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Abstract

Annotating cell identities is a common bottleneck in the analysis of single cell genomics experiments.1

Here, we present scNym, a semi-supervised, adversarial neural network that learns to transfer cell2

identity annotations from one experiment to another. scNym takes advantage of information in3

both labeled datasets and new, unlabeled datasets to learn rich representations of cell identity that4

enable effective annotation transfer. We show that scNym effectively transfers annotations across5

experiments despite biological and technical differences, achieving performance superior to existing6

methods. We also show that scNym models can synthesize information from multiple training and7

target datasets to improve performance. In addition to high accuracy, we show that scNym models8

are well-calibrated and interpretable with saliency methods.9

Keywords single cell · neural network · cell type classification · semi-supervised learning · adversarial learning10

Introduction11

Single cell genomics allows for simultaneous molecular profiling of thousands of diverse cells and has advanced our12

understanding of development [Trapnell, 2015], aging [Angelidis et al., 2019, Kimmel et al., 2019, Ma et al., 2020],13

and disease [Tanay and Regev, 2017]. To derive biological insight from these data, each single cell molecular profile14

must be annotated with a cell identity, such as a cell type or state label. Traditionally, this task has been performed15

manually by domain expert biologists. Manual annotation is time consuming, somewhat subjective, and error prone.16

Annotations influence the results of nearly all downstream analyses, motivating more robust algorithmic approaches for17

cell type annotation.18

Automated classification tools have been proposed to transfer annotations across datasets [Kiselev et al., 2018,19

Alquicira-Hernandez et al., 2019, Tan and Cahan, 2019, Abdelaal et al., 2019, de Kanter et al., 2019,20

Pliner et al., 2019, Zhang et al., 2019]. These existing tools learn relationships between cell identity and21

molecular features from a training set with existing labels without considering the unlabeled target dataset in22

the learning process. However, results from the field of semi-supervised representation learning suggest that23

incorporating information from the target data during training can improve the performance of prediction models24

[Kingma et al., 2014, Oliver et al., 2018, Verma et al., 2019, Berthelot et al., 2019]. This approach is especially25

beneficial when there are systematic differences – a domain shift – between the training and target datasets. Domain26

shifts are commonly introduced between single cell genomics experiments when cells are profiled in different27

experimental conditions or using different sequencing technologies.28

A growing family of representation learning techniques encourage classification models to provide consistent29

interpolations between data points as an auxiliary training task to improve performance [Verma et al., 2019,30

Berthelot et al., 2019]. In the semi-supervised setting, the MixMatch approach implements this idea by “mixing”31
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observations and their labels with simple weighted averages. Mixed observations from the training and target datasets32

form a bridge in feature space, encouraging the model to learn a smooth interpolation across the domains. Another33

family of techniques seek to improve classification performance in the presence of domain shifts by encouraging34

the model to learn a representation in which observations from different domains are embedded nearby, rather than35

occupying distinct regions of a latent space [Wilson and Cook, 2020]. One successful approach uses a “domain ad-36

versary” to encourage the classification model to learn a representation that is invariant to dataset-specific features37

[Ganin et al., 2016]. Both interpolation consistency and domain invariance are desirable in the single cell genomics38

setting, where domain shifts are common and complex gene expression boundaries separate cell types.39

Here, we introduce a cell type classification model that uses semi-supervised and adversarial machine learning40

techniques to take advantage of both labeled and unlabeled single cell datasets. We demonstrate that this model offers41

superior performance to existing methods and effectively transfers annotations across different animal ages, perturbation42

conditions, and sequencing technologies. Additionally, we show that our model learns biologically interpretable43

representations and offers well-calibrated metrics of annotation confidence that can be used to make new cell type44

discoveries.45

Results46

scNym47

In the typical supervised learning framework, the model touches the target unlabeled dataset to predict labels only48

after training has concluded. By contrast, our semi-supervised learning framework trains the model parameters on49

both the labeled and unlabeled data in order to leverage the structure in the target dataset, whose measurements may50

have been influenced by myriad sources of biological and technical bias and batch effects. While our model uses51

observed cell profiles from the unlabeled target dataset, at no point does the model access ground truth labels for the52

target data. Ground truth labels on the target dataset are used exclusively to evaluate model performance. Some single53

cell classification methods require manual marker gene specification prior to model training. scNym requires no prior54

manual specification of marker genes, but rather learns relevant gene expression features from the data.55

scNym uses the unlabeled target data through a combination of MixMatch semi-supervision [Berthelot et al., 2019] and56

by training a domain adversary [Ganin et al., 2016] in an iterative learning process (Fig. 1A, Methods). The MixMatch57

semi-supervision approach combines MixUp data augmentations [Zhang et al., 2018, Thulasidasan et al., 2019] with58

pseudolabeling of the target data [Lee, 2013, Verma et al., 2019] to improve generalization across the training and59

target domains. At each training iteration, we “pseudolabel” unlabeled cells using predictions from the classification60

model, then augment each cell profile using a biased weighted average of gene expression and labels with another61

randomly chosen cell (Fig. 1B). The resulting mixed profiles are dominated by a single cell, adjusted modestly to more62

closely resemble another. As part of MixMatch, we mix profiles across the training and unlabeled data, so that some of63

the resulting mixed profiles are interpolations between the two datasets. We fit the model parameters to minimize cell64
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type classification error on these mixed profiles, encouraging the model to learn a general representation that allows for65

interpolation between observed cell states.66

The scNym classifier learns a representation of cell identity in the hidden neural network layers where cell types are67

linearly separable. Alongside, we train an adversarial model to predict the domain-of-origin for each cell (e.g. training68

set, target set) from this learned embedding. We train the scNym classifier to compete with this adversary, updating the69

classifier’s embedding to make domain prediction more difficult. At each iteration, the adversary’s gradients highlight70

features in the embedding that discriminate the different domains. We update the scNym classifier using the inverse of71

the adversarial gradients, reducing the amount of domain-specific information in the embedding as training progresses.72

This adversarial training procedure encourages the classification model to learn a domain-adapted embedding of the73

training and target datasets that improves classification performance (Fig. 1C). In inference mode, scNym predictions74

provide a probability distribution across all cell types in the training set for each target cell.75

scNym transfers cell annotations across biological conditions76

We evaluated the performance of scNym transferring cell identity annotations in eleven distinct tasks. These tasks were77

chosen to capture diverse kinds of technological and biological variation that complicate annotation transfer. Each task78

represents a true cell type transfer across different experiments, in contrast to some efforts that report within-experiment79

hold-out accuracy.80

We first evaluated cell type annotation transfer between animals of different ages. We trained scNym models on cells81

from young rats (5 months old) from the Rat Aging Cell Atlas [Ma et al., 2020] and predicted on cells from aged rats82

(27 months old, Fig. 2A, Methods). We found that predictions from our scNym model trained on young cells largely83

matched the ground truth annotations (92.2% accurate) on aged cells (Fig. 2B, C).84

We compared scNym performance on this task to state of the art single cell identity annotation meth-85

ods [Kiselev et al., 2018, Alquicira-Hernandez et al., 2019, Tan and Cahan, 2019, Abdelaal et al., 2019,86

de Kanter et al., 2019]. We also compared scNym to state of the art unsupervised data harmonization meth-87

ods [Korsunsky et al., 2019, Stuart et al., 2019, Xu et al., 2019, Tran et al., 2020] followed by supervised classification88

with a support vector machine, for a total of ten baseline approaches (Methods). scNym produced significantly89

improved labels over these methods, some of which could not complete this large task on our hardware (256GB RAM)90

(Wilcoxon Rank Sums on accuracy or κ-scores, p < 0.01, Fig. 2D, Table 1). scNym runtimes were competitive91

with baseline methods (Fig. S1). We found that some of the largest differences in accuracy between scNym and the92

commonly used scmap-cell method were in the skeletal muscle. scNym models accurately classified multiple cell93

types in the muscle that were confused by scmap-cell (Fig. 2E), demonstrating that the increased accuracy of scNym is94

meaningful for downstream analyses.95

We next tested the ability of scNym to classify cell identities after perturbation. We trained on unstimulated96

human peripheral blood mononuclear cells (PBMCs) and predicted on PBMCs after stimulation with IFNB197
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(Fig. 3A)[Kang et al., 2017]. scNym achieved high accuracy (> 91%), superior to baseline methods (Fig. 3C, Table 1).98

The common scmap-cluster method frequently confused monocyte subtypes, while scNym did not (Fig. 3B).99

Cross-species annotation transfer is another context where distinct biology creates a domain shift across training and100

target domains. To evaluate if scNym could transfer labels across species, we trained on mouse cells with either rat or101

human cells as target data and observed high performance (Fig. S2).102

scNym models learn biologically meaningful cell type representations103

To interpret the classification decisions of our scNym models, we developed integrated gradient analysis tools to identify104

genes that influence model decisions (Methods)[Sundararajan et al., 2017]. The integrated gradient method attributes105

the prediction of a deep network to its input features, while satisfying desirable axioms of interpretability that simpler106

methods like raw gradients do not. For the PBMC cross-stimulation task, we found that salient genes included known107

markers of specific cell types such as CD79A for B cells and GNLY for NK cells. Integrated gradient analysis also108

revealed specific cell type marker genes that may not have been selected a priori, such as NCOA4 for megakaryocytes109

(Fig. 3D, E, Fig. S3). We also performed integrated gradient analysis for a cross-technology mouse cell atlas experiment110

(described below) and found that marker genes chosen using scNym integrated gradients were superior to markers111

chosen using SVM feature importance scores based on Gene Ontology enrichment (Fig. S4). These results suggest112

that our models learned biologically meaningful representations that are more generalizable to unseen cell profiles,113

regardless of condition or technology.114

We also used integrated gradient analysis to understand why the scNym model misclassified some FCGR3A+ monocytes115

as CD14+ monocytes in the PBMC cross-stimulation task (Methods). This analysis revealed genes driving these116

incorrect classifications, including some CD14+ monocyte marker genes that are elevated in a subset of FCGR3A+
117

monocytes (Fig. 3F). Domain experts may use integrated gradient analysis to understand and review model decisions118

for ambiguous cells.119

scNym transfers annotations across single cell sequencing technologies120

To evaluate the ability of scNym to transfer labels across different experimental technologies, we trained on single121

cell profiles from ten mouse tissues in the Tabula Muris captured using the 10x Chromium technology and predicted122

labels for cells from the same compendium captured using Smart-seq2 [Tabula Muris Consortium, 2018]. We found123

that scNym predictions were highly accurate (> 90%) and superior to baseline methods (Fig. S5A, B, C). scNym124

models accurately classified monocyte subtypes, while baseline methods frequently confused these cells (Fig. S5D, E).125

In a second cross-technology task, we trained scNym on mouse lung data from the Tabula Muris and predicted on lung126

data from the Mouse Cell Atlas, a separate experimental effort that used the Microwell-seq technology [Han et al., 2018].127

We found that scNym yielded high classification accuracy (> 90%), superior to baseline methods, despite experimental128

batch effects and differences in the sequencing technologies (Fig. S6). We also trained scNym models to transfer129
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regional identity annotations in spatial transcriptomics data and found performance competitive with baseline methods130

(Fig. S7). Together, these results demonstrate that scNym models can effectively transfer cell type annotations across131

technologies and experimental environments.132

Multi-domain training allows integration of multiple reference datasets133

The number of public single cell datasets is increasing rapidly [Svensson et al., 2018]. Integrating information across134

multiple reference datasets may improve annotation transfer performance on challenging tasks. The domain adversarial135

training framework in scNym naturally extends to training across multiple reference datasets. We hypothesized that136

a multi-domain training approach would allow for more general representations that improve annotation transfer.137

To test this hypothesis, we evaluated the performance of scNym to transfer annotations between single cell and138

single nucleus RNA-seq experiments in the mouse kidney. These data contained six different single cell preparation139

methods and three different single nucleus methods, capturing a range of technical variation in nine distinct domains140

[Denisenko et al., 2020](Fig. 4A, B).141

scNym achieved significantly greater accuracy than baseline methods transferring labels from single nucleus to single142

cell experiments using multi-domain training. This result was also achieved for the inverse transfer task, transferring143

annotations from single cell to single nucleus experiments (tied with best baseline, Fig. 4C, Table 1). We found144

that scNym delivered more accurate annotations for multiple cell types in the cell to nucleus transfer task, including145

mesangial cells and tubule cell types (Fig. 4D, E). These improved annotations highlight that the performance advantages146

of scNym are meaningful for downstream analysis and biological interpretation. We found that multi-domain scNym147

models achieved greater accuracy than any single domain model on both tasks and effectively synthesized information148

from single domain training sets of varying quality (Fig. 4F, Fig. S8). We performed a similar experiment using data149

from mouse cortex nuclei profiled with four distinct single cell sequencing methods, training on three methods at a time150

and predicting annotations for the held-out fourth method for a total of four unique tasks. scNym was the top ranked151

method across tasks (Fig. S9).152

scNym confidence scores enable expert review and allow new cell type discoveries153

Calibrated predictions, in which the classification probability returned by the model precisely reflects the probability it154

is correct, enable more effective interaction of the human researcher with the model output. We investigated scNym155

calibration by comparing the prediction confidence scores to prediction accuracy (Methods). We found that semi-156

supervised adversarial training improved model calibration, such that high confidence predictions are more likely to be157

correct (Fig. 5A, B; Fig. S10A, B; Fig. S11). scNym confidence scores can therefore be used to highlight cells that158

may benefit from manual review (Fig. S10C, Fig. S11B), further improving the annotation exercise when it contains a159

domain expert in the loop.160

scNym confidence scores can also highlight new, unseen cell types in the target dataset using an optional pseudolabel161

thresholding procedure during training, inspired by FixMatch [Sohn et al., 2020] (Methods). The semi-supervised162
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and adversarial components of scNym encourage the model to find a matching identity for cells in the target dataset.163

Pseudolabel thresholding allows scNym to exclude cells with low confidence pseudolabels from the semi-supervised164

and adversarial components of training, stopping these components from mismatching unseen cell types and resulting165

in correctly uncertain predictions.166

To test this approach, we simulated two experiments where we “discover” multiple cell types by predicting annotations167

on the Tabula Muris brain cell data using models trained on non-brain tissues (Fig. 5A, B; Methods). We first used168

pre-trained scNym models to predict labels for new cell types not present in the original training or target sets, and169

scNym correctly marked these cells with low confidence scores (Fig. S12). In the second experiment, we included170

new cell types in the target set during training and found that scNym models with pseudolabel thresholding correctly171

provided low confidence scores to new cell types, highlighting these cells as potential cell type discoveries for manual172

inspection (Fig. 5C, D; Fig. S13).173

We found that scNym embeddings capture cell type differences even within the low confidence cell population, such174

that clustering these cells in the scNym embedding can provide a hypothesis for how many new cell types might be175

present (Fig. S14). We also found that putative new cell types could be discriminated from other low confidence cells,176

like prediction errors on a cell type boundary (Fig. S15). These results demonstrate that scNym confidence scores can177

highlight target cell types that were absent in the training data, potentially enabling new cell type discoveries.178

Semi-supervised and adversarial training components improve annotation transfer179

We ablated different components of scNym to determine which features were responsible for high performance. We180

found that semi-supervision with MixMatch and training with a domain adversary improved model performance across181

multiple tasks (Fig. 6B, Fig. S16). We hypothesized that scNym models might benefit from domain adaptation through182

the adversarial model by integrating the cells into a latent space more effectively. Supporting this hypothesis, we found183

that training and target domains were significantly more mixed in scNym embeddings (Fig. S17). These results suggest184

that semi-supervision and adversarial training improve the accuracy of cell type classifications.185

scNym is robust to hyperparameter selection186

Hyperparameter selection can be an important determinant of classification model performance. In all tasks presented187

here, we have used the same set of default scNym parameters derived from past recommendations in the representation188

learning literature (Methods). To determine how sensitive scNym performance is to these hyperparameter choices, we189

trained scNym models on the hPBMC cross-stimulation task across a grid of hyperparameter values. We found that190

scNym is robust to hyperparameter changes within an order of magnitude of the default values, demonstrating that191

our defaults are not “overfit” to the benchmark tasks presented here (Fig. S18). We also performed hyperparameter192

optimization using reverse 5-fold cross-validation for the top three baseline methods (SVM, singleCellNet, scmap-cell-193

exact) to determine if an optimized baseline was superior to scNym across four benchmarking tasks (Methods). We194
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found that scNym performance using default parameters was superior to the performance of baseline methods after195

hyperparameter tuning (Table S3, Fig. S19).196

Discussion197

Single cell genomics experiments have become more accessible due to commercial technologies, enabling a rapid198

increase in the use of these methods [Svensson et al., 2020]. Cell identity annotation is an essential step in the analysis199

of these experiments, motivating the development of high performance, automated annotation methods that can take200

advantage of diverse datasets. Here, we introduced a semi-supervised adversarial neural network model that learns to201

transfer annotations from one experiment to another, taking advantage of information in both labeled training sets and202

an unlabeled target dataset.203

Our benchmark experiments demonstrate that scNym models provide high performance across a range of cell identity204

classification tasks, including cross-age, cross-perturbation, and cross-technology scenarios. scNym performs better205

in these varied conditions than ten state of the art baseline methods, including three unsupervised data integration206

approaches paired with supervised classifiers (Fig. 6A, Table 1). The superiority of scNym is consistent across207

diverse performance metrics, including accuracy, Cohen’s κ-score, and the multi-class receiver operating characteristic208

(MCROC; Fig. S20, Table S1, Table S2).209

The key idea that differentiates scNym from previous cell classification approaches is the use of semi-supervised210

[Berthelot et al., 2019] and adversarial training [Ganin et al., 2016] to extract information from the unlabeled, target211

experiment we wish to annotate. Through ablation experiments, we showed that these training strategies improve the212

performance of our models. Performance improvements were most pronounced when there were large, systematic213

differences between the training and target datasets (Fig. 3). Semi-supervision and adversarial training also allow scNym214

to integrate information across multiple training and target datasets, improving performance (Fig. 4). As large scale215

single cell perturbation experiments become more common [Dixit et al., 2016, Srivatsan et al., 2019] and multiple cell216

atlases are released for common model systems, our method’s ability to adapt across distinct biological and technical217

conditions will only increase in value.218

Most downstream biological analyses rely upon cell identity annotations, so it is important that researchers are able to219

interpret the molecular features that drive model decisions. We showed that backpropagation-based saliency analysis220

methods are able to recover specific cell type markers, confirming that scNym models learn interpretable, biologically221

relevant features of cell type. In future work, we hope to extend upon these interpretability methods to infer perturbations222

that alter cell identity programs using the informative representations learned by scNym.223
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Methods224

scNym Model225

Our scNym model fθ consists of a neural network with an input layer, two hidden layers, each with 256 nodes, and an out-226

put layer with a node for each class. The first three layers are paired with batch normalization [Ioffe and Szegedy, 2015],227

rectified linear unit activation, and dropout [Srivastava et al., 2014]. The final layer is paired with a softmax activation228

to transform real number outputs of the neural network into a vector of class probabilities. The model maps cell profile229

vectors x to probability distributions p(y|x) over cell identity classes y.230

p(y|x) = fθ(x)

We train scNym to map cell profiles in a gene expression matrix x 2 XCells⇥Genes to paired cell identity annotations231

y 2 y. Transcript counts in the gene expression matrix are normalized to counts per million (CPM) and log-transformed232

after addition of a pseudocount (log(CPM + 1)). During training, we randomly mask 10% of genes in each cell with 0233

values, then renormalize to obtain an augmented profile.234

We use the Adadelta adaptive stochastic gradient descent method [Zeiler, 2012] with an initial learning rate of η = 1.0 to235

update model parameters on minibatches of cells, with batch sizes of 256. We apply a weight decay term of λWD = 10�4
236

for regularization. We train scNym models to minimize a standard cross-entropy loss function for supervised training.237

LCE(X, fθ) = E(x,y)⇠(X,y)

"

�

K
X

k=1

y(k) log(fθ(x))k

#

where y(k) is an indicator variable for the membership of x in class k, and k 2 K represent class indicators.238

We fit all scNym models for a maximum of 400 epochs and selected the optimal set of weights using early stopping on239

a validation set consisting of 10% of the training data. We initiate early stopping after training has completed at least240

5% of the total epochs to avoid premature termination.241

Prior to passing each minibatch to the network, we perform dynamic data augmentation with the “MixUp” operation242

[Zhang et al., 2018]. MixUp computes a weighted average of two samples x and x0 where the weights λ are randomly243

sampled from a Beta distribution with a symmetric shape parameter α.244

Mixλ(x, x
0) = λx+ (1� λ)x0;λ ⇠ Beta(α,α)

For all experiments here, we set α = 0.3 based on performance in the natural image domain [Zhang et al., 2018].245

Forcing models to interpolate predictions smoothly between samples shifts the decision boundary away from high-246

density regions of the input distribution, improving generalization. This procedure has been shown to improve classifier247
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performance on multiple tasks [Zhang et al., 2018]. Model calibration – the correctness of a model’s confidence scores248

for each class – is generally also improved by this augmentation scheme [Thulasidasan et al., 2019].249

Semi-supervision with MixMatch250

We train semi-supervised scNym models using the MixMatch framework [Berthelot et al., 2019], treating the target251

dataset as unlabeled data U . At each iteration, MixMatch samples minibatches from both the labeled dataset (X,y) ⇠ D252

and unlabeled dataset U ⇠ U . We generate “pseudolabels” [Lee, 2013] using model predictions for each observation in253

the unlabeled minibatch (Supplemental Methods).254

ui ⇠ U; zi = fθ(ui)

We next “sharpen” the pseudolabels using a “temperature scaling” procedure [Hinton et al., 2015, Guo et al., 2017]255

with the temperature parameter T = 0.5 as a form of entropy minimization (Supplemental Methods). This entropy256

minimization encourages unlabeled examples to belong to one of the described classes.257

We then randomly mix each observation and label/pseudolabel pair in both the labeled and unlabeled minibatches with258

another observation using MixUp [Zhang et al., 2018]. We allow labeled and unlabeled observations to mix together259

during this procedure (Supplemental Methods).260

λ ⇠ Beta(α,α)
261

wm = Mixλ(wi, wj); qm = Mixλ(qi, qj)

where (wi, qi) is either a labeled observation and ground truth label (xi, yi) or an unlabeled observation and the262

pseudolabel (ui, zi). This procedure yields a minibatch X0 of mixed labeled observations and a minibatch U0 of mixed263

unlabeled observations.264

We introduce a semi-supervised interpolation consistency penalty during training in addition to the standard supervised265

loss. For observations and pseudolabels in the mixed unlabeled minibatch U 0, we penalize the mean squared error266

(MSE) between the mixed pseudolabels and the model prediction for the mixed observation (Supplemental Methods).267

LSSL(U
0, fθ) = Eum,zm⇠U0kfθ(um)� zmk22

This encourages the model to provide smooth interpolations between observations and their ground truth or pseudolabels,268

generalizing the decision boundary of the model. We weight this unsupervised loss relative to the supervised cross-269

entropy loss using a weighting function λSSL(t) ! [0, 1]. We initialize this coefficient to λSSL = 0 and increase the270

weight to a final value of λSSL = 1 over 100 epochs using a sigmoid schedule (Supplemental Methods).271
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L(X0,U0, fθ, t) = LCE(X
0, fθ) + λSSL(t)LSSL(U

0, fθ)

Domain Adaptation with Domain Adversarial Networks272

We use domain adversarial networks (DAN) as an additional approach to incorporate information from the target273

dataset during training [Ganin et al., 2016]. The DAN method encourages the classification model to embed cells from274

the training and target dataset with similar coordinates, such that training and target datasets are well-mixed in the275

embedding. By encouraging the training and target dataset to be well-mixed, we take advantage of the inductive bias that276

cell identity classes in each dataset are similar, despite technical variation or differences in conditions (Supplemental277

Methods).278

We introduce this technique into scNym by adding an adversarial domain classification network gφ. We implement gφ279

as a two-layer neural network with a single hidden layer of 256 units and a rectified linear unit activation, followed by a280

classification layer with two outputs and a softmax activation. This adversary attempts to predict the domain of origin d281

from the penultimate classifier embedding v of each observation. For each forward pass, it outputs a probability vector282

d̂ estimating the likelihood the observation came from the training or target domain.283

We assign a one-hot encoded domain label d to each molecular profile based on the experiment of origin (Supplemental284

Methods). During training, we pass a minibatch of labeled observations x 2 X and unlabeled observations u 2 U285

through the domain adversary to predict domain labels.286

d̂ = gφ(v) = gφ(fθ(x)
(l�1))

where d̂ is the domain probability vector and v = fθ(x)
(l�1) denotes the embedding of x from the penultimate layer of287

the classification model fθ. We fit the adversary using a multi-class cross-entropy loss, as described above for the main288

classification loss (Supplemental Methods).289

To make use of the adversary for training the classification model, we use the “gradient reversal” trick at each backward290

pass. We update the parameters φ of the adversary using standard gradient descent on the loss Ladv. At each backward291

pass, this optimization improves the adversarial domain classifier (Supplemental Methods). We update the parameters θ292

of the classification model using the inverse of the gradients computed during a backward pass from Ladv. Using the293

inverse gradients encourages the classification model fθ to generate an embedding where it is difficult for the adversary294

to predict the domain (Supplemental Methods). Our update rule for the classification model parameters therefore295

becomes:296

θt = θt�1 � η

✓

∂LCE

∂θ
+ λSSL(t)

∂LSSL

∂θ
� λadv(t)

∂Ladv

∂θ

◆
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We increase the weight of the adversary gradients from λadv ! [0, 0.1] over the course of 20 epochs during training297

using a sigmoid schedule. We scale the adversarial gradients flowing to θ, rather than the adversarial loss term, so that298

full magnitude gradients are used to train a robust adversary gφ (Supplemental Methods). Incorporating both MixMatch299

and the domain adversary, our full loss function becomes:300

L(X,U,X0,U0, fθ, gφ, t) = LCE(X
0, fθ) + λSSL(t)LSSL(U

0, fθ) + Ladv(X,U, fθ, gφ, t)

Pseudolabel Thresholding for New Cell Type Discovery301

Entropy minimization and domain adversarial training enforce an inductive bias that all cells in the target dataset belong302

to a class in the training dataset. For many cell type classification tasks, this assumption is valid and useful. However, it303

is violated in the case where new, unseen cell types are present in the target dataset. We introduce an alternative training304

configuration to allow for quantitative identification of new cell types in these instances.305

We have observed that new cell types will receive low confidence pseudolabels, as they do not closely resemble any306

of the classes in the training set (Fig. S12). We wish to exclude these low confidence pseudolabels from our entropy307

minimization and domain adversarial training procedures, as these methods both incorrectly encourage these new cell308

types to receive high confidence predictions and embeddings for a known cell type. We therefore adopt a notion of309

“pseudolabel confidence thresholding” introduced in the FixMatch method [Sohn et al., 2020]. To identify confident310

pseudolabels to use during training, we set a minimum pseudolabel confidence τ = 0.9 and assign all pseudolabels a311

binary confidence indicator ci 2 {0, 1} (Supplemental Methods).312

We make two modifications to the training procedure to prevent low confidence pseudolabels from contributing to313

any component of the loss function. First, we use only high confidence pseudolabels in the MixUp operation of the314

MixMatch procedure. This prevents low confidence pseudolabels from contributing to the supervised classification315

or interpolation consistency losses (Supplemental Methods). Second, we use only unlabeled examples with high316

confidence pseudolabels to train the domain adversary. These low confidence unlabeled examples can therefore occupy317

a unique region in the model embedding, even if they are easily discriminated from training examples. Our adversarial318

loss is slightly modified to penalize domain predictions only on confident samples in the pseudolabeled minibatch319

(Supplemental Methods).320

We found that this pseudolabel thresholding configuration option was essential to provide accurate, quantitative321

information about the presence of new cell types in the target dataset (Fig. S13). However, this option does modestly322

decrease performance when new cell types are not present. We therefore enable this option when the possibility of new323

cell types violates the assumption that the training and target data share the same set of cell types. We have provided a324

simple toggle in our software implementation to allow users to enable or disable this feature.325
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scNym Model Embeddings326

We generate gene expression embeddings from our scNym model by extracting the activations of the penultimate neural327

network layer for each cell. We visualize these embeddings using UMAP [McInnes et al., 2020, Becht et al., 2018] by328

constructing a nearest neighbor graph (k = 30) in principal component space derived from the penultimate activations.329

We set min_dist = 0.3 for the UMAP minimum distance parameter.330

We present single cell experiments using a 2-dimensional representation fit using the UMAP alogrithm331

[Becht et al., 2018]. For each experiment, we compute a PCA projection on a set of highly variable genes after332

log(CPM + 1) normalization. We construct a nearest neighbor graph using first 50 principal components and fit a333

UMAP projection from this nearest neighbor graph.334

Entropy of Mixing335

We compute the “entropy of mixing” to determine the degree of domain adaptation between training and target datasets336

in an embedding X . The entropy of mixing is defined as the entropy of a vector of class membership in a local337

neighborhood of the embedding:338

H(pLocal) = �

K
X

k=1

pLocal
k log pLocal

k

where pLocal is a vector of class proportions in a local neighborhood and k 2 K are class indices. We compute the339

entropy of mixing for an embedding X by randomly sampling n = 1000 cells, and computing the entropy of mixing on340

a vector of class proportions for the 100 nearest neighbors to each point.341

Integrated Gradient Analysis342

We interpreted the predictions of our scNym models by performing integrated gradient analysis343

[Sundararajan et al., 2017]. Given a trained model fθ and a target class k, we computed an integrated gradi-344

ent score IG as the sum of gradients on a class probability fθ(x)k with respect to an input gene expression vector x at345

M = 100 points along a linear path between the zero vector and the input x. We then multiplied the sum of gradients346

for each gene by the expression values in the input x. Stated formally, we computed:347

IG(x, k, fθ) = x ·
1

M

M
X

m=1

∂fθ(
m
M
x)k

∂x

In the original integrated gradient formalism, this is equivalent to using the zero vector as a baseline. We average the348

integrated gradients across ns cell input vectors x to obtain class-level maps IGk, where ns = min(300, nk) and nk is349

the number of cells in the target class. To identify genes that drive incorrect classifications, we computed integrated350

gradients with respect to some class k for cells with true class k0 that were incorrectly classified as class k.351
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Interpretability Comparison352

We compared the biological relevance of features selected by scNym and SVM as a baseline by computing cell type353

specific Gene Ontology enrichments. We trained both scNym and an SVM to transfer labels from the Tabula Muris354

10x Genomics dataset to the Tabula Muris Smart-seq2 dataset. We then extracted feature importance scores from the355

scNym model using integrated gradients and from the SVM model based on coefficient weights. We selected cell type356

markers for each model as the top k = 100 genes with the highest integrated gradient values or SVM coefficients.357

For 19 cell types with corresponding Gene Ontology terms, we computed the enrichment of the relevant cell type specific358

Gene Ontology terms in scNym-derived and SVM-derived cell type markers using Fischer’s exact test (Supplemental359

Methods). We present a sample of the gene sets used (Table S4). We compared the mean Odds-Ratio from Fischer’s360

exact test across relevant Gene Ontology terms between scNym-derived markers and SVM-derived markers. To361

determine statistical significance of a difference in these mean Odds-Ratios, we performed a paired t-test across cell362

types. We performed the procedure above using k 2 {50, 100, 150} to determine the sensitivity of our results to this363

parameter. We found that scNym integrated gradients had consistently stronger enrichments for relevant Gene Ontology364

terms across cell types for all values of k.365

Model Calibration Analysis366

We evaluated scNym calibration by binning all cells in a query set based on the softmax probability of their assigned367

class – maxk(softmax(fθ(x)k)) – which we term the “confidence score”. We grouped cells into M = 10 bins Bm of368

equal width from [0, 1] and computed the mean accuracy of predictions within each bin.369

acc(Bm) = h (ŷ ⌘ y)i

conf(Bm) = hmax p̂ii

where (a ⌘ b) denotes a binary equivalency operation that yields 1 if a and b are equivalent and 0 otherwise and h·i370

denotes the arithmetic average.371

We computed the “expected calibration error” as previously proposed [Thulasidasan et al., 2019].372

ECE =

M
X

m=1

|Bm|

N
|acc(Bm)� conf(Bm)|

We also computed the “overconfidence error”, which specifically focuses on high confidence but incorrect predictions.373

oe(Bm) = conf(Bm)max ((conf(Bm)� acc(Bm)), 0)
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374

OE =
M
X

m=1

|Bm|

N
oe(Bm)

where N is the total number of samples, and |Bm| is the number of samples in bin Bm.375

We performed this analysis for each model trained in a 5-fold cross-validation split to estimate calibration for a given376

model configuration. We evaluated calibrations for baseline neural network models, models with MixUp but not377

MixMatch, and models with the full MixMatch procedure.378

Baseline Methods379

As baseline methods, we used ten cell identity classifiers: scmap-cell, scmap-cluster [Kiselev et al., 2018,380

Andrews and Hemberg, 2018], scmap-cell-exact (scmap-cell with exact k-NN search), a linear SVM381

[Abdelaal et al., 2019], scPred [Alquicira-Hernandez et al., 2019], singleCellNet [Tan and Cahan, 2019], CHETAH382

[de Kanter et al., 2019], Harmony followed by an SVM [Korsunsky et al., 2019], LIGER followed by an SVM383

[Stuart et al., 2019], and scANVI [Lopez et al., 2018, Xu et al., 2019]. For model training, we split data into 5-folds384

and trained five separate models, each using 4 folds for training and validation data. This allowed us to assess variation385

in model performance as a function of changes in the training data. No class balancing was performed prior to training,386

though some methods perform class balancing internally. All models, including scNym, were trained on the same387

5-fold splits to ensure equitable access to information. All methods were run with the best hyperparameters suggested388

by the authors unless otherwise stated for our hyperparameter optimization comparisons (full details in Supplemental389

Methods).390

We applied all baseline methods to all benchmarking tasks. If a method could not complete the task given 256 GB391

of RAM and 8 CPU cores, we reported the accuracy for that method as “Undetermined.” Only scNym and scANVI392

models required GPU resources. We trained models on Nvidia K80, GTX1080ti, Titan RTX, or RTX 8000 GPUs, using393

only a single GPU per model.394

Performance Benchmarking395

For all benchmarks, we computed the mean accuracy across cells (“Accuracy”), Cohen’s κ-score, and the multiclass396

recevier operating characteristic (MCROC). We computed the MCROC as the mean of ROC scores across cell types,397

treating each cell type as a binary classification problem. We performed quality control filtering and pre-processing on398

each dataset before training (Supplemental Methods).399

For the Rat Aging Cell Atlas [Ma et al., 2020] benchmark, we trained scNym models on single cell RNA-seq from400

young, ad libitum fed rats (5 months old) and predicted on cells from aged rats (ad libitum fed or calorically-restricted).401

For the human PBMC stimulation benchmark, we trained models on unstimulated PBMCs collected from multiple402

human donors and predicted on IFNB1 stimulated PBMCs collected in the same experiment [Kang et al., 2017].403
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For the Tabula Muris cross-technology benchmark, we trained models on Tabula Muris 10x Genomics Chromium404

platform and predicted on data generated using Smart-seq2. For the Mouse Cell Atlas (MCA) [Han et al., 2018]405

benchmark, we trained models on single cell RNA-seq from lung tissue in the Tabula Muris 10x Chromium data406

[Tabula Muris Consortium, 2018] and predicted on MCA lung data. For the spatial transcriptomics benchmark, we407

trained models on spatial transcriptomics from a mouse sagittal-posterior brain section and predicted labels for another408

brain section (data downloaded from https://www.10xgenomics.com/resources/datasets/.409

For the single cell to single nucleus benchmark in the mouse kidney, we trained scNym models on all single410

cell data from six unique sequencing protocols and predicted labels for single nuclei from three unique protocols411

[Denisenko et al., 2020]. For the single nucleus to single cell benchmark, we inverted the training and target datasets412

above to train on the nuclei datasets and predict on the single cell datasets. We set unique domain labels for each413

protocol during training in both benchmark experiments. To evaluate the impact of multi-domain training, we also414

trained models on only one single cell or single nucleus protocol using the domains from the opposite technology as415

target data.416

For the multi-domain cross-technology benchmark in mouse cortex nuclei, we generated four distinct subtasks from417

data generated using four distinct technologies to profile the same samples [Ding et al., 2020]. We trained scNym and418

baseline methods to predict labels on one technology given the remaining three technologies as training data for all419

possible combinations. We used each technology as a unique domain label for scNym.420

For the cross-species mouse to rat demonstration, we selected a set of cell types with comparable annotations in the421

Tabula Muris and Rat Aging Cell Atlas [Ma et al., 2020] to allow for quantitative evaluation. We trained scNym with422

mouse data as the source domain and rat data as the target domain. We used the new identity discovery configuration423

to account for the potential for new cell types in a cross-species experiment. For the cross-species mouse to human424

demonstration, we similarly selected a set of cell types with comparable cell annotation ontologies in the Tabula Muris425

l0x lung data and human lung cells from the IPF Cell Atlas [Habermann et al., 2020]. We trained an scNym model426

using mouse data as the source domain and human data as the target, as for the mouse to rat demonstration.427

Runtime Benchmarking428

We measured the runtime of scNym and each baseline classification method using subsamples from the multi-domain429

kidney single cell and single nuclei dataset [Denisenko et al., 2020]. We measured runtimes for annotation transfer430

from single cells to single nuclei labels using subsamples of size n 2 {1250, 2500, 5000, 10000, 20000, 40000} for431

each of the training and target datasets. All methods were run on four cores of a 2.1 GHz Intel Xeon Gold 6130 CPU432

and 64 GB of CPU memory. GPU capable methods (scNym, scANVI) were provided with one Nvidia Titan RTX GPU433

(consumer grade CUDA compute device).434
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Hyperparameter Optimization Experiments435

We performed hyperparameter optimization across four tasks for the top three baseline methods, the SVM, singleCellNet,436

and scmap-cell-exact. For the SVM, we optimized the regularization strength parameter C at 12 values (C 2 10k 8k 2437

[�6, 5]) with and without class weighting. For class weighting, we set class weights as either uniform or inversely438

proportional to the number of cells in each class to enforce class balancing (wk = 1/nk, where wk is the weight for class439

k and nk is the number of cells for that class). For scmap-cell-exact, we optimized (1) the number of nearest neighbors440

(k 2 {5, 10, 30, 50, 100}), (2) the distance metric (d(·, ·) 2 {cosine, euclidean}), and (3) the number of features to441

select with M3Drop (nf 2 {500, 1000, 2000, 5000}). For singleCellNet, we optimized with nTopGenes 2 {10, 20},442

nRand 2 {35, 70, 140}, nTrees 2 {100, 1000, 2000}, and nTopGenePairs 2 {12, 25}.443

We optimized scNym for two of the four tasks, due to computational expense and superiority of default parameters444

relative to baseline methods. For scNym, we optimized (1) weight decay (λw 2 10�5, 10�4, 10�3), (2) batch445

size (M 2 {128, 256}), (3) the number of hidden units (h 2 {256, 512}), (4) the maximum MixMatch weight446

(λSSL 2 {0.01, 0.1, 1.0}), and (5) the maximum DAN weight (λAdv 2 {0.01, 0.1, 0.2}). We did not optimize weight447

decay for the PBMC cross-stimulation task. We performed a grid search for all methods.448

Hyperparameter optimization is non-trivial in the context of a domain shift between the training and test set. Traditional449

optimization using cross-validation on the training set alone may overfit parameters to the training domain, leading to450

suboptimal outcomes. This failure mode is especially problematic for domain adaptation models, where decreasing the451

strength of domain adaptation regularizers may improve performance within the training data, while actually decreasing452

performance on the target data.453

In light of these concerns, we adopted a procedure known as reverse cross-validation to evaluate each hyperparameter454

set [Zhong et al., 2010]. Reverse cross-validation uses both the training and target datasets during training to account455

for the effect of hyperparameters on the effectiveness of transferring labels across domains. Formally, we first split456

the labeled training data D into a training set, validation set, and held-out test set D0,Dv,D⇤. We use 10% of the457

training dataset for the validation set and 10% for the held-out test set. We then train a model fθ : x ! ŷ to transfer458

labels from the training set D0 to the target data U . We use the validation set Dv for early stopping with scNym and459

concatenate it into the training set for other methods that do not use a validation set. We treat the predictions ŷ = fθ(u)460

as pseudolabels for the unlabeled dataset and subsequently train a second model fφ : u ! ỹ to transfer annotations461

from the “pseudolabeled” dataset U back to the labeled dataset D. We then evaluate the “reverse accuracy” as the462

accuracy of the labels ỹ for the held-out test portion of the labeled dataset, D⇤.463

We performed this procedure using a standard 5-fold split for each parameter set. We computed the mean reverse464

cross-validation accuracy as the performance metric for robustness. For each method that we optimized, we selected the465

optimal set of hyperparameters as the set with the top reverse cross-validation accuracy.466
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New Cell Type Discovery Experiments467

New Cell Type Discovery with Pre-trained Models468

We evaluated the ability of scNym to highlight new cell types, unseen in the training data by predicting cell type469

annotations in the Tabula Muris brain data (Smart-seq2) using models trained on the 10x Genomics data from the ten470

tissues noted above with the Smart-seq2 data as corresponding target dataset. No neurons or glia were present in the471

training or target set for this experiment. This experiment simulates the scenario where a pre-trained model has been fit472

to transfer across technologies (10x to Smart-seq2) and is later used to predict cell types in a new tissue, unseen in the473

original training or target data.474

We computed scNym confidence scores for each cell as ci = max pi, where pi is the model prediction probability vector475

for cell i as noted above. To highlight potential cell type discoveries, we set a simple threshold on these confidence476

scores di = ci  0.5, where di 2 {0, 1} is a binary indicator variable. We found that scNym assigned low confidence477

to the majority of cells from newly “discovered” types unseen in the training set using this method.478

New Cell Type Discovery with Semi-supervised Training479

We also evaluated the ability of scNym to discover new cell types in a scenario where new cell types are present in480

the target data used for semi-supervised training. We used the same training data and target data as the experiment481

above, but we now introduce the Tabula Muris brain data (Smart-seq2) into the target dataset during semi-supervised482

training. We performed this experiment using our default scNym training procedure, as well as the modified new cell483

type discovery procedure described above.484

As above, we computed confidence scores for each cell and set a threshold of di = ci  0.5 to identify potential new485

cell type discoveries. We found that scNym models trained with the new cell type discovery procedure provided low486

confidence scores to the new cell types, suitable for identification of these new cells. We considered all new cell type487

predictions to be incorrect when computing accuracy for the new cell type discovery task.488

Clustering Candidate New Cell Types489

We employed a community detection procedure in the scNym embedding to suggest the number of distinct cell490

states represented by low confidence cells. First, we identify cells with a confidence score lower than a threshold491

tconf to highlight putative cell type discoveries, di = ci < tconf. We then extract the scNym penultimate embedding492

activations for these low confidence cells and construct a nearest neighbor graph using the k = 15 nearest neighbors493

for each cell. We compute a Leiden community detection partition for a range of different resolution parameters494

r 2 {0.1, 0.2, 0.3, 0.5, 1.0} and compute the Calinski-Harabasz score for each partition [Calinski and Harabasz, 1974].495

We select the optimal partition in the scNym embedding as the partition generated with the maximum Calinski-Harabasz496

score and suggest that communities in this partition may each represent a distinct cell state.497
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Discriminating Candidate New Cell Types from Other Low Confidence Predictions498

Cells may receive low confidence predictions for multiple reasons, including: (1) a cell is on the boundary between two499

cell types, (2) a cell has very little training data for the predicted class, and (3) the cell represents a new cell type unseen500

in the training dataset. To discriminate between these possibilities, we employ a heuristic similar to the one we use for501

proposing a number of new cell types that might be present. First, we extract the scNym embedding coordinates from502

the penultimate layer activations for all cells and build a nearest neighbor graph. We then optimize a Leiden cluster503

partition by scanning different resolution parameters to maximize the Calinksi-Harabasz score. We then compute the504

average prediction confidence across all cells in each of the resulting clusters. We also visualize the number of cells505

present in the training data for each predicted cell type.506

We consider cells with low prediction scores within an otherwise high confidence cluster to be on the boundary between507

cell types. These cells may benefit from domain expert review of the specific criteria to use when discriminating508

between very similar cell identities. We consider low confidence cell clusters with few training examples for the509

predicted class to warrant further domain expert review. Low confidence clusters that are predicted to be a class with510

ample training data may represent new cell types and also warrant further review.511
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Figure Legends522

Figure 1: scNym combines semi-supervised and adversarial training to learn performant single cell classifiers.
(A) scNym takes advantage of target data during training by estimating “pseudolabels” for each target data point
using model predictions. Training and target cell profiles and their labels are then augmented using weighted averages
in the MixMatch procedure. An adversary is also trained to discriminate training and target observations. We train
model parameters using a combination of supervised classification, interpolation consistency, and adversarial objectives.
Here, we use H(·, ·) to represent the cross-entropy function. (B) Training and target cell profiles are separated by a
domain shift in gene expression space. scNym pseudolabels target profiles and generates mixed cell profiles (arrows) by
randomly pairing cells. Mixed profiles form a bridge between training and target datasets. (C) scNym models learn a
discriminative representation of cell state in a hidden embedding layer. Train and target cell profiles initially segregate
in this representation. During training, adversarial gradients (colored arrows) encourage cells of the same type to mix in
the scNym embedding.

Figure 2: scNym transfers cell identity annotations between young and aged rat cells. (A) Young and aged cells
from a rat aging cell atlas displayed in a UMAP projection [Ma et al., 2020]. Some cell types show a domain shift
between young and aged cells. scNym models were trained on young cells in the atlas and used to predict labels for
aged cells. (B) Ground truth cell type annotations for the aged cells of the Rat Aging Cell Atlas shown in a UMAP
projection. (C) scNym predicted cell types in the target aged cells. scNym predictions match ground truth annotation in
the majority (>90%) of cases. (D) Accuracy (left) and κ-scores (right) for scNym and other state of the art classification
models. scNym yields significantly greater accuracy and κ-scores than baseline methods (p < 0.01, Wilcoxon Rank
Sums). Note: multiple existing methods could not complete this large task. (E) Aged skeletal muscle cells labeled with
ground truth annotations (left) and the relative accuracy of scNym and scmap-cell (right) projected with UMAP. scNym
accurately predicts multiple cell types that are confused by scmap-cell (arrows).

Figure 3: scNym transfers annotations from unstimulated immune cells to stimulated immune cells. (A) UMAP
projection of unstimulated PBMC training data and stimulated PBMC target data with stimulation condition labels. (B)
UMAP projections of ground truth cell type labels (left), scmap-cluster predictions (center), and scNym predictions
(right). scNym provides consistent annotations for both CD14+ and FCGR3A+ monocytes. scmap-cluster confuses
these populations (arrow). (C) Classification accuracy for scNym and baseline cell identity classification methods.
scNym is significantly more accurate than other approaches (p < 0.01, Wilcoxon Rank Sums). (D) Integrated gradient
analysis reveals genes that drive correct classification decisions. We recover known marker genes of many cell types
(e.g. CD79A for B cells, PPBP for megakaryocytes). (E) Cell type specificity of the top salient genes in a UMAP
projection of gene expression (log normalized counts per million). (F) Integrated gradient analysis reveals genes that
drive incorrect classification of some FCGR3A+ monocytes as CD14+ monocytes. Several of the top 15 salient genes
for misclassification are CD14+ markers that are upregulated in incorrectly classified FCGR3A+ cells.
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Figure 4: Multi-domain training improves cross-technology annotation transfer in the mouse kidney. (A) Cell
type and (B) sequencing protocol annotations in a UMAP projection of single cell and nucleus RNA-seq profiles from
the mouse kidney [Denisenko et al., 2020]. Each protocol represents a unique training domain that captures technical
variation. (C) Performance of scNym and baseline approaches on single cell to nucleus and single nucleus to cell
annotation transfer. Methods are rank ordered by performance across tasks. scNym is superior to each baseline method
on at least one task (Wilcoxon Rank Sum, p < 0.05). (D) Single nucleus target data labeled with true cell types (left) or
the relative accuracy of scNym and baseline methods (right) for the single cell to single nucleus task. scNym achieves
more accurate labeling of mesangial cells and tubule cell types (arrows). (E) Kidney tubule cells from (D) visualized
independently with true and predicted labels. scNym offers the closest match to true annotations. All methods make
notable errors on this difficult task. (F) Comparison of scNym performance when trained on individual training datasets
(1-domain) vs. multi-domain training across all available datasets. We found that multi-domain training improves
performance on both the cells to nuclei and nuclei to cells transfer tasks (Wilcoxon Rank Sums, p = 0.073 and p < 0.01
respectively).

Figure 5: scNym confidence scores highlight unseen cell types. (A) scNym calibration error for models trained on
the human PBMC cross-stimulation task. Semi-supervised and adversarial training significantly reduced calibration
error relative to models trained with only supervised methods (Base, MixUp). (B) Calibration curves capturing the
relationship between model confidence and empirical accuracy for models in (A). (C) scNym models were trained to
transfer annotations from a mouse atlas without brain cell types to data from mouse brain tissue. We desire a model
that provides low confidence scores to the new cell types and high confidence scores for endothelial cells seen in other
tissues. (D) scNym confidence scores for target brain cells. New cell types receive low confidence scores as desired
(dashed outlines).

Figure 6: Comparison of semi-supervised scNym to other single cell classification methods and ablated scNym
variants. (A) We assign each method a rank order (Rank 1 is best) based on performance for each benchmark
task. scNym is the top ranked method across tasks and ranks highly on all tasks. A support vector machine (SVM)
baseline is the next best method, consistent with a previous benchmarking study [Abdelaal et al., 2019]. (B) Ablation
experiments comparing simplified supervised scNym models (Base) against the full scNym model with semi-supervised
and adversarial training (SSL + Adv.). We found that semi-supervised and adversarial training significantly improved
scNym performance across diverse tasks (all tasks shown, Wilcoxon Rank Sum, p < 0.05).
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Tables523

scmap-cell scmap-cell-exact scmap-cluster SVM singleCellNet scPred CHETAH Harmony-SVM LIGER-SVM scANVI scNym

Young to Old Rat 84.8± 0.002 87.2± 0.001 79.0± 0.016 91.7± 0.0 89.1± 0.0 OOM 70.9± 0.012 86.6± 0.003 OOM 82.1± 0.006 92.2± 0.001

hPBMC Cross-Stim 63.8± 0.011 41.6± 0.016 80.5± 0.002 85.8± 0.004 90.8± 0.001 63.4± 0.003 56.7± 0.017 91.6± 0.002 91.8± 0.001 82.6± 0.01 92.6± 0.001

TM 10x to MCA 83.6± 0.005 89.7± 0.001 87.3± 0.001 88.4± 0.001 80.5± 0.005 61.2± 0.025 84.7± 0.006 87.3± 0.007 38.4± 0.006 85.9± 0.002 91.4± 0.001

TM 10x to SS2 62.4± 0.005 92.3± 0.001 80.9± 0.002 93.1± 0.0 85.9± 0.004 70.1± 0.004 86.9± 0.002 78.1± 0.005 79.4± 0.015 88.9± 0.004 93.6± 0.001

Spatial Txn 72.2± 0.005 81.8± 0.038 83.0± 0.001 92.1± 0.001 87.6± 0.002 92.3± 0.001 56.6± 0.005 89.8± 0.005 92.5± 0.001 84.3± 0.007 91.6± 0.002

Kidney Cell to Nuc 80.0± 0.003 89.6± 0.0 79.6± 0.004 88.4± 0.003 86.2± 0.001 66.9± 0.027 86.0± 0.005 91.6± 0.003 90.3± 0.001 25.5± 0.006 90.9± 0.002

Kidney Nuc to Cell 75.6± 0.002 63.8± 0.002 83.5± 0.001 86.3± 0.001 82.1± 0.001 83.3± 0.002 23.9± 0.004 83.4± 0.012 84.8± 0.004 24.3± 0.008 89.1± 0.001

Cortex SS2 63.4± 0.005 86.4± 0.001 81.4± 0.002 86.1± 0.001 84.3± 0.002 73.7± 0.006 84.8± 0.001 85.7± 0.001 85.6± 0.001 69.3± 0.009 86.0± 0.002

Cortex 10x 83.5± 0.005 91.1± 0.002 87.4± 0.003 91.3± 0.002 89.0± 0.002 90.5± 0.009 93.1± 0.002 91.2± 0.005 91.1± 0.003 77.1± 0.021 94.5± 0.002

Cortex DroNc 69.2± 0.003 71.3± 0.007 77.0± 0.003 81.5± 0.004 83.3± 0.002 80.3± 0.011 83.3± 0.001 82.2± 0.009 87.7± 0.01 56.4± 0.013 89.4± 0.002

Cortex sci-seq 82.8± 0.002 78.0± 0.001 79.3± 0.001 85.2± 0.001 83.6± 0.001 83.8± 0.002 83.0± 0.001 83.9± 0.003 84.8± 0.007 60.9± 0.014 84.1± 0.002

Table 1: Comparison of model performance across tasks. Mean accuracy ± standard error across a 5-fold training
split is reported. Bold text marks best models per task (p < 0.05, Rank Sums test). Multiple bolded models indicates
statistically insignificant differences between the bolded models. OOM indicates that the method encountered an
out-of-memory error on our hardware (256GB RAM). scNym is the top ranked model across tasks.
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