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Abstract In a previous work, we have introduced the notion of embedded Q-resolution,
which allows the final ambient space to contain abelian quotient singularities, and A’Campo’s
formula was calculated in this setting. Here, we study the semistable reduction associated with
an embedded Q-resolution and compute the mixed Hodge structure on the cohomology of
the Milnor fiber in the isolated case using a generalization of Steenbrink’s spectral sequence.
Examples of Yomdin-Lê surface singularities are presented as an application.
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1 Introduction

One of the main invariants of a given hypersurface singularity is the mixed Hodge structure
(MHS) on the cohomology of the Milnor fiber. In the isolated case, Steenbrink [24] gave a
method for computing this Hodge structure using a spectral sequence that is constructed from
the divisors associated with the semistable reduction of an embedded resolution, cf. [27,28].

However, in practice, the combinatorics of the exceptional divisor of the resolution is often
so complicated that the study of the spectral sequence becomes very hard, see e.g., [4] where
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an embedded resolution and its associated semistable reduction for superisolated surface
singularities is computed using blow-ups at points and rational curves.

After the semistable reduction process, the new ambient space contains normal singular-
ities which are obtained as the quotient of a ball in Cn by the linear action of a finite group.
Spaces admitting only such singularities are called V -manifolds. They were introduced in [20]
and have the same homological properties over Q as manifolds, e.g., they admit a Poincaré
duality if they are compact and carry a pure Hodge structure if they are compact and Kähler
[7]. Moreover, a natural notion of normal crossing divisor can be defined on V -manifolds [24].

Motivated by this fact and in order to simplify the combinatorics of the exceptional divisor
mentioned above, we introduced the notion of embedded Q-resolution [16]. The idea is as
follows. Classically an embedded resolution of { f = 0} ⊂ Cn+1 is a proper map π : X →

(Cn+1, 0) from a smooth variety X satisfying, among other conditions, that π∗({ f = 0})

is a normal crossing divisor. To weaken the condition on the preimage of the singularity,
we allow the new ambient space X to contain abelian quotient singularities and the divisor
π∗({ f = 0}) to have normal crossings on X .

Hence, the motivation for using embedded Q-resolutions rather than standard ones is
twofold. On the one hand, they are a natural generalization of the usual embedded resolutions,
for which the invariants above are expected to be calculated effectively. On the other hand, the
combinatorial and computational complexity of embedded Q-resolutions is much simpler,
and they also keep as much information as needed for the understanding of the topology of
the singularity.

For instance, the behavior of the Lefschetz numbers and the zeta function of the mon-
odromy in this setting was treated in [17] providing the corresponding A’Campo’s formula [1].
Also, for plane curves, the local δ-invariant and explicit formulas for the self-intersections
numbers of the exceptional divisors were calculated in [8] and [6] respectively.

In this paper, we continue our study about embedded Q-resolutions. In particular, the
semistable reduction of a normal crossing Q-divisor on an abelian quotient singularity is
investigated. The main idea behind this construction, as mentioned above, is that in the
classical case after the semistable reduction the ambient space already contains quotient
singularities. Our main result, Theorem 3.7, says that the same is true for embedded Q-
resolutions, and hence Steenbrink’s arguments can be adapted to construct a spectral sequence
converging to the cohomology of the Milnor fiber thus providing a MHS on Hq(F, C),
see Theorem 5.4. Since the embedded Q-resolution can be chosen so that “almost every”
exceptional divisor contributes to the complex monodromy, our spectral sequence is finer in
the sense that fewer divisors appear in the semistable reduction and thus the combinatorics
of the spectral sequence will be simpler.

As a by-product we show that the Jordan blocks of maximal size in the monodromy are
easily calculated by just looking at the dual complex associated with the semistable reduction
of a Q-resolution, see Proposition 5.12.

Note that the tools developed in [14] for the monodromy zeta function cannot be gener-
alized for computing more involved invariants as the MHS of the Milnor fiber.

This work in combination with [18] can be considered as the first steps in the computation
of MHS and the monodromy action [19] of the so-called Yomdin-Lê surface singularities
(YLS) [29]. Results on YLS have already been studied in [25] and [22], which contain similar
examples as the ones presented here with different approach. A more recent work [26] uses
toric methods to attack this kind of examples.

Note that, following the ideas of [4], the generalized Steenbrink’s spectral sequence pre-
sented here can be used to find two YLS having the same characteristic polynomials, the
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Semistable Reduction of a Normal Crossing Q-divisor 1751

same abstract topologies, but different embedded topologies (it is enough to take a Zariski
pairs in the tangent cones).

This paper is organized as follows. In Sect. 2, some well-known preliminaries about
weighted blow-ups and embedded Q-resolutions are presented. The main result, namely
Theorem 3.7 is proven in Sect. 3. After recalling the monodromy filtration in Sect. 4, the
generalized Steenbrink’s spectral sequence converging to Hq(F, C) is described in Sect. 5.
Finally, as an application, the use of all the results of this work are illustrated in Sect. 6 with
several examples including a plane curve and a YLS.

2 Preliminaries

Let us sketch some definitions and properties about V -manifolds, weighted projective spaces,
and weighted blow-ups, see [5,6,16] for a more detailed exposition.

Definition 2.1 Let H = { f = 0} ⊂ Cn+1. An embedded Q-resolution of (H, 0) ⊂

(Cn+1, 0) is a proper analytic map π : X → (Cn+1, 0) such that:

1. X is a V -manifold with abelian quotient singularities.
2. π is an isomorphism over X \ π−1(Sing(H)).
3. π∗(H) is a hypersurface with Q-normal crossings on X .

To deal with these resolutions, some notation needs to be introduced. Let G := μd0 ×

· · ·×μdr be an arbitrary finite abelian group written as a product of finite cyclic groups, that
is, μdi

is the cyclic group of di -th roots of unity. Consider a matrix of weight vectors

A := (ai j )i, j = [a0 | . . . | an] ∈ Mat((r + 1) × (n + 1), Z)

and the action
(μd0 × · · · × μdr ) × Cn+1 −→ Cn+1,(

ξd, x
)

�→ (ξ
a00
d0

. . . ξ
ar0
dr

x0, . . . , ξ
a0n

d0
. . . ξ

arn

dr
xn).

The set of all orbits Cn+1/G is called (cyclic) quotient space of type (d; A) and it is denoted
by

X (d; A) := X

⎛
⎜⎝

d0 a00 · · · a0n

...
...

. . .
...

dr ar0 · · · arn

⎞
⎟⎠ .

The orbit of an element (x0, . . . , xn) under this action is denoted by [(x0, . . . , xn)]. Con-
dition 3 of the previous definition means the total transform π−1(H) = ( f ◦ π)−1(0) is
locally given by a function of the form x

m0
0 . . . x

mk

k : X (d; A) → C, see [24]. The previous
numbers mi ’s have no intrinsic meaning unless μd induces a small action on GL(n + 1, C).
This motivates the following.

Definition 2.2 The type (d; A) is said to be normalized if the action is free on (C∗)n+1 and
μd is identified with a small subgroup of GL(n + 1, C).

As a tool for finding embedded Q-resolutions one uses weighted blow-ups with smooth
center. Special attention is paid to the case of dimension 2 and 3 and blow-ups at points.
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Example 2.3 Assume (d; a, b) is normalized and gcd(ω) = 1, ω := (p, q) with p, q ∈ N∗.
The total space of the ω-blow-up at the origin of X (d; a, b),

π(d;a,b),ω : ̂X (d; a, b)ω −→ X (d; a, b), (1)

can be written as

Û1 ∪ Û2 = X

(
pd

e
; 1,

−q + βpb

e

)
∪ X

(
qd

e
;
−p + μqa

e
, 1

)

and the charts are given by

First chart X

(
pd

e
; 1,

−q + βpb

e

)
−→ Û1,

[
(xe, y)

]
�→
[
((x p, xq y), [1 : y]ω)

]
(d;a,b)

.

Second chart X

(
qd

e
;
−p + μqa

e
, 1

)
−→ Û2,

[
(x, ye)

]
�→
[
((xy p, yq), [x : 1]ω)

]
(d;a,b)

.

Above, e = gcd(d, pb − qa) and βa ≡ μb ≡ 1(mod d). Observe that the origins of the two
charts are cyclic quotient singularities; they are located at the exceptional divisor E which is
isomorphic to P1

ω
∼= P1.

Example 2.4 Let πω : Ĉ3
ω → C3 be the ω-weighted blow-up at the origin with ω =

(p, q, r), gcd(ω) = 1, and p, q, r ∈ N∗. The new space is covered by three open sets

Ĉ3
ω = U1 ∪ U2 ∪ U3 = X (p;−1, q, r) ∪ X (q; p,−1, r) ∪ X (r; p, q,−1),

and the charts are given by

X (p;−1, q, r) −→ U1 : [(x, y, z)] �→ ((x p, xq y, xr z), [1 : y : z]ω),

X (q; p,−1, r) −→ U2 : [(x, y, z)] �→ ((xy p, yq , yr z), [x : 1 : z]ω),

X (r; p, q,−1) −→ U3 : [(x, y, z)] �→ ((xz p, yzq , zr ), [x : y : 1]ω).

(2)

In general Ĉ3
ω has three lines of (cyclic quotient) singular points located at the three axes of

the exceptional divisor π−1
ω (0) ≃ P2

ω. For instance, a generic point in x = 0 is a cyclic point
of type C × X (gcd(q, r); p,−1). Note that although the quotient spaces are represented by
normalized types, the exceptional divisor can still be simplified:

P2(p, q, r) −→ P2
(

p

(p, r) · (p, q)
,

q

(q, p) · (q, r)
,

r

(r, p) · (r, q)

)
,

[x : y : z] �→
[
xgcd(q,r) : ygcd(p,r) : zgcd(p,q)

]
.

(3)

However, this simplification may be not useful when working with the whole ambient space
because its charts are not compatible with Ĉ3

ω. Thus the natural covering of the exceptional
divisor is

P2
ω = V1 ∪ V2 ∪ V3 = X (p; q, r) ∪ X (q; p, r) ∪ X (r; p, q),

and the charts are given by the restrictions of the maps in (2) to x = 0, y = 0, and z = 0
respectively.
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Semistable Reduction of a Normal Crossing Q-divisor 1753

Example 2.5 Assume (d; a, b, c) is normalized and ω := (p, q, r) with gcd(ω) = 1 and
p, q, r ∈ N∗. The total space of theω-blow-up at the origin of X (d; a, b, c), π = π(d;a,b,c),ω :

̂X (d; a, b, c)ω −→ X (d; a, b, c), can be covered by three open sets as

̂X (d; a, b, c)ω =
Ĉ3

ω

μd

=
U1 ∪ U2 ∪ U3

μd

= Û1 ∪ Û2 ∪ Û3,

where

Û1 =
U1

μd

=
X (p;−1, q, r)

μd

= X

(
p −1 q r

pd a pb − qa pc − ra

)
,

Û2 =
U2

μd

=
X (q; p,−1, r)

μd

= X

(
q p −1 r

qd qa − pb b qc − rb

)
,

Û3 =
U3

μd

=
X (r; p, q,−1)

μd

= X

(
r p q −1

rd ra − pc rb − qc c

)
.

The charts are given by the induced maps on the corresponding quotient spaces, see Eq. (2).
The exceptional divisor E = π−1

(d;a,b,c),ω
(0) is identified with the quotient

P2
ω(d; a, b, c) :=

P2
ω

μd

.

There are three lines of quotient singular points in E and outside E the map π(d;a,b,c),ω is an
isomorphism.

The expression of the quotient spaces can be modified as follows. Let α and β be two

integers such that αd +βa = gcd(d, a), then one has that the space X
(

p; −1 q r
pd; a pb−qa pc−ar

)

equals

X

(
pd (d, a) −q (d, a) + βpb −r(d, a) + βpc

(d, a) 0 b c

)
.

Note that in general the previous space is not represented by a normalized type. To obtain its
normalized one, follow the processes described in (I.1.3) and (I.1.9) of [16].

3 The semistable reduction

This tool was introduced by Mumford in [15, pp. 53–108] and roughly speaking the mission
of the semistable reduction is to get a reduced divisor that provides a model of the Milnor
fibration. The spectral sequence converging to the cohomology of the Milnor fiber will be
defined in terms of this reduced divisor, see Sect. 5. Here, we present a more general approach
than the needed for the Milnor fibration.

Notation 3.1 Let X be a complex analytic variety and let g : X → D2
η be a non-constant

analytic function. Assume X only has abelian quotient singularities and g−1(0) is a Q-normal
crossing divisor, that is, g is locally given by a function of the form x

m0
0 . . . x

mk

k : X (d; A) →

C. Let e be any common multiple of all possible multiplicities appearing in the divisor g−1(0)

and consider σ : D2
η1/e → D2

η the branched covering defined by σ(t) = te.
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1754 J. Martín-Morales

Denote by (X1, g1, σ1), the pull-back of g and σ .

X1
g1

��

σ1

��

D2
η1/e

σ

��

X g
�� D2

η

The map σ1 is a cyclic covering of e sheets ramified over g−1(0). If F denotes the
Milnor fiber of g : X → C, then σ−1

1 (F) has e connected components which are projected
diffeomorphically onto F .

We have not yet completed the construction of the semistable reduction because X1 is not
normal. Indeed, given P ∈ g−1(0) there exist integers k ≥ 0 and m0, . . . , mk ≥ 1 such that

g(x0, . . . , xn) = x
m0
0 . . . x

mk

k : B2n+2/μd −→ C,

where B2n+2 is an open ball of Cn+1 and the group μd acts diagonally as in (d; A). Denote
by P1 the unique point in σ−1

1 (P). Then, X1 in a neighborhood of P1 is of the form
{([

(x0, . . . , xn)
]
, t
)

∈ X (d; A) × C
∣∣ te = x

m0
0 . . . x

mk

k

}
, (4)

and hence the space X1 is not necessarily normal.
Let ν : X̃ → X1 be the normalization and denote by g̃ := g1 ◦ ν and ̺ := σ1 ◦ ν the

natural maps. The normalization process has essentially two steps when the corresponding
ring is a unique factorization domain (UFD). First, separate the irreducible components and
then find the normalization of each component. In the latter case, the ring in question is a
domain and the following result applies.

Lemma 3.2 Let A ⊂ B be an integral extension of commutative rings. Suppose that B is an

integrally closed domain such that Q(B)|Q(A) is a Galois extension. Then, the normalization

of the ring A is A = BGal(Q(B)|Q(A)).

Proof Since B is normal and the extension A ⊂ B is integral, then A = B ∩ Q(A). Now
the statement follows from the Galois condition. ⊓⊔

Example 3.3 The algebraic ring of functions of X (2; 1, 1) is isomorphic to C[x2, xy, y2] as
an algebraic variety. In this ring, the polynomial xy is irreducible but not prime. To compute
the normalization of the quotient ring C[x2, xy, y2]/〈xy〉, one cannot proceed in the same
way as in a UFD. This happens because μ2 does not define an action on the factors of the
polynomial xy.

Although the ring of functions of the previous space (4) is not a UFD, see Example 3.3
above, to compute the normalization of X1 one can proceed in the same spirit because of the
special form of the polynomial te − x

m0
0 . . . x

mk

k , see proof of Theorem 3.7. Before that we
need to introduce some notations.

Definition 3.4 Let X be a complex analytic space having only abelian quotient singularities
and consider E a Q-normal crossing divisor on X . Assume P ∈ |E | is a point such that the
local equation of E at P is given by the function

x
m0
0 . . . x

mk

k : X (d; A) := Cn+1/μd −→ C, (0 ≤ k ≤ n)
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Semistable Reduction of a Normal Crossing Q-divisor 1755

where x0, . . . , xn are local coordinates of X at P, d = (d0, . . . , dr ), and A = (ai j )i, j ∈

Mat((r + 1) × (n + 1), Z).
The multiplicity of E at P , denoted by m(E, P) or simply m(P) if the divisor is clear

from de context, is defined by

m(E, P) := gcd

(
m0, . . . , mk,

∑k
j=0 a0 j m j

d0
, . . . ,

∑k
j=0 ar j m j

dr

)
.

If there exists T ⊂ |E | such that the function P ∈ T �→ m(E, P) is constant, then we
use the notation m(T ) := m(E, P0), where P0 is an arbitrary point in T .

Remark 3.5 Using the general fact lcm( m
b0

, . . . , m
br

) = m
gcd(b0,...,br )

, one can easily check that
this definition coincides with the one of [17, Def. 2.6] for k = 0, cf. (5), that is,

m(E, P) :=
m

L
, L = lcm

(
d0

gcd(d0, a00)
, . . . ,

dr

gcd(dr , ar0)

)
,

where E is a Q-divisor on X locally given at the point P by the well-defined function
xm

0 : X (d; A) → C.

In the situation of 3.1, the multiplicity m(g∗(0), P) with P ∈ g−1(0) can be interpreted
geometrically as follows.

Lemma 3.6 The number of prime (or irreducible) factors of the polynomial te − x
m0
0 . . . x

mk

k

regarded as an element in C[x0, . . . , xn]μd ⊗C C[t] is m(g∗(0), P). Hence, this number also

coincides with the cardinality of the fiber over P of the covering ̺ : X̃ → X.

Proof Let us denote ℓ = gcd(m0, . . . , mk) and Ci =
∑k

j=0 ai j m j for i = 0, . . . , r . The

polynomial te − x
m0
0 · · · x

mk

k ∈ C[x0, . . . , xn, t] factorizes into ℓ different components as

te − x
m0
0 . . . x

mk

k =

ℓ−1∏

i=0

(
t

e
ℓ − ζ i

ℓ x
m0
ℓ

0 . . . x
mk
ℓ

k

)
,

where ζℓ is a primitive ℓ-th root of unity. However, this factors are not invariant under the
group μd, since they are mapped to

t
e
ℓ − ζ i

ℓ x
m0
ℓ

0 . . . x
mk
ℓ

k �−→ t
e
ℓ − ξ

C0
ℓ

d0
. . . ξ

Cr
ℓ

dr
. . . ζ i

ℓ x
m0
ℓ

0 . . . x
mk
ℓ

k ,

by the action of (ξd0 , . . . , ξdr ) ∈ μd. Recall that Cn+1/μd = X (d; A).

Let Hi be the cyclic group defined by Hi := {ξ
Ci /ℓ
di

| ξdi
∈ μdi

}, for i = 0, . . . , r , and

consider H = H0 . . . Hr . Since te − x
m0
0 . . . x

mk

k defines a function over X (d; A)×C, then di

must divide Ci and, consequently, all the previous groups are (normal) subgroups of μℓ. The
order of μℓ/H is exactly the number of prime (or irreducible) components of the preceding
polynomial regarded as an element in C[x0, . . . , xn]μd ⊗C C[t].

The order of Hi is |Hi | = di

gcd(di , Ci /ℓ)
= ℓ

gcd(ℓ, Ci /di )
. Then, one has

|H | = |H0 . . . Hr | = lcm
(
|H0|, . . . , |Hr |

)

=
ℓ

gcd
(
ℓ, C0

d0
, . . . , Cr

dr

) =
ℓ

m(P)
. (5)

In the expression above, a general property about greatest common divisor and least common
multiple already mentioned in 3.5 was used.
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Assume that g−1(0) = E0 ∪ . . . ∪ Es and let us denote Di = ̺−1(Ei ) for i = 0, . . . , s

and D =
⋃s

i=0 Di . This commutative diagram illustrates the whole process of the semistable
reduction.

Di
�

�

��

̺

��

X̃
ν

��

̺

��

g̃

��

X1
g1

��

σ1

��

D2
η1/e

σ

��

Ei
�

�

�� X X g
�� D2

η

(6)

Consider the stratification of X associated with the normal crossing divisor g−1(0) ⊂ X .
That is, given a possibly empty set I ⊆ {0, 1, . . . , s}, consider

E◦
I :=

(
∩i∈I Ei

)
\
(

∪i /∈I Ei

)
.

Also, let X =
⊔

j∈J Q j be a finite stratification of X given by its quotient singularities so
that the local equation of g at P ∈ E◦

I ∩ Q j is of the form

x
m1
1 . . . x

mk

k : B/G −→ C,

where B is an open ball around P , and G is an abelian group acting diagonally as in (d; A).
The multiplicities mi ’s and the action G are the same along each stratum E◦

I ∩ Q j , i.e., they
do not depend on the chosen point P ∈ E◦

I ∩ Q j . Denote m I, j := m(E◦
I ∩ Q j ). Finally,

assume that E◦
I ∩ Q j is connected.

Theorem 3.7 The variety X̃ only has abelian quotient singularities located at g̃−1(0) = D

which is a reduced divisor with normal crossings on X̃ . Also, ̺ : X̃ → X is a cyclic branched

covering of e sheets unramified over X \ g−1(0). Moreover, for ∅ �= I ⊆ S := {0, 1, . . . , s}

and j ∈ J , the following properties hold.

1. The restriction ̺ | : ̺−1(E◦
I ∩ Q j ) → E◦

I ∩ Q j is a cyclic branched covering of m I, j

sheets unramified over E◦
I ∩ Q j .

2. The variety ̺−1(E◦
I ∩ Q j ) is a V -manifold with abelian quotient singularities with

gcd({m(P) | P ∈ E◦
I ∩ Q j }) connected components.

3. Let ϕ : X̃ → X̃ be the canonical generator of the monodromy of the covering ̺. Then, its

restriction to ̺−1(E◦
I ∩ Q j ) is a generator of the monodromy of ̺ | : ̺−1(E◦

I ∩ Q j ) →

E◦
I ∩ Q j .

4. The Euler characteristic of each connected component of Di is

∑

{i}⊂I⊂{0,1,...,s}

j ∈ J

m I, j · χ(E◦
I ∩ Q j )

/
gcd({m(P) | P ∈ Ei }).

Proof First note that the morphism ̺ : X̃ → X is a cyclic branched covering unramified
over X \ g−1(0), since so is σ1 : X1 → X and the normalization ν : X̃ → X1 does not
change the normal points.

Let P ∈ g−1(0) and choose coordinates x0, . . . , xn as in 3.1 so that X1 ⊂ X (d; A) × C

is locally given by the polynomial te − x
m0
0 . . . x

mk

k . Let us denote for i = 0, . . . , k,

m(P) = m(g∗(0), P), e′ = e/m(P), m′
i = mi/m(P).
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Semistable Reduction of a Normal Crossing Q-divisor 1757

Consider the ring

A =
C[x0, . . . , xn, t]

〈te − x
m0
0 . . . x

mk

k 〉
.

The action given by X (d; A) is extended to A so that the variable t is invariant. Then,
by Lemma 3.6, the normalization Aμd of the ring Aμd is isomorphic to the direct sum of
m(P) isomorphic copies of the normalization of

C[x0, . . . , xn]μd ⊗C C[t]
〈
te′

− x
m′

0
0 · · · x

m′
k

k

〉 =

(
C[x0, . . . , xn, t]
〈
te′

− x
m′

0
0 · · · x

m′
k

k

〉
)μd

.

Therefore to compute it we only need to consider the case m(P) = 1, for which the ring Aμd

is an integral domain. Now we plan to apply Lemma 3.2 to a ring extension Aμd ⊂ B, where
B is a polynomial algebra.

Let ci = e/mi for i = 0, . . . , k. Denote B = C[y0, . . . , yn] and consider Aμd as subring
of B by putting

⎧
⎪⎨
⎪⎩

xi = y
ci

i if 0 ≤ i ≤ k,

xi = yi for i > k,

t = y0 · · · yk

Note that A cannot be embedded in B because it is not even a domain. Since μd acts
diagonally on Cn+2, there exists N ≫ 0 such that

y
c0 N
0 , . . . , y

ck N
k , yN

k+1, . . . , yN
n ∈ Aμd .

This implies that the extension Aμd ⊂ B is integral. Also, B is a normal domain. It remains
to prove that Q(B)|Q(Aμd) is a Galois field extension. One has

C
(

y
c0 N
0 , . . . , y

ck N
k , yN

k+1, . . . , yN
n

)
⊂ Q(Aμd) ⊂ Q(B) = C(y0, . . . , yn).

Note that the largest extension is clearly Galois. Its Galois group is abelian, and it is isomorphic
to

μc0 N × · · · × μck N × μN ×
n−k
· · · ×μN .

Thus Aμd = BGal(Q(B)|Q(Aμd )).
This shows that Spec(Aμd) and hence X̃ are V -manifolds. Locally D is the quotient under

the group Gal(Q(B)|Q(Aμd)) of the reduced divisor y0 . . . yk = 0. The rest of the statement
follows from the fact that the branched coverings involved are cyclic. For the last part, use
the classical Riemann–Hurwitz formula.

Remark 3.8 Assume C[x0, . . . , xn]μd = C[{x
α0
0 . . . x

αn
n }α∈�]. Then Aμd is identified with

the subring

C
[{

y
α0c0
0 . . . y

αk ck

k . . . y
αk+1
k+1 . . . yαn

n

}
α∈�

, y0 . . . yk

]
⊂ C[y0, . . . , yn].

Hence the Galois extension

Gal(Q(B)|Q(Aμd)) ⊂ μc0 N × · · · × μck N × μN × (n−k). . . ×μN

is given by the elements (ξ0, . . . , ξk, ηk+1, . . . , ηn) such that

∀α ∈ �,

{
ξ

α0c0
0 . . . ξ

αk ck

k . . . η
αk+1
k+1 . . . η

αn
n = 1,

ξ0 . . . ξk = 1.
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1758 J. Martín-Morales

Fig. 1 Semistable reduction of x p + yq

In general, this group is not a small subgroup of GL(n + 1, C), that is, there may exist
elements of the group having 1 as an eigenvalue of multiplicity precisely n.

Remark 3.9 Note that ̺ | : ̺−1(E◦
i ∩ Q j ) → E◦

i ∩ Q j is an isomorphism when I = {i}

and the multiplicity of Ei (at the smooth points) is equal to one.

In what follows this construction is applied to g = f ◦ π , where the map f : (M, 0) →

(C, 0) is the germ of a non-constant analytic function and π : X → (M, 0) is an embedded
Q-resolution of { f = 0} ⊂ (M, 0) with M = X (d; A), cf. Sect. 5. Let us see an example.

Example 3.10 Consider the plane curve defined by f = x p + yq in C2. Recall that after
the (q1, p1)-weighted blow-up at the origin, one obtains an embedded Q-resolution with
only one exceptional divisor E of multiplicity lcm(p, q), where p = p1 gcd(p, q) and
q = q1 gcd(p, q), see e.g., [17, Ex. 3.3].

Following Theorem 3.7, D = ̺−1(E) is irreducible and the restriction ̺ : D → E

is a branched covering of lcm(p, q) sheets. Also, the singular point of type (q1;−1, p1)

(resp. (p1; q1,−1)) is converted into p (resp. q) smooth points in the semistable reduc-
tion (Fig. 1). Finally, ̺ | : ̺−1(Ĉ) → Ĉ is an isomorphism. This implies that the Euler
characteristic of D is

χ(D) = p + q + gcd(p, q) − pq = gcd(p, q) + 1 − μ.

The p points in D which are lift over the point of type (q1;−1, p1) are smooth. Of
course, the same happens for the point of type (p1; q1,−1). Also, the intersection of the strict
transform with D gives rise to gcd(p, q) smooth points. As we shall see the smoothness is
not relevant for providing a MHS on the cohomology of the Milnor fiber.

4 Monodromy filtration

This exposition is extracted from [4], which is in turn based on the book [2].
Let H be a C-vector space of finite dimension. Consider a nilpotent endomorphism N :

H → H , i.e. there exists k ∈ N such that N k = 0. Its Jordan canonical form is determined
by the sequence of integers formed by the size of the Jordan blocks.

There is an alternative way to encode the Jordan form giving instead an increasing filtration
on H . Let us fix k ∈ Z; it will be called the central index of the filtration. Consider a basis
of H such that the matrix of N in this basis is the Jordan matrix.

Each Jordan block determines a subfamily {v1, . . . , vr } of the basis such that N (v1) = 0
and N (vi ) = vi−1 for i = 2, . . . , r . Let us denote by l(vi ) the unique integer determined by
the following two conditions:

1. l(vi ) = l(vi−1) + 2,∀i = 2, . . . , r .
2. {l(v1), . . . , l(vr )} is symmetric with respect to k.
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Semistable Reduction of a Normal Crossing Q-divisor 1759

In fact, this integer is l(vi ) = k − r + 2i − 1,∀i = 1, . . . , r , as one can check directly.
Applying this construction to all the Jordan blocks, one defines Wl as the vector subspace

of H generated by {v | vin the basis, l(v) ≤ l}. This gives rise to an increasing filtration
{Wl}l∈Z on H . Its graded part is denoted by GrW

l (H) := Wl/Wl−1 for l ∈ Z.
Also, denote by Jl(N ) the number of Jordan blocks in N of size l. Then, it is satisfied that

Jl(N ) = dim
(

GrW
k−l+1(H)) − dim(GrW

k−l−1(H)
)

.

Proposition 4.1 ([21]) There exists a unique increasing filtration {Wl}l∈Z such that:

1. N (Wl) ⊂ Wl−2.

2. N l : GrW
k+l(H) → GrW

k−l(H) is an isomorphism.

This filtration is called the weight filtration of N with central index k. One checks that the
filtration {Wl}l∈Z defined above satisfies these two properties. In particular, the description
of {Wl}l∈Z does not depend on the chosen basis.

Using this construction, the Jordan form of an arbitrary automorphism M : H → H

can be described too. Let M = Mu Ms be the decomposition of M into its unipotent and
semisimple components. It is known that Mu Ms = Ms Mu and that the decomposition is
unique, see [23]. Recall that the semisimple part contains the information about the eigen-
values and the unipotent one, the information about the size of the Jordan blocks. Note that
the endomorphism N := log(Mu) is nilpotent and the number of Jordan blocks of size l is
Jl(N ) = Jl(Mu) = Jl(M).

For a given k ∈ Z, consider the weight filtration associated with N with central index k.
Due to the properties of the decomposition, the subspaces Wl are invariant by the action of
Ms , and thus by the action of M . The endomorphism induced by Mu on each graded part
GrW

l (H) is semisimple and, since Mu is unipotent, it is indeed the identity. Hence the actions
of M and Ms on GrW

l (H) coincide.
The conclusion is that the Jordan form of M is determined by the filtration {Wl}l∈Z and

the action of M over GrW
l (H) for l ∈ Z.

Let (V, 0) ⊂ (Cn+1, 0) be a germ of an isolated hypersurface singularity at the origin.
Denote by ϕ : Hn(F, C) → Hn(F, C) its complex monodromy.

Consider the decomposition of Hn(F, C) as a direct sum of two subspaces invariant under
ϕ, H �=1 and H1, such that I d − ϕ is invertible over H �=1 and nilpotent over H1.

Let W �=1 be the weight filtration of ϕ|H �=1 with central index n. Analogously, denote by

W 1 the weight filtration of ϕ|H1 with central index n + 1. These filtrations satisfy W
�=1
−1 =

W 1
1 = 0, W 1

2n = H1, and W
�=1
2n = H �=1.

Definition 4.2 The monodromy filtration of the cohomology of the Milnor fiber is W :=

W 1 ⊕ W �=1.

Note that the Jordan form of the complex monodromy is completely determined by the
action of ϕ over the graded parts of the monodromy filtration W . Let us fix the notation for
the characteristic polynomials of ϕ acting on the following vector spaces:
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1760 J. Martín-Morales

Vector space Characteristic polynomial

H := Hn(F, C) �(t)

GrW �=1

n−l
(H) �

�=1
l

(t)

GrW 1

n−l+1(H) �1
l
(t)

GrW �=1

n−l
(H) ⊕ GrW 1

n−l+1(H) �l (t)

Observe that the Jordan blocks of size l are given by the polynomial �l−1(t)
�l+1(t)

. More precisely,
the multiplicity of ζ ∈ C as root is this polynomial equals the number of Jordan blocks of
size l for the eigenvalue ζ .

5 Steenbrink’s spectral sequence

The Jordan form of the complex monodromy is closely related to the theory of MHS, first
introduced in [9–11]. By different methods, Steenbrink and Varčenko proved that the coho-
mology of the Milnor fiber admits a MHS compatible with the monodromy, see [24] and
[27,28].

Definition 5.1 A Hodge structure of weight n is a pair (HZ, F) consisting of a finitely
generated abelian group HZ and a decreasing filtration F = {F p}p∈Z on HC := HZ ⊗Z C

satisfying HC = F p ⊕ Fn−p+1 for all p ∈ Z. One calls F the Hodge filtration.

An equivalent definition is obtained replacing the Hodge filtration by a decomposition of
HC into a direct sum of complex subspaces H p,q , where p + q = n, with the property that
H p,q = Hq,p . The relation between these two descriptions is given by

HC =
⊕

p+q=n

H p,q , F p =
⊕

i≥p

H i,n−i , H p,q = F p ∩ Fq .

The typical example of a pure Hodge structure of weight n is the cohomology Hn(X, Z)

where X is a compact Kähler manifold. In the sequel, we will use the fact that, for compact
Kähler V -manifold, Hn(X, Z) can also be endowed with a pure Hodge structure of weight n.
Deligne proved that the same is true for smooth compact algebraic varieties, see [10].

Above, one may replace Z by any ring A contained in R such that A ⊗Z Q is a field and
obtain A-Hodge structures. In particular, one uses A = Q or R. In this way, the primitive
cohomology groups of a compact Kähler manifold are R-Hodge structures.

Definition 5.2 A mixed Hodge structure is a triple (HZ, W, F) where HZ is a finitely gen-
erated abelian group, W = {Wn}n∈Z is an increasing filtration on HQ := HZ ⊗Z Q, and
F = {F p}p∈Z is a decreasing filtration on HC := HZ ⊗Z C, such that F induces a Q-Hodge
structure of weight n on each graded part GrW

n (HQ),∀n ∈ Z. One calls F the Hodge filtration

and W the weight filtration.

Let us denote again by the same letter the filtration induced by W on the complexification
HC, i.e. Wn(HC) = Wn ⊗ C. Then, the filtration induced by F on GrW

n (HC) is defined by

F p
(

GrW
n (HC)

)
=

F p ∩ (Wn ⊗ C) + Wn−1 ⊗ C

Wn−1 ⊗ C
.
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Semistable Reduction of a Normal Crossing Q-divisor 1761

Thus the condition above on the weight and Hodge filtrations can be stated as, ∀n, p ∈

Z, F p
(
GrW

n (HC)
)
⊕ Fn−p+1

(
GrW

n (HC)
)

= GrW
n (HC).

Example 5.3 Let D be a divisor with normal crossings whose irreducible components are
smooth and Kähler. Then, H∗(D, Z) admits a functorial MHS, see [12]. This results is
extended to V -manifolds with Q-normal crossings whose irreducible components are Kähler.
Also, in [10], it is proven that if X is the complement in a compact Kähler manifold of a
normal crossing divisor, then H∗(X, Z) has a functorial MHS which does not depend on the
ambient variety as far as one remains in the same bimeromorphic equivalence class.

Let M = X (d; A) = Cn+1/μd be an abelian quotient space and consider a non-constant
analytic function germ f : (M, 0) → (C, 0). Let us fix an embedded Q-resolution π :

X → (M, 0) of the hypersurface { f = 0}. Hence the construction of Sect. 3 is applied to
g = f ◦ π : X → C.

The following result can be proven as in [24] repeating exactly the same arguments.
The main reason is that, starting with an embedded Q-resolution, the total space produced
after the semistable reduction is again a V -manifold with abelian quotient singularities, see
Theorem 3.7.

Theorem 5.4 There exists a spectral sequence {E
p,q
n } constructed from the embedded Q-

resolution π that verifies:

1. It converges to the cohomology of the Milnor fiber and degenerates at E2.

2. The spaces E
p,q
1 has a pure Hodge structure of weight p respected by the differentials.

In particular, E
p,q
2 = E

p,q
∞ also has a pure Hodge structure of weight p.

3. There exists a Hodge filtration on the cohomology of the Milnor fiber which induces

a Hodge filtration on E
p,q
∞ . One constructs a weight filtration using the filtration with

respect to the first index:

GrW
l (H k(F, C)) ∼= E l,k−l

∞
∼= E

l,k−l
2 .

Therefore, these two filtrations provide a MHS on the cohomology of the Milnor fibration.

This structure is an invariant of the singularity which only depends on the resolution π .

In [28], there is another construction of the MHS on the cohomology of the Milnor fiber,
using asymptotic integration. The weight filtration of both MHS coincide. Although both
Hodge filtrations do not coincide, they induce the same pure Hodge structure on the graded
part of the weight filtration.

Theorem 5.5 The complexification of the weight filtration of the MHS of the cohomology of

the Milnor fiber is exactly the monodromy filtration.

Moreover, the complex monodromy ϕ acts over the first term E1 of the spectral sequence

and commutes with the differentials. The action induced on the complexification of E2 = E∞

coincides with the action induced on the graded parts of the monodromy filtration.

We finish this section with the explicit description of Steenbrink’s spectral sequence. As
we shall see, it is constructed from the divisors associated with the semistable reduction of
g := f ◦ π : X → C.

Consider the divisor D associated with the semistable reduction of the embedded Q-
resolution π . Let us decompose D = D0 ∪ D1 ∪ . . . ∪ Ds so that D0 corresponds to the
strict transform of the singularity and the divisor D+ := D1 ∪ · · · ∪ Ds corresponds to the
exceptional components. Let us introduce some notation.
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• Let I = (i0, · · · , ik) with 0 ≤ i0 < · · · < ik ≤ s.

DI = Di0,...,ik
:= Di0 ∩ . . . ∩ Dik

,

ĎI = Ďi0,...,ik
:= DI \

⋃

j �=i0,...,ik

(D j ∩ DI ).

The first one is a projective V -manifold of dimension n − k. The second one is a smooth
complex variety of the same dimension.

• Let 0 ≤ i0 < · · · < ik ≤ s, i j < i ′j < i j+1 with −1 ≤ j ≤ k. Denote by

κ
i ′j
i0,...,i j ,i j+1,...,ik

: Di0,...,i j ,i
′
j ,i j+1,...,ik

−֒→ Di0,...,i j ,i j+1,...,ik
,

the natural inclusion.
• Let D[k] :=

⊔

0≤i0<···<ik≤s

Di0,...,ik
, D

[k]
+ :=

⊔

1≤i0<···<ik≤s

Di0,...,ik
.

Definition 5.6 Let k ∈ Z with 0 ≤ k ≤ n and let i, j ∈ Z with i, j ≥ 0.

k E
i,k− j
1 :=

{
H i (D

[k]
+ , Q) if j = 0,

H i−2 j (D[k+ j], Q) if j > 0.

Note that for j = 0 the divisor D+ is used, while for j > 0 the divisor D is taken. All
the spaces whose cohomology is considered are compact. These spaces give rise to the first
term E1 of our spectral sequence E = {E

p,q
n }:

E
p,q
1 :=

n⊕

k=0

k E
p,q
1 ,

where k E
p,q
1 = 0 if it is not defined previously.

Note that the space p E
i,k− j
1 possesses a natural pure Hodge structure of weight i − 2 j ,

since it is defined as the cohomology of degree i − 2 j of a compact Kähler V -manifold.
Performing an index shifting H̃ p+ j,q+ j := H p,q ,p E

i,k− j
1 also has a pure Hodge structure

of weight i , cf. Theorem 5.4.
It still remains to define the differentials. In the first term E1, the differentials are of type

(0, 1), i.e. upward vertical arrows.
Let us resume the notation above. Let

(
κ

i ′j
i0,...,ik

)
∗

: H∗

(
Di0,...,i j ,i

′
j ,i j+1,...,ik

, Q
)

−→ H∗

(
Di0,...,i j ,i j+1,...,ik

, Q
)

be the homomorphism induced by the inclusion on the homology groups. Using Poincaré
duality for compact V -manifolds, one has the following Gysin-type maps:

H∗

(
Di0,...,i j ,i

′
j ,i j+1,...,ik

, Q
)

#

(
κ

i ′
j

i0,...,ik

)
∗

��

D P ∼=

��

H∗

(
Di0,...,i j ,i j+1,...,ik

, Q
)

D P∼=

��

H2(n−k−1)−∗
(

Di0,...,i j ,i
′
j ,i j+1,...,ik

, Q
)

����� H2(n−k)−∗
(

Di0,...,i j ,i j+1,...,ik
, Q
)

These arrows are only possible if the spaces are compact. It is always the case except for
k = 0 and i0 = 0, where the corresponding map is defined as zero. By abuse of notation, the
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Fig. 2 Decomposition of E = {E
p,q
n } for n = 1, 2

morphism associated with the dashed arrow which completes the previous diagram is again

denoted by
(
κ

i ′j
i0,...,ik

)
∗
.

Definition 5.7 The differentials on k E1,
kδ : k E

i,k− j−1
1 → k E

i,k− j
1 are defined by

kδ |H i−2( j+1)(Di0,...,ik+ j+1 ,Q) :=

k+ j+1∑

l=0

(−1)l
(
κ

il

i0,...,̂il ,...,ik+ j+1

)
∗
.

Remark 5.8 The pair (k E1,
kδ) is the term E1 of the spectral sequence that provides the MHS

of
⊔

0≤i0<···<ik≤s

Ďi0,...,ik
,

which is the complement of a divisor with normal crossings on a projective variety.

To finish with the description of the differentials, the interactions between different k E1

have to be taken into account. These differentials are of Mayer-Viétoris type. Denote by(
κ

il
i0,...,ik+ j

)∗
the corresponding homomorphism on the cohomology groups.

Definition 5.9 The morphisms k,k+1δ : k E
i,k− j
1 → k+1 E

i,k− j+1
1 are defined as

k,k+1δ |H i−2 j (Di0,...,ik+ j
,Q) :=

∑

ℓ�=i0,...,ik+ j

(−1)e(l; i0,...,ik+ j )
(
κ

il
i0,...,ik+ j

)∗
,

where e(l; i0, . . . , ik+ j ) is the number of coefficients i0, . . . , ik+ j less than l.

Remark 5.10 The pair (k E
i,k
1 , k,k+1δ) is exactly the term E1 of the spectral sequence provid-

ing the MHS of the divisor with normal crossings D+ which appears in [10]. Observe that
the first two columns of this spectral sequence for k = 0 coincides with the first two columns
of the term E1 of {E

p,q
n } (Fig. 2).

Definition 5.11 The direct sum of the differentials kδ and k,k+1δ is the differential δ of the
term E1.

As a consequence of this spectral sequence, the standard result about the maximal size of
the Jordan blocks holds for embedded Q-resolutions too.

Proposition 5.12 Let K̃ be the dual complex associated with D+ and let ϕ : Hn(F, C) →

Hn(F, C) be the monodromy of { f = 0} ⊂ X (d; A). Then the Jordan blocks of size n + 1
is determined by the characteristic polynomial of ϕ acting on Hn(K̃ , C).
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Proof Recall that E
0,q
1 = H0(D

[q]
+ , C). Hence the first column of the spectral sequence

(E
0,•
1 , δ) is isomorphic to the cochain complex C•(K̃ ) ⊗ C. Consequently Hn(K̃ , C) ∼=

Hn(E
0,•
1 ); besides the action of ϕ on both complexes commutes with this isomorphism.

On the other hand, since W coincides with the monodromy filtration, the Jordan blocks of
size n + 1 are determined by the action of ϕ on GrW

0 (Hn(F, C)) which is by Theorem 5.4

isomorphic to E
0,n
∞ = E

0,n
2 = Hn(E

0,•
1 ). The latter isomorphism is again compatible with

the action of ϕ. This concludes the result. ⊓⊔

Remark 5.13 Analogously, one shows that Hq(K̃ , C) ∼= GrW
0 (Hq(F, C)) and thus

H0(K̃ , C) = C and Hq(K̃ , C) = 0 for q �= 0, n.

This section ends with the explicit description of the spectral sequence {E
p,q
n } ⊗Q C for

the cases n = 1, 2. For n = 1, let us denote with a triangle the terms belonging to 1 E1 and
with a circle the ones belonging to 0 E1.

� H0(D
[1]
+ , C) (k = 1)

• H0(D
[0]
+ , C)

0,1δ

��

• H1(D
[0]
+ , C) • H2(D

[0]
+ , C)

(k = 0) • H0(D[1], C)

0δ

��

For surfaces, that is n = 2, denote with a square the terms belonging to 2 E1, with a triangle
the ones belonging to 1 E1, and finally with a circle those coming from 0 E1.

� H0(D
[2]
+ ) (k = 2)

� H0(D
[1]
+ )

1,2δ

��

� H1(D
[1]
+ ) � H2(D

[1]
+ ) (k = 1)

• H0(D
[0]
+ )

0,1δ

��

• H1(D
[0]
+ )

0,1δ

��

� H0(D[2])

⊕

• H2(D
[0]
+ )

1δ ⊕ 0,1δ

��

• H3(D
[0]
+ ) • H4(D

[0]
+ )

(k = 0) • H0(D[1])

0δ

��

• H1(D[1])

0δ

��

• H2(D[1])

0δ

��

• H0(D[2])

0δ

��

123



Semistable Reduction of a Normal Crossing Q-divisor 1765

Fig. 3 Embedded Q-resolution of f = (x p + yq )(xr + ys )

6 Examples

As an application, we illustrate the use of all the preceding results presented in this work with
several examples including a plane curve and a YLS. In particular, we provide infinite pairs
of irreducible YLS having the same complex monodromy with different topological type.

6.1 Plane curves

Assume gcd(p, q) = gcd(r, s) = 1 and p
q

< r
s
. Let f = (x p + yq)(xr + ys) and consider

C1 = {x p + yq = 0} and C2 = {xr + ys = 0}. An embedded Q-resolution of { f = 0} ⊂ C2

is calculated in [6, Ex. 4.8] from a (q, p)-blow-up at the origin of C2, followed by the
(s, qr − ps)-blow-up at a point of type (q;−1, p). The final situation is shown in Fig. 3.

The self-intersection numbers are calculated using [6, Prop. 7.3] and the intersection

matrix is A = 1
rq−ps

(
−r/p 1

1 −q/s

)
. By [17, Th. 2.8], the characteristic polynomial is

�(t) =

(
t − 1

)(
t p(q+s) − 1

)(
t s(p+r) − 1

)
(
tq+s − 1

)(
t p+r − 1

) .

The semistable reduction is studied using Theorem 3.7. The main relevant data to com-
pute are m(E, Q) and the genera g1 and g2 of the new exceptional divisors D1 and D2 in
the semistable reduction. As explained in [6], the equation of the total transform at Q is
x p(q+s)ys(p+r) in the quotient space of Fig. 4. By Lemma 3.6,

m(E, Q) = gcd
(

p(q + s), s(p + r), A, B
)
,

where A =
p(q+s)·s+s(p+r)·(−q)

rq−ps
= −s and B =

p(q+s)·(−r)+s(p+r)·p
rq−ps

= −p. Consequently,
m(E, Q) = gcd(p, s).

The restriction ̺ | : D1 → E1 is a branched covering of p(q + s) sheets ramifying over
three points, where the number of preimages is gcd(p, s), 1, and q + s. Analogous situation
holds for D2. Hence, by virtue of the Riemann–Hurwitz formula, the genera are

g1 =
(p − 1)(q + s) − gcd(p, s) + 1

2
, g2 =

(s − 1)(p + r) − gcd(p, s) + 1

2
.

The dual graph of the new normal crossing divisor after the semistable reduction process
is shown in Fig. 4.

The MHS on the cohomology of the Milnor fiber H1(F, C) is obtained from Steenbrink’s
spectral sequence:

H1(F, C) = H0,0
︸︷︷︸

GrW
0 H1(F,C)

⊕ H0,1 ⊕ H1,0
︸ ︷︷ ︸
GrW

1 H1(F,C)

⊕ H1,1
︸︷︷︸

GrW
2 H1(F,C)

,

where H0,0 = Cgcd(p,s)−1, H0,1 = Cg1+g2 = H1,0, and H1,1 = Cgcd(p,s).
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Fig. 4 Dual graph of the semistable reduction

Fig. 5 Dual graph of the semistable reduction of f

The action of the monodromy on GrW
0 H1(F, C) is given by the polynomial tgcd(p,s)−1

t−1 .
Note that this provides the eigenvalues of the monodromy with Jordan blocks of size 2. This
has to do with the fact that the dual graph possesses gcd(p, s)−1 cycles, see Proposition 5.12,
cf. [16, Ch. V.4] for a more detailed exposition. Also, note that this example has already been
treated in [13] for the cases (p, q, r, s) = (21, 44, 14, 11), (33, 28, 22, 7); they both have
the same monodromy but different topological type as one can easily check.

Remark 6.1 The previous example is generalized to several branches with no significant
changes. Let f = (x p1 + yq1) · · · (x pk + yqk ), k ≥ 1,

p1
q1

< · · · <
pk

qk
, and pi , qi ≥ 1 no

necessarily coprime, di = gcd(pi , qi ).
Denote ei = gcd(p1 + · · · + pi , qi+1 + · · · + qk), i = 1, . . . , k − 1. Then the Jordan

blocks of size 2 is given by the polynomial
∏k−1

i=1 (tei − 1)/(t − 1). The dual graph of the
semistable reduction is shown in Fig. 5.

6.2 Yomdin-Lê surface singularities

Let (V, 0) be the singularity defined by f = fm(x, y, z) + zm+k . Assume that C = { fm =

0} ⊂ P2 has only one singular point P = [0 : 0 : 1], which is locally isomorphic to the
cusp xq + y p, gcd(p, q) = 1. Consider the weight vector ω = (

kp
k1k2

,
kq

k1k2
,

pq
k1k2

), where
k1 = gcd(k, p) and k2 = gcd(k, q).

An embedded Q-resolution of { f = 0} ⊂ C3 is calculated in [18]. It is required to
perform first the standard blow-up at the origin of C3 and then the ω-blow-up at the point
P = [0 : 0 : 1] ∈ C ∩ E1, where the total transform is not a normal crossing divisor. Denote
by E1 := Ê1 and by E2 the second exceptional divisor. The final situation is shown in Fig. 6.

Applying the generalized A’Campo’s formula [17, Th. 2.8], the characteristic polynomial
of (V, 0) is

�(V,0)(t) =

(
tm − 1

)χ(P2\C)

t − 1
·

(
tm+k − 1

)(
t

pq
k1k2

(m+k)
− 1
)k1k2

(
t

p
k1

(m+k)
− 1
)k1
(
t

q
k2

(m+k)
− 1
)k2

.

The semistable reduction is studied using Theorem 3.7. We only discuss the action of
the monodromy on GrW

1 H and GrW
4 H , being H := H2(F, C), which encode the 2 and

3-Jordan blocks. The preimages of V̂ , E0, E1 under ̺ are denoted by V̂ , D0, D1; they are
all irreducible varieties.
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Fig. 6 Intersection of E0 and E1 with the rest of components

The fifth column of the generalized Steenbrink’s spectral sequence gives rise the following
exact sequence of vector spaces

0 −→ GrW
4 H −→ H0(D[2]) −→ H2(D[1]) −→ H4(D

[0]
+ ) −→ 0.

Note that D0, D1, V̂ ∩ D0, V̂ ∩ D1, D0 ∩ D1, and V̂ ∩ D0 ∩ D1 are all irreducible varieties
because they intersect V̂ . Thus h4(D

[0]
+ ) = h0(D

[0]
+ ) = 2, h2(D[1]) = h0(D[1]) = 3, and

h0(D[2]) = 1. Therefore GrW
4 H is trivial and then there are neither 2-Jordan blocks for λ = 1

nor 3-Jordan blocks (λ �= 1).
From the second column of the spectral sequence,

0 −→ H1(D
[0]
+ ) −→ H1(D

[1]
+ ) −→ GrW

1 H −→ 0.

The restriction ̺ | : D1 → E1 ∼= P2
ω is a branched covering of (m + k)

pq
k1k2

sheets

ramifying over the axes and the curve V̂ ∩ E1 = {xq + y p + zk = 0}. The composition of the
previous map with E1 → P2, [x : y : z]ω �→ [xq : y p : zk] is an abelian covering ramifying
over 4 lines in general position. This implies H1(D1) = 0. On the other hand, note that the
cohomology H1(D0) is determined by the pair (P2, C) and hence so is H1(D

[0]
+ ) = H1(D0).

Finally, the first cohomology of the Riemann surface D
[1]
+ = D0 ∩ D1 is studied. Using

Lemma 3.6, one checks that, m(V̂ ∩ E0 ∩ E1) = 1, m(“generic point of E0 ∩ E ′′
1 ) =

gcd(m, pq), and

m

(
E,

(
kq

k1k2

))
= gcd(m, p), m

(
E,

(
kp

k1k2

))
= gcd(m, q).

This means that ̺ | : D0 ∩ D1 → E0 ∩ E1 is a branched covering of gcd(m, pq) sheets
ramifying over three points where the number of preimages are gcd(m, p), 1, and gcd(m, q).
It follows that

�GrW
1 H (t) =

1

�H1(D0)(t)
·

(t − 1)
(
tgcd(m,pq) − 1

)
(
tgcd(m,p) − 1

) (
tgcd(m,q) − 1

) .

Remark 6.2 The singularity of the tangent cone in the previous example is so simple that the
Jordan blocks of size 2 and 3 (for λ �= 1 or λ = 1) do not depend on k. However, this is not
true in general, see below.

Let V be the YLS defined by f = fm(x, y, z) + zm+k where C = { fm = 0} ⊂ P2 has
only one singular point P = [0 : 0 : 1], which is locally isomorphic to (x p + yq)(xr + ys)
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with gcd(p, q) = gcd(r, s) = 1 and p
q

< r
s
, cf. Sect. 6.1. Using the techniques presented in

this paper and the Q-resolution calculated in [18], we were able to compute the following:

�GrW
1 H (t) =

(
t (m,p(q+s)) − 1

)(
t (m,s(p+r)) − 1

)
(
t (m,q+s) − 1

)(
t (m,p+r) − 1

) ·

(
t
(m+k)

(p,s)
(k,p,s) − 1

)(k,p,s)

(tm+k − 1)(t − 1)(k,p,s)−1

�H1(D0)(t) ·

(
t (m,p,s) − 1

t − 1

)3 ,

�GrW
4 H (t) =

t (m,p,s) − 1

t − 1
· (t − 1)(k,p,s),

where for simplicity (a, b) denotes gcd(a, b). Note that the cohomology H1(D0) is deter-
mined by the pair (P2, C), the first factor of the numerator has to do with the characteristic
polynomial of the tangent cone at [0 : 0 : 1], and the second factor of both the numerator and
denominator is related to the 2-Jordan blocks of the tangent cone, see Example in Sect. 6.1.

In particular, considering (p, q, r, s) = (21, 44, 14, 11), (33, 28, 22, 7) and m generic
so that �H1(D0)(t) = 1, one obtains infinite pairs of irreducible YLS having the same
complex monodromy and different topological type. Examples of this kind have already been
found, for instance, in [3] studying the associated Seifert form, which determines the integral
monodromy. We ignore whether our preceding example has the same integral monodromy
or the same Seifert form.
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