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Abstract

Objective—To obtain high-quality positron emission tomography (PET) image with low-dose 

tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its 

low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI).

Methods—It was achieved by patch-based sparse representation (SR), using the training samples 

with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, 
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the number of training samples with complete modalities is often limited. In practice, many 

samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus 

cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled 

dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the 

samples with complete modalities (called complete samples) but also the samples with incomplete 

modalities (called incomplete samples), to take advantage of the large number of available training 

samples and thus further improve the prediction performance.

Results—Validation was done on a real human brain dataset consisting of 18 subjects, and the 

results show that our method is superior to the SR and other baseline methods.

Conclusion—This work proposed a new S-PET prediction method, which can significantly 

improve the PET image quality with low-dose injection.

Significance—The proposed method is favorable in clinical application since it can decrease the 

potential radiation risk for patients.

Index Terms

Positron emission tomography (PET); Sparse representation (SR); Local coordinate coding (LCC); 

Semi-supervised tripled dictionary learning (SSTDL)

I. Introduction

Nowadays, positron emission tomography (PET) is increasingly and widely used in hospitals 

and clinics for disease diagnosis and intervention. Different from computed tomography 

(CT) and magnetic resonance imaging (MRI), PET provides insight into the biochemical and 

physiological processes of the human body [1]. Due to its unique advantages, PET has been 

widely used in many medical imaging applications, such as clinical oncology [2], cardiac 

usages [3], and certain brain diseases [4–6]. The PET scanning is non-invasive, however, the 

radiotracer used for PET imaging (e.g., 18F-FDG) involves ionizing radiation. The standard-

dose scans in our cohort averaged 203 MBq of 18F-FDG, which corresponds to an effective 

dose of 3.86 mSv. Based on the report “Biological Effects of Ionizing Radiation (BEIR 

VII)”, the increased risk of incidence of cancer is 10.8% per Sv, so one brain PET scan 

increases lifetime cancer risk by about 0.04%. The International Commission on Radiation 

Protection considers the increased risk of death by cancer to be about 4% per Sv, so one 

brain PET scan increases the risk of death from cancer by 0.015%. These numbers are small, 

but the risks are multiplied for patients who undergo multiple PET scans as part of their 

treatment regimen. In addition, pediatric patients have increased risks. Therefore, the long-

term focus of this work is to reduce the total dose for these non-standard populations at 

increased risk from PET radiation dose. However, reducing the tracer dose will degrade the 

PET image quality, since PET imaging is a quantum accumulation process. Hence, to 

estimate the high-quality standard-dose PET (S-PET) image from a low-dose PET (L-PET) 

image is a promising alternative approach and is of great research interest. Moreover, it has 

been shown that MR images can be used to improve the PET reconstruction image. 

Especially in PET brain imaging, the added value of using MR images during PET 

reconstruction (i.e., as anatomical prior) or after PET reconstruction (i.e., for partial volume 

correction) has been studied in great detail already over the past decades. A recent review 
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discussing these methods can be found in [7]. In this paper, we explore the use of both L-

PET image and multimodal MRI (T1-weighted and diffusion tensor imaging (DTI)) to 

estimate the S-PET image. Note that the common DTI measures include fractional 

anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), etc. Here, we compute FA 

and MD images from diffusion images for S-PET image prediction.

Sparse representation (SR) is an approach to represent a given signal as a linear combination 

of a small number of elements in a dictionary, and it has been widely used in different areas 

of image processing, such as image resolution enhancement [8], and image denoising [9]. 

Although the real-world PET images are often not sparse, they could be approximated by 

their sparse components, leading to the application of SR technique on PET images. Many 

studies have shown that the performance of SR depends on not only the signal itself but also 

the completeness of the dictionary [10]. Various approaches have been proposed to build 

over-complete dictionaries. For SR application in resolution enhancement, the dictionaries 

are built with all training samples [11]. Specifically, the sparse coefficients estimated from 

the low-resolution dictionary (constructed by all the low-resolution training image patches) 

are applied to the corresponding high-resolution dictionary (constructed by all the 

corresponding high-resolution training image patches). In this way, the high-resolution 

image patch is reconstructed from a given low-resolution image patch. This kind of 

dictionary construction approach typically requires coupled samples, i.e., each sample in the 

training set should have both low-resolution and high-resolution images. Similarly, 

following the same idea as in image super-resolution, PET prediction requires each sample 

in the training set to have the complete modalities, including multimodal MR (T1, FA and 

MD), L-PET and S-PET images. Nevertheless, this requirement is hardly satisfied in 

practice. To address this issue, we propose to effectively utilize all the available training 

samples (referred to as incomplete) to predict the S-PET image.

Instead of using predefined dictionaries, dictionary learning (DL) has been extensively 

studied to learn the dictionary atoms that are adapted to the data with a specific distribution. 

The DL technique has been widely applied in PET image analysis. Specifically, authors in 

[12] proposed an adaptive dictionary learning approach for PET image deblurring while 

suppressing Poisson noise effects. In [13], a reconstruction framework integrating SR and 

DL into a maximum likelihood estimator has been proposed for accurate and robust PET 

image reconstruction. Besides, dual dictionary learning has been successfully applied to 

biomedical imaging as well [14–16]. Recently, local coordinate coding (LCC) based 

dictionary learning, which can find non-zero coefficients for dictionary atoms that are 

neighbors of the target sample for SR, has shown promising results in many applications 

[17–21]. Inspired by LCC, we propose an efficient semi-supervised tripled dictionary 

learning method to predict the S-PET image from L-PET and multimodal MRI. Also, before 

dictionary learning, a graph-based mapping strategy is developed to make the embedded 

geometric relationship of the patches in the multimodal MRI/L-PET similar to the 

relationship of those in the S-PET. In addition, a fusion strategy for multimodal MRI is 

further developed to avoid any prediction bias due to the possible domination of multimodal 

MRI over the L-PET, and also to balance the contribution of each channel of multimodal 

MRI in SR. After mapping and multimodal MRI fusion, the fused multimodal MRI, L-PET 

and S-PET will have similar data distributions (i.e., similar embedded geometric relationship 
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of the patches). Then, in the training stage, we use the complete samples to explore the 

relationship between MRI/L-PET and S-PET patches. This is to ensure that the SR of MRI 

and L-PET patches using the MRI and L-PET dictionaries can be directly used to 

reconstruct the corresponding S-PET patch using the S-PET dictionary. In addition, the 

incomplete samples are introduced to ensure that each learned dictionary can also well 

reconstruct patches from each modality. In the testing stage, given a sample with multimodal 

MRI and L-PET images, its coupled MRI and L-PET patches can be jointly encoded by the 

learned MRI and L-PET dictionaries via LCC, to obtain the sparse coefficients. Finally, the 

prediction can be performed by applying the obtained sparse coefficients to the learned S-

PET dictionary.

Below, we first introduce the preprocessing procedure, including both the graph-based 

mapping strategy and the multimodal MRI fusion strategy, in Section 2. Then, Section 3 

presents the details of semi-supervised tripled dictionary learning based on LCC with an 

instantiation of our problem. Finally, the experimental results are shown in Section 4, and 

conclusions are drawn in Section 5.

II. Data Preprocessing: Mapping and Fusion

Suppose that the training set consists of the complete samples with multimodal MRI (T1, FA 

and MD), L-PET and S-PET images, as well as the incomplete samples missing images 

from one or more modalities. Before dictionary learning, two procedures will be performed, 

including the graph-based data mapping and the multimodal MRI fusion. The motivation 

and technical details are discussed in the following subsections.

A. Graph-based Data Mapping

The quality of the predicted S-PET image largely depends on whether the learned sparse 

representation can well reconstruct the testing image. By applying the traditional SR, the 

underlying assumption is that the embedded geometric relationship of patches in the S-PET 

image space (i.e., represented by graph gS) is very similar to that of patches in the MRI/L-

PET image space (i.e., represented by graphs gMR/gL). Note that a graph here represents the 

feature distribution of image patches. Specifically, each node in the graph represents a patch, 

and each edge describes the geometric relationship between a pair of patches. Based on the 

above assumption, the sparse coefficients estimated from the MRI/L-PET patch space can be 

directly used to predict the S-PET image patches in the S-PET patch space. However, the 

above assumption may not be satisfied due to the huge difference in imaging mechanisms 

between PET and MR images, which is further enlarged by different imaging noise 

introduced during acquisition. Therefore, to make the geometric relationship of patches 

between MRI/L-PET and S-PET more similar, we should find a way to transform the graphs 

gMR/gL MRI/L-PET images to best match the graph gS of the respective S-PET image. This 

can be done by enforcing node-to-node matching, edge-to-edge matching, or even high-

order matching between the gMR/gL and gS In this study, we consider only the node-to-node 

and edge-to-edge matching, although the plane-to-plane matching or higher-order matching 

can be easily realized.
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Taking the mapping between L-PET and S-PET images for example, we first find the 

samples with both L-PET and S-PET images from the training set, and then compute their 

mapping matrix ML as follows:

(1)

where  is an S-PET image patch,  is its corresponding L-PET image patch, and ML is a 

mapping matrix to transform  Eq. (1) is a least-square problem and it has an analytical 

solution. The patch size in this paper is set to be 5×5×5. In our case, we reshape the patch 

into a vector with 125 elements, and thus the dimension of the mapping matrix ML is 

125×125. The first term represents node-to-node matching between graphs gS and gL ; that 

is, the mapped L-PET image patch  should be similar to . The second term 

enforces that the relationship between the mapped image patches  and 

should be very similar to that between  and , which can be regarded as edge-to-edge 

matching. Examples of node-to-node matching, edge-to-edge matching, and high-order 

matching are given in Fig. 1. In this paper, index i of Eq. (1) is running over all patches of 

the training images to ensure the node-to-node matching. For reducing the computational 

complexity, index j is just running over the patches within a neighborhood (with a size of 

15×15×15) centered at the voxel assigned with index i across all training images, to enforce 

the edge-to-edge matching. After solving the above equation and obtaining the mapping 

matrix ML, the mapped L-PET image patch  can be easily calculated. The mapping 

matrices MT1, MFA, MMD between MRI (T1, FA and MD) and S-PET images can be 

estimated in a similar way, and then the mapped T1, FA and MD image patches can be 

obtained accordingly (see Fig. 2).

B. Multimodal MRI Fusion

Since we employ three MRI modalities (T1, FA and MD, with the latter two computed from 

the same DTI) for helping S-PET image prediction, it is important to combine the useful 

information from different MRI modalities into a single MRI representation. To this end, we 

unify three different MRI patches by weighted averaging. To determine the weight for each 

modality, the following optimization problem is employed:

(2)

where , , and  represent the T1, FA and MD image patches, respectively, w = 

wT1, wFA, wMD] is a vector of three weights associated with , , and , 

Wang et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively. Eq. (2) is a constrained least-square problem and has an analytical solution. 

Again, the index i is running over all patches of the training images, which has the same 

meaning as in Eq. (1). Then, with these estimated weights, the fused image patch  from 

multimodal MRI patches can be obtained as follows:

(3)

The mapping and fusion procedures of multimodal MR images are illustrated in Fig. 2.

All mapped L-PET patches as well as fused MR patches will be used for subsequent 

dictionary learning. For simplicity, in the following, we will use the L-PET image to refer to 

the mapped L-PET image, and the MR image to refer to the fused image from the mapped 

T1, FA and MD images.

III. Semi-supervised Tripled Dictionary Learning

In this section, we first briefly introduce the LCC method that serves as the basis of the 

dictionary learning in our method, and then the details of the proposed semi-supervised 

tripled dictionary learning method will be discussed.

A. LCC based Dictionary Learning

LCC based dictionary learning aims to learn a dictionary that can best reconstruct a 

(training) patch xi locality during coding [22]. Here, the locality means that the patches are 

represented by their neighboring atoms in the dictionary. Specifically, given N H -

dimensional training patches  (where H indicates the patch 

size, and N is the number of patches in each image times the number of training images), the 

dictionary  (where P indicates the number of the atoms in 

the dictionary) can be learned by minimizing the following objective function:

(4)

where xi is the i-th patch to be represented,  is the corresponding 

sparse coefficient of xi,  is the q-th component of αi, and D = [d1, …, dq, …, dp] is the 

dictionary to be learned with dq as the q-th column of the dictionary D. The first term 

measures the reconstruction error, while the second term preserves the locality of the coding 

by strongly penalizing dictionary atoms that are far from xi. The parameter μ is used to 

balance the construction error and locality penalty.

Although the above objective function is not jointly convex over D and {αi} it is convex 

with respect to each unknown variable when the other one is fixed. As a result, Eq. 4 can be 

alternatively optimized by updating one variable at a time. Using this strategy, the 
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optimization problem of the above objective function can be divided into two sub-problems 

as detailed below: 1) updating sparse coefficients {αi} while fixing D, and 2) updating 

dictionary D while fixing {αi}.

Updating Sparse Coefficients—We first fix the dictionary D to update the sparse 

coefficient vector {αi}, which can be converted to a sparse coding problem. To initialize the 

dictionary, each atom is generated by performing random linear combination of all N 

training patches, with the sum of combination weights being equal to 1. Then, let βi = Λiαi 

where  is a diagonal matrix whose diagonal elements are 

 Using the above transformation, the objective function of LCC based 

dictionary learning can be expressed as a LASSO problem [23]:

(5)

where  denotes the l1-norm. After βi is solved, αi is obtained by .

Updating Dictionary—After solving {αi} for all patches, optimizing D becomes a 

constrained quadratic programming problem. Specifically, by expanding the squares of the 

objective function and omitting the terms without D, we can obtain:

(6)

where  is component-wise absolute value of αi, i.e., , and Ψi is a diagonal matrix 

with its diagonal elements constructed from  i.e.,  and tr[·] represents the 

trace of the square matrix, which computes the sum of the elements on the diagonal of the 

square matrix. Let ,  and eq and fq represent the 

q-th columns of matrices E and F. Then, the optimization of D can be solved by using the 

gradient descent method. Specifically, in the k-th iteration, the q-th column of D, , can be 

updated as follows:

(7)

where D(k) is the dictionary at the k-th iteration, and Δ is a scalar controlling the step size. 

Let NA denote the number of. iterations for updating the atoms of dictionary.
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The steps of 1) updating sparse coefficients and 2) updating dictionary iterate until 

convergence, in order to obtain the optimized dictionary. As the iteration increases, the 

objective function will gradually approach its optimum. The iteration will end when the 

difference between two iterations is lower than the predefined threshold or the iteration 

reaches the maximum number. In this paper, we set the number of iterations for the 

alternating optimization in dictionary learning, denoted as ND, to be 20. This number was 

chosen, because it results in a very small change in objective function value between 

subsequent iterations, i.e., less than 0.01%, and can therefore be considered sufficient to lead 

to convergence.

B. Semi-Supervised Tripled Dictionary Learning for S-PET Image Prediction

In a supervised dictionary learning scheme, the complete samples with all MRI, L-PET and 

S-PET images are required for prediction of S-PET image. However, in practice, it is hard to 

simultaneously obtain all the modality images for a large number of subjects, while many 

subjects have only one or two modality image(s) (i.e., MRI, L-PET, or S-PET). In order to 

also utilize those incomplete samples for improving the dictionary learning, we propose a 

semi-supervised tripled dictionary learning (SSTDL) method that can utilize all the complete 

and incomplete data.

In the training stage, both complete and incomplete samples are used in a semi-supervised 

manner to learn three dictionaries, DMR, DL and DS for MRI, L-PET and S-PET, 

respectively. In the testing stage, given an MR image and the associated L-PET image, the 

goal is to predict the target S-PET image by first jointly encoding the MR and L-PET images 

using the dictionaries DMR and DL and then applying the obtained sparse coefficients to the 

dictionary DS The flowchart of the proposed semi-supervised tripled dictionary learning for 

prediction of S-PET image is shown in Fig. 3. In our method, we assume that, if atoms in the 

dictionary are similar to the patch of the testing voxel (under prediction), the related patches 

should also have similar S-PET values. Considering the smoothness of anatomical structures 

of human brain, for each testing voxel (under prediction), the patches near the testing voxel 

should be also similar. Therefore, to ensure the collection of enough atoms in the dictionary 

that are relevant to the testing voxel and also able to reconstruct this testing sample, we 

define a neighborhood centered at the testing voxel to extract image patches for learning the 

dictionaries. In the following subsection, the training stage of the SSTDL method is 

presented in detail.

1) Semi-Supervised Tripled Dictionary Learning—In our method, each voxel of a 

target S-PET image is predicted independently. Specifically, to predict the value of a voxel z 

in the unknown S-PET image, we first define a neighborhood centered at voxel z with the 

size ω× ω× ω in the training images. By grouping all the patches with the same size of ρ× 

ρ× ρ centered at voxels in the same neighborhood across all MRI, L-PET and S-PET of 

training subjects, three patch sets are generated: , 

, and , where H = ρ× ρ× 

ρ is the dimensionality of the patch, NMR, NL and NS are the numbers of MRI, L-PET and 

S-PET patches, respectively. Assuming that the top t tripled patches 
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 are acquired from the complete 

samples, and the other patches , ,  are acquired from the 

incomplete samples, the goal is to learn three dictionaries DMR, DL and DS, related to the 

MRI, L-PET and S-PET patch spaces, respectively. In the dictionary learning, each tripled 

patch , i = 1, …, t of three modalities are represented by the common 

coefficient vector  using the dictionaries DMR, DL and DS. For incomplete data, 

, ,  are respectively represented by the coefficient vectors 

,  and  using DMR, DL and DS, Let’s set 

, ,  and .

In the proposed semi-supervised tripled dictionary learning (SSTDL) method, the tripled 

patches can be used to enforce that the common sparse representation A(C) of an MRI patch 

and its associated L-PET patch, using DMR and DL can well reconstruct their respective S-

PET patch, using DS. Patches representation ability of the dictionary, i.e., the learned 

dictionaries can also well construct the corresponding incomplete samples. By using both 

the complete and the incomplete samples, the objective function of SSTDL is given by:

(8)

The above objective function includes four terms: one complete term Ecomplete and three 

incomplete terms EMR, EL and ES. The complete term uses the tripled patches 

 to learn the dictionaries DMR, DL, DS can represent the corresponding 

samples using the common coefficients matrix . Specifically, the complete 

term is defined by:

(9)

The incomplete terms are defined as follows:
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(10)

Although Eq. (8) is complex, it is convex over D when A is fixed and vice versa. Similar to 

LCC, Eq. (8) can be solved by dividing it into two sub-problems and optimizing D and A 

alternatively, as explained below.

Updating A(C), A(MR), A(L), A(S): First, we fix DMR, DL, and DS to update the sparse 

coefficients A(C), A(MR), A(L), A(S). The dictionary initializations are performed in a similar 

manner as that in Section 3.1.1. The individual sparse coefficients A(MR), A(L) and A(S), 

using three individual modality patch sets , , , can be 

directly obtained via the following three LASSO problems when fixing DMR, DL, and DS. 

Here, for conciseness, we give one equation with a variable (Q) that can be replaced by MR, 

L or S,

(11)

where ΛQ,i is a diagonal matrix whose diagonal elements are ,  is the 

q-th column of DQ, q = 1, …, P, and .

For the shared coefficient A(C) using the tripled patches, we can concatenate the tripled 

patches  and the corresponding dictionaries (DMR, DL and DS) to 

jointly learn A(C), which can be obtained using the following objective function of LCC.

(12)

where ΛC,i = ΛMR,i + ΛL,i + ΛS,i and .
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Updating Dictionaries DMR, DL, DS: Given the fixed sparse coefficients A(C), A(MR), A(L), 

A(S), the dictionaries DMR, DL and DS can be optimized individually by connecting the 

complete samples and the incomplete samples in a coherent manner, and also connecting the 

corresponding fixed coefficients in a similar way. Therefore, DMR, DL, and DS can be 

optimized as follows:

(13)

In summary, by alternatively updating the dictionaries DMR, DL, DS and the sparse 

coefficients A(C), A(MR), A(L), A(S), we can finally obtain three dictionaries DMR, DL and 

DS. In summary, by alternatively updating the dictionaries DMR, DL, DS the sparse 

coefficients A(C), A(MR), A(L), A(S), we can finally obtain three dictionaries DMR, DL and 

DS.

For better understanding the tripled dictionary training procedure, we give a pseudo code, as 

shown in Algorithm 1.

Algorithm 1

Tripled Dictionary Training

1: Input: Training patch sets , 

, and , and dictionary size P

2:

Initial: Initialize ,  and .

3. Repeat

4:  For i = 1, 2, …, t (t is the number of tripled patches) do

5:

  Compute  according to Eq. (12);

6:  End

7:  For i = t+1, t+2, …, NQ (Q can be replaced by MR, L or S) do

8:

  Compute  according to Eq. (11);

9:  End

10:  Update DMR, DL, and DS, according to Eq. 13.

11: Until convergence

12: Output: Tripled dictionaries DMR, DL, and DS.

2) SSTDL for S-PET Image Prediction—Given a testing sample with MR and L-PET 

images, for voxel z to be predicted, we respectively extract the patches  and  from 
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the testing MR and L-PET images. Note that  and  have been processed as 

described in Section 2. Then, we can jointly encode them by the LCC sparse representation 

using the learned dictionaries DMR and DL. Specifically, a sparse coefficient vector αtest is 

calculated as follows:

(14)

where Λtest is a diagonal matrix whose elements are , 

q = 1, …, P, and .

Then, we apply the estimated sparse coefficient vector αtest on DS to predict the S-PET 

image.

(15)

To determine the final prediction value at voxel z of the unknown S-PET image of the testing 

subject, one simple way is by taking the center value from the predicted patch . To 

preliminary evaluate the proposed method, we use the center value for the final prediction in 

the Experiments 4.1, 4.2 and 4.3. However, in Ref. [24], it is suggested to average the results 

of the overlapping patches to determine the final value. To compare the performance of the 

two estimation methods, we further average the overlapping prediction values on each voxel 

to its final prediction in the final experiment (Section 4.4).

IV. Experimental Results

Dataset

As an exploration study, we tried our best and recruited 18 healthy adult volunteers for PET 

and MRI imaging scan. In this dataset, eight subjects have the complete data (i.e., having all 

L-PET, S-PET and MR images from these three modalities), and the other 10 subjects have 

the incomplete data (i.e., without L-PET images). The detailed demographic information of 

these subjects is summarized in Table I.

All scans were acquired by a Siemens Biograph mMR system housed in the Biomedical 

Research Imaging Center, and this study has been approved by the University of North 

Carolina at Chapel Hill (UNC) Institutional Review Board. As mentioned above, the 

standard-dose scans in our cohort was administered an average of 203 MBq (from 191 MBq 

to 229 MBq) of 18F-2-deoxyglucose (18FDG), which corresponds to an effective dose of 

3.86 mSv and is in the low part of the range recommended by the Society of Nuclear 

Medicine and Molecular Imaging for FDG brain PET. The mean time post-injection was 36 
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minutes (from 32 to 41 minutes). S-PET and L-PET acquisitions were performed 

consecutively: first 12-minute S-PET immediately followed by 3-minute L-PET scans. The 

ordering was necessarily fixed due to the need to acquire clinical PET scans first and then 

experimental scans. This ordering creates a few implications. One of them is that the 

standard uptake value (SUV) increases slightly for the L-PET scans because the uptake in 

the brain continues to increase measurably during the acquisition time. Also, the effective 

noise level for the L-PET scans is slightly higher due to the radioactive decay that occurs 

during the acquisition time. We cannot say that these two effects cancel out, but they tend to 

work against each other to create L-PET datasets that are the equivalent of approximately 

one-quarter of the S-PET dose. In data acquisitions, no head holders were used. Subjects 

were simply asked to remain still. Resulting images were visually checked for apparent 

motion by examining the alignment of early S-PET and late L-PET images with the 

attenuation map, and only the cases that passed that check were used in the dataset. Both S-

PET and L-PET images of the same subject used the same attenuation map, which was 

acquired prior to the S-PET scan. Note that the attenuation maps were computed from the 

Dixon fat-water method provided by the scanner manufacturer. Iterative reconstruction was 

employed with the ordered subsets expectation maximization (OSEM) algorithm [25], with 

three iterations, 21 subsets, and post-reconstruction filtered with a 3D Gaussian with FWHM 

of 2 mm. Meanwhile, T1-weighted images and diffusion-weighted images (DTI) were also 

acquired. For each subject, the PET images and the DTI images are, respectively, co-

registered to the T1 image via affine transformation [26]. After image alignment, all images 

have the same dimensions of 128×128×128 and the same voxel size of 2.09×2.09×2.03 

mm3. Non-brain tissues were then removed from the aligned images using skull stripping 

[27], and the MR and L-PET images were preprocessed using intensity normalization to get 

more accurate sparse coefficients. A leave-one-out cross-validation (LOOCV) strategy is 

employed to evaluate the proposed method. In the testing stage, since the testing sample 

should have both MR and L-PET modalities, only the subjects with complete modalities can 

be used as the testing subject(s) in LOOCV.

Parameters

The selection of common parameters, such as patch size and neighborhood range, have been 

well studied (for details, see Ref. [28, 29]). Based on the suggested parameter settings as 

well as empirically validated in our experiments, the patch size and neighborhood range are 

set as 5×5×5 and 15×15×15, respectively. In the mapping procedure, the parameter γ with a 

value of 0.8 was found to be optimal [30]. As reported in Ref. [30], the parameter μ in 

SSTDL method for l1-norm strength is set to 0.1, to balance the reconstruction error and 

local penalty. Taking into account both the computational efficiency and the convergence of 

SSTDL method, we set the number of iterations NA for updating the atoms of dictionary to 

500 and the total number of iterations ND to 20. To ensure the redundancy of the learned 

dictionary in SSTDL method, we set the number of dictionary atoms to 512. The parameters 

for the SSTDL method used in the experiments are summarized in Table II.

Evaluations

To quantitatively evaluate the proposed method, three metrics were used for performance 

evaluation:
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1) Normalized mean square error (NMSE): This is used to measure the voxel-wise 

intensity differences between the predicted S-PET image  with the ground 

truth IS (i.e., the original S-PET image).

(16)

2) Peak signal-to-noise ratio (PSNR): This is used to evaluate the prediction 

accuracy in terms of the logarithmic decibel scale.

(17)

where R is the maximum intensity range of images IS and , represents the 

total number of voxels in the image. Lower NMSE and higher PSNR may 

suggest a high-quality prediction.

3) Contrast recovery (CR) correlation: Contrast recovery (CR) is used to assess the 

contrast level between the ROI and background.

(18)

where mean(ROI) represents the mean value of an ROI, and mean(Background) 

represents the mean value of the background. To compare the predicted S-PET 

and the ground-truth S-PET, we calculate CR correlation, which evaluates the 

relevance of CR between the predicted S-PET image and the ground-truth S-

PET:

(19)

where  and  are respectively the CR of the predicted S-PET image and the 

ground-truth S-PET of the i-th subject,  and  are respectively the average 

CR of the predicted S-PET images and the ground-truth S-PET images over all 

the subjects. In this paper, the hippocampus regions, which play an important 

role in the consolidation of information from short-term memory to long-term 

memory and spatial navigation [31], are used as the ROIs. And the cerebellum 

region was chosen as the background. To define the ROIs, we labeled the T1 
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images with 2 ROIs, hippocampus and cerebellum, by using a multi-atlas based 

segmentation method. Specifically, 15 MR brain images from the OASIS project 

and their corresponding label maps as provided by Neuromorphometrics, Inc. 

(http://Neuromorphometrics.com/) under academic subscription were selected as 

atlases. For a target image to be labeled, we registered multiple atlases onto the 

target image space (using FLIRT and Demons registration methods), and then 

used the estimated transformations to warp the corresponding label maps of 

atlases. Finally, we made use of a majority voting scheme on the warped label 

maps of all atlases, and then obtained the label map for the given target image. 

Ideally, the CR in the predicted S-PET image should be the same to the CR in 

the ground-truth S-PET; thus, the higher the CR correlation is, the better the 

prediction is.

A. S-PET Image Prediction using SSTDL

We first compare SSTDL with the SR method. Note that, for both methods, the data were 

processed according to the procedures described in Section 2, with both mapping and MRI 

fusion. For SR method, only the complete samples were used to construct the dictionaries, 

while, in the proposed SSTDL method, both complete and incomplete samples were used to 

jointly learn the dictionaries. Sample images of the prediction by SR and SSTDL are shown 

in Fig. 4.

As shown in Fig. 4, there is strong noise in the L-PET image. Compared to the S-PET 

image, some regions of the L-PET image are more fuzzy. This suggests that, with a reduced 

dose, the reconstructed L-PET has an inferior visibility compared to the desired S-PET 

images. The quality of the prediction by SR and SSTDL methods is substantially better 

based on visual observation than that of L-PET. Compared to SR, the prediction from our 

method is closer to the ground truth. For SR method, over-smoothing appears in some 

regions, which result in losing of some detailed information, as indicated by red arrows in 

Fig. 4. For quantitative comparison, we computed NMSE and PSNR between the predicted 

S-PET image and the ground-truth S-PET, and the results are given in Fig. 5. Table III lists 

the CR correlation scores.

From Fig. 5, we can see that, compared to the SR method, SSTDL consistently outperforms 

across different subjects, suggesting that the proposed method is more effective in predicting 

the S-PET image from MR and L-PET images. Meanwhile, the CR correlation of our 

method is higher than that of SR method as shown in Table 3, indicating that the prediction 

by SSTDL is much closer to the ground-truth S-PET. In summary, compared to the SR 

method, our method achieves better results due to the utilization of incomplete samples that 

are typically overlooked in the SR method.

B. Influence of Important Elements in SSTDL

We now investigate the influence of the key elements of the proposed method on prediction. 

Such elements include 1) the use of multimodal MR images for prediction, 2) the mapping 

strategy, and 3) the use of incomplete-modality samples for prediction.
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1) Influence of the Use of Multimodal MR Images for Prediction—In this 

experiment, we use, respectively, (1) L-PET alone, (2) the combination of single modal MR 

and L-PET images (T1+L-PET), and (3) the combination of multimodal MR and L-PET 

images (T1+FA+MD+L-PET), for S-PET image prediction. The results in terms of PSNR 

and NMSE are given in Fig. 6.

As shown in Fig. 6, if using only L-PET image, the prediction has the lowest image quality, 

implying that the additional information provided by MR images is critical for improving 

the prediction performance. Although the improvement can be obtained by using single 

modal MR image (i.e., T1) together with the L-PET image, the results are still not as good as 

those obtained by joint use of all multimodal MR images and the L-PET image. These 

results indicate the importance of using multimodal MR images (if available) for 

improvement of S-PET image prediction.

2) Influence of the Mapping Procedure—To show the efficacy of the mapping 

procedure, we should compare the results of the SSTDL method with and without the 

mapping procedure. However, the multimodal MR fusion would no longer make sense 

without the mapping procedure. Therefore, to make the comparison more meaningful, we 

just consider the L-PET images for prediction in this experiment. Specifically, in the first 

case, the L-PET images are first mapped and then used for prediction of S-PET image based 

on the proposed method. In the second case, the L-PET images are directly used for 

prediction of S-PET image without the mapping procedure. The comparison results in terms 

of PSNR and NMSE are shown in Fig. 7.

Fig. 7 shows that, compared with the results without mapping, our results with mapping 

achieve higher PSNR and lower NMSE across all subjects. This clearly indicates that the 

mapping strategy is necessary and can significantly improve the prediction accuracy.

3) Influence of the Use of Incomplete-modality Samples for S-PET Image 

Prediction—One of the greatest advantages of the proposed SSTDL method is that, 

besides the complete-modality samples, it can also leverage the incomplete-modality 

samples for prediction. Therefore, we study the prediction performance of using the 

incomplete samples. Specifically, we conduct an experiment to compare the performance of 

SSTDL method using only the complete samples with that using both the complete and the 

incomplete samples. Fig. 8 shows the influence of the incomplete samples in S-PET image 

prediction, and the results suggest that the incomplete samples benefit the prediction and 

should be utilized if available.

Table IV compares the CR correlation using different key strategies in the proposed method.

From Table IV, we can see that the CR correlation of SSTDL using 1) mapping strategy, 2) 

MR images, and 3) incomplete-modality samples is the highest, which is consistent with the 

observations as aforementioned.
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C. Compared with learning-based method: Random Forest (RF)

In Ref. [32], the random forest method has been successfully used in S-PET prediction. 

Random Forest (RF), which was originally proposed by Breiman [33], is an ensemble 

learning method for classification or regression that operates by constructing a multitude of 

binary decision trees. Each tree is trained independently with random features and 

thresholds, and this ensemble produces a corresponding number of outputs. Then, one final 

prediction is obtained by aggregating the outputs of all trees. In the following experiment, 

we compare the performance of RF with our proposed method. The same processing scheme 

is performed for random forest, i.e., we also use the combination of MR and L-PET images 

to predict the S-PET image. The parameters of RF are set as follows: the patch size: 5×5×5; 

the neighborhood size: 15×15×15; the number of trees in a forest: 10; the number of 

randomly selected features: 1000; the maximum tree depth: 15; and the minimum number of 

samples at each leaf: 5. The comparison results are shown in Fig. 9.

As shown in Fig. 9, although the results of subject 1 of RF is a little better than our proposed 

method (with higher PSRN and lower NMSE), our proposed method generally achieves a 

more accurate predictions than RF, as the average PSNR increases by approximately 1.4. 

Therefore, by comparing with this learning based method, we further demonstrate the 

effectiveness of our proposed method.

D. Comparison with the overlapped average estimation for final S-PET prediction

For the above experiments, the central value of the predicted patch was used for the final 

prediction. In Ref. [42], however, it was suggested to average the results of the overlapping 

patches for determining the final prediction. In this section, we further evaluate the 

performance of using the overlapped average value as discussed in the last paragraph of 

Section 3.2.2, with the results given in Fig. 10.

From Fig. 10, we can observe that, for four subjects (subject 1, 4, 5 and 8), the results using 

the average value of the overlapping patches outperform the method using the central value 

as the final prediction. Besides, for the other four subjects, using the central value indicates a 

better performance. Then, for general evaluation, the averaged PSNR and NMSE across the 

eight subjects are calculated. The results indicate that, using the overlapped average 

estimation, the average PSNR increases by 0.2 while the average NMSE decrease by 0.0003, 

suggesting that the overlapped average estimation method could be a more effective method 

for the final prediction.

V. Conclusion

In this paper, we have proposed a semi-supervised tripled dictionary learning (SSTDL) 

method for predicting the S-PET image from multimodal MR and L-PET images. On a real 

dataset of human brain images, we performed rigorous experiments, and both quantitative 

and qualitative results suggested that the proposed method outperforms the baseline methods 

using partial data. The predicted S-PET images by our method are very close to the ground-

truth S-PET. The obtained experimental results demonstrate its great potential in real-world 

clinical applications.
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It is worth noting that, different from existing techniques that aim to improve the PET image 

quality during the reconstruction from raw signals, the proposed method aims to directly 

estimate the S-PET image from its low-dose counterpart and corresponding MR image. This 

approach has rarely been studied previously in the literature. The proposed method can 

utilize not only the samples with complete data but also the samples with incomplete data. 

This property can take advantage of the large number of available training samples, which 

cannot be handled by other techniques such as sparse representation and random forest.

However, all the brain scans used in this paper are the normal subjects, and the PET and MR 

images are well correlated. Thus, at this stage we cannot comment on how our method might 

perform on regions other than brain, patients with tumors, or for other applications, body 

locations, PET tracers, dose-reduction ratios, or scanners. As a result, our future work will 

focus on evaluating the proposed method on the scans with more variations (e.g., different 

ages, abnormal anatomy due to tumors, atrophy and locally resected brain). In addition, the 

proposed method is computationally expensive since complex optimization process is 

required, we are now in the progress of working for a more efficient optimization method.
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Fig. 1. 
The illustration of the mapping procedure between the L-PET and S-PET image patches.
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Fig. 2. 
Mapping and fusion procedures of the multimodal MR images.
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Fig. 3. 
Flowchart of the proposed semi-supervised tripled dictionary learning (SSTDL) method for 

S-PET prediction.
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Fig. 4. 
Comparison between the predicted S-PET images by the SR method and the proposed 

method: (a) L-PET, (b) SR, (c) SSTDL, and (d) ground truth.
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Fig. 5. 
Comparison between SR and SSTDL in terms of PSNR and NMSE.
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Fig. 6. 
Influence of the use of multimodal MR images on the S-PET image prediction.
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Fig. 7. 
Influence of the mapping procedure on the S-PET image prediction.
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Fig. 8. 
Influence of the use of incomplete-modality samples on S-PET image prediction.
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Fig. 9. 
Comparison between RF method and our proposed method.
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Fig. 10. 
Comparison with the overlapped average estimation for final S-PET prediction.
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TABLE I

Demographic Information of The Subjects

Complete samples Incomplete samples

 Total 8 10

 Gender
(Female/Male)

5/3 9/1

 Age (Mean±SD) 26.38±6.16 26.2±7.13

 Modality MR, L-PET, S-PET MR, S-PET
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TABLE II

Summary of The Parameter Setting in The Experiment

Variable Definition Value

ρ×ρ×ρ Patch size 5×5×5

ω×ω×ω Neighborhood size 15×15×15

γ Parameter to balance the node-to-node matching and edge-to-edge matching in mapping procedure 0.8

μ Parameter to balance the reconstruction error and locality penalty 0.1

P Number of dictionary atoms 512

NA Number of iterations for updating the atoms of dictionary 500

ND Number of iterations for alternating optimization used in the dictionary learning 20
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TABLE III

Comparison of CR Correlation

Method L-PET SR SSTDL

CR correlation 0.9145 0.9369 0.9520
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TABLE IV

CR Correlation Comparison of The Key Strategies in SSTDL

Method SSTDL without mapping SSTDL without MR images SSTDL without incomplete samples SSTDL (proposed)

CR correlation 0.9410 0.9486 0.9425 0.9520
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