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Abstract

In this paper, we investigate the usage of autoencoders in
modeling textual data. Traditional autoencoders suffer from
at least two aspects: scalability with the high dimensionality
of vocabulary size and dealing with task-irrelevant words. We
address this problem by introducing supervision via the loss
function of autoencoders. In particular, we first train a linear
classifier on the labeled data, then define a loss for the au-
toencoder with the weights learned from the linear classifier.
To reduce the bias brought by one single classifier, we de-
fine a posterior probability distribution on the weights of the
classifier, and derive the marginalized loss of the autoencoder
with Laplace approximation. We show that our choice of loss
function can be rationalized from the perspective of Bregman
Divergence, which justifies the soundness of our model. We
evaluate the effectiveness of our model on six sentiment anal-
ysis datasets, and show that our model significantly outper-
forms all the competing methods with respect to classification
accuracy. We also show that our model is able to take advan-
tage of unlabeled dataset and get improved performance. We
further show that our model successfully learns highly dis-
criminative feature maps, which explains its superior perfor-
mance.

Introduction

In machine learning, documents are usually represented as
Bag of Words (BoW), which nicely reduces a piece of
text with arbitrary length to a fixed length vector. Despite
its simplicity, BoW remains the dominant representation in
many applications including text classification. There has
also been a large body of work dedicated to learning use-
ful representations for textual data (Turney and Pantel 2010;
Blei, Ng, and Jordan 2003; Deerwester et al. 1990; Mikolov
et al. 2013; Glorot, Bordes, and Bengio 2011). By exploiting
the co-occurrence pattern of words, one can learn a low di-
mensional vector that forms a compact and meaningful rep-
resentation for a document. The new representation is often
found useful for subsequent tasks such as topic visualization
and information retrieval. In this paper, we investigate the
application of one of the most popular representation learn-
ing methods, namely autoencoders (Bengio 2009), to learn
task-dependent representations for textual data. Our model
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differs from most of the existing work as it naturally incor-
porates label information into its objective function, which
allow the learned representation to be directly coupled with
the task of interest.

In this paper we focus on a specific class of task in text
mining: Sentiment Analysis (SA). We further focus on a spe-
cial case of SA as a binary classification problem, where a
given piece of text is either of positive or negative attitude.
This problem is interesting largely due to the emergence of
online social networks, where people consistently express
their opinions about certain subjects. Also, it is easy to ob-
tain a large amount of clean labeled data for SA by crawling
reviews from websites such as IMDB or Amazon. Thus, SA
is an ideal benchmark for evaluating text classification mod-
els (and features).

Autoencoders have attracted a lot of attention in recent
years as a building block of Deep Learning (Bengio 2009).
They act as the feature learning methods by reconstructing
inputs with respect to a given loss function. In a neural net-
work implementation of autoencoders, the hidden layer is
taken as the learned feature. While it is often trivial to ob-
tain good reconstructions with plain autoencoders, much ef-
fort has been devoted on regularizations in order to prevent
them against overfitting (Bengio 2009; Vincent et al. 2008;
Rifai et al. 2011b). However, little attention has been de-
voted to the loss function, which we argue is critical for
modeling textual data. The problem with the commonly
adopted loss functions (squared Euclidean distance and
element-wise KL Divergence, for instance) is that they try to
reconstruct all dimensions of input independently and undis-
criminatively. However, we argue that this is not the optimal
approach when our interest is text classification. The reason
is two folds. First, it is well known that in natural language
the distribution of word occurrences follows the power-law.
This means that a few of the most frequent words will ac-
count for most of the probability mass of word occurrences.
An immediate result is that the Autoencoder puts most of
its effort on reconstructing the most frequent words well but
(to a certain extent) ignores the less frequent ones. This may
lead to a bad performance especially when the class distribu-
tion is not well captured by merely the frequent words. For
sentiment analysis, this problem is especially severe because
it is obvious that the truly useful features (words or phrases
expressing a clear polarity) only occupy a small fraction of
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the whole vocabulary; and reconstructing irrelevant words
such as ’actor’ or ’movie’ very well is not likely to help
learn more useful representations to classify the sentiment
of movie reviews. Second, explicitly reconstructing all the
words in an input text is expensive, because the latent rep-
resentation has to contain all aspects of the semantic space
carried by the words, even if they are completely irrelevant.
As the vocabulary size can easily reach the range of tens
of thousands even for a moderate sized dataset, the hidden
layer size has to be chosen very large to obtain a reasonable
reconstruction, which causes a huge waste of model capacity
and makes it difficult to scale to large problems.

In fact, the reasoning above applies to all the unsuper-
vised learning methods in general, which we argue is one
of the most important problems to address in order to learn
task-specific representations. This naturally leads us to the
semisupervised approach, where label information is intro-
duced to guide the feature learning procedure. In particular,
we propose a novel loss function for training autoencoders
that are directly coupled with the classification task. We first
train a linear classifier on BoW, then a Bregman Divergence
(Banerjee et al. 2004) is derived as the loss function of a
subsequent autoencoder. The new loss function gives the au-
toencoder the information about directions along which the
reconstruction should be accurate, and where larger recon-
struction errors are tolerated. Informally, this can be con-
sidered as a weighting of words based on their correlations
with the class label: predictive words should be given large
weights in the reconstruction even they are not frequent
words, and vice versa. Furthermore, to reduce the bias in-
troduced by the linear classifier, we take a Bayesian view
by defining a posterior distribution on the weights of the
classifier. We then approximate the posterior with Laplace
approximation and derive the marginalized loss function for
the autoencoder. We show that our model successfully learns
features that are highly discriminative with respect to class
labels, and also outperform all the competing methods eval-
uated by classification accuracy. Moreover, the derived loss
can also be applied to unlabeled data, which allows the
model to learn further better representations.

Model

Denoising Autoencoders

Autoencoders learn functions that can reconstruct the inputs.
They are typically implemented as a neural network with
one hidden layer, and one can extract the activation of the
hidden layer as the new representation. Mathematically, we
are given a collection of data points X = {xi}, xi ∈ Rd, i ∈
[1,m], the objective function of an autoencoder is thus:

min
∑

i

D(x̃i, xi)

s.t. hi = g(Wxi + b), x̃i = f(W ′hi + b′)

(1)

where W ∈ Rk×d, b ∈ Rk,W ′ ∈ Rd×k, b′ ∈ Rd are the
parameters to be learned; D is a loss function, such as the
squared Euclidean Distance ‖x̃−x‖22; g and f are predefined
nonlinear functions, which we set as g(x) = max(0, x),

f(x) = (1+exp(−x))−1 in this paper; hi is the learned rep-
resentation; x̃i is the reconstruction. A common approach is
to use tied weights by setting W = W ′; this usually works
better as it speeds up learning and prevents overfitting at the
same time. For this reason, we always use tied weights in
this paper.

Autoencoders transform an unsupervised learning prob-
lem to a supervised one by the self reconstruction criteria.
This enables one to use all the tools developed for supervised
learning such as back propagation to efficiently train the au-
toencoders. Moreover, thanks to the nonlinear functions f
and g, autoencoders are able to learn non-linear and possibly
overcomplete representations, which give the model much
more expressive power than their linear counter parts such
as PCA (LSA) (Deerwester et al. 1990).

In this paper, we adopt one of the most popular variants
of autoencoders, namely Denoising Autoencoder. Denois-
ing Autoencoder works by reconstructing the input from
a noised version of itself. The intuition is that a robust
model should be able to reconstruct the input well even in
the presence of noises, due to the high correlation among
features. For example, imagine deleting or adding a few
words from/to a document, the semantics should still remain
unchanged, thus the autoencoder should learn a consistent
representation from all the noisy inputs. In the high level,
Denoising Autoencoders are equivalent to ordinary autoen-
coders trained with dropout (Srivastava et al. 2014), which
has been shown as an effective regularizer for (deep) neu-
ral networks. Formally, let q(x̄|x) be a predefined noising
distribution, and x̄ be a noised sample of x: x̄ ∼ q(x̄|x).
The objective function takes the form of sum of expectations
over all the noisy samples:

min
∑

i

Eq(x̄i|xi)D(x̃i, xi)

s.t. hi = g(Wx̄i + b), x̃i = f(W ′hi + b′)

(2)

where we have slightly overloaded the notation to let x̃i de-
note the reconstruction calculated from the noised input x̄i.
While the marginal objective function requires infinite many
noised samples per data point, in practice it is sufficient to
simulate it stochastically. That is, for each example seen in
the stochastic gradient descent training, we randomly sam-
ple a x̄i from q(x̄i|xi) and calculate the gradient with ordi-
nary back propagation.

Loss Function as Bregman Divergence

We then discuss the proper choice of the loss function D
in (2) as a specific form of Bregman Divergence. Bregman
Divergence (Banerjee et al. 2004) generalizes the notion of
distance in a d dimensional space. To be concrete, given two
data points x̃, x ∈ Rd and a convex function f(x) defined
on Rd, the Bregman Divergence of x̃ from x with respect to
f is:

Df (x̃, x) = f(x̃)− (f(x) +∇f(x)
T
(x̃− x)). (3)

Namely, Bregman Divergence measures the distance be-
tween two points x̃, x as the deviation between the function
value of f and the linear approximation of f around x at x̃.
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Two of the most commonly used loss functions for au-
toencoders are the squared Euclidean distance and element-
wise KL divergence. It is not difficult to verify that they both
fall into this family by choosing f as the squared ℓ2 norm
and the sum of element-wise entropy respectively. What the
two loss functions have in common is that they make no
distinction among dimensions of the input. In other words,
each dimension of the input is pushed to be reconstructed
equally well. While autoencoders trained in this way have
been shown to work very well on image data, learning much
more interesting and useful features than the original pixel
intensity features, they are less appropriate for modeling tex-
tual data. The reason is two folds. First, textual data are
extremely sparse and high dimensional, where the dimen-
sionality is equal to the vocabulary size. To maintain all the
information of the input in the hidden layer, a very large
layer size must be adopted, which makes the training cost
extremely large. Second, ordinary autoencoders are not able
to deal with the power law of word distributions, where a few
of the most frequent words account for most of the word oc-
currences. As a result, frequent words naturally gain favor
to being reconstructed accurately, and rare words tend to be
reconstructed with less precision. This problem is also anal-
ogous to the imbalanced classification setting. This is es-
pecially problematic when frequent words carry little infor-
mation about the task of interest, which is not uncommon.
Examples include stop words (the, a, this, from) and topic
related terms (movie, watch, actress) in a movie review sen-
timent analysis task.

Semisupervised Autoencoder with Bregman
Divergence

To address the problems mentioned above, we propose to
introduce supervision to the training of autoencoders. To
achieve this, we first train a linear classifier on Bag of Words,
and then use the weight of the learned classifier to define a
new loss function for the autoencoder. Now let us first de-
scribe our choice of loss function, and then elaborate the
motivation later:

D(x̃, x) = (θT (x̃− x))2. (4)

where θ ∈ Rd are the weights of the linear classifier, and we
have omitted the bias for simplicity. Before we delve into
more details, note that Equation (4) is a valid distance, as
it is non-negative and reaches zeros if and only if x̃ = x.
Moreover, the reconstruction error is only measured after
projecting on θ; this guides the reconstruction to be accurate
only along directions where the linear classifier is sensitive
to. Note also that Equation (4) on the one hand uses label
information (θ has been trained with labeled data), on the
other hand no explicit labels are directly referred to (only re-
quires xi). Thus one is able to train an autoencoder on both
labeled and unlabeled data with the loss function in Equa-
tion (4). This subtlety distinguishes our method from pure
supervised or unsupervised learning, and allows us to enjoy
the benefit from both worlds.

As a design choice, we consider SVM with squared hinge
loss (SVM2) and ℓ2 regularization as the linear classifier,
but other classifiers such as Logistic Regression can be used

and analyzed similarly. Let us denote {xi}, xi ∈ Rd as the
collection of samples, and {yi}, yi ∈ {1,−1} as the class
labels; the objective function SVM2 is:

L(θ) =
∑

i

(max(0, 1− yiθ
Txi))

2 + λ‖θ‖2. (5)

Here θ ∈ Rd is the weight; λ is the weight decay parameter.

Equation (5) is continuous and differentiable everywhere
with respect to θ, so the model can be easily trained with
stochastic gradient descent. The next (and most critical) step
of our approach is to transfer label information from the lin-
ear classifier to the autoencoder. With this in mind, we ex-
amine the loss induced by each sample as a function of the
input, while with θ fixed:

f(xi) = (max(0, 1− yiθ
Txi))

2 (6)

Note that f(xi) is defined on the input space Rd, which
should be contrasted with L(θ) in Equation (5) which is a
function of θ. We are interested in f(xi) because if we con-
sider moving each input xi to x̃i, f(xi) indicates the direc-
tion along which the loss is sensitive to. If we think of x̃
as the reconstruction of xi obtained from an autoencoder, a
good x̃i should be in a way such that the deviation of x̃i from
xi is small evaluated by f(xi). In other words, we would
like x̃i to still be correctly classified by the pretrained linear
classifier. Therefore, f(xi) should be a much better function
to evaluate the deviation of two samples. if we can derive a
Bregman Divergence from f(xi) and use it as the loss func-
tion of the subsequent autoencoder training, the autoencoder
should be guided to give reconstruction errors that do not
confuse the classifier. Note that f(xi) is a quadratic func-
tion of xi whenever f(xi) > 0, so we only need to derive
the Hessian matrix in order to achieve the Bregman Diver-
gence. The Hessian follows as:

H(xi) =

{

θθT , if 1− yiθ
Txi > 0

0, otherwise.
(7)

Recall that for a quadratic function with Hessian matrix H ,
the Bregman Divergence is simply (x̃− x)TH(x̃− x); then
we have:

D(x̃i, xi) =

{

(θT (x̃i − xi))
2, if 1− yiθ

Txi > 0

0, otherwise
(8)

In words, Equation (8) says that we measure the recon-
struction loss for difficult examples (those that satisfy 1 −
yiθ

Txi > 0) with Equation (4); and there is no reconstruc-
tion loss at all for easy examples. This discrimination is un-
desirable, because in this case the Autoencoder would com-
pletely ignore easy examples, and there is no way to guar-
antee that the x̃i can be correctly classified. Actually, this
split is just an artifact of the hinge loss and the asymmetri-
cal property of Bregman Divergence. Hence, we perform a
simple correction by ignoring the condition in Equation (8),
which basically pretends that all the examples induce a loss.
This directly yields the loss function as in Equation (4).
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The Bayesian Marginalization

In principle, one may directly apply Equation (4) as the loss
function in place of the squared Euclidean distance and train
an autoencoder. However, doing so might introduce a bias
brought by one single classifier. As a remedy, we resort to
the Bayesian approach, which defines a probability distribu-
tion over θ. Although SVM2 is not a probabilistic classifier
like Logistic Regression, we can borrow the idea of Energy
Based Model (Bengio 2009) and use L(θ) as the negative
log likelihood of the following distribution:

p(θ) =
exp(−βL(θ))

∫

exp(−βL(θ))dθ
(9)

where β > 0 is the temperature parameter which controls
the shape of the distribution p. Note that the larger β is, the
sharper p will be. In the extreme case, p(θ) is reduced to a
uniform distribution as β approaches 0, and collapses into a
single δ function as β goes to positive infinity.

Given p(θ), we rewrite Equation (4) as an expectation
over θ:

D(x̃, x) = Eθ∼p(θ)(θ
T (x̃− x))2 =

∫

(θT (x̃− x))2p(θ)dθ.

(10)

Obviously there is now no closed form expression for
D(x̃, x). To solve it one could use sampling methods such
as MCMC, which provides unbiased estimates of the ex-
pectation but could be slow in practice. Instead, we use
the Laplace approximation, which approximates p(θ) by a

Gaussian distribution p̃(θ) = N (θ̂,Σ). As estimating the
full covariance matrix is prohibitive, we further constrain Σ
to be diagonal. The benefit of doing so is that the expectation
can now be computed directly in closed form. To see this, by
simply replacing p(θ) with p̃(θ) in Equation (11):

D(x̃, x) =Eθ∼p̃(θ)(θ
T (x̃− x))2

=(x̃− x)TEθ∼p̃(θ)(θθ
T )(x̃− x)

=(x̃− x)T (θ̂θ̂T +Σ)(x̃− x)

=(θ̂T (x̃− x))2 + (Σ
1

2 (x̃− x))T (Σ
1

2 (x̃− x)).
(11)

where D now involves two parts, corresponding to the mean
and variance term of the Gaussian distribution respectively.

Now let us derive p̃(θ) for p(θ). In Laplace approximation, θ̂
is chosen as the mode of p(θ), which is exactly the solution
to the SVM2 optimization problem. For Σ, we have:

Σ =(diag(
∂2L(θ)

∂θ2
))−1

=
1

β
(diag(

∑

i

I(1− yiθ
Txi > 0)x2

i ))
−1

(12)

Here we have overridden diag but letting it denote a diago-
nal matrix induced either by a square matrix or a vector; I
is the indicator function; (·)−1 denotes matrix inverse. Inter-
estingly, the second term in Equation (11) is now equivalent

Table 1: Statistics of the datasets.

IMDB books DVD music electronics kitchenware

# train 25,000 10,000 10,000 18,000 6,000 6,000

# test 25,000 3,105 2,960 2,661 2,862 1,691

# unlabeled 50,000 N/A N/A N/A N/A N/A

# features 8,876 9,849 10,537 13,099 5,091 3,907

% positive 50 49.81 49.85 50.16 49.78 50.08

to the squared Euclidean distance after performing element-
wise normalizing the input using all difficult examples. The
effect of this normalization is that the reconstruction errors
of frequent words are down weighted; on the other hand, dis-
criminative words are given higher weights as they would
occur less frequently in difficult examples. Note that it is
important to use a relatively large β in order to avoid the
variance term dominating the mean term. In other words, we

need to ensure p(θ) to be reasonable peaked around θ̂ to ef-
fective take advantage of label information.

Experiments

Datasets

We evaluate our model on six Sentiment Analysis bench-
marks. The first one is the IMDB dataset 1 (Maas et al.
2011), which consists of movie reviews collected from
IMDB. The IMDB dataset is one of the largest sentiment
analysis dataset that is publicly available; it also comes with
an unlabeled set which allows us to evaluate semisupervised
learning methods. The rest five datasets are all collected
from Amazon 2(Blitzer, Dredze, and Pereira 2007), which
corresponds to the reviews of five different products: books,
DVDs, music, electronics, kitchenware. All the six datasets
are already tokenized as either uni-gram or bi-gram features.
For computational reasons, we only select the words that
occur in at least 30 training examples. We summarize the
statistics of datasets in Table 1.

Methods

• Bag of Words (BoW). Instead of using the raw word
counts directly, we take a simple step of data normaliza-
tion:

xi,j =
log(1 + ci,j)

maxj log(1 + ci,j)
(13)

where ci,j denotes the number of occurrences of the jth
word in the ith document, xi,j denotes the normalized
count. We choose this normalization because it preserves
the sparsity of the Bag of Words features; also each fea-
ture element is normalized to the range [0, 1]. Note that
the very same normalized Bag of Words features are fed
into the autoencoders.

• Denoising Autoencoder (DAE) (Vincent et al. 2008).
This refers to the regular Denoising Autoencoder defined
in Equation (1) with squared Euclidean distance loss:

1http://ai.stanford.edu/ amaas/data/sentiment/
2http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
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D(x̃, x) = ‖x̃ − x‖22. This is also used in (Glorot, Bor-
des, and Bengio 2011) on the Amazon datasets for do-
main adaptation. We use ReLu max(0, x) as the activa-
tion function, and Sigmoid as the decoding function.

• Denoising Autoencoder with Finetuning (DAE+) (Vin-
cent et al. 2008). This denotes the common approach to
continue training an DAE on labeled data by replacing
the decoding part of DAE with a Softmax layer.

• Feedforward Neural Network (NN). This is the standard
fully connected neural network with one hidden layer and
random initialization. We use the same activation function
as that in Autoencoders, i.e., ReLU.

• Logistic Regression with Dropout (LrDrop) (Wager,
Wang, and Liang 2013). This is a model where logistic
regression is regularized with the marginalized dropout
noise. LrDrop differs from our approach as it uses feature
noising as an explicit regularization. Another difference
is that our model is able to learn nonlinear representa-
tions, not merely a classifier, and thus is potentially able
to model more complicated patterns in data.

• Semisupervised Bregman Divergence Autoencoder (SB-
DAE). This corresponds to our model with Denoising Au-
toencoder as the feature learner. The training process is
roughly equivalent to training on BoW followed by the
training of DAE, except that the loss function of DAE is
replaced with the loss function defined in Equation (11).
We cross validate β from the set {104, 105, 106, 107, 108}
(note that larger β corresponds to weaker Bayesian regu-
larization).

• Semisupervised Bregman Divergence Autoencoder with
Finetuning (SBDAE+).

Note that except for BoW and LrDrop, all the other meth-
ods require a predefined dimensionality of representation.
We use fixed sizes on all the datasets. For SBDAE and NN, a
small hidden size is sufficient, so we use 200. For DAE, we
observe that it benefits from very large hidden sizes; how-
ever, due to computational constraints, we take 2000. For
BoW, DAE, SBDAE, we use SVM2 as the classifier. All the
models are trained with mini-batch Stochastic Gradient De-
scent with momentum of 0.9.

Results

We first summarize the results as in classification error rate
in Table 2. First of all, our model consistently beats BoW
with a margin, and it achieves the best results on four (larger)
datasets out of six. On the other hand, DAE, DAE+ and NN
all fail to outperform BoW, although they share the same
architecture as nonlinear classifiers. This suggests that SB-
DAE be able to learn a much better nonlinear feature trans-
formation function by training with a more informed objec-
tive (than that of DAE). Moreover, note also that finetun-
ing on labeled set (DAE+) significantly improves the perfor-
mance of DAE, which is ultimately on a par with training a
neural net with random initialization (NN). However, fine-
tuning offers little help to SBDAE, as it is already implicitly
guided by labels during the training.

LrDrop is the second best method that we have tested.
Thanks to the usage of dropout regularization, it consis-
tently outperforms BoW, and achieves the best results on
two (smaller) datasets. Compared with LrDrop, it appears
that our model works better on large datasets (≈ 10K words,
more than 10K training examples) than smaller ones. This
indicates that in high dimensional spaces with sufficient
samples, SBDAE benefits from learning a nonlinear feature
transformation that disentangles the underlying factors of
variation, while LrDrop is incapable of doing so due to its
nature as a linear classifier.

As the training of the autoencoder part of SBDAE does
not require the availability of labels, we also try incorporat-
ing unlabeled data after learning the linear classifier in SB-
DAE. As shown in Table 2, doing so further improves the
performance over using labeled data only. This justifies that
it is possible to bootstrap from a relatively small amount of
labeled data and learn better representations with more un-
labeled data with SBDAE.

To gain more insights of the results, we further visual-
ize the filters learned by SBDAE and DAE on the IMDB
dataset in Table 3. In particular, we show the top 5 most
activated and deactivated words of the first 8 filters (corre-
sponding to the first 8 rows of W ) of SBDAE and DAE, re-
spectively. First of all, it seems very difficult to make sense
of the filters of DAE as they are mostly common words with
no clear co-occurrence pattern. By comparison, if we look at
the filters from SBDAE, they are mostly sensitive to words
that demonstrate clear polarity. In particular, all the 8 filters
seem to be most activated by certain negative words, and are
most deactivated by certain positive words. In this way, the
activation of each filter of SBDAE is much more indicative
of the polarity than that of DAE, which explains the better
performance of SBDAE over DAE. Note that this difference
only comes from reweighting the reconstruction errors in a
certain way, with no explicit usage of labels.

Related Work and Discussion

Our work falls into the general category of learning repre-
sentations for text data. In particular, there have been a lot
of efforts that try to learn compact representations for either
words or documents (Turney and Pantel 2010; Blei, Ng, and
Jordan 2003; Deerwester et al. 1990; Mikolov et al. 2013;
Le and Mikolov 2014; Maas et al. 2011). LDA (Blei, Ng,
and Jordan 2003) explicitly learns a set of topics, each of
which is defined as a distribution on words; a document
is thus represented as the posterior distribution on topics,
which is a fixed-length, non-negative vector. Closely related
are matrix factorization models such as LSA (Deerwester
et al. 1990) and Non-negative Matrix Factorization (NMF)
(Xu, Liu, and Gong 2003). While LSA factorizes the doc-
term matrix via Singular Value Decomposition, NMF learns
non-negative basis and coefficient vectors. Similar to these
efforts, our model also works directly on the doc-term ma-
trix. However, thanks to the usage of autoencoder, the rep-
resentation for documents are calculated instantly via direct
matrix product, which eliminates the need of expensive in-
ference. Our work also distinguishes itself from other work
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Table 2: Left: our model achieves the best results on four (large ones) out of six datasets. Right: our model is able to take
advantage of unlabeled data and gain better performance.

books DVD music electronics kitchenware IMDB IMDB + unlabled

BoW 10.76 11.82 11.80 10.41 9.34 11.48 N/A
DAE 15.10 15.64 15.44 14.74 12.48 14.60 13.28
DAE+ 11.40 12.09 11.80 11.53 9.23 11.48 11.47
NN 11.05 11.89 11.42 11.15 9.16 11.60 N/A
LrDrop 9.53 10.95 10.90 9.81 8.69 10.88 10.73
SBDAE 9.16 10.90 10.59 10.02 8.87 10.52 10.42
SBDAE+ 9.12 10.90 10.58 10.01 8.83 10.50 10.41

Table 3: Visualization of learned feature maps. From top to bottom: most activated and deactivated words for SBDAE; most
activated and deactivated words for DAE.

nothing disappointing badly save even dull excuse ridiculously

cannon worst disappointing redeeming attempt fails had dean

outrageously unfortunately annoying awful unfunny stupid failed none

lends terrible worst sucks couldn’t worst rest ruined

teacher predictable poorly convince worst avoid he attempt

first tears loved amazing excellent perfect years with

classic wonderfully finest incredible surprisingly ? terrific best

man helps noir funniest beauty powerful peter recommended

hard awesome magnificent unforgettable unexpected excellent cool perfect

still terrific scared captures appreciated favorite allows heart

long wasn’t probably to making laugh tv someone

worst guy fan the give find might yet

kids music kind and performances where found goes

anyone work years this least before kids away

trying now place shows comes ever having poor

done least go kind recommend although ending worth

find book trying takes instead everyone once interesting

before day looks special wife anything wasn’t isn’t

work actors everyone now shows comes american rather

watching classic performances someone night away sense around

as a semisupervised representation learning model, where
label information can be effectively leveraged.

Recently, there has also been an active thread of research
on learning word representations. Notably, (Mikolov et al.
2013) shows that we can learn interesting word embeddings
via very simple architecture on a large amount of unla-
beled dataset. Moreover, (Le and Mikolov 2014) proposed
to jointly learn representations for sentences and paragraphs
together with words in a similar unsupervised fashion. While
our work does not explicitly model the representations for
words, it is straightforward to incorporate this idea by adding
an additional linear layer at the bottom of the autoencoder.

From the perspective of machine learning methodology,
our approach resembles the idea of layer-wise pretraining
in deep Neural Networks (Bengio 2009). Our model dif-
fers from the traditional training procedure of autoencoders
in that we effectively utilize the label information to guide
the representation learning. Related idea has been proposed
in (Socher et al. 2011), where they train Recursive autoen-
coders on sentences jointly with prediction of sentiment.
Due to the delicate recursive architecture, their model only
works on sentences with given parsing trees, and could not

generalize to documents. MTC (Rifai et al. 2011a) is another
work that models the interaction of autoencoders and classi-
fiers. However, their training of autoencoders is purely un-
supervised, the interaction comes into play by requiring the
classifier to be invariant along the tangents of the learned
data manifold. It is not difficult to see that the assumption
of MTC would not hold when the class labels did not align
well with the data manifold, which is a situation our model
does not suffer from.

Conclusion

In this paper, we have proposed a novel extension to autoen-
coders for learning task-specific representations for textual
data. We have generalized the traditional autoencoders by
relaxing their loss function to the Bregman Divergence, and
then derived a discriminative loss function from the label
information. Experiments on text classification benchmarks
have shown that our model significantly outperforms Bag of
Words, traditional Denoising Autoencoder, and other com-
peting methods. We have also qualitatively visualized that
our model successfully learns discriminative features, which
unsupervised methods fail to do.
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