = Or®0Orws

where @w? = 1 and @5 € O). The linking order is

m+l m+l
Lo = Ax(O1) + (7 o) + (pf o1 x pod wz>-

The affinoid YVx ,, = Spa(R, R") is defined by the conditions

Y1 < |xol?”

q+1 ( +1)/2
|Y2| < |X0| " 3

where Y1,Y, are defined as in Eq. B4Il We write ¥; = [Y;] for the
coordinate of Y; in R™, and define Z;, Z, € Rt by

. qm q(lfm)/Z
%q(mH)/Z
Y2 = :EO ZQ.
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Then R = C <Z11/qoo, Zzl/qoo>. Then R is a Banach C-algebra for the sup

norm, which we write as | |. Note that || is multiplicative (this is the
perfectoid version of Gauss’ lemma).

We wish to check that Ky ,, preserves Vx m, and to calculate the induced
action of Ky ,,, on the reduction ?x,m = A2PT The group Ky, is generated

2
k
by three types of elements:
1. Ax(a), for a € L*.

2. Elements of GLy(K) of the form 1+ 77" + W(Lmﬂ)/z’ywl, with 8,y €
Or.

3. Elements of D* of the form 1 + W(Lm+l)/2ﬂw2, with 6 € Op.

Let v € L™, let g = Ax(«), and let g1 be the image of o in GLy(K). We
have x9 = x. We apply Lemma [5.4.3] simultaneously to g1 € GLo(K) and
a € D* to get and £.4.1], the action of g on the variables Y7, Y5 is given by

(9(Y1),9(Y2)) = (o 'Yy,a 1Yq)Ag A

= (a7'Y1,a7Ys) (a a") (Lemma [5.4.T)
= (Y1,0%/aY5s).

(The terms involving x( cancel — this is related to the fact that g fixes x.)
Since o /o is always a unit in Of, it is clear that g preserves Vi m.
If @« € O, then Ax(a) acts trivially on YVx.m, whereas Ax(rr) acts as
(Zl, ZQ) — (Zl, —Zg).
Now suppose g = 1+ 77"+ W(Lm+l)/27w1 € GLg(K), where 8 and ~ are
to be interpreted as lying in the image of O in My(K). By Lemma [(.4.7]
7T_(m—l—l)/2

-1 _ L+77'B L Y
we have AgA™" = (—FL)(m+1)/2’yo 1 mpe | where now 8 and v are

to be interpreted as scalars in L. Therefore by Lemma [5.4.3] we have
g(Y1) = Y, +778Y + (=) V2477, 4+ 27 Bxo
9(Y2) = Yo—7n7'87Ya2+ W(Lm+l)/2’yY1 + W(Lm+1)/2’yx0.

Taking coordinates and using Lemma [5.2.2] we find that the following
equations hold modulo smaller terms:

gY1) = Yi+ Bzl
gYo2) = Y3

m
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In terms of the coordinates Z7, Z5 on the reduction ?xvm, we have

9(Z) = Z1+B
9(Z2) = 2o

The calculation for elements of the form g = 1 + 7#(™*t1/2y, is similar,
with the result that such elements act trivially on ?xvm.

To complete the proof of Thm. in this case, we need an approxi-
mation for the determinant A(X;,X3) as an element of the Banach algebra
R. The elements Y1,Y, € G(B) are defined by

X; = x0+Y1+Yy
Xeo = 7wrxo+ 7Y —7Yo.

Thus

AMX1,Xs) =

>

(X0, TLX0)
+ AMxo,7mY71) + MY, mx0)
— MY, 7m.Y9)
+ MYq,mrx0) — Mx0,7.Y2)
— MY1,7m.Y2) = M7 Y1,Y2) + A(Y1,7.Y7)

We analyze each of these lines in turn to find an estimate for [A\(X7, X2)]
in the ring RT. The first line is A(xg,7rX0) = A(x1,%2) = t. We have
[t] = t, [x0] = 20, [TLX0] = ux up to smaller terms. By Lemma we
get that ux?)q =t plus smaller terms.

The other lines can be treated using Lemma[5.3.21 For instance, the first
term on the second line is A(xg, 7, Y1). We have |7, Y| = |Y1]7 = ]x()]qMH.
Since m + 1 is even, we are in the third case of claim (3) of Lemma [5.3.2]
and so up to smaller terms we have

A(xo, 7 Y1)] = (=1)™/? <[X0]q(m+1)/2 [WLYl]q<37m>/2 B [Xo]q(m+3)/2 [WLYl]q<17m>/2)

. m/2 q(m+1)/2 gt q(17m)/2 q(gfm)/z q(m+3)/2 gmt! q(l—m)/2 q(17m)/2
= (-1 / <370 (g 2 ) — Ty (uzg  Z{ )

(m+1)/
_ (_1)m/2ux(()q+1)q +1 2(2;}_2)

= (—0)2 (20— 7).

The second term of the second line equals the first, using Lemma 2.6.2] and
N (71' L) = —T 2.
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For the third line, we have |7 Ys| = [Y2|?, and we are in the situation
of claim (1) of Lemma[5.3.21 Up to terms of smaller absolute value we have

)\(Yg, 7TLY2) == —[Yg]q[ﬂ'LYg]

g+l (m—1)/2 g+l (m—1)/2
_ 2 4 1/q 2 4
= —(zg Zy" ") (uw Z3)
1)g(m+1)/2
—u:n((]q+ Ja Z22
q(m+1)/2

= —t Z2

The fourth line is zero on the nose (again by Lemma [2.6.2)), and the
contribution of the fifth line is smaller than the contributions of the previous
lines. We get (up to a benign change of the variables Z1, Z3)

(m+1)/2
(Y1, Ya) =t + ¢4 (2 — 21 - Z3)
up to smaller terms. Thus we have proved Prop. [5.1.2]in this case.

5.6 Case: L/K unramified, m odd

Once again we have the orthogonal decompositions

Ax = Or®Orw;
Op = 0O ®Orws,

but this time wy is a uniformizer in D. The linking order is
m+1 m—1
£x7m:Ax(OL)+(pTI7} szl)-l- <pL2 w1 ><F‘Lz w2> '

Recall that Ky ;m = Ax (LX) LS,
The elements Y1, Yy € G(B) are defined by

Xi = axp+ oY +aj¥Ys
Xy = aexg+ a2Y1+a5Yo,

and Vx , is defined by the conditions

Y1
Y2



Let Y; = [Y,], and define variables Z;, Zs by

2m m
— q q
v, = al Z!

Y o q77LZ
2 = Ty 42

We wish to check that Kx ,, preserves Vx m, and to calculate the induced

action of Kx m on the reduction Yy m = A%perf. The group Kx , is generated
by three types of elements:

1. Ax(a), for a € L™,
2. Elements of g € D* with g~ = 14+71™y+7(m=D/28% with 3,~v € Oy.
3. Elements of g € GLy(K) of the form 1 + n(™+t1)/284 with 8 € Oy,

Let « € L*, and let ¢ = Ax(a). As in the previous case we have
g(Y1) = Yy and ¢g(Y2) = a”/aYs. Since o /a is always a unit in Of,
it is clear that g preserves Y ,,. We have that A, (7) acts_trivially, and if
a € Of, then the action of g = Ax(a) on the reduction Yy, is given in
terms of the coordinates Z1, Z3 by ¢(Z1) = Z1 and g(Zs) = a4~ ' Z,.

Now suppose ¢~ = 1 + 7™y 4+ 7™ D/28, with 3,~ lying in the
image of O, in M2(Ok). By Lemma 54T we have Ag~'A™1 =1 + 7™~y +
n(m=1/23 <(1) (1)> wo, where now (3,7 are to be interpreted as scalars in
L ¢ D C My(D). Therefore by Eq. (5.4.3]) we have

9(Y1) = Y +7"yY; + W(m_l)/2,BWQY2 + g
9(Y2) = Yo+ 71"Yy 4+ nm V280 Y) + 7m=D/25m0x.
Taking coordinates and using Lemma [5.2.2] we find
m 2m
g(Y1) = Yi+B8Y) +qaf
9(Y2) = Yo+ paf

plus smaller terms.
In terms of the coordinates Z1, Z3 on the reduction Yy ,,, we have

9(Z1) = Zi+B'Z+71
9(Z2) = Zo+p

(Here we have used B1" = B9, because m is odd.) Note the accord with
Defn. L3l The calculation is similar for elements of GLy(K) of the form
g =147t/ 2, with the result that such elements act trivially on Vx.m-
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To complete the proof of Thm. [5.1.2] in this case, we need an approxi-
mation for the determinant \(X7,X5) as an element of the Banach algebra
R. From Eq. (5.6.1]) we find

AMXq, X2) XX, aaXo)

A

(

(c1x0,2Y 1) + Mar Y1, aaxg)
(a7Y32,05Y2)
(
(

>

AMaixo, a5 Y2) + A(af Ya, azxo)
A OélYl, Oéng) -+ )\(OélYl, Oéng) + )\(Oéng, (X?Yg).

+ 4+ 4+ +

We analyze each of these lines in turn. The first line is A(a1xg, agxg) = t,
which by Prop. B3 implies that (a3 — o/fag)xgﬂ = t plus smaller terms.

The other lines can be treated using Lemma[5.3.2] For instance, the first
term of the second line is A(a1xg,a2Y1). We have |aeY1| = |a1x0|q2m, SO
we are in the third case of part (3) of Lemma Thus up to smaller
terms we have

AMaixo, a2Y1)] = _([alxo]qm[O@Yﬂqlim—[alxo]qu [OézYl]‘fm]
_( 2

2 1— +1 _
(cr@0)?" (anzld  Z{ )T " — (arwo)?" " (apad " ZTHT"

(g+1)q™ (a2 ,q q
= —x (o Z{ — anagZy)

Similarly, the contribution of the second term of the second line is
1 m
Aa1Yq, aoxg)] = a;qur )a (1a3Zy — afasZ]),
so that the total contribution of the second line is
q

(a1ad — alag)x(()qﬂ)qm(Zf + 21) =t (2 + Z4).

The contribution of the third line is t7" ZSH plus smaller terms. The fourth
line is zero on the nose, and the fifth line’s contribution is smaller than any
of the others. We find that

§(X1, Xo) =t + 1" (20 + 7, — 23T

modulo smaller terms. This proves Prop. [£.1.2] in this case.
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5.7 Case: L/K unramified, m > 2 even

This time the linking order is
Lam = Bam(O1) + (0 9 x (0721 < 9722

The affinoid Yx,, is defined the same way as in the previous section. We
must show that K ,, preserves Vx ,, and compute its action on the reduction
?xvm. The calculation is very similar to what occurred in the case of m odd,
except that in a sense the actions of GLy(K) and D* are reversed.

The group Ky, is generated by three types of elements:

1. Ax(«@), for a € L™,
2. Elements of GLy(K) of the form 1+ 7"y + 7™/? 8w, with 3,7 € Or.
3. Elements of D* of the form 1 + 7"/28w,, with 8 € Oy,

The action of Ax(a) works the same as in the case of m odd.

Suppose g = 1 + 1™y + 1™/2 3wy, with 3, € Or. We have

-1 _ m m/2 0 B
AgA 1+7"y 4+ (50 0).

By Lemma B.4.3] we get

g(Y1) = Yi+a"y(x+ Y1) +7"287Y,
9(Y2) = Yo+71"7Yy + Wm/zﬂYl + 7Tm/25(x +Y,)

Taking coordinates, we find
m 2m
g(Y1) = Yi+p87Yy +vyad
9(Y2) = Yo+ fpaf’

2m m m
modulo smaller terms. Recall that Y1 =2l Z{ |, Yo =zl Z. In terms of
the coordinates Z1, Z2 on the reduction Yy ,,, we have

9(Z) = Zi+B'Z+7
9(Z2) = Zo+B.

The approximation for §(X7, X2) in terms of Z; and Zs proceeds exactly
as in the case of m odd, with the result that

§(X1, Xo) =t + 9" (27 — 7, — Z3T)

up to smaller terms. This establishes Thm. [£.1.2] in this case.
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5.8 Case: L/K unramified, m =0

In this case the affinoid Z« o we construct is related to the semistable model
of the Lubin-Tate space of level 1 described by Yoshida in [Yos10].

The linking order is Lx g = M2(Ok)xOp. In this case Vx o = Spa(R, R™)
is the affinoid described by the conditions

|XZ| < |$0| )

which is clearly preserved by Kx o = Ax(LX)L .
Let us write X; = x0Z;, and observe the effect of K o on the coordinates

Z;. Suppose g = (g1,92) € L = GL2(OK) x Op, with g1 = <CCL 2) Then
_ _ a b
(9(X1),9(X2)) = (95 X1, 95 ' X2) (C d) .

In terms of the coordinates Zi, Z5, this means

9(Z1)
9(Z)

By Prop. b.3.1] we have

G5 H(aZy + cZy)
G5 L (bZ) + dZs).

5(X1,X2) = t(leg — ZgZQ)

up to smaller terms, thus establishing Thm. [(.1.2]in this case.

6 Semistable coverings for the Lubin-Tate tower
of curves

6.1 Generalities on semistable coverings of wide open curves

The following notions are taken from [Col03]. We will assume in the follow-
ing that the field of scalars is C.

Definition 6.1.1. A wide open (curve) is an adic space isomorphic to C\ D,
where C' is the adic space attached to a smooth complete curve and D C C
is a finite disjoint union of closed discs. Each connected component of C' is
required to contain at least one disc from D.

If W is a wide open, an underlying affinoid Z C W is an open affinoid
subset for which W\Z is a finite disjoint union of annuli U;. It is required
that no annulus U; be contained in any open affinoid subset of W.
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An end of W is an element of the inverse limit of the set of connected
components of W\Z, where Z ranges over open affinoid subsets of W.

Finally, W is basic if it has an underlying affinoid Z whose reduction
Z is a semistable curve over F,. (Recall that if Z = Spa(R,R"), then
Z = Spec RT ®o Fy.)

For an affinoid X, there is a reduction map red: X — X. The following
is a special case of Thm. 2.29 of [CM10].

Theorem 6.1.2. If X is a smooth one-dimensional affinoid, and x is a
closed point of X, then the residue region red_l(x) is a wide open.

In particular, ./\/lfna;i is a wide open, because it is the residue region
red_l(:zt) of a supersingular point x of the special fiber of an appropriate
Shimura curve or Dinfeld modular curve.

We adapt the definition of semistable covering in [Col03], §2, which
only applies to coverings of proper curves. Our intention is to construct
semistable coverings of the spaces ./\/lfna;i . Therefore we define:

Definition 6.1.3. Let W be a wide open curve. A semistable covering of
W is a covering D of W by connected wide opens satisfying the following
axioms:

1. If U,V are distinct wide opens in D, then U NV is a disjoint union of
finitely many open annuli.

2. No three wide opens in D intersect simultaneously.

3. For each U € D, if

=0\ UJ V],
U#VeD

then Zy is a non-empty affinoid whose reduction is nonsingular.
In particular U is a basic wide open and Zy is an underlying affinoid of U.

Suppose D is a semistable covering of a wide open W. For each U €
D, let O (U) be the ring of analytic functions on U of norm < 1, and
let Xy = Spf O;’V(U). Similarly if U,V € D are overlapping wide opens,
similarly define Xyny = Spf (’);FV(U N V). Let # denote the formal scheme
over O¢ obtained by gluing the X together along the maps

XU,V — XU HXv.
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Then # has generic fiber W. The special fiber #; of # is a scheme whose
geometrically connected components are exactly the nonsingular projective

—cl . = —cl —cl .
curves Z;; with affine model Zy; the curves Z;; and Z, intersect exactly
when U and V do.

Example 6.1.4. Note that D will in general not be finite. Suppose W is the
adic open unit disc over C. We construct a semistable covering D = {U,}
of W indexed by integers n > 0. First let Uy = {|z| < ‘7?1/2|}, and for n > 1

let U, = {\71\1/" < |z| < \71\1/("+2)}. Then Zy, is the closed disc {|z] < |7|}
and for n > 1, Zy, is the “circle” {|z| =1/(n+1)}. The resulting formal

scheme 7 has special fiber which is an infinite union of rational components;
the dual graph I' is a ray.

Let C be the adic space attached to a smooth complete curve, let D C C'
be a disjoint union of closed discs, and let W = C\D. A semistable covering
of W yields a semistable covering of C' (in the sense of [Col03|]) by the
following procedure. Let D be a semistable covering of W corresponding to
the formal model #. Let I' be the dual graph attached to the special fiber
of #'. There are bijections among the following three finite sets:

1. ends of W,
2. ends of I', and
3. connected components of D.

Suppose vy, v, ... is aray in I' corresponding to the wide opens Uy, Us, - -+ C
W. Then there exists N > 0 such that for all ¢ > N, U; is an open annulus.
If Dy C D is the connected component corresponding to the ray vy, vs, ...,
then (possibly after enlarging N) Do U |J,~ U; is an open disc, which in-
tersects Un_1 in an open annulus. Repeating this process for all ends of T’
yields a semistable covering Dy of C' by finitely many wide opens. Let I'y
be the dual graph corresponding to Dy.

In [CMI0], §2.3, the genus g(W) of a wide open curve W is defined.
It is shown (Prop. 2.32) that in the above context that the genus of W
equals the genus (in the usual sense) of the smooth complete curve whose
rigidification is C. It is also shown (in the remark preceding Prop. 2.32)
that if U is a basic wide open whose underlying affinoid Zy; has nonsingular
reduction, then g(U) = 9(72), where Zy; is the reduction of Zy and 73 is
the unique nonsingular projective curve containing Zy. In Prop. 2.34 we
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find the formula

g9(C) =Y g(U)+dim H'(T'p, Q). (6.1.1)
UeDy

Proposition 6.1.5. Let W be a wide open curve, and let D be a semistable
covering of W. Let I' be the dual graph of the special fiber of the correspond-

ing semistable model W of W, so that the irreducible components 721 of the
special fiber of W are indexed by the vertices of I'. Then

dim H' (W, Q) = ) dim HY(Z,Qq) + dim HX(T, Q)
vell

Proof. Part of the long exact sequence in compactly supported cohomology
for the pair (C, D) reads

0— H°(C,Qp) = H(D,Qp) = H:(W,Q¢) — H'(C,Q() = 0. (6.1.2)

Note that H°(D, Q) = Q,[Ends(I)] is the space of Qg-valued functions on
the set of ends of I'. On the other hand, I'g is up to homotopy the graph
obtained by deleting the ends from I', so that

dim H{(T', Q) = dim H'(I'g, Q) + # Ends(T") — dim H°(T', Q,). (6.1.3)

The result now follows from Eqs. (©.11), (6.1.2), (€1.3), and Poincaré
duality for W. O

6.2 The fundamental domain

Let 7 € M>™ be the open affinoid subset defined by the conditions

m?ﬁ
| X1| > | Xa| > |X1]?

Proposition 6.2.1. The translates of F under (GLy(K) x D*)3=N coper
Mo,aﬂ

w777 :

Proof. Let || be a valuation on Ag, with |7| # 0. In Aj_ we have the
equation §(X7,Xs) = t. Since 6(X71, X2) has no constant term, and is al-
ternating in its variables, we have | X;| # 0 for i = 1,2. On the other hand
each X is topologically nilpotent, so |X;| < 1.

Certainly there exists m € Z with | X1| > |Xo|?" > |X1]% Let mp €
Op = End Gy be the Frobenius element, so that mp acts on the variables
X1, X5 by the rule X; — X! plus smaller terms. For the purposes of the

61



lemma we may assume that N(wp) = w. If m = 2k is even, then the pair

<<1 W_,g) ,W5k> translates | | into F. If m = 2k + 1 is odd, then the pair

<<—7(T)_k (1)> ,7T5k> translates | | into F. O

6.3 A covering of the Lubin-Tate perfectoid space

We now define a graph which is in a sense the dual graph for our semistable
model of the Lubin-Tate tower. We consider pairs (x,m), where x is a CM
point in Mgg‘ﬁ and m > 0.

Definition 6.3.1. Pairs (x,m) and (y,n) are equivalent if m = n and there
exists g € IC,lgm for which y = x9. Call such a pair ramified or unramified as
the CM field of x is ramified or unramified. Also, we call (x, m) imprimitive
if it is ramified and m is even. Otherwise, (x,m) is primitive.

Define a graph 7T as follows: the vertices are equivalence classes of pairs
(x,m), and vertices (x,n) and (y,m) will be adjacent if (up to exchanging
the pairs) one of the following conditions holds:

1. m =n =0, x is unramified, y is ramified, and Ay, C Ax.
2. (y,m) is equivalent to (x,n + 1).

Then 7 admits a action of GLa(K) x D*. To each vertex v = (x,m) of T we

have an associated affinoid Z ,, which is open in the connected component

of Mgg{ﬁ containing x, but not in Mgg{ﬁ itself. For the moment we work

with one connected component: Let 7° be the subgraph of 7 on the vertices

(x,m) with x € Mgﬁg, so that T° admits an action of (GLg(K) x D*)det=N,
For each vertex (x,m) of T°, let

redy m: Zx.m — ?x,m

be the reduction map, and let Sy ,, C ?x,m be the set of images of CM
points.

We now define an open cover {W,} of M%’ad’non'CM indexed by vertices
of T°. If v = (x,0) for x unramified, assume that Ax = M>(Ok) and put

Wy ={1X1] = [Xa| > X1\ [ redgo(v),
yeSx,O

62



If v = (x,0) for x ramified, assume that Ay is the standard Iwahori algebra,
and put

Wy = {1X1] > |[Xo| > (X1} [ redgi(y).
yeSx,O

If v = (x,m) for m > 0 we set

xml \Uredl

YESx,m

Wy =

The assignment v — %/, can be extended to all vertices v € T° in such a
way that #9 = # e for all g € (GLy(K) x D*)det=N

Proposition 6.3.2. The W, cover ./\/lO ,ad,non-CM (this being the complement
d,non-CM
n Mgoaﬁ nOnEAL of the set of CM pomts).

Proof. By Prop. it suffices to show that the W, cover the set of non-
CM points in F = {|X1]| > | X2| > |X1|?}. It is clear from the definitions of
the W, that any point in F not lying in one of the W, must lie in Ny,>1 2% m
for some CM point z. But Ny,>12xm = {x}. O

Z, =W\ J Wy

where w runs over vertices adjacent to v. Then if v = (x,m):

Zy=Zem\ | redi.(y

yes(x,m)

Let

is the complement in Zy ,, of finitely many residue regions.

6.4 A semistable covering of M2

In this paragraph we translate our results about Mad— into results about
the Lubin-Tate spaces of finite level. Recall the tower of complete local rings

A,,, with A defined as the completlon of hm A,,. Passing to adic spaces, we

have a morphism from ./\/l 77 4 to the prOJectlve system L M ?nad.

Lemma 6.4.1. For each m, the morphism M%O)’ad — MSS?;ZM s surjective,
and carries open affinoids onto open affinoids.
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Proof. The maps between the local rings A, are finite. This implies that
each continuous valuation on A,, can be extended to A, , for all » > 0,
hence to A. This shows that Mgd — M%dm is surjective.

Now suppose Z = Spa(R,R") be an open affinoid in Mggm. Then
Rt = A(f1/w,..., fn/w) for elements f1,..., f, € A generating an ideal of
definition of A and an element w € Ok of positive valuation. Since lim A,
is dense in A, we may assume that the elements f; live in Ay for some
sufficiently large N > m. Then the image of Z in M?\}i’ﬁ is an affinoid Zy =
Spa(RN,Rj\}), with Ry = An (f1/w,..., fn/w). Since ./\/l?vctﬁ — Mifﬁ is
an étale map of adic curves, the image of Zy in ./\/lamd,,7 is again affinoid. [

Of course, Lemma, [6.4.1] holds for the tower of geometrically connected
components anag as well.

Fix m > 0. For each vertex v of T, let WIS’”) be the image of W, in
M 5. Similarly define Zz(,m) as the image of Z,. By repeatedly applying
Lemmas [6.1.2] and [6.4.1] we deduce that W, is a wide open.

Let Tl (7™) = I'(7™) N SLy(K). We have a map Z, — ?S,m). Since Z,, is
the spectrum of a perfect ring, this map extends to a map Z, — gz()m)’pcrf.
Lemma 6.4.2. Assume m > 1. The map Z, — ?S,m)’perf
by KL N TY(x™). That is, the coordinate ring ci?f)m)’perf
KL N T (7™)-invariants in the coordinate ring of Z,.

1S a quotient

s the ring of

Proof. Let H = KLNT(7™). Let S(™ (resp. S) be the integral coordinate
ring of zim (resp. of Z,), and let 5t (resp. S) be its reduction. It suffices

to show that the map g(m)’porf 57 surjective. Let f € S be invariant
by H, and let f € S be any lift. We may assume that f is invariant by
'Y (M) for some sufficiently large M, for the set of such elements (as M
varies) is dense in S. Let H' = K. NI (7™). Let g be the product of
translates of f by a set of coset representatives for H/H’, so that g is H-

invariant and therefore belongs to S . Since m > 1, H is a p-group, so

that [H : H'] = p" for some n. Since f is H-invariant, we have g = f*

) perf

Thus f is the image of an element of g(m , namely g'/P". O

We now use the wide opens W, to construct an open covering of Miﬁiﬁ.
For a CM point x € M?4_ let x(™) be the image of x in M%fiﬁ. Let Ux be

0o,
a sufficiently small affinoid neighborhood of x("™ | so that Uy is a disc. Then
Ux contains Z ,,,) for m sufficiently large, say m > Nx + 1. Now let Tm)

be the graph described by the following procedure: Start with 7 /T'(7™),
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but remove (x,m) whenever m > Nx. Then we have a covering of ./\/lamd’ﬁ by
wide opens V, indexed by the vertices of 7™, where we have put

V( )= W(x7m), m < Nx
o W(x7m) UUx, m = Nx.

Recall that M?,iﬁ /n% is the quotient of ./\/lamd’ﬁ by the subgroup of GLa(K)
generated by the scalar w. We get a get a covering of M?,Eiﬁ/ﬂz by wide
opens V, indexed by vertices of the quotient graph 7™ /m%. We will show
this is a semistable covering. For this we will have to show that the affinoids
Z,Sm) C Vv(m) have good reduction. A priori, we only know that the reduction
?E,m) is an integral scheme over Speck of dimension 1. Write Z(]”)’C‘ for the
smooth projective curve associated to the function field of ?f)m).

Proposition 6.4.3. We have

Y dmA'EQ) =2 dim TN dim JL(T),
UET("”)/WZ 11

where the sum ranges over supercuspidal representations of GLa(K) whose
central character is trivial on .

Proof. For each vertex v = (z,m) € T, the perfection g(m)’perf is the quo-
tient of Z, by KX NT1(7™), by Lemma 42l On the other hand, by Thm.
there exists a nonconstant .- equlvarlant morphism Z, — C,,, where
C, is the curve of Defn. 431l From this we can conclude there exists a
nonconstant morphism Z(]”) — Cy/(KLNTY(7™)). This morphism extends
to a morphism of smooth projective curves ?f,m)’d — C/(KLNTH (™)), so
that
dim H'(ZU™ Qp) > dim H (09, Q)+ (+™),

We now sum this inequality over all v € 7™ /n%. Suppose R C T° is
a set of representatives for the quotient 7°/(GL2(K) x D*). Then every
vertex in 7™ /7% is the translate of some uniquely determined v € R by an
element g € GLy(K) x D* which is well-defined up to left multiplication by
Kl (the stabilizer of v) and up to right multiplication by 't (7)7?% (which
fixes 70" pointwise). We get

Y dmA'EMNQ) = Y 3 dim H}(Cys, Qr)
veT (M) /nZ vER geK1\(GLa(K)xD*)/T1(xm)nZ
- % Fl(wm)
= Y dim (a2 Bl(G,, Q)
veER
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by Mackey’s theorem. The result now follows from Prop. 3.3l O
Theorem 6.4.4. {V,} ) constitutes a semistable covering of ./\/lamd,ﬁ.

Proof. It suffices to show that {V,}, 7o) /? constitutes a semistable cover-
ing of szﬁ/wz. Let us abbreviate T = 70" /7% and Z, = 20 for v e T.
The wide open curve Mﬁiﬁ / 7% admits some semistable covering, so suppose
there is a graph 7" and a collection of wide opens V, satisfying the criteria
in Defn. [6.1.3] with underlying affinoids Z,. After refining the covering, we
may assume that 7" contains T as a subgraph, that Z] C Z, for all vertices
v €T, and that (for all v € T') Z, C Z] is open, so that Ezl = (Z)
By Prop. [6.1.5] we have

dim H' (M- /7%,Qq) = Y dim HX(Z,,, Q¢) + dim HX(T", Qy).
veT”’

On the other hand Cor. gives

dim H' (M2 /7%,Qp) = 2~ dimII"™™) dim JL(IT)+2¢™ " (¢—1) dim St" ™"
II

We have dim St'™) = 4P (Ok /a™) — 1. The dimension of H}(T", Q)
is at least 2¢™ 1 (q — 1)(#P(Ok /™) — 1), because T has 2¢™ (¢ — 1) =
#K*/m*2(1+7™Ok) connected components, and each component has ends
in correspondence with P1(Og /7™). This has the following consequences:

1. The inequality in Prop. [6.4.3]is an equality,

2. For all primitive v € T, the morphism zm Cyp/ (KL N TYH(m™))

v
induces an isomorphism on the level of H},

3. For all imprimitive v € T, and all v € T'\T, Hg(?;, Q¢) =0, so that
— 1
(Z’)C — P!, and

v

4. HYT', Q) = HX(T,Qy), so that T" is cycle-free and has no ends other
than those of T'.

These imply that {V,}, ., was a semistable covering to begin with, because
otherwise its semistable refinement would have introduced new curves of
positive genus in the special fiber, or else monodromy in the dual graph. [
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We can now complete the proof of Thm. [[.O.5l First, we observe that the

. . . . d -CM .
wide opens W, constitute a semistable covering of M %lon © , from which

we get a compatible family of semistable models M“mon'CM. FEach irreducible
component of M""CM g the completion of ?f)m) for some v € T/T'(7™).
The components corresponding to imprimitive vertices have genus 0. Let
v be any primitive vertex of 7. Then there exists m large enough so that
[(7™) N Ky, acts trivially on C,. We have the morphism ?f)m) — Cl; since
it induces an isomorphism on H! (see point (2) in the above proof), and

since (), has positive genus, this morphism must be purely inseparable. The
(m)

o — C, for all m’ > m; since this map factors through

same is true for Z
—=(m’)

Z, = Z(]”), the latter must be purely inseparable as well.

7 Stable reduction of modular curves: Figures

In Figures 1-3, we draw the graph 7° constructed in §6.31 Each vertex v is
labeled with its corresponding curve appearing on the list of four curves in
Thm. [LOT]

We sketch a procedure for calculating the dual graph corresponding to
the special fiber of a stable model of one geometrically connected com-
ponent of the classical modular curve X,, = X(I'(p™) N T'1(IV)), where
N > 5. First one must calculate the quotient 7°/T'!(p™), where I'}(p™) =
(14 p™My(Zy)) N SLa(Qp). The image of a vertex v in the quotient is la-
beled with the nonsingular projective curve constructed by quotienting C),
by '} (p™) N K. For almost every v, the quotient is rational. The quotient
graph 7°/T'}(p™) has finitely many ends, and each end is (once one goes
far enough) a ray consisting only of rational components. Erase all rational
components lying on an end which corresponds to a CM point. The remain-
ing ends correspond to the boundary of M;la%i ; these are in bijection with
PY(Z/p™Z). For each b € P(Z/p™Z), erase all rational components lying
on the end corresponding to b, and let v, be the unique non-rational vertex
which is adjacent to one of the vertices just erased. Call the resulting graph
Trn-

Let Ig(p™) denote the nonsingular projective model of the Igusa curve
parameterizing elliptic curves over F,, together with Igusa p™ structures
and a point of order N. Draw P!(Z/p™Z) many vertices wy, and label each
with Ig(p™). For each b € PY(Z/p™Z), and each supersingular point of
X1(N)(F,), attach a copy of T, to w, in such a way that the vertex wy
is adjacent to each v,. Finally, blow down any superfluous rational compo-
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Figure 1: The “depth zero” subgraph of 7°, consisting of the vertices v =
(x,0). The blue vertices are unramified. Each represents a copy of the
nonsingular projective curve with affine model zy? — x%y = 1. The stabilizer
of any particular blue vertex in SLy(K) is conjugate to SLa(Ox). The
white vertices are imprimitive. Each represents a rational component. The
stabilizer of any white vertex in SLy(K) is an Iwahori subgroup.

nents. The result is a finite graph representing the special fiber of a stable
model of one component of X,,.
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