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Semisupervised Band Clustering for Dimensionality
Reduction of Hyperspectral Imagery

Hongjun Su, He Yang, Student Member, IEEE, Qian Du, Senior Member, IEEE, and Yehua Sheng

Abstract—Band clustering is applied to dimensionality reduc-
tion of hyperspectral imagery. Different from unsupervised clus-
tering using all the pixels or supervised clustering requiring
labeled pixels, the proposed semisupervised band clustering needs
class spectral signatures only. After clustering, a cluster selection
step is applied to select clusters to be used in the following data
analysis. Initial conditions and distance metrics are also investi-
gated to improve the clustering performance. The experimental
results show that the proposed algorithm can outperform other
existing methods with lower computational cost.

Index Terms—Band clustering, dimensionality reduction, hy-
perspectral imagery, k-means clustering.

I. INTRODUCTION

D IMENSIONALITY reduction is a commonly used prepro-
cessing technique for hyperspectral image analysis [1]. It

can be achieved by a transformation method [e.g., principal
component analysis (PCA) and linear discriminant analysis
(LDA)], where the original high-dimensional data are projected
onto a low-dimensional space with a certain criterion. Dimen-
sionality reduction can also be achieved by band selection,
whose objective is to find a small subset of bands containing
important data information.

Another approach is band grouping (BG) or band cluster-
ing. BG can be viewed as a special case of band extraction.
For instance, adjacent bands can be grouped together, and a
representative of each group can be selected to participate in
the following data analysis. Intuitively, adjacent bands can be
partitioned uniformly [denoted as BG(U)] or based on spectral
correlation coefficient [denoted as BG(CC)]. Fig. 1 shows a
202 × 202 spectral correlation coefficient (CC) matrix, where
a bright pixel at location (i, j) means high correlation between
the ith and jth bands; if the pixel is in dark, then the correlation
is low. The white blocks along the diagonal line indicate that
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Fig. 1. Spectral CC matrix for a 202-band AVIRIS Indian Pines image scene.

adjacent bands usually have high correlation and should be
grouped together. However, if examining Fig. 1 carefully, we
can see that nonadjacent bands may also have high correlation;
this is verified by the presence of white blocks in off-diagonal
areas. Thus, nonadjacent bands should be allowed to be grouped
together. In this letter, we use “band clustering” to represent
the methods that can group nonadjacent bands and “BG” to
represent the methods that group adjacent bands only.

Clustering algorithms have been applied to hyperspectral
remote sensing data analysis. The typical implementation is to
cluster pixels based on the spectral signatures so as to spatially
segment an image scene into many subregions. For instance, a
clustering-based anomaly detection approach was proposed in
[2], where a clustering method, such as ISODATA, k-means,
and self-organizing map, was adopted to model image pixels.
In [3], a fuzzy-clustering algorithm that spatially exploited
class membership relations was presented. A particle-swarm-
optimization-based algorithm was proposed for pixel cluster-
ing to estimate class statistical parameters and the number of
classes in image data in [4]. A modified k-means algorithm was
developed to improve matched filter performance in [5].

Another type of implementation of a clustering algorithm
is in the spatial domain; in other words, a spectral band is
converted into a vector after column or row stacking, and
then, these band vectors are clustered into several groups based
on their similarity. In [6], two clustering methods, namely,
Ward’s linkage strategy using mutual information (WaLuMI)
and Ward’s linkage strategy using divergence (WaLuDi), were
developed, and finalized clusters were further used for band
selection.

In this letter, we will focus on k-means-based band cluster-
ing for dimensionality reduction [8]. One of its drawbacks is
that it is sensitive to initial condition and may be trapped in
local optima; different initial conditions may produce different
clusters. In this letter, we will propose a new initial technique
using band selection output. Because of unsupervised nature,
k-means clustering may be time consuming when using all
the pixels. In [7], k-means was extended to a supervised ver-
sion, where training samples for each class were required for
clustering. However, in practice, it may be difficult to obtain
enough training samples; instead, it may be possible to have a
spectral signature for each class. Therefore, in this letter, we
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propose a semisupervised k-means (SKM) clustering method
that uses class signatures only. Here, a class signature is the
representative spectrum of a class.

Note that, in [8], k-means was applied for band selection
using class signatures. Our method is different because of the
following reasons.

1) We use band cluster centers for the following data anal-
ysis (e.g., detection and classification), while the band
closest to a cluster center is selected in [8]. We will show
that using cluster centers is better than using selected
bands.

2) We conduct cluster selection, while in [8], all the clusters
are used. We will show that deleting the worst cluster will
provide better performance.

In the clustering process itself, our algorithm is also different
because of the following reasons.

1) We show that different distance metrics will yield differ-
ent clustering results. In our experiments, CC is better
than others, such as Euclidean distance in [8].

2) The initial condition is critical to the clustering perfor-
mance, and our band selection result in [9] can be used as
initials, providing better performance than random initials
in [8].

II. PROPOSED METHOD

A. SKM Band Clustering

Given a set of bands (B1, . . . ,Bl, . . . ,BL), where each band
is arranged into N -dimensional vector, where N is the number
of pixels. k-means band clustering aims to partition the L bands
into k clusters C = {c1, . . . , cm, . . . , ck} (1 ≤ m ≤ k) so as to
minimize the following objective function:

argmin
C

k∑
m=1

∑
Bl∈cm

D(Bl,µm) (1)

where µm is the cluster center of cm and D(•, •) is a distance
metric gauging the similarity between a band and the center
of the cluster that it is assigned to. This original algorithm with
random initials is denoted as RKM. Its computational complex-
ity is linearly proportional to the number of pixels N . In order
to reduce the complexity, we use class signatures as algorithm
input; then, the complexity becomes linearly proportional to the
number of signatures S (S � N). This approach is denoted as
SKM. Several distance metrics can be adopted for k-means,
including Euclidean distance (L2), city-block distance (L1),
cosine (spectral angle), and spectral CC.

The SKM algorithm is initialized by using distinctive bands
as cluster centroids. The idea of unsupervisedly selecting dis-
tinctive bands was presented in [9]. The band selection algo-
rithm is initialized by choosing a pair of bands B1 and B2,
leading to a band subset Φ = {B1, B2}; it then finds a third
band B3 that is the most dissimilar to all the bands in the
current Φ by using a certain criterion, resulting in an updated
subset Φ = Φ ∪B3; and the selection step is repeated until the
number of bands in Φ is large enough. Here, a linear prediction
(LP) error (i.e., the difference between an original band and its
linear predicted version using bands in Φ) is employed as the
similarity metric. A band with the maximum LP error is the

most dissimilar band from those in Φ and should be selected.
Note that the RKM can be initialized with this unsupervised
band selection method as well, which is denoted as UKM.

After k-means clustering, k clusters with their centroids are
ready for further analysis. However, it does not mean that all
of them should be used. Some clusters may not be helpful for
object classification, and they may even bring about confusion.
Thus, we propose to remove a cluster by exhaustively searching
for the worst one (when it is removed, the remaining clusters
provided the most similar classification maps to those from
using all the original bands). It is observed that deleting one
cluster usually results in improvement, but deleting more than
one cluster may not necessarily provide further improvement.
Thus, only one cluster is removed hereafter. The SKM algo-
rithm deleting the worst cluster is denoted as SKMd.

SKMd-based band clustering can be detailed as follows.
1) Initialize the algorithm by using k selected distinctive

bands.
2) Using the known class signatures, conduct band cluster-

ing based on CC. The k-means clustering is completed
when no band is shuffled from one cluster to another. The
center of each cluster is used as the representative.

3) Conduct classification when each cluster center is re-
moved in turn. If the removal of a specific cluster center
yields the largest accuracy, then this cluster will be re-
moved permanently. The resulting k − 1 clusters are the
final output.

B. Automatic Removal of the Worst Cluster

In addition to exhaustive searching (ES), as mentioned in
Section II-A, a cluster may be deleted based on a criterion, such
as orthogonal projection divergence (OPD) [10]. Let ci and cj
denote the ith and jth cluster centroids, respectively. Their OPD
value is defined as

OPD(ci, cj) =
(
cTi P

⊥
cj
ci + cTj P

⊥
ci
cj

)1/2

(2)

where P⊥
cm

= I− cm(cTmcm)−1cTm for m = i, j and I is an
identity matrix. P⊥

cj
is the orthogonal subspace of cj , and

cTi P
⊥
cj
ci is the squared norm of the projection of ci onto P⊥

cj
.

Similarly, cTj P
⊥
ci
cj is the squared norm of the projection of cj

onto P⊥
ci

. A larger OPD value means that ci and cj are more
different.

For k cluster centroids, each pair of OPD value is computed.
A cluster will be removed if the average OPD to other k − 1
cluster is the largest. Based on our experience, this cluster
usually has lower image quality. In other words, bands included
in such a cluster generally have low signal-to-noise ratio (SNR).

C. Computational Complexity and Methods for Comparison

Table I lists the computational complexity of different
methods during band clustering process. For the SKM, it is
O(LSkt), compared to O(LNkt) in the RKM, where t is the
number of iterations. The complexity of SKM is also much
lower than those of WaLuMI and WaLuDi. In WaLuMI and
WaLuDi, mutual information or Kullback–Leibler divergence is
used as similarity metric, hierarchical clustering is conducted,
and a representative band from each final cluster is chosen.
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TABLE I
COMPUTATIONAL COMPLEXITY OF BAND CLUSTERING

TABLE II
LIST OF METHODS FOR COMPARISON

In addition, BG(U) that simply groups the same number of
adjacent bands and BG(CC) that groups adjacent bands based
on spectral CC are used for comparsion. PCA and LDA are
implemented for comparison when training samples are avail-
able. A list of methods for comparison, including the variants of
k-means, is presented in Table II.

III. EXPERIMENTS

Three real-data experiments were conducted. Clustering
quality can be evaluated with classification accuracy. When
training and test samples are available, support vector machine
(SVM) can be applied. If only class signatures are available,
then a method that does not require the training process, such
as orthogonal subspace projection (OSP) [11], can be used.
The classification maps are compared with those using all the
original bands, and the similarity is assessed with spatial CC; a
larger value of average spatial CC means better performance.

A. AVIRIS Lunar Lake Experiment

The same 200 × 200 AVIRIS Lunar Lake image scene as
in [11] was used in this experiment. After the water absorption
and low-SNR bands were removed, 158 bands were left. Five

Fig. 2. Comparison with different methods in Lunar Lake experiment.
(a) Compared with k-means related methods. (b) Compared with other
methods.

classes are present: cinders, playa, rhyolite, shade, and vegeta-
tion. Thus, five signatures were used for k-means clustering.

Because no training samples are available, OSP was used
for classification, and spatial CC with the classification maps
from using all the original bands was considered as accu-
racy. As shown in Fig. 2(a), SKMd provided the best result,
which was better than SKM using all the resulting clusters for
classification. With CC-grouped cluster centroids as initials,
SKMd(CC) and SKM(CC) were worse than their counterparts
SKMd and SKM, respectively, which means that the band
selection result was a better choice as the initial condition.
RKM was the average result from 50 runs of the k-means with
random initials; it could not outperform UKM with the selected
bands as the initial. As shown in Fig. 2(b), SKMd was compared
with WaLuMI, WaLuDi, BG(U), and BG(CC), where it was
significantly better. The simplest BG(U) offers a better result
than WaLuMI, WaLuDi, and BG(CC).

B. HYDICE DC Mall Experiment

The HYDICE subimage scene with 304 × 301 pixels over
the Washington, DC Mall area was used as in [12]. After bad-
band removal, 191 bands were used in the experiment. In these
data, there are six classes: roof, tree, grass, water, road, and
trail. These six class centers were used for band clustering. The
overall accuracy from SVM was computed with the available
training and test samples [12].

As shown in Fig. 3(a), SKMd provided the best result among
all the k-means variants, and its performance was always better
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Fig. 3. Comparison with different methods in DC mall experiment.
(a) Compared with k-means related methods. (b) Compared with other
methods.

than that using all the bands regardless of the number of
clusters. All other k-means variants performed quite similarly,
while SKM(CC) yielded the worst result. Fig. 3(b) shows the
performance of other BG and clustering approaches, and SKMd
outperformed BG(U), BG(CC), WaLuMI, WaLUDi, PCA, and
LDA. Once again, the performance of PCA could be better
than LDA. In this experiment, increasing the value of k did not
improve the accuracy; instead, the highest accuracy appeared
when k = 6.

C. AVIRIS Indian Pines Experiment

The AVIRIS subimage scene taken over northwest Indiana’s
Indian Pines with 145 × 145 pixels and 202 bands was used,
and 16 different land-cover classes were present based on the
ground truth [13]. Since class samples are available, the overall
classification accuracy was computed for evaluation using SVM
outputs.

The purpose of this experiment is to demonstrate the per-
formance discrepancy when using different similarity metrics
for clustering and when using cluster centers or the bands
closest to the cluster centers in [8]. As shown in Figs. 4 and 5,
CC provided better performance than other metrics such as
Euclidean distance (L2), cosine (spectral angle), and city block
(L1) in both SKM and SKMd. Fig. 6 shows that using cluster
centers is better than using selected bands.

The nonparametric McNemar test was employed to evaluate
the statistical significance in accuracy improvement with the
proposed methods [14]. It is based on the standardized normal

Fig. 4. Classification accuracy using different similarity metrics for SKMd in
Indian Pines experiment.

Fig. 5. Classification accuracy using different similarity metrics for SKM in
Indian Pines experiment.

Fig. 6. Classification accuracy using cluster centers or selected bands in
Indian Pines experiment.

test statistic. For two methods to be compared, let f11 denote
the number of samples that both methods can correctly classify,
f22 the number of samples that both cannot, f12 the number
of samples misclassified by method 1 but not method 2, and
f21 the number of samples misclassified by method 2 but not
method 1. Then, the McNemar’s test statistic for these two
methods can be defined as

z =
f12 − f21√
f12 + f21

. (3)

For 5% level of significance, the corresponding |z| value is
1.96; a |z| value greater than this quantity means that two
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TABLE III
Z VALUES IN THE MCNEMAR’S TEST FOR AVIRIS INDIANA PINES DATA

(THE 5% LEVEL OF SIGNIFICANCE IS SELECTED)

TABLE IV
CLASSIFICATION ACCURACY WITH BAD CLUSTER REMOVAL

methods have significant performance discrepancy. Table III
tabulates the average |z| values when SKMd was compared
against other methods, with k being changed from 5 to 15. Ob-
viously, the performance of the proposed SKMd is statistically
different from others, but the discrepancy between SKMd and
SKM is less than other pairs.

D. Automatic Bad Cluster Removal

The OPD-based cluster removal in Section II-B was also
implemented for SKMd. As listed in Table IV, the results
were slightly degraded compared to ES. It is useful when the
number of clusters k is larger. ES needs to repeat the process of
classification and evaluation for K times.

E. Computing Time

To further compare the computational complexity in addition
to Table I, the computing times when the algorithms run in a
personal computer with 2.26-GHz CPU and 4.0-GB memory
were recorded and listed in Table V. We can see that SKM
can save significant amount of time compared to the traditional
RKM, WaLuMI, and WaLuDi. Note that the running time
spent by SKM does not include the time for band selection
(as the initial condition), so it can approximately represent for
the running time of SKM(CC); using different initials do not
have much impact on the convergence speed of the SKM-based
algorithms in these experiments.

IV. CONCLUSION

Band clustering has been investigated for hyperspectral di-
mensionality reduction. By allowing nonadjacent bands to be
clustered together, its performance is better than those grouping
adjacent bands only. Different from unsupervised clustering
using all the pixels or supervised clustering requiring labeled
pixels, the proposed semisupervised band clustering needs class

TABLE V
COMPUTING TIMES OF DIFFERENT ALGORITHMS (IN SECONDS)

spectral signatures only, thereby significantly reducing com-
putational cost. After clustering, a cluster selection step can
further improve the following data analysis performance; ES or
the OPD-based automated cluster removal can be adopted. The
experimental results also showed that preselected distinctive
bands can be a good choice as algorithm initial, and the distance
metric plays a role in the clustering performance.

However, the proposed algorithm does require class signa-
tures. These can be obtained by prior information. In practice,
these signatures can be extracted directly from the image scene
using an endmember extraction algorithm.
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