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Abstract

Let (M, w) be a symplectid-manifold. A semitoric integrable system i/, w) is a pair of smooth
functionsJ, H € C>(M, R) for which J generates a Hamiltonia$t'-action and the Poisson brackets
{J, H} vanish. We shall introduce new global symplectic invasdor these systems; some of these
invariants encode topological or geometric aspects, vatilers encode analytical information about the
singularities and how they stand with respect to the sys@uan.goal is to prove that a semitoric system
is completely determined by the invariants we introduce.

1 Introduction

Atiyah [1, Th. 1] and Guillemin-Sternberg [10] proved thhetimageu (M) under the momentum map
wi= (p1,...,pn): M — R™ of a Hamiltonian action of an-dimensional torus on a compact connected
symplectic manifold(M, w) is a convex polytope, called thmomentum polytopeDelzant [3] showed
that if the dimension of the torus is half the dimension\éf the momentum polytope, which in this case
is called Delzant polytopge determines the isomorphism type df. Moreover, he showed that/ is a
toric variety. These theorems establish remarkable and deenections bewteen Hamiltonian dynamics,
symplectic geometry, Kahler manifolds and toric varigtie algebraic geometry. Through the analysis of
the quantization of such systems, one may also mention tanpolinks with the representation theory of
Lie groups and Lie algebras, semiclassics, and microlatalyais.

Nevertheless, at least from the viewpoint of symplectiogeiy, the situation described by the momen-
tum polytope is very rigid. There are at least three naturaktons for further mathematical exploration :
() replacing the manifold\/ by an orbifold; (ii) allowing more general actions than Hioriian ones, (iii)
replacing the toru§” by a non-abelian and/or non-compact Lie graeip

Following (i) Lerman-Tolman generalized Delzant’s cléissition to orbifolds in [15, Th. 7.4, 8.1].
Regarding (ii) Pelayo generalized Delzant’s result to tasecwhenl is 4-dimensional and™ acts sym-
plectically, but not necessarily Hamiltonianly [20, Th28]. This result relies on the generalization of
Delzant’'s theorem for symplectic torus actions with caigpic principal orbits by Duistermaat-Pelayo
earlier [5, Th. 9.4,9.6], and for symplectic torus actionghveymplectic principal orbits by Pelayo [20,
Th. 7.4.1]. Regarding (iii), results for non-abelian coripaie groupsG are relatively complete, see Kir-
wan [13], Lerman-Meinrenken-Tolman-Woodward [16], Sjamf2] and Guillemin-Sjamaar [9]. When
T is replaced by a non-compact groGpthe theory is hard; even in the proper and Hamiltonian céme, t
symplectic local normal form for a proper action requireteagive work, see Marle [17] and Guillemin-
Sternberg [11, Sec. 41]; in the non-Hamiltonian symplecdise this normal form is recent work of Benoist
[2, Prop. 1.9] and Ortega-Ratiu [19].
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The seemingly most simple non-compact case to study is thatHamiltonian action of the abelian
groupR™ on a2n-dimensional symplectic manifold. But of course, this ishmag less than the goal of the
theory of integrable systems. The role of the momentum maptisis case played by a map of the form
F = (fi,..., fa): M — R", wheref;: M — R is smooth, the Poisson bracketg;, f;} identically
vanish on)M, and the differentiald f1, ..., df, are almost-everywhere linearly independent. In this lartic
we study the case of an integrable systgém= J, f> := H, whereM is 4-dimensional and the component
J generates a HamiltoniaG'-action: these are called semitoric. Semitoric Systems fan important
class of integrable systems, commonly found in simple mlaysnodels. Indeed, a semitoric system can
be viewed as a Hamiltonian system in the presence ¢f'asymmetry [21]. One of the incentives for this
work is that it is much simpler to understand the integralktesn on its whole rather than writing a theory
of Hamiltonian systems on Hamiltonist -manifolds.

It is well established in the integrable systems commuhidy the most simple and natural object, which
tells much about the structure of the integrable systemnstddy, is the so-called bifurcation diagram. This
is nothing but the image i®? of ' = (J, H) or, more precisely, the set of critical values 6f In this
article, we are going to show that the arrangement of sudltarivalues is indeed important, but other
crucial ingredients are needed to underst&hdwhich are more subtle and cannot be detected from the
bifurcation diagram itself. Our goal is to construct a odtiien of new global symplectic invariants for
semitoric integrable systems which completely determiseraitoric system up to isomorphisms. We will
build on a number of remarkable results by other authorstegnable systems, including Arnold, Atiyah,
Dufour-Molino, Eliasson, Duistermaat, Guillemin-Steenty, Miranda-Zung and Vi N@o to which we
shall make references throughout the text, and to whom #psmpowes much credit.

The paper is structured as follows; in Section 2 we define teeimisystems, explain the conditions
which appear in the definition and announce our main resulsections 3,4 and 5 we construct the new
symplectic invariants. Specifically, in Section 3 we stuldg ainalytical invariants, in Section 4 we study
the combinatorial invariants, and in Section 5 we study #engetric invariants. In Section 6 we state the
aforementioned theorem, which we prove in Section 7. Thepapncludes with a short appendix, Section
8, in which we prove a very slight modification of a result ofritida-Zung which we need earlier.

2 Semitoric systems

First we introduce the precise definition of semitoric imgdge system.

Definition 2.1 Let (M, w) be a connected symplecticdimensional manifold. Asemitoric integrable
systeron M is an integrable systemh H € C*°(M, R) for which

(1) the componenf is a proper momentum map for a Hamiltonian circle action\én

(2) the mapF := (J, H) : M — R? has only non-degenerate singularities in the sense ofaniion,
without real-hyperbolic blocks.

We also use the terminologydimensional semitoric integrable systémefer to the triplé M, w, (J, H)). ©

We recall that the first point in Definition 2.1 means that theipage byJ of a compact set is compact
in M (which is of course automatic &/ is compact), and the second point means that, wheneviera
critical point of F', there exists a 2 by 2 matri® such that, if we denoté = B o F, one of the following
happens, in some local symplectic coordinates near

(1) F(z,y, &n) = (n+O(P), a* + € + O((x, £)*))

2



(2) dn F=0 and d2 F(z, y, & 1) = (22 + €2, y* +1?)

3) dn F =0 and d2, F(x, y, &, 1) = (x€ +yn, 20 — y€)

The first case is called mansversally— or codimension 1 —elliptic singularity, the second case is an
elliptic-elliptic singularity. The terminologyelliptic singularity may be used for any of these two cases.
Finally, the last case is calledfacus-focus singularity

In [24], Vi Ngoc proved a version of the Atiyah-Guillemin-Sternberg tleor to a4-dimensional
semitoric integrable system one may meaningfully asseeidamily of convex polygons which generalizes
the momentum polygon that one has in the presence of a Hamaift@-torus action. If two such systems
are isomorphic, then these two families of polygons are lequa

In view of this, a natural goal is to try to understand whethesemitoric integrable system on a sym-
plectic4-manifold could possibly be determined by this family ofymins; as it turns out this is one of five
invariants we associate to such a system. Precisely, thgams are the following: (he number of singu-
larities invariant an integer counting the number of isolated singularitf@sthe singularity type invariant
which classifies locally the type of singularity; (iiihe polygon invariant a family of weighted rational
convex polygons (generalizing the Delzant polygon and Wwiniay be viewed as a bifurcation diagram);
(iv) the volume invariantnumbers measuring volumes of certain submanifolds atitiggikarities; (v)the
twisting index invariantintegers measuring how twisted the system is around snigigs. Our goal in this
paper is to prove an integrable system is completely deteraniup to isomorphisms, by these invariants. In
other words, we shall prove that:

(M, wy, (J1, H1)) and (M, wa, (J2, Ha)) are isomorphic<=- they have the same invariants (i)—(v).
Here the wordsomorphisrris used in the sense that there exists a symplectomorphism
¢: My — M, suchthat ¢*(J2, H2) = (J1, f(J1, H1)).

for some smooth functiori (see Theorem 6.2).
One could say that (i) and (ii) are analytical invariants) i& a combinatorial/group-theoretic invariant,
and (iv), (v) are geometric invariants.

3 Analytic invariants of a semitoric system

We describe invariants of a semitoric system encoding sinahformation about the singularities. Through-
out this sectior{M, w, (J, H)) is a4-dimensional semitoric integrable system.
3.1 Cardinality of singular set invariant

It is clear from the definition that a semitoric integrabletsyn has only two types of singularities: elliptic
(of codimensior) or 1) and focus-focus. This can easily be inferred from the bétion diagram. In fact,
Vi Ngoc proves in [24, Prop. 2.9, Th. 3.4, Cor. 5.10] the followingtement :

Proposition 3.1. The semitoric systerfiV/, w, (J, H)) admits a finite numbem ; of focus-focus critical
valuescy, ..., cm,, and, denoting by3 = F'(M) C R? the image ofF", whereF = (J, H):

(@) the set of regular values @f is B, =Int B\ {c1,...,cm; };

(b) the topological boundary aB consists of all images of elliptic singularities;
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(c) the fibers ofF" are connected.

Critical points, together with their singularity typeseasbviously invariant by diffeomorphism. Thus
my is invariant under isomorphism of semitoric systems. Lestase this fact explicitely for further refer-
ence.

Lemma 3.2. Let (M, wy, (J1, Hy)), (Ma, wa, (J2, Hs)) be isomorphic4-dimensional semitoric inte-
grable systems and Ieﬁ;} be the number of focus-focus points(df;, w;, (J;, H;)), wherei € {1, 2}.
Thenmj = m7.

One may argue that s is a combinatorial invariant, since it is an integer; we haumeit in this section
because we need it for the construction of the true analgtiariant of the system, defined in Section 3.2:
the singularity type invariant.

Remark 3.2 We will later use the fact thaB can be viewed as an affine manifold with corners. The man-
ifold boundary then corresponds to transversally elliptiularities, while corners correspond to elliptic-
elliptic singularities. @

3.2 Singularity type invariant

Let F', my andcy, ..., cn, be as in Proposition 3.1 We consider here the preimagg bf a focus-focus
critical valuec;, wherei € {1, ..., my}. Throughout the whole article, we will make the following
assumption, which, according to Zung [25], is generic :

The critical fiberF,, := F~1(c;) contains only one critical point.. (3.1)
In fact, we will make for simplicity an even stronger (butlsgeneric) assumption :

If m is a focus-focus critical point foF, (3.2)
thenm is the unique critical point of the level sét! (.J(m)). '

If the assumption (3.1) is satisfied, then (3.2) is equiveersaying that the values(c,), ..., J(cn,) are
pairwise distinct.
Thanks to (3.2), we may — and always will — assume throughweittticle that the critical values's
areorderedby their J-values :
J(er) < J(e2) <+ < J(emy)- (3.3)

Definition 3.3 A semitoric system will be calledimplewhen the hypothesis (3.2) is satisfied. @

Notice that if two semitoric systems are isomorphic and ansifnple, then the other one is simple
as well. Moreover, the order of the focus-focus criticaluea, as defined in (3.3), is preserved under
isomorphism.

Let F denote theassociated singular foliatignthe leaves of which are by definition the connected
components of the level sefs!(c), c € R?. Eliasson’s theorem [8] describes a neighborhbioaf a focus-
focus pointm in a singular foliation of focus-focus type: there exist pjettic coordinatesz, y, &, n) in
U in which the foliationF consists of the connected components of the level sets ofitipdq,, ¢2), given
by

q=z{+yn,  q@=xn—YE (3.4)



Figure 3.1: The singular foliatiosF associated t@ near the critical fiber,,, whereS!(A) denotes the
S1-orbit for the S'-action generated b¥fs.

(We say that; is amomentum map for the foliatiaf). Here the critical pointn corresponds to coordinates
(0, 0, 0, 0). Letus fixa pointd’ € F,,N (U \ {m}), letX denote a small 2-dimensional surface transversal
to F at the pointd’, and let(2 be the open neighborhood &f,, which consists of the leaves which intersect
the surfacer.

Since the Liouville foliation in a small neighborhood %fis regular for both momentum magsand
q = (q1, ¢2), there must be a local diffeomorphismof R? such thaty = ¢ o F, and hence we can define a
global momentum mag = ¢ o F for the foliation, which agrees withon U. Write ® := (H;, H,) and
A, := ®1(2). Note thatAq = F,,. It follows from (3.4) that nearn the H,-orbits must be periodic of
primitive period27 for any point in a (non-trivial) trajectory ok, .

Suppose thatl € A, for some regular value. We definer;(z), which is a strictly positive number,
as the time it takes the Hamiltonian flow associateditoleaving from A to meet the Hamiltonian flow
associated td{, which passes through, and letry(z) € R/27Z the time that it takes to go from this
intersection point back tel along the Hamiltonian flow line ofis, hence closing the trajectory. Write
z = (21, 22) = 21 +129, and letln z for a fixed determination of the logarithmic function on trerplex
plane. We moreover define the following two functions:

{ o1(z) = 7(z)+R(nz

o2(z) = m(z) —S(nz

)
) (3.5)

)

where® and$ respectively stand for the real an imaginary parts of a cemnpumber. In his article [23,
Prop. 3.1], Vi Ngo proved that;, ando, extend to smooth and single-valued functions in a neighimmada
of 0 and that the differential 1-form

o :=o01dz1 +09dzs (36)

is closed. Notice that if follows from the smoothnessrotthat one may choose the lift 8 to R such that
02(0) € [0, 27). This is the convention used throughout.
Definition 3.4 [23, Def. 3.1] LetS; be the unique smooth function defined arond R? such that

ds; =0
(o5, o



whereo is the one-form given by (3.6). The Taylor expansionSefat (0, 0) is denoted by(.S;)>°. We
say that(S;)* is the Taylor series invariant of M, w, (J, H)) at the focus-focus point;, wherei €
{1, ce mf}. (@)

The Taylor expansio(S)> is a formal power series in two variables with vanishing tantsterm.

Lemma 3.5. Let (M, w1, (J1, H1)), (M2, wa, (J2, H2)) be isomorphici-dimensional simple semitoric
integrable systems and I(e([Sf )Oo);ifl be the tuple of Taylor series invariants at the ordered feftigcsis
1
critical points of (M;, wy, (J;, Hj)), wherej € {1, 2}. Then the tupIe{(S})OO);n:f1 is equal to the tuple
2

m
1=

(7))

1

This result was proven in [24].

4 Combinatorial invariants of a semitoric system

The Atiyah-Guillemin-Sternberg and Delzant theoremsuslthat a lot of the information of some com-
pletely integrable systent®ming from Hamiltonian torus actionis encoded combinatorially by polytopes.

0,1) 0,1) (11 0,1) (11

N N

(0,00 (1,00 (0,0 (2,0 (0,00 (10

Figure 4.1: Momentum polytope @EP? (left), a Hirzebruch surface (center) ag@P!)? (right), all of
which determine the isomorphism type of the manifold.

Although 4-dimensional semitoric systems are not induced by torusratsome of the information
of the system may be combinatorially encoded by a certaiivaigmce class of rational convex polygons
endowed with a collection of vertical weighted lines. Ttigri fact a way of encoding thaffine structure
induced by the integrable system. Throughout this se¢tliénw, (J, H)) is a simplet-dimensional simple
semitoric integrable system with ; isolated focus-focus singular values, ordered accorair(g.8).

4.1 Affine Structures

Recall that a mapX ¢ R™ — Y C R™ is integral-affine onX if it is of the form A;;(-) + b;;, where
Aij € GL(m, Z) andbij € R™.
An integral-affine smoothn-dimensional manifolds a smoothn-dimensional manifoldX for which
the coordinate changes are integral-affine, i.e; if U; C R™ — X are the charts associatedXq for all
i, j we have that; o gpj_l, whereever defined, is an integral affine map. We allow midsfaith boundary
and corners, in which case the charts take their valugs o )* x R™~* for some integek: € {0, ..., m}.
Amap f: X — Y between integral affine manifoldsiigtegral-affineif for each pointr € X there are
chartsp, : U, — X aroundz and,: V,, — Y aroundy := f(x) such that), ' o f o ¢, is integral-affine.
As a consequence of the action-angle theorem, any propeahgign fibrationt" : M — B naturally
defines an integral-affine structure on the bBs& his affine structure can be characterized by the following



fact : alocal diffeomorphisng : (B, b) — (R™, 0) is integral-affine if and only if the Hamiltonian flows of
then coordinate functions af o F' are periodic of primitive period equal for. Thus, an integrable system
with proper momentum map' = (J, H) defines an integral-affine structure on the Beof regular values
of F. In our case, this structure will in fact extend to the bouwds B,. Although B, is a subset oR?,
the integral-affine structure @, is in general different from the induced canonical integffine structure
of R2.

The integral-affine structure @, encodes much of the topology of the integrable system (&3,
as we will see, is far from encoding all its symplectic geamet

4.2 Generalized toric map

We start with two definitions that we shall need. ebe the subgroup of the affine groddf(2, Z) in
dimension 2 of those transformations which leave a vertioalinvariant, or equivalently, an element of
is a vertical translation composed with a matfik, wherek € Z and

Tk = ( ]i (1) ) € GL(2, 7). (4.1)
Let ¢ ¢ R? be a vertical line in the plane, not necessarily through tiigirg which splits it into two half-
-spaces, and let € Z. Fix an origin inf. Lett}: R? — R? be the identity on the left half-space, aid
on the right half-space. By definitiaf} is piecewise affine. Lef; be a vertical line through the focus-focus
valuec; = (x4, y;), wherel < i < my, and for any tuple? := (n4, ..., nmf) € 7" we set

ti =ty o0 t;:; (4.2)

The mapt; is piecewise affine.

In [24, Th. 3.8] VU Nge describes how to associate(td, w, F' = (J, H)) a rational convex polygon:
the image of a certain almost everywhere integral-affine dmmorphismf: F(M) c R? — A C R2
Here,B := F(M) is equipped with the natural integral-affine structure wetliby the system, whil&? on
the right hand-side is endowed with its canonical integffire structure.

Given a signe; € {—1,+1}, let £ C ¢; be the vertical half line starting at at extending in the
direction ofe; : upwards ife; = 1, downwards ife; = —1. Let

mpg
€ ._ €;
7=
=1

In this text we shall use the following terminology.

Definition 4.1 A rational convex polygoris the convex hull of a discrete set of points®3, with the
condition that each edge is directed along a vector witlomaticoefficients. @

Theorem 4.2(Th. 3.8 in [24]) For € € {—1,+1}"™ there is a homeomorphisyh= f.: B — R? such that

(1) fl(p\e) is a diffeomorphism into its imagk := f(B).

litis important to note that a convex polygon is not necelseoimpact for us. A maybe more accurate denomination woeld b
a rational convex polyhedron.



2 f |( By\6F) is affine: it sends the integral affine structure/®f to the standard structure 2.

(3) f preserves/: i.e. f(z, y) = (z, fP(x, y)).

(4) Foranyi € {1, ..., my}and anyc € £;* \ {c;} there is an open balD aroundc such thatf| g \;z
has a smooth extension on each domidin, y) € D | < z;} and{(x, y) € D | x > x;}. One has
the formula:

lim df(z, y) = T lim df(z, y),
Na/ GO

wherek(c) is the multiplicity ofe.

(5) The image of is a rational convex polygon.
Such anf is unique modulo a left composition by a transformatiory.in

In order to arrive at the rational convex polygadnin the proof of Theorem 4.2 one cuts the image
(J, H)(M) c R?, which is in general not convex, along each of the verticald?;, i € {1, ..., m;}. One
must make a choice of “cut direction” for each vertical lifethat is to say that one has to choose whether
to cut the set(J, H)(M) along the half-vertical-lindjl which starts at; going upwards, or along the
haIf—verticaI—Iine@;1 which starts at; going downwards. Precisely, the definitionsfodnd A in Theorem
4.2 depend on two choices in the proof :

(a) an initial set of action variableg of the form(.J, K') near a regular Liouville torus in [24, Step 2, pf.
of Th. 3.8]. If we choosgf; instead off; then f has to be composed on the left by a transformation
in J. Naturally, the new polygon is obtained from the initial dnethe same transformation.

(b) atuple€of1 and—1. If we choosed instead ofe we getf’ =tz o f (and thusA’ = tz(A)) with
u; = (e; — €;)/2, by [24, Prop. 4.1, expr. (11)].

Definition 4.3 Let (M, w, (J, H)) be a simple semitoric integrable system andflet choice of homeo-
morphism as in Theorem 4.2. We say that:

(i) the mapf o (J, H) is ageneralized toric momentum map {a¥/, w, (J, H));

(ii) the rational convex polygod\ := f((J, H)(M)) is a ageneralized toric momentum polygon for
(M7 w7 (J7 H))

Q@

For simplicity sometimes we omit the word “generalized” iefiition 4.3.

4.3 Semitoric polygon invariant

Let Polyg(R?) be the space of rational convex polygonsiifi Let Vert(R?) be the set of vertical lines in
RZ, i.e.
Vert(R?) = {£, 1= {(z, y) e R?|z = A} | A € R}.

Definition 4.4 A weighted polygon of complexityis a triple of the form

Aveight = (A, (x,)i=1, (€5)5-1)

wheres is a non-negative integer and:



A € Polyg(R?);

{y; € Vert(R?) for everyj € {1,...,s};

ej € {—1, 1} foreveryj € {1,...,s};

mingea m(s) < A < ... < Ay < maxgea 7 (s), wherer;: R? — R is the canonical projection
1 ('Ia y) = .

We denote byV Polyg, (R?) the space of all weighted polygons of complexity @

(£1,e1,=1) (b2,e2 = —1)

\
%

> T

Figure 4.2: A weighted polygon of complexigy

For anys € N, let
Gs:={-1, +1}* (4.3)
and let
G:={T" | k ez}, (4.4)

where T is the 2 by 2 matrix (4.1). Consider the action of the product grodp x G on the space
WPolyg,(R?): the product

(5= T - (A, (0,)5-1, (6)51)
is defined to be

(£a(TH(A), (Ox,)5-1, (€ €5)5-1). (4.5)
whered = ((e; — €;)/2);_,, andt; is a map of the form (4.2).
Definition 4.5 Let A be a rational convex polygon obtained from the momentum éxdg H )(M) ac-

cording to the proof of Theorem 4.2 by cutting along the waithalf-lines/3!, ... ,Exff. The semitoric
polygon invariantof (M, w, (J, H)) is the(G,,, x G)-orbit

(Gry % 9) - (B0 ()] (€)741) € WPolyg,,, (R?)/ (G, % G), (4.6)
whereWPolygmf(IW) is as in Definition 4.4 and the action 6f,,, x G on WPOlygmf(R2) is given by
(4.5). ' ' %,

It follows now from Theorem 4.2 that the semitoric polygomariant does not depend on the isomor-
phism class of the system.

Lemma 4.6. Let (M, wy, (J1, Hy)), (Ma, wa, (J2, H)) be isomorphic4-dimensional semitoric inte-
grable systems. Then the semitoric polygon invariarit\éf, w1, (J1, H1)) is equal to the semitoric poly-
gon invariant of(Ma, we, (J2, H2)).



5 Geometric invariants of a semitoric system

The invariants we have described so far are not enough tontiete whether twet-dimensional semitoric
systems are isomorphic. In this section we introduce twdajlgeometric invariants, which encode a
mixture of information about local and global behavior. dighout,(M, w, (J, H)) is a4-dimensional
semitoric integrable system with ; isolated focus-focus singular values.

5.1 The Volume Invariant

The invariant we introduce next is easy to define using thebdmatorial ingredients we have by now intro-
duced. Consider a focus-focus critical poinf whose image by.J, H) is¢; fori € {1, ..., my}, and let
A be a rational convex polygon corresponding to the systémw, (J, H)), c.f. Definition 4.5.

Lemma 5.1. If i is a toric momentum map for the simple semitoric syst¢mw, (J, H)) corresponding
to A, c.f. Definition 4.3, then the imag€g(m;), wherei € {1, ..., m¢}, is a point lying in the interior of
the polygonA, along the linel;. The vertical distance

hi:= p(mi) — min m(s) >0 (5.1)

betweenu(m;) and the point of intersection df with the image polytope with lowegtcoordinate, is
independent of the choice of momentum maHerer,: R? — R is the canonical projections(z, y) = .

Lemma 5.1 follows from the fact that two different toric momigm maps only differ by piecewise affine
transformations, which all act on any fixed vertical line s slations.

Definition 5.2 We say that the vertical distance (5.1) bewtgém;) and the point of intersection @éf with
the image polytope that has the lowgstoordinate ighe height of the focus-focus critical valug where
Z'E{l,...,mf}. @

Remark 5.2 One can give a geometrical meaning to the height of the fmuiss critical values. Let
Y; = J71(¢;). This singular manifold splits into two part¥;" andY,” defined asv; N {H > H(m;)}
andY; N {H < H(m;)}, respectively. The height of the focus-focus critical eadpis simply the Liouville
volume ofY;". %

Since isomorphic systems share the same set of momentugopslywe have the following result.

Lemma 5.3. Let (M1, w1, (J1, Hi1)), (M2, wa, (J2, Hz)) be isomorphic simpld-dimensional semitoric

integrable systems and Iét{):ifl be the tuple of heights of focus-focus critical values ¢1\éf, w;, (J;, Hj;)),
ml . m2

j € {1, 2}. Then the tupléhr}),_’; is equal to the tupléh?), .

The volume invariant is very easy to compute from a weightagigon, and hence it is a quick way to
rule out that two semitoric integrable systems are not igpimio.

5.2 The Twisting-Index Invariant

For clarity, we divide the construction of the twisting ixdavariant into five steps. Let
Aweighti: (Av (ej);'n:fh (ej);’l:fl) S WP01ygmf (Rz)v (52)
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be a weighted polygon as in expression (4.6), represertiingrbit given by the semitoric polygon invariant
of the systemM, w, (J, H)), c.f. Definition 4.5, where recall that the polygdxis obtained from the
momentum image€.J, H)(M) according to the proof of Theorem 4.2 by cutting along thdic@lr lines

l1,... 4y, in the direction ofey, ..., en,, i.e. upwards ife; is +1 and downwards otherwise. Write
F=(J, H),ci,...,cn, for the focus-focus critical values.
In the first three steps we define for eack {1, ..., my}, an integerk; that we shall call thewist-

ing index of the focus-focus value;, on which we built to construct the actual invariant asseciao
(M, w, (J, H)) in Step 5.

Step 1: an application of Eliasson’s theorehet (e1, e3) be the canonical basis &, Let/ = EZ-“ C R?
be the vertical half-line starting at and pointing in the direction of; es.
Let us apply Eliasson’s theorem in a small neighbourh@dd= W; of the focus-focus critical point
m; = F~1(c;) : there exists a local symplectomorphigim (R, 0) — W, and a local diffeomorphism
of (R2, 0) such that
Fogp=gogq, (5.3)

whereq is the quadratic momentum map given by (3.4). Since the secomponentg, o ¢~! has a2r-
-periodic Hamiltonian flow, it must be equal tbin 1/, up to a sign. Composing if necessagyby the
canonical transformatiofx, ) — (—z, —¢), one can always assume that= J o ¢ in . This means that
g is of the form

9(aq1, @2) = (a2, 92(q1, @2))- (5.4)

Moreover, upon composing by the canonical transformatid, y, &, n) — (=&, —n, z, y), which
changegq, ¢2) into (—q1, ¢2), one can always assume that

992

50, (0) > 0. (5.5)

In particular, near the origifiis transformed by ! into the positive real axis i; = 1, or the negative real
axis ife; = —1.

Step 2: the smooth vector field,. Let us now fix the origin of angular polar coordinatesRA on the
positivereal axis. LetV’ = F(W) and defineF’ = (Hy, Hy) = g~ o F on F~'(V) (notice thatH, = .J).
Now recall from Section 3.2 that near any regular torus tlesists a Hamiltonian vector field),, whose
flow is 27r-periodic, defined by

21X, = (11 0 F)Xp, + (120 F)X, (5.6)

wherer; and, are functions orR? \ {0} satisfying (3.5), witho1(0) > 0. In fact 7, is multivalued, but
we determine it completely in polar coordinates with angl¢0i 27) by requiring continuity in the angle
variable andr2(0) € [0, 27). In caser; = 1, this defines, as a smooth vector field cR—(V \ ¢). In
cases; = —1 we keep the sams-value on the negative real axis, but extend it by continuitshe angular
interval [r, 3m). In this wayX,, is again a smooth vector field di—1(V \ ¢).

Step 3: twisting index of a weighted polygon at a focus-faingularity. Let n be the generalized toric
momentum map, c.f. Definition 4.3, associated to the polygonOn F~1(V \ ¢), u is smooth, and its
componentg i, u2) = (J, uz) are smooth Hamiltonians, whose vector figlds, X),, ) are tangent to the
foliation, have a&m-periodic flow, and are.e. independent. Since the coupl&’;, X;,) shares the same
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properties, there must be a matrxe GL(2,7Z) such that(X;, X,,,) = A(X;, X,). This is equivalent to
saying that there exists an intedere Z such that

Xy = kiXy + X, (5.7)

Proposition 5.4. For a fixed weighted polygoAeight as in equation (5.2), the integés; in (5.7) is well
defined for each € {1, ..., m}, i.e. it does not depend on

(a) the choice of the periodic Hamiltoniati,;
(b) the transformations involved in Eliasson’s normal fg&), with the sign constraints (5.4) and (5.5).

Proof. It follows from Lemma 4.1 in [23] that changing the transfations involved in Eliasson’s normal
form [8] can only modifyg, — and hencell; — by a flat term. Suppos&; is another admissible choice
for a Hamiltonian of the form

2n X, = (11 0 F') X1 + (150 F) X
Since&, has a&n-periodic flow, there must be coprime integersh in Z such that
XIQ = aX, + bX. (5.8)
Inserting (5.6), we see that there exist functidghsand Z, that vanish at all orders at the origin such that
2w, = (ami 0 F + Z1) Xy + (arp 0 F + 21b + Z3) X

From this we see that, up to a flat functiord, = am; andr}, = ar + 2wb. Because of the logarithmic
asymptotics required in (3.5), the first equation requites 1. But then, the second equation with the
restriction that bothr,(0) and 4(0) must be in[0, 27) implies thatb = 0. Recalling (5.8) we obtain
XIQ = &, which shows thak; is indeed well-defined. O

Definition 5.5 Let Ayeight be a fixed weighted polygon as in (5.2). For each{1, ..., m}, the integer
k; defined in equation (5.7) is called theisting index ofAyeignt at the focus-focus critical valug. @

The integelk; in Definition 5.5 is still not the relevant object that we intkto associate to the semitoric
system, but we shall build on its definition to construct tbiial invariant.

Step 4: the privileged momentum majge explain how there is a reasonable way to “choose” a mament
map for(M, w, (J, H)).

Lemma 5.6. There exists a unique smooth functifip on F~1(V\ ¢) the Hamiltonian vector field of which
is X, and such thatim,, .,,, H, = 0.

Proof. Near a regular torus, is a Hamiltonian vector field of a function of the forif{H;, J), and by
constructior; f = 7;/2m, i € {1, 2}. Therefore, using (3.5) we can check thaff (z) = S(c)—R(zIlnz—
z) + Const whereS is smooth at the origin, which shows thahas a limit asz € R? \ ([0, co) x {0})
tends to the origin. In factf has a continuous extension &3, entailing that#, extends to a continuous
function onF~1(V). O

12



Definition 5.7 Let (M, w, (J, H)) be a4-dimensional simple semitoric integrable system, anddlgbe
the unique smooth function defined in Lemma 5.6. We say thatdhic momentum map := (J, H,) is
the privileged momentum map fof, H) around the focus-focus valug, for eachi € {1, ..., ms}. ©

The mapv in Definition 5.7 depends on the cgtthat is to say, on the sigh. Moreover, we have the
following.

(@) If k; is the twisting index ot;, one has

p =Ty onF~Y(V). (5.9)

(b) If we transform the polygorh by a global affine transformation Ifi” € J this has no effect on the
privileged momentum mayp, whereas it changgsinto 7" .

From the characterization (5.9), it follows that all thegting indicesk; are replaced by; + r.
With this preparation we are now ready to define the twistivdgk invariant.

Step 5: the twisting index invariantWe give the definition of the twisting index invariant as ajuiea-
lence class of weighted polygons labelled by a collectiomt&gers.

Proposition 5.8. If two weighted polygong\yeight and Aygigr lie in the same,,, -orbit, for the Gy, -
action induced by (4.5), then the twisting indexgsk; associated ta\yeight and A\j\,eight at their respective
focus-focus critical values;, ¢; are equal, for each € {1, ..., m¢}.

Proof. Fore; = +1, we denote by, andv., as in equation (5.9) above, the generalized toric momentum
map and the privileged momentum map, c.f. Definition 5., at
With the notations of Section 4, we have
P = to iy

On the other hand, from the definition of in each case, we see théf ~ = X}, , on the left-hand side
of ¢ (that is to say,J < 0), while
Xy =X, +21X;

on the right hand side/(> 0). This means that_ = t,,v. From the characterization of the twisting index
by (5.9), using that,, commutes withl", we see thak; . = k; _. O

Recall the group&:, andg given by (4.3) and (4.4) respectively, and the actio6'gk G onWW Polyg, (R?),
c.f. Definition 4.5. Consider the action of the product gréipx G on the spaceV Polyg, (R?) x Z™=: the
product

(()320)s T % (A, ()52, (6521, (k)i

is defined to be
(ta(TH()), ()51 (¢ )5y (ki + k)i ). (5.10)

whered = (¢; — €})/2);_,. HereT is the2 by 2 matrix (4.1) and; is of the form (4.2).
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Definition 5.9 Thetwisting-index invariandf (M, w, (J, H)) is the(G,, x G)-orbit of weighted polygon
labelled by twisting indexes at the focus-focus singuksiof the system given by

Gy G) % (AL ()10, (&)1, (k)IS) € (WPolygy, (B2) x ZM) /(G % G, (5.10)

whereWPolyg,, (R?) is defined in Definition 4.4 and the action @f,, x G onWPolyg,, (R?) x Z™
is given by (5.10). @

Here again, our definition is invariant under isomorphism.

Lemma 5.10. Let (M1, w1, (J1, H1)), (M2, we, (J2, H2)) be isomorphict-dimensional simple semitoric
integrable systems. Then their corresponding twistirdgininvariants are equal.

Remark 5.10 We would like to emphasize again that the twisting indexdsa semiglobal invariant of the
singular fibration in a neighbourhood of the focus-focusefibuch semiglobal fibrations are completely
classified in [23], and the twisting index does not play arlg tbere. It is instead global invariant charac-
terizing the way the fibers near a particular focus-focusiand with respect to the rest of the fibratian.

6 Main Theorem: Statement

We consider a simple semitoric system and assign to it aflistivariants as above. The general idea is
simple : the complete invariant is just a rational convexygoh having a finite number of distinguished
interior points (the focus-focus critical values), eachttidm being decorated by a Taylor series and an
integer (the twisting index).

The technical difficulty is that the polygon is in fact not gné. One could remove part of the trouble
by fixing all the signs:; in Theorem 4.2 to be positive, but this would hide a key feafand motivation);
indeed, switching from one polygon to another is what is etgukto happen during a generic bifurcation of
semitoric systems (see [24]). Thus we do no want to fix thessignd instead deal with equivalence classes.
Then the vertical positions of the focus-focus criticalse may change, and only their heights (with respect
to the bottom line of the polygon) are well defined. What's eyd¢ihe twisting indices themselves are relevant
only modulo the addition of a common integer.

After these considerations, the list of invariants we peapis the following. Recall that the focus-focus
points are ordered according to (3.3).

Definition 6.1 Let (M, w, (J, H)) be a4-dimensional simple semitoric integrable system. Tikeof
invariants of(M, w, (J, H)) consists of the following items.

() The integer numbed < m; < oo of focus-focus singular points, see Section 3.1.

(i) The m-tuple ((S;)>);,, where(S;)> is the Taylor series of thd" focus-focus point, see Section
3.2

(iif) The semitoric polygon invariant: théx,,, x G)-orbit

(Gm; % G) - Aweight € WPolyg(R?*)/ (G, x G)

mg

of the weighted polygom\yeight := (A, (45)21 (ej)?:fl), c.f. Definition 4.5.
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(iv) Them -tuple of positive real numbel(shl-);lfl, whereh; is the height of the" focus-focus point, see
Section 5.1.

(V) The twisting-index invariant: the,,, x G)-orbit
(Grmy % G) * (Dweigh, (k)")) € (WPolyg(R?) x Z™)/(Gmy x G)

of the weighted polygon labelled by the twisting-inde{es,\,eigm, (k:l-)?;fl), c.f. Definition 5.9.
%)

In the above list invariant (v) determines invariant (ig)3 we could have ignored the latter. We have
kept this list as it appears naturally in the constructionhef invariants. Indeed the definition of invariant
(i) is needed to construct invariant (v). One may also arthat it is worthwhile for practical purposes to
list (iii), as it is easier to compute than (v) and hence if systems do not have the same invariant (iii) we
know they are not isomorphic without having to compute (Wtibk that all these invariants are based upon
the standard affine plarie?, which makes them relatively easy to visualize, even wheir #ffect on the
system(M,w, (J, H)) may be delicate to understand.

Recall that if(My, w1, (J1, Hy)) and(Ma, we, (J2, Hs)) are4-dimensional semitoric integrable sys-
tems, we say that they are isomorphic if there exists a sytgoteorphism

@: My — My, suchthat ©*(Jo, Ha) = (J1, f(J1, Hy)).
for some smooth functiori. Our main theorem is the following.

Theorem 6.2. Two4-dimensional simple semitoric integrable systéis, w1, (J1, Hy)) and(Ma, we, (J2, Hs))
are isomorphic if and only if the list of invariants (i)-(\gs in Definition 6.1, of M7, w1, (J1, H1)) is equal
to the list of invariants (i)-(v) of Ms, we, (J2, H2)).

The proof of Theorem 6.2 is sufficiently involved that is kbetbrganized in an independent section.
In the proof we use notable results of several authors, iticogar Eliasson, Duistermaat, Dufour-Molino,
Liouville-Mineur-Arnold and Vi Ngo. We combine these results with new ideas to construct @ttypli
an isomorphism between two semitoric integrable systerasthve the same invariants, in the spirit of
Delzant’s proof [3] for the case when the system defines a Ham@an 2-torus action. Because in our
context we have focus-focus singularities a number of diproblems arise that one has to deal with to
construct such an isomorphism. As a matter of fact, it is rkatde how the behavior of the system near a
particular singularity has a subtle global effect on thaeys

Remark 6.2 When the system is in fact toric, then there is no focus-fqmuist, and the whole list of
invariants breaks down to a mere rational convex polygomddfimoduloJ. This is of course the usual
Delzant polygon; the action df reflects the fact that the definition of isomorphism is lesitsthat in
Delzant’s situation. @

Example 6.3 The simplest non-toric, non-compact example is probatdyd¢bupled spin-oscillator” model
described in [24, Sec. 6.2]. In this cade = S? x R2?, whereS? is viewed as the unit sphere R? with
coordinategx, y, z), and the second fact®? is equipped with coordinates:, v). We define

1
J:=@W?+v*)/2+2 and H:zi(ux—kvy).
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Figure 6.1: The coupled spin-oscillator example. The n@ddjure shows the image of the initial moment
map F' = (J, H). Its boundary is the parameterized cu(yés) = séj’,h(s) = i;z%/%), s € [1,00).
The image is the connected component of the origin. The sy simple semitoric system with one
focus-focus point whose image(is, 0). The invariants are depicted on the right hand-side. Singe= 1,

the class of generalized polygons for this system consigtgampolygons.

For the standard product symplectic structureldnthe systen{.J, H) is a simple semitoric system, with
one single focus-focus point &0, 0, 1), (0, 0)) € S% x R?, and hencen; = 1. The image of the moment
map(J, H) is depicted in Figure 6.1.

Because there is only one focus-focus point, the twistimgx invariant contains no information. One
can take for instanck; = 0.

The remaining list of invariants is depicted in Figure 6.8¢cept for the Taylor series invariab; )
which, even in this simple example, is difficult to computeleitly; in rather special cases the first terms of
the Taylor series invariant can be made explicit (see [7hfsimilar computation at a hyperbolic-hyperbolic
singularity).

As shown in Figure 6.1, a representative of the semitoriggum invariant is a polygon ifR? with
exactly two vertices at—1, 0) and(1, 0), and from these two points leave straight lines with sloggthe
other possible polygon representative has verticés-&at 0) and(1, 2)). One finds this polygon simply by
combining the information about the isotropy weights atlgfecorner of the polygon (an elliptic-elliptic
critical value) ([24, Prop. 6.1]), together with the forraujiven in [24, Thm. 5.3], in which the relation
between isotropy weights and the slopes of the edges of tlygqois described using the Duistermaat-
Heckman function.

Finally, the height of the focus-focus point of the systenthi polygon is equal to half of the Liouville
volume of the submanifold of/ given by the equation/ = 1. This is because the functiond and
J are symmetric about thé-axis of R? in the sense thatl (z, v, z, u, v) = J(z, y, 2z, —u, —v) and
H(z,y, z, u, v) = —H(z, y, z, —u, —v). Here there is no need to compute anything because the volume
of the submanifold given by = 1 in M is just the length of the vertical slice of the polygonJat 1,

16



which is 2, and hence the height of the focus-focus point of the systeln i= 1, and the image of the
focus-focus point in the polygon g, 1). @

Remark 6.3 If one forgets about the functiof, a semitoric system is simply called a Hamiltonigih-
manifold. Moreover, a semitoric isomorphism is in partauan isomorphism of Hamiltoniasi!-manifolds.

In the compact case, Hamiltoniai-manifolds have been classified by Karshon [12]. From the yieint

of integrable systems, however, one is more interestederathilitional HamiltoniarH rather than in the
S1-manifold itself. In fact, using Karshon's classificatioromd imply losing track of one of integrable
systems’ arguably most important structure, the integifideastructure of the image of’. This is why
Karshon'’s results are not used in this article. It would beenheless interesting to understand how the
labelled graphs she uses can be obtained from our labellgdqms. In this process, obviously, we expect
to lose much of the information about focus-focus singtiksi For instance, the same simple Hamiltonian
S1 action onS? x S? can be either toric or truly semitoric, as in the example abov %)

7 Proof of Main Theorem

The left-to-right implication follows from putting togedh lemmas 3.2, 3.5, 4.6, 5.3 and 5.10. The proof of
the right-to-left implication breaks into three steps. Egt= (J1, Hy) and letFy, = (Jo, Hs).

e First, we reduce to a case where the imaggd\/; ) and F,(M-) are equal.

e Second, we prove that this common image can be covered bysepen,,, above each of whicliy
andF, are symplectically interwined.

e The last step is to glue together these local symplectonwms in this way constructing a global
symplectomorphisng : M; — M, such thatF; = F; o ¢.

Step 1 first reduction The goal of this step is to reduce to a particular case whwerétaged: (M) and
F5(M,) are equal. For simplicity we assume that the invariant8;oéire indexed as in Definition 6.1 with
an additional upper indek, and similarly forFs.

H A

> J

Figure 7.1: In Step 1 we prove that we can assume that the “miomé imagesF; (M;) and Fi(Ms)
are equal to the same curved polygBn To emphasize this we index the axesjaand H without lower
indexes.
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Because both systems have the same invariants (i), (iii)(@ndve may choose a weighted polygon
labelled by the twisting indexe(sAweight, ki) 1) where Ayeight = (A, (Ej);”:fl, (e ])] 1) and which is

inside of the(W Polyg(R?) x Z™) /(G % G) = (WPolyg(R?) x Z") /(G > G)-0rbit of weighted
polygons labelled by twisting indexes:

1
1\

(Gt % 9) % (Deigs (kD)) = (G2 x G)  (Dgeigne (D)

2
my

) (7.1)

where we are writing\j,¢ign; = (A7, (¢ )] 1> (62)21), fori e {1, 2}.
Let 1, uo respectively be associated toric momentum magds tand £ for the polygonA in Theorem
4.2 and Definition 4.3. There are homeomorphigmsgs : A — A such that

Fy =g1op, Fy=gsopus.
Consider the map := g; o ggl. We wish to replacé?, by F, = h o F,. Then, obviously,
Image(Fy) = g1(A) = Tmage(Fy).

In order for F}, to define a semi-toric completely integrable system isoior », we need to prove that
h(z, y) = (z, f(z,y)) for some smooth functiorf. In fact, it follows from Theorem 4.2 thdt has this
form, but for somef which isa priori not smooth. The crucial point here is to show that, becdgysand
F5 have the same invariants,is in fact smooth.

Claim 7.1. The maph extends to ars!-equivariant diffeomorphism of a neighborhood ff( M) into a
neighborhood of (M;).

The maph is a already a homeomorphism. We need to show that it is a thffabmorphism every-
where. Let us denote biy;' for j € {1,2} andi € {1, ..., my} the focus-focus critical values afj.
Again we let(ey, e5) be the canonical basis & and let¢/ ¢ R? be the vertical half-line starting af and
pointing in the direction oé;es.

Since the tuple of heights of the focus-focus points givembgriant (iv) are the same for both systems,
g1 (c) = gy'(?) and g7 (¢}) = g5 '(¢?). Henceh is smooth away from the union of aff, i €
{1, ..., ms}. -

Let us now fix some € {1,...,m;} and letU, be a small ball around a poiate ¢\ {c?}. For simpli-
fying notations, we shall drop the various subscripRecall that’, inherits fromF, (M,) an integral-affine
structure. Letp, : U, — U, be an oriented affine chart, with, a neighborhood of the origin iR2, sending
the vertical axis t@2. In order to show thak is smooth ori/., we consider the two halves of the ball :

Uf =U,n{z>z) and U, = U, N {z < z.},

wherez, is the abscissa ef. Of course, the restrictions gf, to each hal/. N {z > 0} andU. N {z < 0}
are admissible affine charts for" andU_, respectively. Let us call these restrictiop$. Lety = h(z),
V, = h(U.) andV;* = h(UF). Using the natural integral-affine structure &(M;), we can similarly

introduce an afflne chart,, for Vy and the corresponding restrictioﬂ@“. We are now going to use the
following facts :

1. On each hali’; andU; ", h is an integral-affine isomorphismiZ;" — V.
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2. The differentialis is continuous ort/.

The first fact implies, by definition, that the map
v = (gy) tohogr,

wherever defined, is of the forea® (-) + b+, for some matrixd* € GL(2, Z) and some constaht € R?,
Evaluating the differentials at the origin, we immediatdduce from the second fact that = A~. So,
v* should be just a translation. Bhitself being continuous on the line segméhtwe must havé™ = b~
It follows that, onU,, h is equal toy, o L o !, whereL is the affine transformationl*(-) 4 b+ =
A=(-) + b~. Soh is indeed smooth of..

We have left to show that is smooth at a focus-focus critical valu& The fact that we are assuming
that invariant (ii) is the same for both systems means thatthresponding symplectic invariants power
series(S)> are the same for both systems implies, by the semi-globaltresVVli Ngoc [23, Th. 2.1],
that there exist a neighborhodd c!) of ¢!, a neighborhood’ (c?) of c2, a semi-global symplectomorphism
o : FrY(V (")) — Fy Y(V(e?)) and alocal diffeomorphism : V(¢?) — V(c!) such thatF; = go Fyo .
Now, from Lemma 5.6 we know that there exists a privilegeétctoromentum map, c.f. Definition 5.7, for
each system above the domaiitc’) \ ¢/, j € {1, 2}, c.f. Definition 5.7. We denote by this momentum
map for the system induced W#y;, andv, for the system induced b¥,. Sincer; andv, are semi-global
symplectic invariants, one hag = 15 o .

By equation (7.1) the focus-focus critical valu€sof the semitoric systems; and and:? of I, have
the same twisting-index invariaktwith respect to the common polygak. In view of the characterization
of expresion (5.9), we get

n1 = Tkljl and Mo = Tkljz, (72)

and therefore
p = 2 0 p.
Thus we can writg; ' F; = g5 ' Fy 0 ¢, Or

Flzhog_loFl.

Using thatF; is a submersion on a neighborhood of any regular torus, anthth thath o g—! is smooth at
the corresponding regular valuesigf, we get that

hog t=Id onV(ch). (7.3)
By continuity, this also holds at . Henceh = ¢ is smooth at?, which proves the claim.
Step 2 Local symplectomorphismBrom step 1 we can assume that

Fr=giopm Fy=giops (7.4)

and henceF; (M) = Fy(Ms). In this second step we prove that this common image can bered\by
open sets),,, above each of whiclh; andF, are symplectically interwined.

Claim 7.2. There exists a locally finite open cov&?, ),c 4 of Fy (M;) = F5(M>) such that

1. all Q,, a € A are simply connected, and all intersections are simply ected;
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2. for eacha € A, Q, contains at most one critical value of raflof F;, for anyi € {1, 2};
3. for eacha € A, there exists a symplectomorphism : F; ' (Q,) — F5 1(Q,) such that
) = Fyop, Oanl(Qa).
We prove this claim next. Recall that the toric momentum mapand 2 have by hypothesis the same
image, which is the polygo. We can define an open covey, of A with open balls, satisfying pointd)
and(2). When the balf2,, contains critical value of rank 0, we may assume that thigafivalue is located

at its center. Similarly, when a ball contains critical \edwf rank 1, we may assume that the set of rank 1
critical values in this ball is a diameter. Then we just define

Qa = gl(Qa)-

Notice that in doing so we ensure that the number and typeitifairvalues ofF; in 2, are the same for
i = 1 andi = 2. For proving point(3) we distinguish four cases :

(a) €, contains no critical point of;

(b) €, contains critical points of rank 1, but not of rank 0;
(c) €, contains a rank O critical point, of elliptic-elliptic type
(d) Q; contains a rank O critical point, of focus-focus type.

The reasoning for all cases follows the same lines, but wp #tezse cases separated for the sake of clarity.

Case (a). Letus fix a point,, € Q. By Liouville-Mineur-Arnold theorem [4], applied for eachomen-
tum mapF; over the simply connected open $kt, there exists a symplectomorphispy,, : Ffl(QQ) —
T* T2 and a local diffeomorphism,; : (R?, 0) — (R?, ¢,) such that

F; = hi(&1,&2) © Pia-

Here we use the notatiq;, =2, &1, &2) for canonical coordinates i+ T2, where the zero section is given
by {{1 = & = 0}.

In fact because of equation (7.4); = g;lhi(&, £2) o Piq. Since bothy; and (&, &) are toric
momentum map, this implies thaf ' h; is an affine map with a linear paR; € GL(2, Z). Now we can
define a linear symplectomorphism in a block-diagonal way

tB; 0
Si_(o B;1.>

Obviously (£1,£2) 0 S; = BZ.‘1 o (&1,&2). From now on we replacg; o, by S; o ¢; , which reduces us to
the caseB; = Id.
Now, lety, = @3, o ¢1,o. We have the relation

Fi = (hhy') o Fyo g3k 0 1 = g1(gr 1) (g1 T ha) L1t © @a.

The affine diffeomorphisnig; ') (g7 he) ! is tangent to the identity and fixes the poigt hence it is
the identity, and we obtain, as required :

Fi=Fyop, ONF Q).
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Case (b). Above(2,, the momentum map has singularities, so we cannot applyctimnaangle theorem.
However, there is still &2-action, and it is well known that an “action-angle with glic singularities”
theorem holds (see [6] or [18]). Precisely, we fix a peinte (2, that is a critical value of; and F», and
then for each € {1, 2}, there exists a symplectomorphisp,, : F; '(©,) — T*R x T* T' and a local,
orientation preserving diffeomorphisi : (R?, 0) — (R?, ¢,) such that
F; = hi(q1,82) © @i.a-
HereT* R has canonical coordinatésy, &), 1 = (22 + £7)/2, andT* T! has canonical coordinates
(x2, &2). As before, one has
i = g hi(qr, &) © g,

andg; 'h; is an affine map with a linear part in §2, 7).

Sinceh; must preserve the set of critical values, it must send thigceéaxis “q; = 0" C R? to the set of
critical values inc,. Hencegflhl- sends the vertical axis to the corresponding diameté}.inMoreover,
since by hypothesis the images @f and 2 are the same, the seg;“ > 0" corresponds viayl‘lhl and

gfth to the same half of the ball,,. In other words, the vectan = (0,1) is an eigenvector for the linear
part B of (g7 'h1)~ g ' he, with eigenvalue 1.

Therefore,B is of the form ]i ?) , for some integek € Z. Now, consider the mafi(z1, =2, &1, &2) =

(21, @3, &1, &) given by
(@) +i&y) = €2 (21 + i)
Th = o (7.5)
& =&+ kai.
In complex coordinates,
déy Adxq = Q%dzl AdZzy,
so it is easy to check thatis symplectic. Moreover,

(q1,§2)0 S = (llf ?) (q1,&2) = B(q1,&2).

We can write
P =B (q1,6) 0 S0 Pra,
and hence, letting, := @, }, 0 S o @a,
Fi = (mB 'hy) o Fy 0 p,.

Consider the affine ma@l‘lhl)—lgl‘lth—l. Its linear part is the identity, and it fixed the origin; thus
it is the identity. This implies thdtlB—lh;l = Id.
Case (c). Using Eliasson’s local normal form for elliptic-elliptiérgyularities [8], we have the existence of
a symplectomorphisng,, and a local diffeomorphism such that

F1 =ho F2 o Sba-

Again, because of equation (7.4 = g7 'hgy o i1 0 Pa, andg; 'hgy € GL(2,7Z). But since the image of
11 and the image ofi; are the same, thegq‘lhgl must send the corner of the polygon to itself. Since it is
a Delzant cornergflhgl must be the identity.
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Case (d). From (7.4), the momentum map$ andF; have the same focus-focus critical valdes. . . , ¢, -
We wish here to interwine both systems above a small neidjioioor of eacly;. In order to ease notations,
let us drop the subscript as the construction can be repeated for each focus-foéas po

The behaviour of the system in a neighborhooa &f given by Vi Nga's theorem, which we already
used for the proof of Claim 7.1. Precisely [24, Th. 2.1] gitkes existence of a neighborhodd(c) of ¢
together with an equivariant symplectomorphism

Y FrH(V(e) — Fy ' (V(c)) (7.6)
and a diffeomorphisng such that
Fy =goFyo01. (7.7)

Now, we may argue exactly as in (7.2) — (7.3), keeping in mivad tve are now in the case whére= Id.
Henceg also must be the identity map.
This concludes the proof of Claim 7.2 and hence Step 2.

Step 3: Local to Global In this last step is to glue together the local symplectghisms of Step 2,
thus constructing a global symplectomorphiemAf; — M such thatF; = F5 o ¢. For technical reasons,
we introduce a slightly smaller open cover th&t,)c .

Claim 7.3. There exists an open cov&R,,),c4 of F1(M;) = F»(M>) such that
(i) 2 € Q.
(i) (2,)aca satisfies the properties of Claim 7.2, i.e. if we repléeby 2/, therein, Claim 7.2 holds.
(i) If «, B € A are such that2,, N Q’B # (), there exists a smooth symplectomorphism:
Pla8)  FT (2 U Q) — F5 (92, U Q)
such that

1 (Yp)lr-1(y) = Pa;

2. Fu = ¢, pF2 onFyH(Q, U ).

The proof of this claim uses the Hamiltonian structure ofdheup of symplectomorphisms preserving
homogeneous momentum maps, which we state below. It is ddganda-Zung [18].

First we introduce some notation. Let, . . . h,, ben Poisson-commuting function®?” — R. Suppose
thatvy: (R??, 0) — (R?", 0) is a local symplectomorphism &?" which preserves the smooth map=

(hiy... hy).
LetSympl(R?") be the group of symplectomorphisms®t”. Consider the set

I := {¢ € Sympl(R*") [$(0) =0, ho¢=h},

and letl’y stand for the path-connected component of the identify. dfet g be the Lie algebra of germs of
Hamiltonian vector fields tangent to the fibratigngiven byh.

Letexp: g — T’y be the exponential mapping determined by the time-1 flow ofcor fieldX € g.
More precisely, the time-s flow3 of X preservesh becauseX is tangent toF, and it preserves the
symplectic form becaus&’ is a Hamiltonian vector field. The mapping, fixes the origin becaus&’
vanishes there. Hengg , is contained i’ C T’ sinceq, is the identity map.
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Claim 7.4. Suppose that each; is a homogeneous function, meaning that for eaeh{1,...,n} there
exists an integek; > 0 such thath;(t z) = t* h;(x) for all 2 € R™. Then:

1. The linear party(!) of ¢ is a symplectomorphism which preserves

2. There is a vector field contained grsuch that its time-1 map is(Y) o ¢y—1. Moreover, for each vector
field X fulfilling this condition there is a unique local smooth ftina ¥ : (R?", 0) — R vanishing
at 0 such thatX = Xy.

Although not explicitely written in [18], the proof of thidaim is a minor extension of the case treated
therein, where alk; are quadratic functions. For completeness, we have indlagegoof as an appendix.

We turn now to the proof of Claim 7.3. Because of Claim 7.2r¢hgannot be a critical value df; of
rank zero in the intersectial, N €23. Hence we have two cases to consider :

(1) the intersection contains no critical value;

(2) the intersection contains critical values of rank one.

Case (1). Letpas = paps'. Itis well defined as a symplectomorphism &k, := Fy '(Qa N Qp)
into itself. Moreover,[5p,3 = F». SinceF; is regular onM,g (andQ, N Qg is simply connected), one
can invoke the Liouville-Mineur-Arnold theorem [4] and asse thatM,3 = T™ x D, with corresponding
angle-action coordinatgs:, &), whereD is some simply connected open subseR8f in such a way that
F; depends only the thgvariables.

The symplectomorphisnp,g preserves the linear momentum map= (&1, &), SO we may apply
Claim 7.4 and obtain a smooth functian s on Q, N 3 such thatp,s is the time-1 Hamiltonian flow of
hag o F>. Let x be a smooth function oft,, U €23 vanishing outsidé€), N Q23 and identically equal to 1 in
Qr, N Q. Thus we may construct a smooth functigy = xhas 0N Q. UQs whose restriction to a slightly
smaller open se®/, N QIB is preciselyh,, whereQ,, € Q, andQ’ﬁ € (g are chosen precisely so that this
condition is satisfied. Lep,s be the time-1 Hamiltonian flow df,z o Fb. Itis defined onFy * (2, U Qp),
and equal tao,3 on Fy (€2, N Q).

Now consider the map defined onF, ' (Q/, U Q) by

©a(m if me FH(Q,
w(m) = { ~ ( ) f Fl—l(Q/ )
Pap 0 pp(m) ifme F( 6)'
It is well-defined because af, (2, N Q) one has
Pap © pp(m) = Pap © pg(m) = @a(m).
Theny is a smooth symplectomorphisniy (€, U Q) — EyH QLU Q). Moreover, since?, = &7, 5 %,
one hasi; = ¢*F». Thus, in this case, we may Iet, g) = ¥.

Case (2). Againwe letos = papy', @ symplectomorphism ofl,s := F; ' (2, N ) into itself, such
that 5 o Pap = Fy.

By Miranda-Zung’s result [18, Th. 2.1] (or Dufour-Molino J[@r Eliasson [8]), the foliation above
Q. N Qg is symplectomorphic to the linear modeh, &) onT* R x T* T*, with

q1(x1, &1, T2, &) = 27 + &1,
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This means that there exists a symplectomorphismi/,3 — T* R x T* T! and a diffeomorphisnk of
x(©2a N Q) such that
Fyox ' =h(q, &).

Hence we find that
h(q1, §2) o x = h(q1, §2) © X © @as-

By Claim 7.4, there exists a smooth functibps = has(q1,£2) whose Hamiltonian flow connects, s :=
X © Pas © x~ ! to its linear part of at the origin. Now, it is easy to see that Bnear symplectomorphism
preserving the moment mdp;, &) is the time-1 flow of some linear functiop,s(q1,&2). Since any two
functions of(¢1, &) commute, the time-1 Hamiltonian flow of the half sm{rfzw + qap)/2 0 (qu, &2) is
preciselyy, . By naturality, the time-1 Hamiltonian flow of

~

ha,B OF2 = (haﬂ ‘|‘q(1ﬁ)/2 o (q17 52) °X,

defined ort2, N Qg, is preciselyy, 3. We now conclude as in case a).

Conclusion:lt follows from Claim 7.2 and the second point of Claim 7.3ttfa any finite subsetl’ C A,
there exists a symplectomorphism : F; 1 (Q4) — F; 1(Q4/), where

Q= | 2,
acA’
such that
F1 = FQ o ¢A"

Moreover, from the first point of Claim 7.3 we see that4f C A is another finite subset containingy,
then one can choosey» such that¢ 4 )|o,, = ¢ar

Let (A,,)nen be an increasing sequence of finite subsetd afhose union isA. The projective limit of
the corresponding sequen@gy,, ) is a symplectomorphism : M; — M, such thatF, = F» o ¢, which
finally proves the theorem.

8 Proof of Miranda-Zung’s lemma for homogeneous maps

Letp € I'. Letg; € C°°(R??) the expansion mapping (z1,...,x2,) = t(x1,...,x9,) for eacht € R.
Consider the deformation given by the fam{ly’zb(m)}te[w) defined by

v, J1t (hog)(x)  te(0,2]
Sy (w)—{ $WO(@)  t—0. (8.1)

This deformation is usually called “Alexander’s trick” aitdls well-known to be smooth [14]. We have
to check that the deformation takes place insid& oivhich amounts to checking thato S =  for all
t € [0, 2], and that it is symplectic, i.e{S,}”)*w =wforallt €0, 2].

In order to check this, let us assume that 0 in what follows. Indeed, we have tRat

2this elementary computation is the only difference withpheof of Corollary 3.4 in the article [18] of Miranda-Zunghere
the indexk; equals2 therein becausk; is a homogeneous quadratic polynomial of degre®/e thank E. Miranda for confirming
this point.
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1 1 1

hio1Wo @) = (1) (o)) = - hle(@) = 7 hilta) = £t i), 82)

where in the first equality we have used thais homogeneous of degrég, in the second thap € I" and
henceh; o ¢ = h, and in the fourth again tha; is homogeneous of degrég
On the other handjfw = t2 w sincew is a2-form, and therefore

(SY)'w=1/t(Wog)w=w. 8.3)

It follows from (8.2) and (8.3) thaﬁf’ e I'for all t € (0, 2]. Because the definition given t{)Szp}te(M} is
smooth,SY € T, and in particular)!) € T, which proves (1).

Let 'y be be the path-connected component of the identitl/.ofo conclude the proof it suffices to
show that)() op—! € Ty, because once we know this (2) will follow from Theorem 3.®jinanda-Zung®
[18]: The exponentiadxp: g — T’y is a surjective group homomorphism, and moreover there exalficit
right inverse given by € I'y — fol X, dt € gwhereX; € gis defined byX;(R;) = f% for anyC! path
R; contained inl"y connecting the identity to.

As in Miranda-Zung’s proof for the case thiais quadratic homogeneous, we take= (! o St(’rl),

t € [0, 1]. The path{R;},co, 1] C T'o is connects the identity t¢}) o SY™". Hence by the result above
there exists a vector field whose time-1 map ig(") o ¢»—! and a unique Hamiltonian mappinig which
vanishes at the origin such th&t= Xy, and (2) follows.
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