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Abstract

This introduction to the R package semPLS is a (slightly) modified version of Monecke
and Leisch (2012), published in the Journal of Statistical Software.

Structural equation models (SEM) are very popular in many disciplines. The par-
tial least squares (PLS) approach to SEM offers an alternative to covariance based SEM,
which is especially suited for situations when data is not normally distributed. PLS path
modelling is referred to as soft—-modeling—technique with minimum demands regarding
measurement scales, sample sizes and residual distributions. The semPLS package pro-
vides the capability to estimate PLS path models within the R programming environment.
Different setups for the estimation of factor scores can be used. Furthermore it contains
modular methods for computation of bootstrap confidence intervals, model parameters
and several quality indices. Various plot functions help to evaluate the model. The well
known mobile phone dataset from marketing research is used to demonstrate the features
of the package.
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1. Introduction

Within the academic literature of many fields, Rigdon (1998) remarks, structural equation
modeling (SEM) has taken up a prominent role. Whenever researchers deal with relations
between constructs such as satisfaction, role ambiguity, or attitude, SEM is likely to be the
methodology of choice. Since SEM is designed for working with multiple related equations
simultaneously, it offers a number of advantages over some more familiar methods and there-
fore provides a general framework for linear modeling. SEM allows great flexibility on how
the equations are specified. The development of an evocative graphical language (McArdle
1980; McArdle and McDonald 1984) has accompanied the development of SEM as a statistical
method. Due to this language, complex relationships can be presented in a convenient and
powerful way to others not familiar with SEM.

The partial least squares approach to SEM (or PLS path modeling), originally developed by
Wold (1966, 1982, 1985) and Lohmoller (1989), offers an alternative to the more prominent
covariance-based (CBSEM, Joreskog 1978). Whereas CBSEM estimates model parameters
so that the discrepancy between the estimated and sample covariance matrices is minimized,
in PLS path models the explained variance of the endogenous latent variables is maximized
by estimating partial model relationships in an iterative sequence of ordinary least squares
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(OLS) regressions (e.g., Hair, Ringle, and Sarstedt 2011b). It is worth mentioning that in PLS
path modeling latent variable (LV) scores are estimated as exact linear combinations of their
associated manifest variables (MVs) and treats them as error free substitutes for the manifest
variables. Whereas CBSEM requires hard distributional assumptions, PLS path modeling is
a soft-modeling-technique with less rigid distributional assumptions on the data. At this point
it should be mentioned, that PLS path modeling is not to be confused with PLS regression.
According to Chin (1998) it can be argued, that depending on the researcher’s objectives and
epimistic view of data to theory, properties of the data at hand or level of theoretical know-
ledge and measurement development, PLS path modeling is more suitable. Additionally, great
interest in applying PLS path models has been stimulated by the increasing need in model-
ing so called formative constructs, especially in marketing and management/organizational
research (e.g., Diamantopoulos and Winklhofer 2001; Jarvis, MacKenzie, and Podsakoff 2003;
MacKenzie, Podsakoff, and Jarvis 2005). The application of PLS path models in marketing
is discussed in depth by Henseler, Ringle, and Sinkovics (2009) and Hair, Sarstedt, Ringle,
and Mena (2011a). For a related discussion in the field of management information systems,
see Ringle, Sarstedt, and Straub (2012).

The semPLS is a package for structural equation modeling (SEM) with partial least squares
(PLS) in R (R Development Core Team 2012). It is available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/package=semPLS. One of the major design
goals is to provide a comprehensive open-source reference implementation. The package offers

e modular methods for model fitting, calculation of quality indices, etc.,
e plotting features for better understanding of the multivariate model data,

e a convenient user interface for specifying, manipulating, importing and exporting model
specifications,

e and an easily extensible infrastructure.

Within the package there are two central methods. The first is plsm which is used to create
valid model specifications. The second is sempls which fits the model, specified with plsm.
Factor scores can be estimated by using three different weighting schemes: centroid, factorial
and path weighting. For the calculation of the outer weights, correlations can be calculated
by using Pearson-correlations for continuous data or Spearman- or Kendall-correlations when
the scale of the data has rather ordinal character. If the data contains missing values it is
possible to use pairwise correlations to compute outer weights. In addition to the estimated
factor scores and outer weights, sempls computes loadings, path coefficients and total effects,
as those are the parameters of interest. For the outer loadings/weights and path coefficients
different types of bootstrap confidence intervals and standard errors are available. Calcu-
lation of quality indices (R?, @?, Dillon-Goldstein’s p, etc.) is done via specific methods.
PLS path models specified with plsm can be easily manipulated by a variety of utility meth-
ods. Models specified in SmartPLS can be imported. Several plot types (e.g. pairs plots
of MV blocks, convergence diagnostic of outer weights, kernel density estimates of residu-
als/bootstrap parameters, parallel coordinates of bootstrap parameters, etc.) support the
researcher in evaluating their models. Finally a graphical representation of the model includ-
ing outer loadings and path coefficients can be written to a DOT file which can be rendered
and plotted by dot (Gansner, Koutsofios, and North 2006), a layout program contained in
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Graphviz (AT&T Research 2009). Graphviz is an open-source graph visualization software.
When it is intended to also estimate the model by the covariance-based approach (CBSEM),
the model can be exported to an object of class semmod and fitted with sem (Fox 2006; Fox,
Nie, and Byrnes 2012), see Section 5.

In the development process of the semPLS package we checked the results for model para-
meters against those obtained by a list of other PLS path modeling software. This list in-
cludes SmartPLS (Ringle, Wende, and Will 2005), XLSTAT-PLSPM (Esposito Vinzi, Fahmy,
Chatelin, and Tenenhaus 2007, in cooperation with Addinsoft France, see http://www.
x1lstat.com/en/products/x1lstat-plspm/) and the plspm package (Sanchez and Trinchera
2012). Note, that SmartPLS and XLSTAT-PLSPM are closed source and plspm is licensed
under the General Public License (GPL > 2). All differences in model parameters due to the
used software were in line with the predefined tolerance for the outer weights.

SmartPLS: SmartPLS is a stand alone software specialized for PLS path models. It is built
on a Java Eclipse platform making it operating system independent. The model is
specified via drag & drop by drawing the structural model for the latent variables and
by assigning the indicators to the latent variables. Data files of various formats can be
loaded. After fitting a model, coefficients are added to the plot. More detailed output is
provided in plain text, INXTEX and HTML format. The graph representing the model can
be exported to PNG. Besides bootstrapping and blindfolding methods it supports the
specification of interaction effects. A special feature of SmartPLS is the finite mixture
routine (FIMIX), a method to deal with unobserved heterogeneity (e.g., Ringle, Wende,
and Will 2010; Sarstedt and Ringle 2010; Sarstedt, Becker, M., and Schwaiger 2011).

XLSTAT-PLSPM: XLSTAT (Addinsoft 2011) is a modular statistical software relying on Mi-
crosoft Excel for the input of data and the display of results, but the computations
are done using autonomous software components. XLSTAT-PLSPM is integrated in
XLSTAT as a module for the estimation of PLS path models. It is developed by a
research team from the Department of Mathematics and Statistics of the University
of Naples in Italy and Addinsoft in France and implements all methodological features
and most recent findings of the PLEASURE (Partial LEAst Squares strUctural Rela-
tionship Estimation) technology by Esposito Vinzi et al. (2007). Special features of
XLSTAT-PLSPM are multi-group comparisons (Chin and Dibbern 2010) and the RE-
BUS segmentation approach (Esposito Vinzi, Trinchera, and Amato 2010) for treatment
of unobserved heterogeneity.

plspm in R: The plspm package implements PLS methods with emphasis on structural equa-
tion models in R. The fitting method plspm.fit returns a list including all the esti-
mated parameters and almost all statistics associated with PLS path models. The
print method gives an overview of the following list elements: outer model, inner
model, scaled LVs, LVs for scaled = FALSE, outer weights, loadings, path coefficients
matrix, R?, outer correlations, summary inner model, total effects, unidimensionality,
goodness-of-fit, bootstrap results (only if activated) and the data matrix. A summary
is available, which basically returns the latter list including some formatting. A plot
method creates a graphical representation of the model including estimated parameters.
For treatment of observed heterogeneity pathmox (Sanchez and Aluja 2012) is provided
as companion package.
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For a long time LVPLS 1.8 (Lohmoller 1987) was the only available software for PLS path
modeling. The DOS-based program includes two different modules for estimating path mod-
els. The LVPLSC method analyzes the covariance matrix of the observed variables, whereas
the LVPLSX module is able to process raw data. In order to specify the input file an external
editor is necessary. The input specification requires that the program parameters are defined
at specific positions in the file. Results are reported in a plain text file. The program of-
fers blindfolding and jackknifing as resampling methods in case raw data has been analyzed.
When analyzing covariance/correlation matrices, resampling techniques cannot be applied.

A comparison of PLS Software available in August 2006 is provided by Temme, Kreis, and
Hildebrandt (2010): LVPLS, VisualPLS (Fu 2006), PLS-Graph (Chin 2003), SPAD (Test&Go
2006) and SmartPLS. XLSTAT-PLSPM and the plspm package were released later. For users
who want a graphical user interface (GUI), SmartPLS or XLSTAT-PLSPM may be convenient
choices. SmartPLS can be obtained free of charge whereas XLSTAT-PLSPM is distributed
commercially. Concerning the open-source implementations semPLS and plspm, there may
not exist a specific reason for many users to prefer one over the other, though the modular
design of semPLS makes it more flexible and easier to extend. In general it is of benefit to
have independent open-source implementations, e.g., for benchmarking.

The remainder of this paper is organized as follows: In Section 2 we sketch the theoretical
background of PLS path modeling exemplary for the ECSI model (Tenenhaus, Esposito Vinzi,
Chatelin, and Lauro 2005), a customer satisfaction index for the mobile phone industry. The
basic usage of plsm and sempls is illustrated in Section 3. Section 4 explains how to get
bootstrap confidence intervals for the model parameters and how to visualize bootstrapped
parameters. In Section 5 other topics such as manipulation of the model specification, export
for fitting with sem and importing of model specifications from SmartPLS are addressed.
Finally, we close with a summary and outlook in Section 6.

2. Theoretical background: PLS path models in a nutshell

PLS path models consists of three components: the structural model, the measurement model
and the weighting scheme. Whereas structural and measurement model are components in all
kinds of SEMs with latent constructs, the weighting scheme is specific to the PLS approach.
As in Tenenhaus et al. (2005) we introduce the theory by the example of European customer
satisfaction index (ECSI) and the measurement instrument for the mobile phone industry. The
description of the measurement instrument is available from the help page help("ECSImobi")
in the semPLS package. In Figure 1 all relations between latent variables (LVs) and manifest
variables (MVs), the nomological network, are shown. Nodes representing LVs are coded as
ellipses and those representing MVs as boxes. Contrary to the CBSEM approach, in the PLS
context each MV is only allowed to be connected to one LV. Furthermore all arrows connecting
a LV with its block of MVs must point in the same direction. The connections between LVs
and MVs is referred to as measurement or outer model. A model with all arrows pointing
outwards is called a Mode A model — all Vs have reflective measurements. A model with all
arrows pointing inwards is called a Mode B model — all LVs have formative measurements.
A model containing both, formative and reflective LVs is referred to as MIMIC or a mode C
model.

PLS path models only permit recursive relationships and can be expressed as simple connected
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Figure 1: The graph represents the nomological network of the ECSI model for mobile phone
provider (Tenenhaus et al. 2005). LVs are displayed in ellipses and MVs are displayed in
boxes.

digraphs. A digraph is called simple if it has no loops and at most one arc between any pair of
nodes. A digraph is connected if an undirected path between any two nodes exits; consequently
no node is isolated from the rest.

2.1. The structural model

In the structural model, also called inner model, the LVs are related with each other according
to substantive theory. LVs are divided into two classes, exogenous and endogenous. Exogenous
LVs do not have any predecessor in the structural model, all others are endogenous. The
structural model for the ECSI model is depicted by Figure 2. The only exogenous LV in the
ECSI model is Image. The graph can be described by an adjacency matrix D as displayed in
Table 1.

For the benefit simplicity the notation we use for the structural model dismisses the difference
between exogenous and endogenous variables and we start with the compact form

Y = YB+2Z (1)
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Figure 2: Causality model describing causes and consequences of customer satisfaction.

Image Expectation Quality Value Satisfaction Complaints Loyalty

Image 1 1 0 0 1 0 1
Expectation 0 0 1 1 1 0 0
Quality 0 0 0 1 1 0 0
Value 0 0 0 0 1 0 0
Satisfaction 0 0 0 0 0 1 1
Complaints 0 0 0 0 0 0 1
Loyalty 0 0 0 0 0 0 0

Table 1: The table displays the adjacency matrix D for the ECSI model. If the entry d;; = 1
the LV i is a predecessor of LV j. The matrix D can always be structured as a triangular
matrix.

where Y denotes the matrix for the latent variables, both exogenous and endogenous. The
error terms Z are assumed to be centred, i.e., E [Z] = 0. Elements of the coefficients matrix
B are restricted to zero where the elements of the adjacency matrix D are zero.

Formally we can write the equations for the ECSI model as follows:

Image = Image+ 0  (Note: exogenous variable)
Expectation = (12 Image + 29
Quality = [23 Expectation + z3
Value = (o4 Expectation + 34 Quality + 24
Satisfaction = f15 Image + Bo5 Expectation + (35Quality + (45 Value + z5
Complaints = [5¢ Satisfaction + zg

Loyalty = (17 Image + (57 Satisfaction + g7 Complaints + z7.



Armin Monecke, Friedrich Leisch

2.2. The measurement model

The measurement model or outer model relates observed variables (MVs) to their latent
variables (LVs). Often observed variables are referred to as manifest variables or indicators,
latent variables as factors. Within the PLS framework one manifest variable can only be
related to one LV. All manifest variables related to one LV are called a block. So each LV has
its own block of observed variables. A block must contain at least one MV. The way a block
can be related to an LV can be either reflective (see Figure 3) or formative (see Figure 4).

Without loss of generality we can make the following assumptions:

1. All MVs contained in the data matrix X are scaled to have zero mean and unit variance.

2. Each block of MVs X is already transformed to be positively correlated for all LVs y,,
g=1,...,G.

As we will see, when the PLS algorithm (Section 2.3) is described, all the LVs values (factor
scores) are constructed in a way to also have zero mean and unit variance. Table 4 in the
appendix gives an overview of the notation used.

Reflective measurement: In the reflective way (Mode A) each block of MVs reflects its
LV and can be written as the multivariate regression:

X, = i'/g'w;r + Fy, E [Fylyy] = 0.

So 'ng can be estimated by least squares as

,w;r = (y;yg)_ly;Xg
= VAR(yg)_lCOV(yg, X)
= COV(yy, X,)
= COR(y4, Xy). (2)

Note, that the PLS algorithm (see Section 2.3) estimates all the LVs y4, g =1,...,G,
as linear combination of their MVs under the constraint to have unit variance. At the
beginning of this chapter we assumed all the MVs to be scaled to zero mean and unit
variance. Consequently, the equality above is valid. Figure 3 depicts a path diagram
for a reflectively measured LV.

Formative measurement: For the formative way (Mode B) the LV is considered to be
formed by its MVs following a multiple regression:

Yy, = Xgwy+ 9y , E 64| X4] = 0.
Again wy is estimated by least squares:
wy, = (X;Xg)_ngTyg

= VAR(X,)"'COV(X,, y,)
COR(XQ)_1COR(X9>?JQ)- (3)
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Figure 3: The latent variable y, is mea- Figure 4: The latent variable y, is mea-
sured by the block X, consisting of three sured by the block X, consisting of three
observed variables, x1,...,x3, in a reflec- observed variables, x1,...,x3, in a forma-
tive way (mode A). tive way (mode B).

As for the reflective measurement, the equality results from the scaling of LVs and MVs.
Let us keep in mind, that X is a matrix, when the LV y, is measured by a block of
more than one MV. In that case VAR(X) refers to covariance matrix. Figure 4 depicts
a path diagram for a formatively measured LV. E.g., Diamantopoulos and Winklhofer
(2001) discuss formative constructs in detail.

When all latents in a model are measured reflectively, it is called a reflective model. If all
of them are measured formatively, the model is formative. A mixture of both measurement
modes is referred to as MIMIC (Tenenhaus et al. 2005) or multi-block model (Chin 1998).

Let kg ={k € {1,...,K} | r ~ yq} be a set of indices for MVs related to LV y, then wy,

g=1,...,g,is a column vector of length |x,|. We can write down the matrix of outer weights
W as
wp 0 0 --- O
0 w9 0
W=1o
: .. . . 0
0O 0 --- 0 wg

Table 2 depicts the adjacency matrix M for the ECSI model. It has the same structure as the
matrix of outer weights W and it is used for the initialization, as we will see, when the PLS
algorithm (Section 2.3) is described. If the entry my, = 1, MV x;, is one of indicators of LV y,.
The MVs CUEX1 , CUEX2 and CUEX3 for example are indicators of the LV Expectation. Note,
that the matrix M includes no information about the direction. So it does not tell us anything
about the measurement mode of the blocks.

2.3. The partial least squares (PLS) algorithm

Now let us have a look at the partial least squares (PLS) algorithm (Wold 1982; Lohmoller
1989). The PLS algorithm aims at estimating the values for LVs (factor scores) by an iterative
procedure. Figure 5 depicts the flowchart of the algorithm. The idea is to first construct each
LV by the sum of its MVs. Then in the inner approximation we try to reconstruct each LV
by means of its neighbouring LVs. In the outer approximation we try to find the best linear
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Image Expectation Quality Value Satisfaction Complaints Loyalty
IMAG1 1
IMAG2
IMAG3
IMAG4
IMAG5
CUEX1 1
CUEX2
CUEX3 1
PERQ1
PERQ2
PERQ3
PERQ4
PERQ5
PERQ6
PERQ7
PERV1 1
PERV2 1
CUSA1 1
CUSA2 1
CUSA3 1
CUSCO 1
CUSL1 1
CUSL2 1
CUSL3 1

e

-

R G g

Table 2: The table shows the adjacency matrix M for the measurement model. If the entry
myg = 1 the MV £ is one of the indicators of the LV g. The zeros are shaded out to better
perceive the block structure.

combination to express each LV by means of its MVs; the coefficients are referred to as outer
weights. Finally, in step 4, each LV is constructed as weighted sum or linear combination
of its MVs. After each step the LVs are scaled to have zero mean and unit variance. The
algorithm stops if the relative change for all the outer weights is smaller than a predefined
tolerance.

Step 1 (initialization): We are constructing each LV as a weighted sum of their MVs.
Remember that we are assuming all the MVs, X,..., Xk, to be scaled (mean(X;) =0
and VAR(X;) = 1). We have already seen the matrix M for the ECSI model (Table 2).

Step 4:
Step 1: Step 2: Step 3: . Step 5:
Start Initialisation Inner Approximation Outer Approximation Calculating onvergence?
factor scores

Figure 5: The diagram depicts the flowchart for the PLS algorithm.
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In the initialization all the weights equal one. As a sum of centred variables all the
LVs are also centred (mean = 0). But we still have to scale them to have unit variance
(var = 1).

Y = XM (4)
j, = Yy e (5)

Yy = —F, g=1,..
g VVAR(3,)

The LVs are initialized as: ¥ = (U1,---,9q)-

Step 2 (inner approximation): In the inner approximation we estimate each LV as a
weighted sum of its neighbouring LVs. The weighting depends on the used scheme
(see Section 2.3.1). Again we are scaling the recomputed LVs to have unit variance.

Y = YE
— Yy

Yy = T g=1,..
g VVAR(7,)

We obtain the inner estimation: Y = (g1, ..., 9q).

e, (6)

Step 3 (outer approximation): For the initialization all weights were one, now we are
recalculating the weights on the basis of the LV values from the inner approximation
(Step 2). According to the measurement mode (see Section 2.2) of the LV in focus, the
weights can be estimated as,

Mode A a multivariate regression coefficient with the block of MVs as response and
the LV as regressor:

Wy = (9, 9,) "9y X,
= COR(QQ,Xg), (7)

Mode B or a multiple regression coefficient with the LV as response and its block of
MVs as regressors:

W, = (X, X,) ' X!g,
= VAR(X,) 'COR(X,,g,) (8)
Step 4: In Section 2.2 we have seen how to arrange the outer weights vectors, wi,...,wgq,

in an outer weights matrix W, which we are using now to estimate the factor scores by
means of the MVs:

Y = XW (9)

. Y,

Y, = ——L g=1,...,G, (10)
VAR(Yj)
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Step 5: If the relative change of all the outer weights from one iteration to the next are
smaller than a predefined tolerance,
wgi]d wggw

Nnew
wkg

< tolerance Vk=1,....K N g=1,...,G, (11)

the estimation of factor scores done in Step 4 is taken to be final. Otherwise go back to
Step 2.

Weighting schemes

The weighting scheme is used for the estimation of the inner weights in Step 2 (2.3) of
the PLS algorithm. Originally Wold (1982) proposed the centroid weighting scheme. Later
Lohméller (1989) introduced two other schemes, factorial and path weighting. Table 1 shows
the adjacency matrix D for the LVs in the ECSI model. This matrix is representing the
structural part of the model we have already seen in Figure 2. Contrary to the matrix M
for the measurement model, D accounts for the directionality. For every d;; = 1, there is an
arc from node 4, the head of the arc, to node j, the tail of the arc. We could also say, the
columns indicate the successor, whereas the rows indicate the predecessors. As we will see,
the adjacency matrix D facilitates the calculation of the inner weights. For all the weighting
schemes, each LV is constructed as a weighted sum of the LVs it is related with. The weighting
schemes differ in the way the relation is defined. Generally we can express the inner estimate
Y as matrix product of the outer estimate Y and the matrix of inner weights E:

Y = YE. (12)

Furthermore let us denote R = COR(Y’), the empirical correlation matrix for the LVs resulting
from the outer estimation, and C = D + DT a symmetrical matrix indicating whether two
LVs are neighbours.

Centroid weighting scheme: Following the centroid weighting scheme, the matrix of inner
weights E takes the form

o sign(rij) ,fOI‘CijZI, ..
eij = {0 else ,L,7=1,...,G. (13)

Factorial weighting scheme: The factorial weighting scheme,

S Tij ,fOI‘CZ'j:]_, .
€ij = {0 ,else 717]—17'-'7G> (14)

is quite similar to the centroid weighting scheme, except for the sign of the correlation

between two neighbouring LVs, the correlation is used directly. This might be quite
reasonable, when there are pairs of neighbouring LVs with correlations close to zero.

Path weighting scheme: For the path weighting scheme (or structural scheme) the pre-
decessors and successor of a LV play a different role in the relation. Let us define the
out-neighbourhood, or successor set of a node ¢ as the set of tails of arcs going from 3.
Likewise, an in-neighbourhood, or predecessor set of a node i is the set of heads of

11
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arcs going into i. A head is representing the start/initial node of an arch, a tail its
end/terminal node.

The relation for one specific LV y; with its successor is determined by their correlation,
for the predecessors it is determined by a multiple regression

yi=y" N +z L Ela]=0, i=1,...,G

with y? " the predecessor set of the LV y;. Denoting y;“““ the successor set of the LV
y; the elements of the inner weight matrix E are

¥4 , for j € y?",
€j = COR(yi,y;) , for j € y7e, (15)

0 , else.

2.4. Calculation of path coefficients, total effects and loadings

Once the factor scores are estimated by PLS algorithm, the path coefficients can be estimated
by ordinary least squares (OLS), according to the structural model (Section 2.1). For each

LV g4, g = 1,...,G, the path coefficient is the regression coefficient on its predecessor set
~pred
}g?’l"(i .
/39 — (,ggred T ggred)flggred T gg
— COR(,Qgred7 ,ggred)71(:()R(,g§)real7 ’gg) (16)

We obtain the elements I;ij, 1,7 =1,...,G, of the estimated matrix of path coefficients B:
pred

0 , else.

The matrix B can be interpreted as transition matrix for the structural model. We can
calculate the matrix of total effects T as the sum of the 1 to G step transition matrices:

G
T = > B (18)
g=1

g-times
Note, that By expands to B -B-... B, e.g., B2 contains all the indirect effects mediated
by only one LV. The cross and outer loadings are estimated as:
A = COR(X,Y) (19)
R Xcross ifm = 1
)\outer — kg ) kg ; 20
kg { 0 , else. (20)

Remember, M is the adjacency matrix for the measurement model. Table 2 shows the
respective matrix for the ECSI model.
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3. Getting started: how to fit a model with sempls()

For illustration, we continue with the ECSI model introduced in the previous Section. The
first step, of course, is to attach the semPLS package.

R> library("semPLS")

Starting from scratch we have to create two so-called from-to-matrices that are used for
constructing the adjacency matrix D of the structural model, the other for the adjacency
matrix M of the measurement model. A from-to-matrix is a two column matrix with each
row representing a directed edge in a graph. The first column of a row contains the name
of the node where the tail of an arrow starts, the second must contain the name of the node
where the head of the arrow is connected. For the ECSI model the according matrices are
already pre-built, so we just have to load them. The matrices ECSIsm and ECSImm represent
structural and measurement model.

R> data("ECSIsm")

R> ECSIsm
source target
[1,] "Image" "Expectation"

[2,] "Expectation" "Quality"
[3,] "Expectation" "Value"

[4,] "Quality" "Value"

[5,] "Image" "Satisfaction"
[6,] "Expectation" "Satisfaction"
[7,] "Quality" "Satisfaction"
[8,] "Value" "Satisfaction"
[9,] "Satisfaction" "Complaints"
[10,] "Image" "Loyalty"
[11,] "Satisfaction" "Loyalty"
[12,] "Complaints"  "Loyalty"

R> data("ECSImm")

R> ECSImm
source target
[1,] "Image" "IMAG1"
[2,] "Image" "IMAG2"
[3,] "Image" "IMAG3"
[4,] "Image" "IMAG4"
[5,]1 "Image" "IMAGS"

[6,]1 "Expectation" "CUEX1"
[7,] "Expectation" "CUEX2"
[8,] "Expectation" "CUEX3"
[9,] "Quality" "PERQ1"
[10,] "Quality" "PERQ2"
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[11,] "Quality" "PERQ3"
[12,] "Quality" "PERQ4"
[13,] "Quality" "PERQ5"
[14,] "Quality" "PERQ6"
[15,] "Quality" "PERQ7"
[16,] "Value" "PERV1"
[17,] "Value" "PERV2"

[18,] "Satisfaction" "CUSA1"
[19,] "Satisfaction" "CUSA2"
[20,] "Satisfaction" "CUSA3"

[21,] "Complaints" "cusco"
[22,] "Loyalty" "CUSL1"
[23,] "Loyalty" "CUSL2"
[24,] "Loyalty" "CUSL3"

As mentioned before, all LVs of the ECSI model are measured reflectively, thus the MVs
of a block are all found in the second column. In a graph arrows would be drawn from
Expectation to CUEX1, CUEX2 and CUEX3, etc..

R> ECSImm[ECSImm[, 1] == "Expectation", ]

source target
[1,] "Expectation" "CUEX1"
[2,] "Expectation" "CUEX2"
[3,] "Expectation" "CUEX3"

If Expectation would have formative measurements, first and second column of the matrix
must be swapped.

R> ECSImm[ECSImm[, 1] == "Expectation", 2:1]

target source
[1,] "CUEX1" "Expectation"
[2,] "CUEX2" "Expectation"
[3,] "CUEX3" "Expectation"

The last prerequisite we need before we can finally setup our model is a dataset containing
the MVs. In our example we use the mobi dataset which is included in the package.

R> data("mobi")

Now we use plsm function to create an object suited for use with the fitting function sempls.
The method needs the arguments

data the name of the dataset containing the observed variables,

strucmod a from-to-matrix representing the structural model and



Armin Monecke, Friedrich Leisch 15

measuremod a from-to-matrix representing the measurement model.

Matrices as shown above can be created by matrix (). For convenience one can use a spread-
sheet to quickly enter the from-to-matrices by setting interactive=TRUE. For reproducibility
reasons the corresponding R expression is printed and should be saved. Alternatively csv-
files can be used to specify structural and measurement models, see the example section in
help("plsm"). Furthermore models already specified in SmartPLS (Ringle et al. 2005), see
Section 5, can be imported.

R> ECSI <- plsm(data = mobi, strucmod = ECSIsm, measuremod = ECSImm)

Objects of class plsm provide a structure such that the block structure of the data can be
reflected, see Figure 6.

R> mvpairs(model = ECSI, data = mobi, LVs = "Expectation")

Once the model is setup by plsm, model parameters can be estimated by the sempls function.
By specifying the argument wscheme="centroid", the centroid weighting scheme is used for
the inner estimation, for other weighting schemes consult the help page of sempls. The print
method for sempls objects assures that only the estimates of special interest, path coefficients
and loadings (weights in case of formative measures), are printed. Additional values of the
sempls object can be accessed either explicitly or with specific getter methods.

R> ecsi <- sempls(model = ECSI, data = mobi, wscheme = "centroid")

A1l 250 observations are valid.
Converged after 6 iteratioms.
Tolerance: 1e-07

Scheme: centroid

For graphical representation of the results, pathDiagram() creates a graph in the DOT Lan-
guage (Gansner et al. 2006). If Graphviz (AT&T Research 2009) is available on the system,
the DOT code can be directly rendered to a graphics format such as PDF (vector graphic)
or PNG (bitmap) or various others. By specifying edge.labels = "both", names of the pa-
rameters and values are both printed. By setting full = FALSE, only the structural model
is processed. As Graphviz uses internal rendering algorithms for the layout of the graph, this
function is especially useful for models with a large number variables. Note, that for people
unfamiliar with Graphviz some aspects of the resulting path diagram may be hard to change.

R> pathDiagram(ecsi, file = "ecsi-structure", full = FALSE, edge.labels = "both",
+ output.type = '"graphics", digits = 2, graphics.fmt = "pdf")

Figure 7 depicts the resulting PDF file.

R> ecsi

Path Estimate
lam_1_1 Image -> IMAG1 0.743
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Figure 6: The pairs plot for LV Expectation reveals association structures for its block of
MVs, CUEX1, CUEX2 and CUEXS3. In the lower triagonal the scatterplots of the jittered
observations including a linear regression line are plotted against each other. The diago-
nal elements contain univariate barcharts of the MVs. The upper triagonal shows pairwise
Bravais-Pearson correlation coefficients and the percentage of pairwise complete observations.

lam_1_2 Image -> IMAG2 0.601
lam_1_3 Image -> IMAG3 0.578
lam_1_4 Image -> IMAG4 0.768
lam_1_5 Image -> IMAGH 0.744
lam_2_1 Expectation -> CUEX1 0.771
lam_2_2 Expectation -> CUEX2 0.687
lam_2_3 Expectation -> CUEX3 0.612
lam_3_1 Quality -> PERQ1 0.803
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beta_1_5=0.18

beta 1205

beta 4 5=0.19

Satisfaction beta_5 7=0.48

Figure 7: A path diagram for the structural part of the fitted ECSI model can be created
with pathDiagram().

lam_3_2 Quality -> PERQ2 0.637
lam_3_3 Quality -> PERQ3 0.784
lam_3_4 Quality -> PERQ4 0.769
lam_3_5 Quality -> PERQ5 0.756
lam_3_6 Quality -> PERQ6 0.775
lam_3_7 Quality -> PERQ7 0.779
lam_4_1 Value -> PERV1 0.904
lam_4_2 Value -> PERV2 0.938
lam_5_1 Satisfaction —> CUSA1 0.799
lam_5_2 Satisfaction -> CUSA2 0.846
lam_5_3 Satisfaction -> CUSA3 0.852
lam_6_1 Complaints -> CUSCO 1.000
lam_7_1 Loyalty -> CUSL1 0.814
lam_7_2 Loyalty -> CUSL2 0.219
lam_7_3 Loyalty -> CUSL3 0.917
beta_1_2 Image -> Expectation 0.505
beta_2_3 Expectation -> Quality 0.557
beta_2_4 Expectation -> Value 0.051
beta_3_4 Quality -> Value 0.557
beta_1_5 Image -> Satisfaction 0.179
beta_2_5 Expectation -> Satisfaction 0.064
beta_3_5 Quality —-> Satisfaction 0.513
beta_4_5 Value -> Satisfaction 0.192
beta_5_6 Satisfaction -> Complaints 0.526
beta_1_7 Image -> Loyalty 0.195
beta_5_7 Satisfaction -> Loyalty 0.483
beta_6_7 Complaints -> Loyalty 0.071
Values returned by sempls:
R> names (ecsi)

[1] "coefficients" "path_coefficients" "outer_loadings"

[4] "cross_loadings" "total_effects" "inner_weights"

[7] "outer_weights" "blocks" "factor_scores"
[10] "data" "scaled" "model"

[13] "weighting_scheme" "weights_evolution" "suml"
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Function Model criteria

rSquared () coefficients of determination, R? values, for each endogenous LV
gSquared () Stone-Geisser’s Q? for assessment of predictive relevance

dgrho () Dillon-Goldstein’s rho, also referred to as composite reliability

communality() communality indices for reflectively measured LVs with more than one MV

redundancy() redundancy indices for endogenous LVs

gof () GoF index (geometric mean of average communality and average deter-
mination coefficient)

Table 3: A list of criteria for model validation which are already available in the semPLS

package.

[16] "pairwise" "method" "iterations"
[19] "convCrit" "verbose" "tolerance"
[22] "maxit" "N "incomplete"

[25] "Hanafi"

Since there is no well identified global optimisation criterion for PLS path models, each part
of the model needs to be validated. For this task several indices are known from literature,
see e.g., Tenenhaus et al. (2005, p. 172-176) or Esposito Vinzi et al. (2010, p. 56-62). Table 3
lists the model criteria currently implemented in semPLS.

Path coefficients and total effects are extracted by pathCoeff and totalEffects. As we see
in the example dimnames can be abbreviated.

R> pC <- pathCoeff (ecsi)
R> print(pC, abbreviate = TRUE, minlength = 3)

Img Exp Ql1t Val Sts Cmp Lyl

Img . 0.505 . . 0.179 . 0.195
Exp . . 0.557 0.051 0.064

Qlt . . . 0.557 0.513

Val . . . . 0.192 . .
Sts . . . . . 0.526 0.483
Cmp . . . . . . 0.071
Lyl

R> tE <- totalEffects(ecsi)
R> print(tE, abbreviate = TRUE, minlength = 3)

Img Exp Qlt Val Sts Cmp Lyl

Img . 0.505 0.281 0.182 0.390 0.205 0.399
Exp . . 0.557 0.361 0.419 0.221 0.218
Qlt . . . 0.557 0.619 0.326 0.323
Val . . . . 0.192 0.101 0.100
Sts . 0.526 0.521
Cmp . 0.071

Lyl



Armin Monecke, Friedrich Leisch

Outer weights are extracted by plsWeights.

R> plsWeights(ecsi)

Image Expectation Quality Value Satisfaction Complaints Loyalty
IMAG1 0.30
IMAG2 0.26
IMAG3 0.22
IMAG4 0.33
IMAGS 0.32 .
CUEX1 . 0.52
CUEX2 . 0.47
CUEX3 . 0.45
PERQ1
PERQ2
PERQ3
PERQ4
PERQ5
PERQ6 .18
PERQ7 . . .21 .
PERV1 . . . 0.49
PERV2 . . . 0.60 .
CUSA1 . . . . 0.38
CUSA2 . . . . 0.38
CUSA3 . . . . 0.44 .
CUSCOo . . . . . 1.00 .
CUSL1 . . . . . . 0.45
CUSL2 . . . . . . 0.13
CUSL3 . . . . . . 0.66

.21
.14
.20
.18
.18

O O O O O O o

Loadings are extracted by plsLoadings. Since loadings can be used to check for discriminant
validity, the default for the print method of plsLoadings objects is to print numeric values
only for the row maxima and loading relatively close to them. The MV IMAG2 for example
loads relatively high on the LVs Image and Quality. To print outer or cross loadings, the
print method has to be called explicitly with its type argument specified. Another argument,
reldiff, can be used to check for discriminant validity. The default is 0.2, which means that
all crossloadings bigger than (1 —0.2) times the maximum crossloading for a MV are printed.

R> plsLoadings (ecsi)

Image Expectation Quality Value Satisfaction Complaints Loyalty
IMAG1 0.74 . .
IMAG2 0.60 . 0.50
IMAG3 0.58
IMAG4 0.77
IMAGS 0.74 .
CUEX1 . 0.77
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CUEX2 . 0.69
CUEX3 . 0.61
PERQ1

PERQ2 .

PERQ3 0.63

PERQ4 .

PERQ5 0.61

PERQ6 .78 ) .

PERQ7 . . .78 ) 0.70

PERV1 . . . 0.90

PERV?2 . . . 0.94 .

CUSA1 . . 0.64 ) 0.80

CUSA2 . . ) ) .85

CUSA3 . . ) ) 0.85 .

CUSCOo . . ) ) . 1.00 )
CUSL1 . . ) ) . . 0.81
CUSL2 . . ) ) . . 0.22
CUSL3 . . ) ) . . 0.92

.80 . 0.68
.64 . .
.78 . 0.64
17
.76

O O O O O O o

o

By calling plot on a sempls object, a plot of the evolution of outer weights until convergence
for all blocks of MVs is created. Figure 8 depicts the result of plot(ecsi), using lattice
(Sarkar 2008).

Kernel density estimates can provide hints on the adequacy of the model, see Figure 9.

R> densityplot(ecsi, use = "residuals")

4. Bootstrapping sempls objects

Finally we can bootstrap the estimations for outer loadings and path coeflicients, leveraging
the boot package (Canty and Ripley 2012; Davison and Hinkley 1997). The summary method
also calculates confidence intervals based on the percentile method. We use 500 bootstrap
samples and we use ones to initialise the outer weights. For the outer loading lam_6_1 no
confidence interval can be computed, because it relates the LV Complaints to its only MV
CUSCO, which is always estimated as 1.

R> set.seed(123)

R> ecsiBoot <- bootsempls(ecsi, nboot = 500, start = "ones", verbose = FALSE)

R> ecsiBoot

Call: bootsempls(object = ecsi, nboot = 500, start = "ones", verbose = FALSE)
Estimate Bias Std.Error

Image -> IMAG1 0.7434 -0.004463 4.31e-02

Image -> IMAG2 0.6007 -0.001859 5.80e-02

Image -> IMAG3 0.5776 -0.004403 6.31e-02

Image -> IMAG4 0.7684 -0.002188 4.47e-02
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Evolution of Outer Weights
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Figure 8: The plot depicts the evolution of outer weights until convergence.
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Image -> IMAGS 0.7445 0.001691 3.01e-02
Expectation -> CUEX1 0.7715 -0.006157 5.23e-02
Expectation -> CUEX2 0.6866 -0.002187 8.52e-02
Expectation -> CUEX3 0.6118 -0.000381 7.59e-02
Quality -> PERQ1 0.8033 0.001853 2.34e-02
Quality -> PERQ2 0.6374 -0.004122 5.19e-02
Quality -> PERQ3 0.7835 0.001389 2.97e-02
Quality -> PERQ4 0.7691 -0.002988 4.52e-02
Quality -> PERQ5 0.7558 -0.001085 3.92e-02
Quality —> PERQ6 0.7752 -0.002527 5.75e-02
Quality -> PERQ7 0.7794 0.001324 3.12e-02
Value -> PERV1 0.9043 -0.002026 2.22e-02
Value -> PERV2 0.9379 0.000318 8.07e-03
Satisfaction -> CUSA1 0.7990 -0.001989 3.04e-02
Satisfaction -> CUSA2 0.8462 -0.001261 2.28e-02
Satisfaction -> CUSA3 0.8519 -0.000138 1.75e-02
Complaints -> CUSCO 1.0000 0.000000 5.17e-17
Loyalty -> CUSL1 0.8138 -0.002456 4.03e-02
Loyalty -> CUSL2 0.2191 0.001473 9.65e-02
Loyalty -> CUSL3 0.9168 -0.001029 1.19e-02
Image —> Expectation 0.5047 0.007683 5.87e-02
Expectation -> Quality 0.5572 0.004379 ©5.35e-02
Expectation -> Value 0.0508 0.011914 8.46e-02
Quality -> Value 0.5572 -0.007401 8.41e-02
Image -> Satisfaction 0.1788 0.008076 5.08e-02
Expectation -> Satisfaction 0.0644 -0.004120 4.83e-02
Quality -> Satisfaction 0.5125 -0.005184 6.49e-02
Value -> Satisfaction 0.1918 0.001316 5.87e-02
Satisfaction -> Complaints 0.5261 0.001322 5.20e-02
Image -> Loyalty 0.1954 0.006120 7.65e-02
Satisfaction -> Loyalty 0.4835 -0.004741 8.57e-02
Complaints -> Loyalty 0.0712 0.000369 ©5.55e-02
R> ecsiBootsummary <- summary(ecsiBoot, type = "bca", level = 0.9)

R> ecsiBootsummary
Call: bootsempls(object = ecsi, nboot = 500, start = "ones", verbose = FALSE)

Lower and upper limits are for the 90 percent bca confidence interval

Estimate Bias Std.Error Lower Upper
lam_1_1 0.7434 -0.004463 4.31e-02 0.65788 0.799
lam_1_2 0.6007 -0.001859 5.80e-02 0.49794 0.689
lam_1_3 0.5776 -0.004403 6.31e-02 0.44906 0.660
lam_1_4 0.7684 -0.002188 4.47e-02 0.67570 0.825
lam_1_5 0.7445 0.001691 3.01e-02 0.68441 0.787
lam_2_1 0.7715 -0.006157 5.23e-02 0.65638 0.831
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lam_2_2 0.6866 -0.002187 8.52e-02 0.51959 0.798
lam_2_3 0.6118 -0.000381 7.59e-02 0.44677 0.715
lam_3_1 0.8033 0.001853 2.34e-02 0.75399 0.838
lam_3_2 0.6374 -0.004122 5.19e-02 0.54288 0.714
lam_3_3 0.7835 0.001389 2.97e-02 0.72151 0.821
lam_3_4 0.7691 -0.002988 4.52e-02 0.68072 0.837
lam_3_5 0.7558 -0.001085 3.92e-02 0.67852 0.813
lam_3_6 0.7752 -0.002527 5.75e-02 0.65748 0.853
lam_3_7 0.7794 0.001324 3.12e-02 0.70761 0.817
lam_4_1 0.9043 -0.002026 2.22e-02 0.85289 0.930
lam_4_2 0.9379 0.000318 8.07e-03 0.92111 0.949
lam_5_1 0.7990 -0.001989 3.04e-02 0.74262 0.843
lam_5_2 0.8462 -0.001261 2.28e-02 0.80460 0.878
lam_5_3 0.8519 -0.000138 1.75e-02 0.81982 0.878
lam_6_1 1.0000 0.000000 5.17e-17 . .
lam_7_1 0.8138 -0.002456 4.03e-02 0.72931 0.866
lam_7_2 0.2191 0.001473 9.65e-02 0.04211 0.365
lam_7_3 0.9168 -0.001029 1.19e-02 0.89681 0.934
beta_1_2 0.5047 0.007683 5.87e-02 0.38627 0.579
beta_2_3 0.5572 0.004379 5.35e-02 0.46267 0.638
beta_2_4 0.0508 0.011914 8.46e-02 -0.08127 0.192
beta_3_4 0.5572 -0.007401 8.41e-02 0.41834 0.692
beta_1_5 0.1788 0.008076 5.08e-02 0.09167 0.248
beta_2_5 0.0644 -0.004120 4.83e-02 -0.00649 0.152
beta_3_5 0.5125 -0.005184 6.49e-02 0.40264 0.615
beta_4_5 0.1918 0.001316 5.87e-02 0.09251 0.288
beta_5_6 0.5261 0.001322 5.20e-02 0.43602 0.612
beta_1_7 0.1954 0.006120 7.65e-02 0.04689 0.313
beta_5_7 0.4835 -0.004741 8.57e-02 0.35094 0.622
beta_6_7 0.0712 0.000369 5.55e-02 -0.01587 0.169

The results of the bootstrap samples for the path coefficients can be visualised by plotting
kernel density estimates (Figure 10) and parallel coordinates (Figure 11).

R> densityplot(ecsiBoot, pattern = "beta')

R> parallelplot(ecsiBoot, pattern = "beta", reflinesAt = c(0, 0.5),
+ alpha = 0.3, type = "bca',

+ main = "Path Coefficients\nof 500 bootstrap samples")

5. The plsm class: importing, manipulating, exporting

5.1. Manipulating an existing model

Once we are working with a model, we might want to add or remove a path, bring in or take
out variables, both LVs and MVs, or even to invert the measurement model from reflective to
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Figure 10: The figure depicts the bootstrap distribution of the path coefficients based on 500
resamples.

formative and vice versa. The semPLS package provides a list of methods to perform those
tasks. All of them are found in help ("plsmUtils"). With plsmEdit the from-to-matrices for
structural and measurement model can be edited in a spreadsheet. When the spreadsheets are
saved, the method checks whether the model is still valid. Valid means all MVs are available
in the data, names of MVs and LVs are not allowed to coincide. All MVs of a block must
be in the same column, this is because a block of MVs can either belong to a reflective or
formative LV. And the structural model must be recursive — an acyclic graph.

To better understand models of class plsm, we will check for changes made by the utility
methods in the respective elements of the plsm object. We continue with the ECSI model and
invert the measurement model of the LV Expectation. This does not result in changes in the
adjacency matrix M, ECSI[["M"]], as it does not include the direction. The measurement
model is coded in the element ECSI[["blocks"]], a list with elements named by the LVs and
character vectors naming the MVs as elements. Each Element has an attribute "mode" with
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Path Coefficients
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Figure 11: The figure depicts parallel coordinates for the path coefficients of 500 bootstrap
samples (solid light-gray lines), the sample path coefficients (solid dark-red line), 90% boot-
strap bca confidence intervals (dashed dark-red lines) and two reference lines at 0 and 0.5
(dotted black lines).

supported values "A", reflective, and "B", formative.
R> ECSI[["blocks"]]["Expectation"]

$Expectation

(1] "CUEX1" "CUEX2" "CUEX3"
attr(,"mode")

[1] IIAII

R> invertLVs(model = ECSI, LVs = c("Expectation"))[["blocks"]]["Expectation"]

$Expectation

[1] "CUEX1" "CUEX2" "CUEX3"
attr(,"mode")

[1] IIBII

Now we want to add a path from Quality to Loyalty.

25
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R> ECSI[["D"]]

Image Expectation Quality Value Satisfaction Complaints

Image 0 1 0 0 1 0
Expectation 0 0 1 1 1 0
Quality 0 0 0 1 1 0
Value 0 0 0 0 1 0
Satisfaction 0 0 0 0 0 1
Complaints 0 0 0 0 0 0
Loyalty 0 0 0 0 0 0

R> addPath (model

ECSI, from = "Quality", to = "Loyalty")[["D"]]

Image Expectation Quality Value Satisfaction Complaints

Image 0 1 0 0 1 0
Expectation 0 0 1 1 1 0
Quality 0 0 0 1 1 0
Value 0 0 0 0 1 0
Satisfaction 0 0 0 0 0 1
Complaints 0 0 0 0 0 0
Loyalty 0 0 0 0 0 0

Two paths can be removed simultaneously. The same applies to adding paths.

R> removePath(model = ECSI, from = "Image", to = c("Satisfaction",
+ "Loyalty”)) [[IIDHJJ

Image Expectation Quality Value Satisfaction Complaints

Image 0 1 0 0 0 0
Expectation 0 0 1 1 1 0
Quality 0 0 0 1 1 0
Value 0 0 0 0 1 0
Satisfaction 0 0 0 0 0 1
Complaints 0 0 0 0 0 0
Loyalty 0 0 0 0 0 0

5.2. Exporting plsm objects for use with sem

Loyalty

O, =k O O O =

Loyalty

O, Bk, O, O

Loyalty

O, =, OO OO

If we are interested in a covariance based estimation of the path coefficients, we can for
example use the sem package (Fox et al. 2012). We convert the model ECSI to a model
representation, semmod, as used by the fitting method sem. For the scaling, we fix the LVs
variances and the first loadings of an LVs instrument to one — thus comparing loadings of
the two approaches is not fair. So we focus only on the estimated path coefficients. Though

not necessary in this example, the variances for the MVs are fixed to one, too.
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R> library("matrixcalc", pos = which(search()=="package:semPLS") + 1)
R> library("sem", pos = which(search()=="package:semPLS") + 1)

R> semmodECSI <- plsm2sem(model = ECSI,

+ fixedLoad = c(names (mobi) [grep("1", names(mobi))], "CUSCO"),
+ fixedVarMV=TRUE, fixedVarLV=TRUE)

R> ecsiSEM <- sem(model = semmodECSI, S = cor(mobi), N = nrow(mobi))
R> betalndx <- grep("beta*", names(ecsiSEM$coeff))

R> cbind(ecsi$coefficients [names (ecsiSEM$coeff) [betalndx], 1,

+ CBSEM = ecsiSEM$coeff [betalndx])

Path  Estimate CBSEM
beta_1_2 Image -> Expectation 0.50470564 0.66437251
beta_2_3 Expectation -> Quality 0.55724786 0.69297541
beta_2_4 Expectation -> Value 0.05078755 0.11857742
beta_3_4 Quality -> Value 0.55721686 0.48088261
beta_1_5 Image —> Satisfaction 0.17883348 0.26916413
beta_2_5 Expectation -> Satisfaction 0.06442534 0.06259237
beta_3_5 Quality -> Satisfaction 0.51254524 0.50358818
beta_4_5 Value -> Satisfaction 0.19181566 0.16180132
beta_5_6 Satisfaction -> Complaints 0.52609731 0.44085882
beta_1_7 Image -> Loyalty 0.19535970 0.25719296
beta_5_7 Satisfaction -> Loyalty 0.48347472 0.37182098
beta_6_7 Complaints —> Loyalty 0.07123241 0.06378005

5.3. Importing model specification created with SmartPLS

The ECSI model, including the data for the mobile phone industry, is shipped with SmartPLS.
After loading the project file ecsi.splsp, a directory ecsi is created, which contains the XML
representation of the model, ECSI.splsm and the data file mobi_250.txt. The mentioned
directory is located in the SmartPLS workspace. We can use the method read.splsm to create
a splsmobject in R. The argument order="generic" ensures to arrange the structural model
according to the causal chain it implies. The data file is read as usual by read.table().

The semPLS contains a SmartPLS workspace in the /inst directory. This workspace contains
the SmartPLS model description ECSI_Tenenhaus.splsm. To get the system path to the file,
use system.file(). We can see, all returned values with identical names to the result from
(plsm) are equal. The splsm object is inheriting from class plsm and contains some SmartPLS
specific additional values, e.g., node descriptions and positions of the graphical representation
of the model. For now, these additional values are not used by semPLS.

R> ptf <- system.file("SmartPLS", "workspace", "ecsi", "ECSI_Tenenhaus.splsm",
+ package = "semPLS")

R> ECSIimported <- read.splsm(file = ptf, order = "generic")

R> for (i in names(ECSI)) print(all.equal(ECSI[i], ECSIimported[i]))

[1] TRUE
[1] TRUE
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[1] TRUE
[1] TRUE
[1] TRUE
[1] TRUE
[1] TRUE
[1] TRUE

6. Summary and outlook

In this article, we have described some of the basic features of the semPLS package for
working with PLS path models in R. While illustrating the usage of the different functions
for model specification, model fitting, bootstrapping and computation of quality indices, we
have focused at showing the modularity of the package. Due to this modularity the semPLS
package can be extended easily.

As we have demonstrated, a variety of graphical tools support the researcher in exploring their
model data. Parallel coordinates of bootstrap coefficients can be useful to detect unobserved
heterogeneity. With the help of mvpairs plots, ceiling or floor effects and dubious observations
are spotted quickly. By means of plots for the evolution of outer weights, convergence problems
can be discovered.

Currently the semPLS does not support moderating effects in an object oriented way, though
they can be specified manually. The plpm class will be extended to also support moderating
effects. Further development plans are

e to enhance visualization methods by making them more dynamic and better accessible
by the user, e.g., to add grouping variables post-hoc,

e to integrate a simulator function to draw samples from hypothetical models, thus open-
ing the door to large scale Monte Carlo experiments, and

e to develop new methods for dealing with unobserved heterogeneity.

Computational details

With exception of the path diagrams, all computations and graphics in this paper have been
done using R version 2.15.2 with the packages XML 3.95-0.1, MASS 7.3-23, sem 3.1-0, semPLS
1.0-10, matrixcalc 1.0-3, lattice 0.20-11, grid 2.15.2, tools 2.15.2. The path diagrams have
been rendered with dot - Graphviz version 2.20.2 (Tue Mar 2 21:46:26 UTC 2010).
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A. Notation

number of observations

number of observed variables

number of latent variables

N x K matrix of observed variables (MVs); each variable standardized
block of observed variables (MVs) belonging to latent vy,

N x K matrix measurement error for reflective block X,
measurement error vector of length N for a formative LV y,

N x G matrix of for the latent variables (LVs)

N x G matrix of the structural model error terms

N x G matrix: inner approximation/estimation of factor scores
N x G matrix: outer approximation/estimation of factor scores
adjacency matrix (K x G) for the measurement model
adjacency matrix (G x G) for the structural model

K x (G matrix of outer weights

G x G matrix of inner weights

G x G matrix of path coefficients

G x G matrix of the total effects

ACToss K x (G matrix of cross loadings

Aouter K x G matrix of outer loadings

@
i
Q

NETESURNNNRS NN QR =

Table 4: Notation used.
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