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Abstract—This paper presents a new semisupervised segmen-
tation algorithm, suited to high-dimensional data, of which re-
motely sensed hyperspectral image data sets are an example. The
algorithm implements two main steps: 1) semisupervised learning
of the posterior class distributions followed by 2) segmentation,
which infers an image of class labels from a posterior distribution
built on the learned class distributions and on a Markov random
field. The posterior class distributions are modeled using multino-
mial logistic regression, where the regressors are learned using
both labeled and, through a graph-based technique, unlabeled
samples. Such unlabeled samples are actively selected based on
the entropy of the corresponding class label. The prior on the
image of labels is a multilevel logistic model, which enforces seg-
mentation results in which neighboring labels belong to the same
class. The maximum a posteriori segmentation is computed by the
α-expansion min-cut-based integer optimization algorithm. Our
experimental results, conducted using synthetic and real hyper-
spectral image data sets collected by the Airborne Visible/Infrared
Imaging Spectrometer system of the National Aeronautics and
Space Administration Jet Propulsion Laboratory over the regions
of Indian Pines, IN, and Salinas Valley, CA, reveal that the
proposed approach can provide classification accuracies that are
similar or higher than those achieved by other supervised methods
for the considered scenes. Our results also indicate that the use of a
spatial prior can greatly improve the final results with respect to a
case in which only the learned class densities are considered, con-
firming the importance of jointly considering spatial and spectral
information in hyperspectral image segmentation.

Index Terms—Active learning, hyperspectral image classifi-
cation, Markov random field (MRF), multilevel logistic (MLL)
model, multinomial logistic regression (MLR), semisupervised
learning.

I. INTRODUCTION

IN RECENT years, several important research efforts have
been devoted to remotely sensed hyperspectral image seg-

mentation and classification [1]. Hyperspectral image classi-
fication and segmentation are related problems. In order to
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define the problems in mathematical terms, let S ≡ {1, . . . , n}
denote a set of integers indexing the n pixels of a hyperspectral
image. Similarly, let L ≡ {1, . . . , K} be a set of K class
labels, and let x ≡ (x1, . . . ,xn) ∈ R

d×n denote an image in
which the pixels are d-dimensional feature vectors. Finally, let
y ≡ (y1, . . . , yn) ∈ Ln denote an image of class labels. The
goal of hyperspectral image classification is, for every image
pixel i ∈ S, to infer the class labels yi ∈ L from the feature
vectors xi ∈ R

d (referred to hereinafter as spectral vectors). On
the other hand, the goal of hyperspectral image segmentation
is to partition the set of image pixels S into a collection of
sets Ri ⊂ S, for i = 1, . . . , K, sometimes called regions, such
that the image pixels in each set Ri be close in some sense.1

Nevertheless, in this paper, we use the term classification when
there is no spatial information and segmentation when the
spatial prior is being considered.

Supervised classification (and segmentation) of high-
dimensional data sets such as hyperspectral images is a difficult
endeavor. Obstacles, such as the Hughes phenomenon, arise as
the data dimensionality increases, thus fostering the develop-
ment of advanced data interpretation methods, which are able
to deal with high-dimensional data sets and limited training
samples [2].

In the past, both discriminative and generative models were
used for hyperspectral image interpretation. More specifically,
techniques based on discriminative models learn directly the
posterior class distributions, which are usually far less complex
than the class-conditional densities in which generative models
are supported. As a consequence, discriminative approaches
mitigate the curse of dimensionality because they demand
smaller training sets than the generative ones [3]–[5]. Data
interpretation based on the use of discriminant functions, which
basically encode the boundaries between classes in the feature
space, is another effective way of handling very high dimen-
sional data sets [5].

Support vector machines (SVMs) [6] and multinomial
logistic regression (MLR) [7] rely, respectively, on discriminant
functions and posterior class distributions, based on which
many state-of-the-art classification methods are built. Due to
their ability to effectively deal with large input spaces (and to
produce sparse solutions), SVMs have been successfully used
for supervised classification of hyperspectral image data [2],
[8]–[10]. In turn, MLR-based techniques have the advantage

1We recall that a partition of a set S is a collection of sets Ri ⊂ S, for
i = 1, . . ., where ∪i=1Ri = S and Ri ∩ Rj = ∅, i �= j.
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of being able to model the posterior class distributions in
a Bayesian framework, thus supplying (in addition to the
boundaries between the classes) a degree of plausibility for
such classes. Effective sparse MLR methods are available
[11]. These ideas have been recently applied to hyperspectral
image classification and segmentation, obtaining promising re-
sults [12].

In order to improve the accuracies obtained by SVMs or
MLR-based techniques, some efforts have been directed toward
the integration of spatial (contextual) information with spectral
information in hyperspectral data interpretation [2], [9], [12].
However, due to the supervised nature of these methods, their
performance is conditioned by the fact that the acquisition
of labeled training data is very costly (in terms of time and
finance) in remote sensing applications. In contrast, unlabeled
training samples can be obtained easily. This observation has
fostered active research on the area of semisupervised learning
in which classification techniques are trained with both labeled
and unlabeled training samples [13], [14]. This trend has been
successfully adopted in remote sensing studies [2], [15]–[18].
Most semisupervised learning algorithms use some type of
regularization which encourages that “similar” features belong
to the same class. The effect of this regularization is to push the
boundaries between classes toward regions of low data density
[14], where a rather usual way of building such regularizer
is to associate the vertices of a graph to the complete set
of samples and then build the regularizer depending on the
variables defined on the vertices.

In this paper, we introduce a new semisupervised learning
algorithm that exploits both the spatial contextual information
and the spectral information in the interpretation of remotely
sensed hyperspectral data. The algorithm implements two main
steps: 1) semisupervised learning of the posterior class distrib-
utions, implemented by an efficient version of semisupervised
learning algorithm in [13], followed by 2) segmentation, which
infers an image of class labels from a posterior distribution
built on the learned class distributions and on a multilevel
logistic (MLL) prior on the image of labels. The posterior class
distributions are modeled using MLR, where the regressors
are learned using both labeled and (through a graph-based
technique) unlabeled training samples. For step 1), we use a
block Gauss–Seidel iterative method which allows dealing with
data sets that, owing to their large size (in terms of labeled
samples, unlabeled samples, and number of classes), are beyond
the reach of the algorithms introduced in [13]. The spatial
contextual information is modeled by means of an MLL prior.
The final output of the algorithm is based on a maximum
a posteriori (MAP) segmentation process which is computed
via a very efficient min-cut-based integer optimization tech-
nique. The remainder of this paper is organized as follows.
Section II formulates the problem and describes the proposed
approach. Section III describes the estimation of the multino-
mial logistic regressors, including a generalized expectation
algorithm to compute their MAP estimate, and a fast algorithm
based on the Gauss–Seidel iterative procedure. Section IV
gives details about the MLL prior. Section V addresses the
MAP computation of the segmentation via integer optimization
techniques based on cuts on graphs. An active method for

selecting unlabeled training samples is also introduced. Sec-
tion VI reports performance results for the proposed algorithm
on synthetic and real hyperspectral data sets and compares
such results with those provided by state-of-the-art competitors
reported in the literature. The two real hyperspectral scenes
considered in our experiments were obtained by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) over the re-
gions of Indian Pines, IN, and Salinas Valley, CA. These
scenes have been widely used in the literature and have high-
quality ground-truth measurements associated to them, thus
allowing a detailed quantitative and comparative evaluation of
our proposed algorithm. Finally, Section VII concludes with
some remarks and hints at plausible future research avenues.

II. PROBLEM FORMULATION AND PROPOSED APPROACH

With the notation introduced in Section I in mind, let us
define an image region as Rk ≡ {i ∈ S|yi = k}, i.e., Rk is
the set of image pixels i ∈ S with class labels yi = k ∈ L. We
note that the collection Ri, for i = 1, . . . , K, is a partition of
S and that the map between vectors y ∈ Ln, which we term as
labelings, and partitions of S, which we term as segmentations,
is one-to-one. We will thus refer interchangeably to labelings
and segmentations.

The goal of both image classification and image segmenta-
tion is to estimate y having observed x, a hyperspectral image
made up of d-dimensional pixel vectors. In a Bayesian frame-
work, the estimation y having observed x is often carried out by
maximizing the posterior distribution2 p(y|x) ∝ p(x|y)p(y),
where p(x|y) is the likelihood function (i.e., the probability of
the feature image x given the labeling y) and p(y) is the prior
on the labeling y. Assuming conditional independence of the
features given the class labels, i.e., p(x|y) =

∏i=n
i=1 p(xi|yi),

then the posterior p(y|x), as a function of y, may be written as

p(y|x) =
1

p(x)
p(x|y)p(y)

= c(x)
i=n∏
i=1

p(yi|xi)
p(yi)

p(y) (1)

where c(x) ≡
∏i=n

i=1 p(xi)/p(x) is a factor not depending on y.
The MAP segmentation is then given by

ŷ = arg max
y∈Ln

{
n∑

i=1

(log p(yi|xi) − log p(yi)) + log p(y)

}
.

(2)

In this approach, the densities p(yi|xi) are modeled with
the MLR, which corresponds to discriminative model of the
discriminative–generative pair for p(xi|yi) Gaussian and p(yi)
multinomial [19], [20]. Notice that p(yi) can be any distri-
bution, as long as the marginal of p(y) is compatible with
such distribution. The estimation of vector of regressors pa-
rameterizing the MLR is formulated as in [13], following a

2To keep the notation simple, we use p(·) to denote both continuous densities
and discrete distributions of random variables. The meaning should be clear
from the context.
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semisupervised approach. To compute the MAP estimate of
the regressors, we apply a new block Gauss–Seidel iterative
algorithm. The prior p(y) on the labelings y is an MLL Markov
random field (MRF), which encourages neighboring pixels to
have the same label. The MAP labeling/segmentation ŷ is
computed via the α-expansion algorithm [21], a min-cut-based
tool to efficiently solve integer optimization problems. All these
issues are detailed in the next section.

III. ESTIMATION OF THE LOGISTIC REGRESSORS

The MLR model is formally given by [7]

p(yi = k|xi,ω) =
exp

(
ω(k)h(xi)

)∑K
k=1 exp

(
ω(k)h(xi)

) (3)

where h(x) ≡ [h1(x), . . . , hl(x)]T is a vector of l fixed func-
tions of the input, often termed as features; ω(k) is the set of lo-
gistic regressors for class k, and ω ≡ [ω(1)T

, . . . ,ω(K−1)T
]T .

Given the fact that the density (3) does not depend on transla-
tions on the regressors ω(k), we set ω(K) = 0.

Note that the function h may be linear, i.e., h(xi) =
[1, xi,1, . . . , xi,d]T , where xi,j is the jth component of xi,
or nonlinear. Kernels [6], i.e., h(xi) = [1,Kx,x1 , . . . ,Kx,xl

]T ,
where Kxi,xj

= K(xi,xj) and K(·, ·) is some symmetric ker-
nel function, are a relevant example of the nonlinear case.
Kernels have been largely used because they tend to improve
the data separability in the transformed space. In this paper, we
use a Gaussian radial basis function (RBF) kernel K(x, z) ≡
exp(−‖x − z‖2/(2ρ2)), which is widely used in hyperspectral
image classification [8]. From now on, d denotes the dimension
of h(x).

In this problem, learning the class densities amounts to
estimating the logistic regressors ω. Since we are assuming a
semisupervised scenario, this estimation is based on a small set
of labeled samples DL ≡ {(y1,x1), . . . , (yL,xL)} and a larger
set of unlabeled samples XU ≡ {xL+1, . . . ,xL+U}. Given that
our approach is Bayesian, we need to build the posterior density

p(ω|YL,XL,XU ) ∝ p(YL|XL,XU ,ω)p(ω|XL,XU ) (4)

= p(YL|XL,ω)p(ω|XL+U ) (5)

where YL ≡ {y1, . . . , yL} denotes the set of labels in DL,
XL ≡ {x1, . . . ,xL} denotes the set of feature vectors in DL,
and XL+U stands for {XL,XU}. Here, we have used the
conditional-independence assumption in the right-hand side
of (5).

The MAP estimate of ω is then given by

ω̂ = arg max
ω

{l(ω) + log p(ω|XL+U )} (6)

where

l(ω) ≡ log p(YL|XL,ω) ≡ log
L∏

i=1

p(yi|xi,ω)

≡
L∑

i=1

⎛⎝xT
i ω(yi) − log

K∑
j=1

exp
(
xT

i ω(j)
)⎞⎠ (7)

is the log-likelihood function of ω given the labeled samples
DL, and p(ω|XL+U ) acts as prior on ω. Following the rationale
introduced in [13], we adopt the Gaussian prior

p(ω|Γ) ∝ exp
{
−1

2
ωT Γω

}
(8)

where the precision matrix Γ = Γ(XL+U ) is built in such a way
that the density p(ω|Γ) promotes vectors ω, leaving “close”
labeled and unlabeled features h(x), for x ∈ XL+U , in the
same class. The distance between features is defined in terms of
a weighted graph G = (V, E ,B), where V is the set of vertices
corresponding to labeled and unlabeled data, E is a set of edges
defined on V × V , and B is a set of weights defined on E . With
these definitions in place, the precision matrix is written as

Γ(λ) = Λ ⊗ (A + τI)

where symbol ⊗ denotes the Kronecker product, τ > 0 is a
regularization parameter, and

Λ ≡ diag(λ1, . . . , λ(K−1))

A ≡XΔXT

X ≡ [h(x1), . . . ,h(xL+U )]
Δ ≡Laplacian of the graph G.

Notice that Γ(λ) is a block diagonal matrix, i.e.,

Γ(λ) = diag
(
λ1(A + τI), . . . , λ(K−1)(A + τI)

)
where diag(A1, . . . ,AK) stands for a block diagonal matrix
with diagonal blocks A1, . . . ,AK and λ1, . . . , λ(K−1) are non-
negative scale factors.

With the previous definitions, we have

ωT Γ(λ)ω =
K−1∑
k=1

λk

(
ω(k)T

Aω(k) + τ‖ωk‖2
)

.

The quadratic term τ‖ωk‖2 acts as a regularizer, ensuring
that the estimation of ω is not ill posed. At the same time, in
order to ensure that this quadratic regularizer does not modify
the rule of matrix A, the value of τ should be much smaller
than the largest eigenvalue of A. In order to interpret the rule
of the quadratic terms ω(k)T

Aω(k), let V ≡ {1, . . . , U + L}
and B ≡ {βij ≥ 0, (i, j) ∈ E} denote, respectively, the set of
vertices and weights of G. Having in mind the meaning of the
Laplacian of a graph, we have

ω(k)T

Aω(k) = ω(k)T

XT ΔXω(k)

=
∑

(i,j)∈E
βij

[
ω(k)T

(h(xi) − h(xj))
]2

.

Therefore, the lower values of ω(k)T
Aω(k), corresponding

to the most probable regressors ω(k), occur when both features
xi and xj are in the same side of the separating hyperplane
defined by ω(k). In this way, the prior acts as regularizers
on ω(k), promoting those solutions for which the features
connected with higher values of weights βij are given the same
label. This implies that the boundaries among the classes tend
to be pushed to the regions of low density with respect to the
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underlying graph G. In accordance with this rationale, we set in
this paper

βij = e−‖h(xi)−h(xj)‖2 . (9)

According to a Bayesian point of view, the parameters
λ1, . . . , λ(K−1) are random variables and should be integrated
out. We assume that they are distributed according to Gamma
densities, which are conjugate priors for the inverse of a vari-
ance of Gaussian densities [22]. More precisely, we assume
they are independent and that

λi ∼ Gam(α, β), i = 1, . . . , K − 1 (10)

where Gam(α, β) stands for a Gamma distribution with shape
parameter α and inverse scale parameter β. Noting that λi,
i = 1, . . . ,K − 1, are scaling parameters, we set α, β to very
small values, thus obtaining a density close to that of Jeffreys
prior. We note that the Jeffreys prior, which is noninformative
for scale parameters, is obtained by setting to zero the shape
and the inverse scale parameters of a Gamma density.

A. Computing the MAP Estimate of the Regressors

To compute the MAP estimate of ω, we use an expectation-
maximization (EM) algorithm [23] where the scale factors
λi, for i = 1, . . . ,K − 1, are the missing variables. The EM
algorithm is an iterative procedure that computes, in each
iteration, the so-called E-step (for mean value) and the M-step
(for maximization). More specifically, at iteration t, these steps
are formally given by
E-step

Q(ω|ωt) ≡ E [log p(ω,λ|D)|ωt] (11)

M-step

ωt+1 ∈ arg max
ω

Q(ω|ωt). (12)

In (11), D ≡ {DL,XU} denotes the set of labeled and unla-
beled samples. The most relevant property of the EM algorithm
is that the sequence p(ωt|D), for t = 1, 2, . . ., is nondecreasing
and, under mild assumptions, converges to local optima of the
density p(ω|D).

B. E-Step

From (5) and (8), we have

p(ω,λ|D) = p(YL|XL,ω)p (ω|Γ(λ)) p(λ)cte (13)

where cte does not depend on ω and λ and p(λ) ≡∏K−1
i=1 p(λi). We have then

Q(ω|ωt) = E
[
log p(YL|XL,ω) − (1/2)ωT Γ(λ)ω + C|ωt

]
= log p(YL|XL,ω) − (1/2)ωT E [Γ(λ)|ωt] ω + C ′

= l(ω) − (1/2)ωT Υ(ωt)ω + C ′ (14)

where l(ω) is the log-likelihood function given by (7),
Υ(ωt) ≡ E[Γ(λ)|ωt], and C and C ′ do not depend on ω.
Since Γ(λ) is linear on λ, then Υ(ωt) = Γ(E[λ|ωt]).

Owing to the use of conjugate Gamma hyperpriors, the
expectations E[λi|ω] have well-known closed forms [22]. For
the present setting, we have

γk ≡ E[λk|ω] = (2α + d)
[
2β +

(
ω̂(k)

)T

(A + τI)ω̂(k)

]−1

for k = 1, . . . ,K − 1.

C. M-Step

Given the matrix Υ(ω̂), the M-step amounts to maximizing
the objective function (14), which is a logistic regression prob-
lem with a quadratic regularizer. Hereinafter, we adopt the gen-
eralized EM (GEM) [23] approach, which consists in replacing,
in the M-step, the objective function Q(·|·) with another one
which is simpler to optimize. A necessary condition for GEM
to still generate a nondecreasing sequence p(ωt|D), for t =
1, 2, . . ., is that Q(ωt+1|ωt) ≤ Q(ωt|ωt), for t = 1, 2, . . . In
order to build a simpler objective function, we resort to bound
optimization techniques [24], which aim precisely at replacing
a difficult optimization problem with a series of simpler ones.

Let g(ω) be the gradient of l(ω) given by

g(ω) =
L∑

i=1

(eyi
− pi) ⊗ h(xi)

where ek is the kth column of the identity matrix of size
K − 1 and

pi≡ [p(y=1|xi,ω), p(y=2|xi,ω), . . . , p(y=K−1|xi,ω)]T .
(15)

Let us define the nonpositive definite matrix as

B ≡ −1
2

[
I − 11T

K − 1

]
⊗

L∑
i=1

h(xi)h(xi)T (16)

where 1 denotes a column vector of 1s and 1T is the transpose
of such column vector. The quadratic cost function is defined as

QB(ω|ω̂) ≡ l(ω̂) + (ω − ω̂)T g(ω̂)

+
[
(ω − ω̂)T B(ω − ω̂) − ωT Γ(ω̂)ω

]
/2.

Let H(ω) be the Hessian of l(ω). Matrix H − B is semipos-
itive definite [7], i.e., H(ω) � B for any ω. It is then easy to
show that

Q(ω|ω̂) ≥ QB(ω|ω̂)

with equality if and only if ω = ω̂. Thus, QB(ω|ω̂) is a valid
surrogate function for Q(ω|ω̂). That is, by replacing Q with
QB in (11), the inequality Q(ωt+1|ωt) ≥ Q(ωt|ωt) for t =
1, 2, . . . still holds, which implies that p(ωt|D) ≤ p(ωt+1|D),
for t = 1, 2, . . ..

The maximizer of QB(ω|ωt) with respect to ω is

ωt+1 = (B − Γ(ωt))
−1 (Bωt − g(ωt))

which amounts to solving a linear system with d(K −
1) unknowns, thus with O((d(K − 1))3) complexity. This



LI et al.: SEMISUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION 4089

complexity may be unbearable, even for middle-sized data sets.
To tackle this difficulty, a sequential approach in which the
algorithm only maximizes QB with respect to one element of ω
at a time is proposed in [13]. Here, the complexity of a complete
scanning of all elements of ω is O(Kd(L + d)), which is much
lighter than O((d(K − 1))3). What we have found out, how-
ever, is that the convergence rate of this algorithm is too small,
a factor that rules out its application in realistic hyperspectral-
imaging applications.

In order to increase the convergence rate and to handle
systems of reasonable size, we implement a block Gauss–Seidel
iterative procedure in which the blocks are the regressors of
each class. Thus, in each iteration, we solve K − 1 systems
of dimension d. Furthermore, we have observed that just one
iteration before recomputing the precision matrix Γ is nearly
the best choice. Notice that, even with just one Gauss–Seidel
iteration, the algorithm is still a GEM. The improvement in
complexity with respect to the exact solution is given by
O((K − 1)2), which makes a difference when there are many
class labels, as it is indeed the case in most hyperspectral-
imaging applications.

The pseudocode for the GEM algorithm to compute the
MAP estimate of ω is shown in Algorithm 1, where GEMiters
denotes the maximum number of GEM iterations and BSGiters
denotes the number of block Gauss–Seidel iterations. The no-
tation (·)(k) stands for the block column vectors corresponding
to regressors ω(k).

Algorithm 1 GEM algorithm to estimate the MLR re-
gressors ω

Input: ω0, DL, XU , α, β, τ , GEMiters, BSGiters
Define: uk,l ≡ [I − 11T/(K − 1)]k,l

R ≡
∑L

i=1 h(xi)h(xi)T , X ≡ [h(x1), . . . ,h(xL+U )]
B := B(X) (∗ build the graph weights according to (9) ∗)
Δ := Δ(B) (∗Δ is the Laplacian of graph G∗)
i := 1
A := XΔXT

while i ≤ GEMiter or stopping criterion is not satisfied
do

λk := (2α + d)[2β + (ω(k)
i )T (A + τI)ω(k)

i ]−1,
k = 1, . . . ,K − 1
z := Bωi−1 − g(ωi−1)
Ck,l := uk,lR − λl(A + τI)
for j := 1 to BSGiters do

for k := 1 to K − 1 do
ω

(k)
(i) = solution{Ck,kω(k) = z(k) −∑K−1

l=1,l �=k Ck,lω
(l)
i }

end for
end for

end while

IV. MULTILEVEL LOGISTIC SPATIAL PRIOR

In segmenting real-world images, it is very likely that neigh-
boring pixels belong to the same class. The exploitation of

this (seemingly naive) contextual information improves, in
some cases, dramatically, the classification performance. In this
paper, we integrate the contextual information with spectral
information by using an isotropic MLL prior to modeling the
image of class labels y. This prior, which belongs to the MRF
class, encourages piecewise smooth segmentations and thus
promotes solutions in which adjacent pixels are likely to belong
to the same class. The MLL prior is a generalization of the Ising
model [25] and has been widely used in image segmentation
problems [26].

According to the Hammersley–Clifford theorem [27], the
density associated with an MRF is a Gibbs’s distribution [25].
Therefore, the prior model for segmentation has the following
structure:

p(y) =
1
Z

e

(
−

∑
c∈C

Vc(y)

)
(17)

where Z is a normalizing constant for the density, the sum in
the exponent is over the so-called prior potentials Vc(y) for the
set of cliques3 C over the image, and

−Vc(y) =

⎧⎨⎩
υyi

, if |c| = 1 (single clique)
μc, if |c| > 1 and ∀i,j∈cyi = yj

−μc, if |c| > 1 and ∃i,j∈cyi �= yj

(18)

where μc is a nonnegative constant.
The potential function in (18) encourages neighbors to have

the same label. By varying the set of cliques and the parameters
υyi

and μc, the MLL prior offers a great deal of flexibility.
For example, the model generates texture-like regions if μc

depends on c and bloblike regions, otherwise [28]. By taking
eυyi ∝ p(yi) and μc = (1/2)μ > 0, (17) can be rewritten as

p(y) =
1
Z

e

∑
i∈S

υyi
+μ

∑
(i,j)∈C

δ(yi−yj)

(19)

where δ(y) is the unit impulse function.4 This choice gives no
preference to any direction concerning υyi

. A straightforward
computation of p(yi), i.e., the marginal of p(y) with respect
to i, leads to p(yi) ∝ eυyi . Thus, in order to retain the com-
patibility between the prior and the marginal, we take υyi

=
log p(yi) + cte, where cte is a constant term. Notice that the
pairwise interaction terms δ(yi − yj) attach higher probability
to equal neighboring labels than the other way around. In this
way, the MLL prior promotes piecewise smooth segmentations.
The level of smoothness is controlled by parameter μ.

In this paper, we consider only the first- and second-
order neighborhoods, i.e., considering that pixels are arranged
in a square grid where the distance between horizontal or
vertical neighbors is defined to be one; the cliques cor-
responding to first- and second-order neighborhoods are,
respectively, {(i, j) ∈ C|d(i, j) ≤ 1, i, j ∈ S} and {(i, j) ∈
C|d(i, j) ≤

√
2, i, j ∈ S}, where d(i, j) is the distance between

pixels i, j ∈ S.

3A clique is a single term or either a set of pixels that are neighbors of one
another.

4That is, δ(0) = 1, and δ(y) = 0, for y �= 0.
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V. COMPUTING THE MAP ESTIMATE VIA GRAPH CUTS

Based on the posterior class densities p(yi|xi) and on the
MLL prior p(y) and according to (2), the MAP segmentation is
finally given by

ŷ = arg min
y∈Ln

∑
i∈S

− (log p(yi|ω̂) − log p(yi))

−

⎛⎝∑
i∈S

log p(yi) + μ
∑

i,j∈C

δ(yi − yj)

⎞⎠
= arg min

y∈Ln

∑
i∈S

− log p(yi|ω̂) − μ
∑

i,j∈C

δ(yi − yj) (20)

where p(yi|ω̂) ≡ p(yi|xi,ω), computed at ω̂. Minimization of
(20) is a combinatorial optimization problem involving unary
and pairwise interaction terms. The exact solution for K = 2
was introduced by mapping the problem into the computation
of a min-cut on a suitable graph [29]. This line of attack
was reintroduced in the beginning of this century and has
been intensely researched since then (see, e.g., [21] and [30]–
[32]). As a result of this research, the number of integer
optimization problems that can now be solved exactly (or with
a very good approximation) has increased substantially. A key
element in graph-cut-based approaches to integer optimization
is the so-called submodularity of the pairwise terms: A pair-
wise term V (yi, yj) is said to be submodular (or graph rep-
resentable) if V (yi, yi) + V (yj , yj) ≤ V (yi, yj) + V (yj , yi),
for any yi, yj ∈ L. This is the case of our binary term
−μδ(yi − yj). In this case, the α-expansion algorithm [21]
can be applied. It yields very good approximations to the
MAP segmentation problem and is efficient from a compu-
tational point of view, its practical computational complexity
being O(n).

A. Semisupervised Algorithm

Let XL+U ≡ {xU+1, . . . ,xn} denote the unlabeled set in x.
The pseudocode for the proposed semisupervised segmenta-
tion algorithm with discriminative class learning MLL prior is
shown in Algorithm 2.

Algorithm 2 Semisupervised segmentation algorithm

Input: DL, XU , XL+U , XL+U , GEMiters, BSGiters, α, β, τ , m
1: while stopping criterion is not satisfied do
2: ω̂ := GEM(DL,XU , α, β, τ, GEMiters, BSGiters)
3: P̂ := p̂(xi, ω̂), xi ∈ XL+U

4: (∗P̂ collects the MLR probabilities (15) for all feature
vectors in XL+U∗)

5: Xnew := ϕ(P̂,m)
6: (∗ϕ(P̂,m) selects m unlabeled samples from XL+U . See

explanation ∗)
7: XL+U := XL+U + Xnew

8: XL+U := XL+U −Xnew

Fig. 1. Block scheme of Algorithm 2.

9: end while
10: P̂ := p̂(xi, ω̂), i ∈ S
11: ŷ := α-expansion(P̂, μ, neighborhood)

Lines 2, 10, and 11 of Algorithm 2 embody the core of our
proposed algorithm. Specifically, line 2 implements the semi-
supervised learning of the MLR regressors through the GEM
procedure described in Algorithm 1. It uses both the labeled and
unlabeled samples. Line 10 computes the multinomial probabil-
ities for the complete hyperspectral image. Line 11 computes
the MAP segmentation efficiently by applying the α-expansion
graph-cut-based algorithm. The neighborhood parameter for
the α-expansion determines the strength of the spatial prior.
For illustrative purposes, Fig. 1 shows the most relevant compo-
nents of the proposed segmentation algorithm in a flowchart.

B. Active Selection of Unlabeled Samples

Lines 3–8 in Algorithm 2 implement the procedure for active
selection of unlabeled training samples. The objective is to
select sets of unlabeled samples, based on the actual results pro-
vided by the classifier, that will hopefully lead to the best per-
formance gains for the classifier. Contrary to active selection of
labeled samples [33]–[35], the selection of unlabeled samples
has not been studied in detail in the literature. These samples
are inexpensive and thus, the question of how many unlabeled
samples should be used in hyperspectral data classification
arises. In the context of the proposed methodology, however,
the complexity of the learning process increases significantly
with the incorporation of unlabeled samples, leading to cubic
complexity when all samples (labeled and unlabeled) are used
for classification. In turn, active selection of a limited number
of unlabeled samples allows us to reduce computational com-
plexity significantly and to achieve overall performances that
otherwise would be only reached with a much larger number of
samples.

In this paper, we have considered two strategies for the
selection criterion implemented by function ϕ shown in line 5
of Algorithm 2.

1) Random: In step 5, these m unlabeled samples are ran-
domly selected from XL+U .

2) Maximum entropy: In step 5, these m unlabeled samples
have the maximum entropy HI(xi) = [p̂(1), . . . , p̂(K)],
xi ∈ XL+U , which correspond to the samples near the
classifier boundaries.

In the literature, active-selection studies for the labeled sam-
ples give evidence that maximum entropy yields very good per-
formance [13], [34]. However, this paper is different, as we use
active selection for the set of unlabeled samples. Nevertheless,
we still consider this criterion for our approach. In the next
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section, we will justify the good behavior of this criterion in
the case of active selection of unlabeled samples.

C. Overall Complexity

The complexity of Algorithm 2 is dominated by the semi-
supervised learning stage of the MLR regressors implemented
through the GEM process in Algorithm 1, which has computa-
tional complexity O(d3(K − 1)) as described in Section III-A,
and also by the α-expansion algorithm used to determine the
MAP segmentation, which has practical complexity O(n) as
described in Section V. Since in most applications, d3(K −
1) > n, the overall complexity is dominated by that of the
GEM process in Algorithm 1, which is used to learn the MLR
regressors.

As already discussed, compared with the semisupervised
algorithm presented in [13], the proposed semisupervised algo-
rithm is (K − 1)2 faster. For a problem with 500 labeled pixels,
224 bands, and ten classes on a 2.31-GHz personal computer,
with only the first 20 iterations, the proposed algorithm took
10.53 s, whereas the algorithm in [13] took 106.77 s.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm using both simulated and real hyperspectral data sets.
The main objective in running experiments with simulated data
is the assessment and characterization of the algorithm in a
controlled environment, whereas the main objective in running
experiments with real data sets is comparing its performance
with that reported for state-of-the-art competitors with the same
scenes.

This section is organized as follows. Section VI-A reports
the experiments with simulated data and contains the following
experiments. In Section VI-A1, we conduct an evaluation of the
impact of the spatial prior on the analysis of simulated data sets.
Section VI-A2 performs an evaluation of the impact of incorpo-
rating unlabeled samples to the analysis. Finally, Section VI-A3
conducts an experimental evaluation of the increase in classifi-
cation results after including the active-selection methodology.
On the other hand, Section VI-B evaluates the performance
of the proposed algorithm using two real hyperspectral scenes
collected by AVIRIS over agricultural fields located at In-
dian Pines, IN [1], and the Valley of Salinas, CA [1]. In
this section, the algorithm is compared with state-of-the-art
competitors.

It should be noted that, in all experiments other than those
related with the evaluation of the impact of the spatial prior,
we use RBF kernels K(x, z) = exp(−‖x − z‖2/(2ρ2)) to nor-
malize the data.5 The scale parameter of the RBF kernel is
set to ρ = 0.6. In our experiments, we use all of the available
spectral bands without applying any feature-selection strategy.
Since we use RBF kernels, the overall complexity only depends
on the total number of labeled and unlabeled samples. Thus, the
application of feature-selection techniques makes no significant

5The normalization is xi := (xi/(
√∑

‖xi‖2)), for i = 1, . . . , n, where
xi is a spectral vector and x is the collection of all image spectral vectors.

Fig. 2. Classification and segmentation results obtained after applying the
proposed method on a simulated hyperspectral scene representing a bi-
nary classification problem. (a) Ground-truth class labels. (b) Classifica-
tion result (OA = 66.94%, with OAopt = 75.95%). (c) Segmentation result
(OA = 96.41%).

differences in this particular scenario. Although this setting is
not optimal for all experiments, we have observed that it yields
very good results in all experiments. In all cases, the reported
values of the overall accuracy (OA) are obtained as the mean
values after ten Monte Carlo runs with respect to the labeled
samples DL, except for the results over the AVIRIS Salinas
data set, which are obtained after five Monte Carlo runs. The
labeled samples for each Monte Carlo simulation are obtained
by resampling a much larger set of labeled samples. Finally, it is
important to emphasize that, in this section, we will frequently
refer to classification and segmentation results, respectively,
when addressing the results provided by the MLR (spectral-
based classification) and the complete algorithm (which intro-
duces contextual information to provide a final segmentation).

A. Experiments With Simulated Data

In this section, a simulated hyperspectral scene is used
to evaluate the proposed semisupervised algorithm mainly to
analyze the impact of the smoothness parameter μ. For this
purpose, we generate images of labels y ∈ Ln sampled from
a 128 × 128 MLL distribution with μ = 2. The feature vectors
are simulated according to

xyi
= myi

+ nyi
, i ∈ S, yi ∈ Ln (21)

where xyi
denotes the spectral vector, myi

denotes a known
vector, and nyi

denotes zero-mean Gaussian noise with covari-
ance σ2I, i.e., nyi

∼ N (0, σ2I).
In Section VI-A1, we address a binary classification problem,

i.e., K = 2, with xyi
∈ R

50, myi
= ξiφ, ‖φ‖ = 1, and ξi =

±1. The image of class labels y is shown in Fig. 2(a), where
labels yi = 1, 2 correspond to ξi = −1,+1, respectively. In this
problem, the theoretical OA, given by OAopt ≡ 100(1 − Pe)%
and corresponding to the minimal probability of error [36] is

Pe =
1
2
erfc

(
1 + λ0√

2σ

)
p0 +

1
2
erfc

(
1 − λ0√

2σ

)
p1 (22)

where λ0 = (σ2/2) ln(p0/p1) and p0 and p1 are the a priori
class labels probability.

In Section VI-A2, the images of class labels are generated
with K = 10 and myi

= syi
, for i ∈ S, where sk, for k ∈

L, are spectral signatures obtained from the U.S. Geological
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Fig. 3. (a) OA results as a function of the spatial-prior parameter μ with L = 10 and σ2 = 2. (b), (c), and (d) OA results as a function of the standard deviation
σ of the noise introduced in the simulated hyperspectral image, considering different numbers of labeled training samples.

Survey (USGS) digital spectral library.6 For a multiclass classi-
fication problem, because the probability of error is difficult to
compute, we use the error bound

Pe ≤ K − 1
2

erfc
(

distmin

2σ

)
(23)

where distmin denotes the minimum distance between any point
of mean vectors, i.e., distmin = mini�=j ‖myi

− myj
‖, for any

yi, yj ∈ L. This is the so-called union bound [5], which is
widely used in multiclass classification problems [37], [38].

Finally, in Section VI-A3 we use the same experimental
setting as in Section VI-A1 except for the number of spectral
band, which is set to 200, i.e., xyi

∈ R
200.

Impact of Including a Spatial Prior: In this example, we
use a linear kernel in the characterization of the simulated
hyperspectral scene because it yields the correct discriminative
density for the Gaussian observations with equal covariance
matrix. The number of unlabeled samples is set to zero in this
experiment mainly because our focus is to analyze the effect of
the spatial prior independent of other considerations. Fig. 3(a)
shows the OA results as a function of the smoothness parameter
μ. It should be noted that the segmentation performance is
almost insensitive to μ, with μ ≥ 1 for the considered problem.
In the following experiments, we empirically set μ = 1. Again,
although this setting might not be optimal, it leads to good and
stable results in our experiments.

On the other hand, Fig. 3(b)–(d) shows the OA results with
10, 100, and 1000 labeled samples per class, respectively, as
a function of the noise standard deviation σ. As shown by the
plots, it can be observed that the classification OA approaches
the optimal value OAopt as the number of labeled samples is
increased, but it is also clear that the number of labeled samples
needs to be relatively high in order to obtain classification
accuracies that are close to optimal. In turn, it can also be seen
in Fig. 3 that the inclusion of the spatial prior provides much
higher segmentation accuracies than those reported for the clas-
sification stage (superior in all cases to the values of OAopt).
Further, the sensitivity of these results to the amount of noise
in the simulated hyperspectral image can be compensated by
increasing the number of labeled samples, but accurate values
of segmentation OA can be obtained using very few labeled
samples, in particular, when the amount of simulated noise

6The USGS library of spectral signatures is available online: http://speclab.
cr.usgs.gov.

Fig. 4. OA results as a function of the number of unlabeled samples.
(a) Analysis scenario based on a fixed number of L = 400 (40 labeled training
samples per class) and σ = 0.4. (b) Analysis scenario based on a fixed number
of L = 500 (50 labeled training samples per class) and σ = 0.45. Solid
and dashed–dot lines represent random selection and maximum-entropy-based
active selection, respectively.

is not very high. This experiment confirms our introspection
that the inclusion of a spatial prior can significantly improve
the classification results provided by using only spectral in-
formation. For illustrative purposes, Fig. 2(b) and (c) shows
the classification and segmentation maps, respectively, obtained
with σ2 = 2 and L = 100. In this example, the increase in
OA introduced by incorporating the spatial prior with regard
to the optimal classification that can be achieved (OAopt =
75.95%) is clearly noticeable (about 20.46%), thus revealing
the importance of including the spatial prior after classification.

Impact of Incorporating Unlabeled Samples: In this section,
we analyze the impact of including unlabeled samples via an
active selection strategy in the analysis of simulated hyperspec-
tral data. Specifically, we consider two selection strategies for
unlabeled samples: 1) random and 2) maximum-entropy-based.
The latter corresponds to selecting unlabeled samples close
to the boundaries between regions in a feature space. Fig. 4
shows the OA results obtained for the proposed algorithm
as a function of the number of unlabeled samples for two
different analysis scenarios: 1) fixed number of labeled training
samples, L = 400 (40 per class) and noise standard deviation
σ = 0.4, and 2) fixed L = 500 (50 per class) and σ = 0.45. The
theoretical OA, termed as OAopt ≡ 100(1 − Pe)%, where Pe

denotes the union bound in this problem, is also plotted. After
analyzing the results reported in Fig. 4, the following general
observations can be made.

1) The inclusion of a spatial prior improves the classifica-
tion OA.

2) The inclusion of unlabeled samples improves the seg-
mentation OA by roughly 15% in Fig. 4(a) and by
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Fig. 5. Changes in the definition of the boundary by the proposed classifier
in a binary classification problem as the number of unlabeled samples (selected
using a maximum-entropy-based criterion) is increased.

approximately 10% in Fig. 4(b). This effect is observed
for all considered numbers of unlabeled samples.

3) Finally, it is clear from Fig. 4 that the maximum-entropy-
based active selection performs uniformly better than the
random active selection in terms of OAs.

Impact of the Considered Active-Selection Approach: The
main objective of this section is to provide an informal justifi-
cation about why the proposed method for maximum-entropy-
based active selection of unlabeled samples performs accurately
in the experiments. Fig. 5, with 20 labeled samples (ten per
class), shows the improvements in the definition of the sepa-
ration boundaries established by our proposed classifier as the
number of unlabeled samples increases, using a toy example. In
Fig. 5(a) in which the noise standard deviation is set to σ = 0.1,
the red circles denote the labeled samples. The red line is the
classifier boundary defined with zero unlabeled samples. An
OA of 79.32% was obtained in this case. The yellow plus signs
(a total of U = 50) represent the unlabeled samples. Since we
have selected the unlabeled samples with maximum entropy
and the entropy of a sample increases as it approaches the
boundary, the selected unlabeled samples are over the contour
and located in the area of higher density. The inclusion of these
samples has pushed the contour outward, thus ensuring that
all of them stay in the same classification region. Of course,
the movement of the boundary in the opposite direction would
have also left all the unlabeled samples in the same side of the
boundary but would have decreased too much the likelihood
term associated with the labeled samples. In this example, the
final OA after including the unlabeled samples is 98.6%. A
similar phenomenon is observed in Fig. 5(b) in which σ =
0.3 is considered. For illustrative purposes, Table I shows the
OA results as a function of the number of unlabeled samples
for the example shown in Fig. 5(b). Each column of Table I
corresponds to a different type of color/thickness in Fig. 5(b),
from the thin red line to the thick red line. It is clear that,
as the number of unlabeled samples increases, the definition
of the separating boundary improves along with the overall
performance of the classifier.

B. Experiments With Real Hyperspectral Data

In order to further evaluate and compare the proposed al-
gorithm with other state-of-the-art techniques for classification
and segmentation, in this section, we use two real hyperspectral
data sets collected by the AVIRIS instrument operated by the

National Aeronautics and Space Administration Jet Propulsion
Laboratory.

1) The first data set used in experiments was collected over
the Valley of Salinas, Southern California, in 1998. It
contains 217 × 512 pixels and 224 spectral bands from
0.4 to 2.5 μm, with nominal spectral resolution of 10 nm.
It was taken at low altitude with a pixel size of 3.7 m. The
data include vegetables, bare soils, and vineyard fields.
The upper leftmost part of Fig. 6 shows the entire scene
(with overlaid ground-truth areas) and a subscene of the
data set (called hereinafter as Salinas A), outlined by a
red rectangle. The Salinas A subscene comprises 83 ×
86 pixels and is known to represent a difficult classi-
fication scenario with highly mixed pixels [39], where
the lettuce fields can be found for different weeks since
being planted. The upper rightmost part of Fig. 6 shows
the available ground-truth regions for the scene, and the
bottom part of Fig. 6 shows some photographs taken in
the field for the different agricultural fields at the time of
data collection.

2) The second data set used in the experiments is the
well-known AVIRIS Indian Pines scene, collected over
Northwestern Indiana in June of 1992 [1]. This scene,
with a size of 145 × 145 pixels, was acquired over a
mixed agricultural/forest area early in the growing sea-
son. The scene comprises 224 spectral channels in the
wavelength range from 0.4 to 2.5 μm, nominal spectral
resolution of 10 nm, and spatial resolution of 20 m
by pixel. For illustrative purposes, Fig. 7(a) shows the
ground-truth map available for the scene, displayed in
the form of a class assignment for each labeled pixel,
with 16 mutually exclusive ground-truth classes. These
data, including ground-truth information, are available
online,7 a fact which has made this scene a widely used
benchmark for testing the accuracy of hyperspectral data-
classification and segmentation algorithms.

Experiments With the Full AVIRIS Salinas Data Set: Table II
reports the segmentation and classification scores achieved
for the proposed method with the full AVIRIS Salinas data
set in which the accuracy results are displayed for different
numbers of labeled samples (ranging from 5 to 15 per class)
and considering also unlabeled samples in a range from U = 0
(no unlabeled samples) to U = 2 × L. As shown in Table II,
the proposed algorithm obtains very good OAs with limited
training samples. Specifically, with only 240 labeled pixels
(15 per class), the OAs obtained are 93.87% (U = 0), 94.70%
(U = L), and 95.13% (U = 2 × L), which are better than the
best result reported in [10] for a set of SVM-based classifiers
applied to the same scene with a comparatively much higher
number of training samples. Specifically, the SVM classifier
in [10] was trained with 2% of the available ground-truth
pixels, which means a total of around 1040 labeled samples
(about 65 per class). The results reported in this paper are only
slightly lower than those reported in [39] using a multilayer
perceptron (MLP) neural-network classifier trained with 2%

7http://cobweb.ecn.purdue.edu/~biehl/MultiSpec/
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TABLE I
OA (IN PERCENT) AS A FUNCTION OF THE NUMBER OF UNLABELED SAMPLES IN THE TOY EXAMPLE SHOWN IN FIG. 5(b)

Fig. 6. AVIRIS Salinas data set along with the classification maps by using L = 128 and U = 256. (a) Right side: Original image at 488-nm wavelength with
the red rectangle indicating a subscene called Salinas A. (a) Left side: Ground-truth map containing 16 mutually exclusive land-cover classes. (b) Classification
map (OA = 82.55%). (c) Segmentation map (OA = 91.14%). (Bottom) Photographs taken at the site during data collection.

Fig. 7. AVIRIS Indian Pines scene along with the classification and segmentation maps by using L = 160 and U = 288. (a) Ground-truth map containing
16 mutually exclusive land-cover classes. (b) Classification map (OA = 62.98%). (c) Segmentation map (OA = 74.98%).
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TABLE II
CLASSIFICATION (IN PARENTHESES) AND SEGMENTATION OAS (IN PERCENT) ACHIEVED AFTER APPLYING THE PROPOSED ALGORITHM TO THE

FULL AVIRIS SALINAS DATA SET USING DIFFERENT NUMBERS OF LABELED TRAINING SAMPLES (L). THE NUMBER OF UNLABELED SAMPLES U
IS SET TO U = 0, L, AND 2 × L. EACH VALUE OF OA REPORTED IN THE TABLE WAS OBTAINED AFTER FIVE MONTE CARLO RUNS

TABLE III
SEGMENTATION OAS (IN PERCENT) ACHIEVED AFTER APPLYING THE

PROPOSED ALGORITHM TO THE AVIRIS SALINAS A SUBSCENE USING

DIFFERENT NUMBERS OF LABELED TRAINING SAMPLES (L). THE

NUMBER OF UNLABELED SAMPLES U IS SET IN A RANGE BETWEEN

U = 0 AND U = 5 × L. THE CLASSIFICATION RESULTS OBTAINED

BY THE PROPOSED METHOD WITHOUT THE SPATIAL PRIOR ARE

ALSO REPORTED. EACH VALUE OF OA REPORTED IN THE

TABLE WAS OBTAINED AFTER TEN MONTE CARLO RUNS

of the available ground-truth pixels and with multidimensional
morphological feature extraction prior to classification (the
maximum OA reported in [39] for the full AVIRIS Salinas
scene was 95.27%, but this result again used a comparatively
much higher number of training samples).

On the other hand, it can also be seen from Table II that the
inclusion of a spatial prior significantly improves the results
obtained by using the spectral information only (approximately,
on the order of 6% increase in OA). Furthermore, the inclusion
of unlabeled samples in the proposed approach increases the
OA by approximately 1% or 2% with regard to the case in
which only labeled samples are used. The aforementioned
results confirm our introspection (already reported in the simu-
lated data experiments) that the proposed approach can greatly
benefit from the inclusion of spatial prior and unlabeled sam-
ples in order to increase the already good classification accura-
cies obtained using the spectral information only. Fig. 6(b) and
(c) shows the classification and segmentation maps. Effective
results can be seen in these maps.

Experiments With the AVIRIS Salinas A Subscene: In this
experiment, we use a subscene of the Salinas data set, which
comprises 83 × 86 pixels and six classes. As mentioned earlier,
this subscene is known to represent a challenging classification
scenario due to the similarity of the different lettuce classes
comprised by the subscene, which are at different weeks since
planting and hence, have similar spectral features only distin-
guished by the fraction of lettuce covering the soil in each of
the 3.7-m pixels of the scene. Table III reports the segmentation
(with spatial prior) scores achieved for the proposed method

with the AVIRIS Salinas A subscene in which the accuracy
results are displayed for different numbers of labeled samples
(ranging from three to ten per class) and considering also
unlabeled samples in a range from U = 0 (no unlabeled sam-
ples) to U = 5 × L. The classification results (obtained without
using the spatial prior and for U = 5L) are also displayed
in Table III. As shown by Table III, the proposed algorithm
achieved a segmentation OA of up to 99.28% for U = 4 × L
and only five labeled samples per class (30 labeled samples
in total). This represents an increase of approximately 4.27%
OA with respect to the same configuration for the classifier but
without using the spatial prior. These results are superior to
those reported in [10] and [39] for the classes included in the
AVIRIS Salinas A subscene using an SVM-based classifier and
an MLP-based classifier with multidimensional morphological
feature extraction, respectively.

Experiments With the AVIRIS Indian Pines Data Set:
Table IV reports the segmentation and classification scores
achieved for the proposed method with the AVIRIS Indian
Pines data set in which the accuracy results are displayed for
different numbers of labeled samples (ranging from 5 to 15 per
class) and considering also unlabeled samples in the range
from U = 0 (no unlabeled samples) to U = 32 × k, with k =
0, 1, . . . , 9. As with the previous experiments, the number of
labeled samples in Table IV represents the total number of sam-
ples selected across the different classes, with approximately
the same amount of labeled samples selected for each class.
After a detailed analysis of the experimental results reported
in Table IV, it is clear that the proposed segmentation method
(with spatial prior) provides competitive results for a limited
number of labeled samples, outperforming the same classifier
without spatial prior in all cases by a significant increase in OA
(the increase is always on the order of 10% or higher).

Further, the use of unlabeled samples significantly increases
the OA scores reported for the proposed segmentation algo-
rithm. Just as an example, if we assume that eight labeled
samples are used per class, increasing the number of unla-
beled samples from 0 to 288 results in an OA increase of
approximately 5%, indicating that the proposed approach can
greatly benefit not only from the inclusion of a spatial prior
but also from the incorporation of an active learning strategy in
order to provide results which are competitive with other results
reported in the literature with the same scene. For instance, the
proposed algorithm yields better results in terms of OA than the
semisupervised cluster SVMs introduced in [18]. Specifically,
when 128 labeled samples (eight samples per class) are used
by our proposed method, the OA of the proposed approach
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TABLE IV
CLASSIFICATION (IN PARENTHESES) AND SEGMENTATION OAS (IN PERCENT) ACHIEVED AFTER APPLYING THE PROPOSED ALGORITHM

TO THE FULL AVIRIS INDIAN PINES DATA SET USING DIFFERENT NUMBERS OF LABELED TRAINING SAMPLES (L). THE NUMBER

OF UNLABELED SAMPLES U IS SET IN A RANGE BETWEEN U = 0 AND U = 32 × k, WITH k = 0, 1, . . . , 9. THE CLASSIFICATION

RESULTS OBTAINED BY THE PROPOSED METHOD WITHOUT THE SPATIAL PRIOR ARE ALSO REPORTED. EACH VALUE

OF OA REPORTED IN THE TABLE WAS OBTAINED AFTER TEN MONTE CARLO RUNS

is 69.79% (U = 288, obtained by active selection), which is
comparable with the best result 69.82% reported in [18] (using
519 labeled samples). For illustrative purposes, Fig. 7(b) and (c)
shows the classification and segmentation maps, respectively.
These figures show the effective results without severe block
artifacts. Notice that the results shown in Figs. 6 and 7 are ob-
tained with just eight and ten samples per class, respectively. To
give an idea of the quality of this result, we note that the recent
semisupervised technique [18] takes approximately two times
more training samples to achieve a comparable performance, if
we take into account only classification results, and four times
more, if we use spatial information (see Table IV).

At this point, we want to call attention for the “good”
performance of the proposed algorithm, including the active-
selection procedure, in the four small-size classes, namely,
“Alfalfa (54 samples),” “Grass/pasture mowed (26 samples),”
“Oats (20 samples),” and “Stone–steel towers (95 samples).”
Without going into deep details, this performance is essentially
a consequence of having decent estimates for the regressors ω
given by (6), a condition without which the active selection
would fail to provide good results [33].

VII. CONCLUSION AND FUTURE LINES

In this paper, we have introduced a new semisupervised
classification/segmentation approach for remotely sensed hy-
perspectral data interpretation. Unlabeled training samples (se-
lected by means of an active-selection strategy based on the
entropy of the samples) are used to improve the estimation
of the class distributions. By adopting a spatial multilevel
logistic prior and computing the MAP segmentation with the α-
expansion graph-cut-based algorithm, it has been observed that
the overall segmentation accuracy achieved by our proposed
method in the analysis of simulated and real hyperspectral
scenes collected by the AVIRIS improves significantly with
respect to the classification results proposed by the same al-
gorithm using only the learned class distributions in spectral
space. This demonstrates the importance of considering not
only spectral but also spatial information in remotely sensed

hyperspectral data interpretation. The obtained results also sug-
gest the robustness of the method to analysis scenarios in which
limited labeled training samples are available a priori. In this
case, the proposed method resorts to intelligent mechanisms
for automatic selection of unlabeled training samples, thus
taking advantage of an active learning strategy in order to en-
hance the segmentation results. A comparison of the proposed
method with other state-of-the-art classifiers in the considered
(highly representative) hyperspectral scenes indicates that the
proposed method is very competitive in terms of the (good)
overall accuracies obtained and the (limited) number of training
samples (both labeled and unlabeled) required to achieve such
accuracies. Further work will be directed toward testing the
proposed segmentation approach in different analysis scenar-
ios dominated by the limited availability of training samples
a priori.
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