
SemRank: Ranking Complex Relationship Search Results
on the Semantic Web

Kemafor Anyanwu
LSDIS Lab

Department of Computer
Science

University of Georgia
Athens, Georgia, USA

anyanwu@cs.uga.edu

Angela Maduko
LSDIS Lab

Department of Computer
Science

University of Georgia
Athens, Georgia, USA

maduko@cs.uga.edu

Amit Sheth
LSDIS Lab

Department of Computer
Science

University of Georgia
Athens, Georgia, USA

amit@cs.uga.edu

ABSTRACT
While the idea that querying mechanisms for complex
relationships (otherwise known as Semantic Associations)
should be integral to Semantic Web search technologies has
recently gained some ground, the issue of how search results
will be ranked remains largely unaddressed. Since it is expected
that the number of relationships between entities in a knowledge
base will be much larger than the number of entities themselves,
the likelihood that Semantic Association searches would result
in an overwhelming number of results for users is increased,
therefore elevating the need for appropriate ranking schemes.
Furthermore, it is unlikely that ranking schemes for ranking
entities (documents, resources, etc.) may be applied to complex
structures such as Semantic Associations.

In this paper, we present an approach that ranks results based on
how predictable a result might be for users. It is based on a
relevance model SemRank, which is a rich blend of semantic
and information-theoretic techniques with heuristics that
supports the novel idea of modulative searches, where users may
vary their search modes to effect changes in the ordering of
results depending on their need. We also present the
infrastructure used in the SSARK system to support the
computation of SemRank values for resulting Semantic
Associations and their ordering.

Categories and Subject Descriptors
H.3.3 [Information Systems] Information Search and Retrieval

General Terms
Algorithms, Experimentation, Measurement

Keywords
Semantic Web, SemRank, Semantic Ranking, Ranking Complex
Relationships, Semantic Associations Search, Semantic
Relationship Search, Semantic Match, Semantic Similarity,
Discovery Query, Path Expression Tree, Semantic Summary

1 INTRODUCTION
The premise of search technologies today is primarily

centered around enabling search for entities or on the Semantic

Web resources. However, the following quote by Grady Booch
[5] summarizes the limitations of a purely entity-centric world
view:

“An object by itself is intensely uninteresting”.
Similar sentiments were echoed in [23] where relationships were
emphasized as the heart of the Semantic Web. Correspondingly,
efforts must be made to extend or identify alternatives to
traditional search mechanisms focused on finding documents
described either by keywords or semantic annotations, with
capabilities for searching about complex relationships between
Semantic Web resources. Such search capabilities may become
the foundation for a “Relationship Search Engine”, a technology
with the potential for immense real world value in analytical and
knowledge discovery applications [27]. Relationship search
technologies will provides effective means to answers questions
such as “Does a semantic relationship exist between X and Y”?
One step in this direction is [1][3] where the notion of Semantic
Associations is formalized and refers to complex relationships
between resources capturing the connectivity or similarity of the
resources. In graph theoretic terms, they refer to labeled paths
(not necessarily directed) that either connect resources or that
the resources have similarly. In addition, progress [4][18][3] is
now being made in developing efficient evaluation strategies for
discovering such relationships on the Semantic Web.

Another important related issue that must be addressed by
relationship search technologies is how to determine the relative
importance of relationships found with respect to a user’s
context because that impacts how they will be ranked. This
problem is particularly important because it is possible, in fact
likely, that the number of such relationships are much larger
than the number of entities themselves. This means that there is
potential for creating a more acute information overload
problem than currently exists on the Web. It is therefore
imperative that we develop techniques for ordering search
results in order to present results of highest importance first.
Unfortunately, it is not clear that the techniques used currently
for ranking entities on the Web e.g. for HTML, PageRank [7],
HITS [14], for XML [13] [8], and on the Semantic Web, [23],
can be used to rank complex relationships. There is some related
work [26] being done in the area of ranking Semantic Networks.
However, this approach suffers from the same limitation as most
ranking approaches which have a fixed ranking scheme that
imposes a single type of ordering on results. That is that the
same query made in different contexts and for different
purposes, still yields the same ordering. It seems that some
flexibility should be built into the relevance models so that

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

117

different orderings may be imposed on the same result set
depending on the user’s need. For example, in an investigative
context the focus of a search may be to uncover obscure
relationships between entities (e.g., it is suspected that in money
laundering, innocuous dealings/relationships are purposefully
introduced to further obscure relationships [27]), whereas the
focus of a conventional search may be to find predictable or
commonly expected relationships for the purpose of validating
or augmenting already known information. Therefore, in the
earlier scenario, we may need to boost results that are
considered unpredictable whereas in the latter case we may need
to reverse that ordering.

The challenge here of course is in defining the metrics that
will be used for determining the ordering of results. When using
IR style techniques over structured or semi-structured data, the
ordering of results is based on how close a document is to a
query (i.e., an explicit description of a user’s need). In context
of a relationship search however, queries do not contain a
description as such, they may just identify the entities of interest.
Consequently, a relevance model that is based on how good of a
match a document is to a query does not apply and the
development of novel techniques is necessary. One promising
approach to dealing with this problem is based on using metrics
that somehow measure the predictability of the result that is
being returned. For example, we may choose to rank highest in
an investigative or discovery search, results that are less
predictable while in a conventional search the reverse ordering
more desirable.

1.1 Outline and Contributions
• In this paper, we focus on ranking the results of complex

relationship searches on the Semantic Web. We pursue
an approach that is based on a modulative relevance
model SemRank, that can easily (using a sliding bar) be
modulated or adjusted via the query interface. In this
way, a user can easily vary their search mode from a
Conventional search mode to a Discovery search
mode based on their need. The richness of the SemRank
relevance model stems from the fact that it uses a blend
of semantic and information theoretic techniques along
with heuristics to determine the rank of Semantic
Associations. It also has the advantage of being a unified
model for ranking all the different types of Semantic
Associations.

• We discuss the infrastructure provided by the SSARK
(Semantic Searching of A different Kind) system for the
computation of SemRank values and ordering of results
based on these values. Some key components of the
infrastructure include the idea of modulative searches
used to support anywhere from conventional to discovery
searches; the notion of Semantic Summaries
analogous to the notion of structural summaries used for
optimizing path expression query evaluation; a pipelined
Top-K algorithm for computing approximately correct
orderings of search results.

The rest of the paper is organized as follows: section 2 presents
some background information on Semantic Associations, section
3 discusses the issue of ranking Semantic Associations and
presents the components of the SemRank model. Section 4
discusses the computational issues with respect to computing

SemRank values and result ordering and presents the strategies
adopted by the SSARK system. Section 5 presents an empirical
evaluation of our approach and sections 6 and 7 discuss related
work and conclusion respectively.

2 BACKGROUND AND MOTIVATION
Semantic Associations were based on the notion of RDF
Property Sequences whose instances can be viewed as
labeled paths in a knowledge base. A knowledge base in our
context refers to a set of RDF descriptions or OWL-Lite
descriptions represented in RDF. They also include certain
binary relations on Property Sequences that capture the
intersection and similarity of paths in which entities are
involved. Figure 1 shows some examples of Semantic
Associations. Figure 1(a) shows a direct path connecting
resources r1 and r2 and is called a ρ-pathAssociation.

r1

r2

rn

rmr1

r2 rn

r1 r2

(c) ρ-Join Association between a and b

(a) ρ-Path Association between a and b (b) ρ-Iso Association between a and b

p11

p1n

p21

p2m

p11 p1n

p11′ p1n′

p11 p1n

. . .

. . .

. . .

. . .

. . .

Figure 1: Semantic Associations

Figure 1(c) is called a ρ-joinAssociation between r1 and
r2. The rationale for suggesting a relationship between r1 and
r2 is that the paths p1 = p11, p12, .. p1n originating from r1 and
p2 = p21, p22, .. p2m, originating from r2 join at node rn. In
other words, r1 and r2 meet at some point. Another type of
association called a ρ-isoAssociation (shown in Figure
1(b)) indicates a similarity relationship between resources. The
paths p = p11, p12 …. p1n originating from r1 and p′ = p11′, p12′,
…. p1n′ originating from r2 are semantically similar in that the
corresponding edges in both paths are related in a subproperty
relationship (i.e.,, for each p1i, either p1i is rdfs:subPropertyOf
p1i′ or vice versa), therefore r1 and r2 are related by virtue of
this similarity.
As mentioned earlier, Semantic Associations are based on the
notion of Property Sequences. Let us assume the following
interpretation functions for a class c and a property p, [][]∧ ,

[][]+ , and [][] such that:

i) [][]∧c = { r | r is rdf:type of c} i.e., only proper instances
of c

ii) [][]∧p = {[r1, r2] | r1 ∈ { }{ [][]∧c | c ∈ p.domain },

r2 ∈ { [][]∧c | c ∈ p.range } i.e., only proper instances of
p

118

iii) [][]+c = [][]{ }∧c ∪ [][]{ }∧'c where c is
rdfs:subClassOf c′ i.e., proper instances of c and the
superclasses of c.

iv) [][]+p = [][]{ }∧p ∪ [][]{ }∧'p where p is
rdfs:subPropertyOf p′ i.e., proper instances of p and the
superclasses of p.

v) [][]c = [][]{ }∧c ∪ [][]{ }∧'c where c′ is
rdfs:subClassOf c i.e., all instances of c including its
subclasses.

vi) [][]p = [][]{ }∧p ∪ [][]{ }∧'p where p′ is a
rdfs:subPropertyOf p} all instances of p including its
subproperties,

A Property Sequence PS = P1, P2, … Pn is a finite
sequence of properties whose interpretation is given by:

[][] [][]i
n
i PPS 1=×⊆ such that

1. for ps an instance of PS, i.e., ps ∈ [[PS]], ps[i] = [r1, r2] ∈ [[
Pi]] for 1≤ i ≤ n. (We use the notation ps[i][0] and ps[i][1]
to refer to r1 and r2 respectively.)

2. ps[i][1] = ps[i+1][0].
In the example above, Figure 1(a) shows a property sequence
whose instance is the directed path from r1 to r2. . Figure 1(c)
shows two property sequences p11, p12, .. p1n and p21, p22, .. p2m
that form a ρ-joinAssociation between r1 and r2 and are
called Joined Property Sequences while the two
sequences of properties p11, p12, .. p1n and p21, p22, .. p2n in Figure
1(b) that form a ρ-isoAssociation between r1 and r2 are
called ρ-Isomorphic Property Sequences.

2.1 Motivating Example

Faculty

Customer

Student Adviser

Professor

Course

Payment
Type

Ticket

Frequent
Flier

Credit Card

Account

FlightPassenger
LeaderOrganization

acquired forFlight paidBy

taughtBy

adviseeOf
acctHolder

electedLeader

&r1

&r2 &r3 &r4 &r5 &r6

&r7

&r8 &r9

purchased forFlight paidBy
accountHolder

electedLeader

audits
taughtBy

adviseeOf

20accountHolder
electe

dLeader

“Jane Doe”“John Doe”

depositsInto
accountHolder

subClassOf

type

subPropertyOf

Grad
Student

TA

enrolls
audits

grades proposedBy

withdrawsFrom

depositsInto

20AcctHolder

teachingAssistantOf

EmployeeworksForownsStockIn

&r10

ac
co

un
tH

ol
de

r

w
i th

dr
aw

sF
ro

m

worksFor

ow
ns

Stoc
kIn

ownsStockIn

isaccountHolderOf

leaderOf

memberOf

memberOf

bidsFor

Book
purchased

for

bidsFor

purchased

isaccountHolderOf

owl:inverseOf

Figure 2: An example RDF knowledge base

We will motivate our work with a simple example. The top part
of Figure 2 shows four schemas for four different domains
University, Banking, Flight and Organization,
while the bottom part shows a set of resources described using
those schemas, i.e.,, the knowledge base. A Semantic
Association search specifies a pair of resources and
optionally some keywords, and the result is the set of ρ-
pathAssociations, ρ-joinAssociations and ρ-isoAssociations that
relate both resources. A semantic association search is
sometimes referred to as a ρ-query because the search is done

using an operator ρ that extends traditional RDF query
languages [3][2]. Table 1 below shows three Semantic
Associations between resources r1 and r6, a student and her
professor. The first row contains a ρ-pathAssociation that
connects the student r1 to r6 via the purchase of a ticket that was
paid for by r6 and row 2 connects r1 directly to r6 with an
advisee relationship. Row 3 shows a ρ-isoAssociation in which
both r1 and r6 have relationships that re similar, i.e.,, stock
ownership. There are other semantic associations between r1
and r6 that are not shown in the table e.g. the ρ-joinAssociation
involving the path in row 1 and the other paths that lead to r6.

Table 1: Example Semantic Associations

1

&r6&r5

&r4r3&&r2r1&
leaderderaccountHol

paidByforFlightpurchased

 → →

 → → →

2 &r6r1& adviseeOf →
3

&r8&r9r6&

&r4&r5r1&

olderOfisAccountHnownsStockI

olderOfisAccountHnownsStockI

 → →

 → →

It is likely that the result of a search in a large knowledge base
will be inundating, especially if the search includes multiple
sources and destinations. This suggests a need to rank the results
in some order of importance. On the other hand, it is not very
clear how to ascribe importance to the results because of their
complex and heterogeneous nature.
In the next section, we will discuss the relevance model called
SemRank which addresses the problem of how to rank these
results.

3 RANKING SEMANTIC
ASSOCIATIONS
It would appear that there are different possibilities for ranking
semantic associations results e.g., by shortest paths, longest
paths, least frequently occurring paths, etc. However, each of
these approaches makes an assumption about what is most
relevant for every situation. In our experience, we have found
that different applications have different needs and making
assumptions that fix the ranking schemes can be limiting.
Consequently, two main features of our ranking scheme are
customizability (allowing users to select an appropriate ranking
scheme) and flexibility (allowing users to easily apply different
ranking schemes on results so that results may be viewed using
different perspectives).
Fundamental to our ranking approach is the ability to measure
how much information is conveyed by a result thereby giving a
sense of how much information a user would gain by being
informed about the existence of the result. This is closely related
to the likelihood that a user could have guessed that such an
association exists or the predictability of the association.
Using such measure we may then rank results based on the
search mode selected for the search. For example, if the context
requires a conventional search then results that are deemed
obscure and unpredictable will be ascribed the least importance.
In Table 1, for example, we can say that the fact that a student is
an advisee of a professor i.e.,, result 2, is probably the least
surprising of the results and should be assigned the highest
relevance when a conventional search is being performed. On

119

the other hand, when a discovery search is performed, the other
two results are candidates for the most relevant result.
The factors used for measuring the predictability of a result
include (i.) the uniqueness or specificity of the result and
(ii.) how discrepant the structure of the result is from the
possibilities that can be gleaned from the schema. In the case of
specificity, it seems reasonable to conjecture that a commonly
occurring association is more predictable than a rarely occurring
association. The idea of uniqueness may be either with respect
to the whole database or just to the set of resources of similar
types. For example, it may be that the association is rare with
respect to the entire database but frequent when considering
only the set involving similar resources. We combine both
notions of uniqueness to form a measure of information content
of a result.
The issue of a result’s discrepancy from schema arises because
the multiple typing of resources by classes unrelated inheritance
allowed by the RDF and OWL-Lite data models, often leads to
paths at the data layer that cannot be predicted by just looking at
the schemas. For example in Figure 2, the property sequence
purchased•forFlight•paidBy•accountholder•ele
ctedLeader does not occur anywhere at the schema layer but
occurs in a path from r1 to r6 because r4 and r5 are multiply
classified. Deviations from schema represented paths are called
refractions and paths with many refractions are unlikely to
be easily anticipated by users, making them less predictable.
Finally, we allow users to optionally specify some keywords that
capture relevance and results which contain semantic matches
are ranked highest.
The rest of the section elaborates on these measures and how
they are used to rank ρ-path associations. For brevity, we omit
their application to other types of semantic associations.

3.1 Information Gain and ρρρρ-Path Semantic
Associations

In information theory, the amount of information contained
in an event is measured by the negative logarithm of the
probability of occurrence of the event. Thus if χ is a discrete
random variable or an event that has possible outcome values x1,
x2, …, xn occurring with probabilities pr1, pr2, …, prn i.e.,,
Pr(χ=xi) = pri, with pri ≥ 0 and Σall i pri = 1, the amount of
information gained or uncertainty removed by knowing that χ
has the outcome xi is given by

ii pr log)I(χ −== x

The maximum information content of χ is attained when pri =
1/n for all i. This is given by I(χ) = log n.
Based on this we can build a model for measuring the
information content of a semantic association by considering the
occurrence of edge as an event and RDF properties as its
outcomes. We begin with defining the notion for a property and
then extend it to a sequence of properties of a path. Assume that
P is the set of all property types in a description base and χ is a
discrete random variable with sample space [[P]]. Then for any
valid property p ∈ P, the probability that χ = p is given by

()
^

^

P]][[

p]][[
pχPr == .

We refer to this probability as the specificity SP of the
property p. The specificity of a property is a measure of its
uniqueness relative to all other properties in the description
base. The information content of the occurrence of a property p
I(χ=p) in the description base due to its specificity is:

IS(p) = I(χ=p) = () pχ Prlog =−

It is possible develop a similar measure which exploits the
semantics of RDF and RDFS. Given that RDF resources are
typed, any two resources r1 and r2 have a finite number of valid
properties from that may connect them. Using this information,
we can estimate the information content of a property p linking
r1 and r2 with respect to only the valid properties as
possibilities. What we then expect is that information content
will be larger in situations where the number of valid properties
is large and smaller in situations with fewer valid properties.
The valid properties that can link two resources include those
that have been explicitly defined in a schema and those that may
be inferred from the semantics of RDFS. In particular, the
semantics of multiple domains/ranges on a property p implies
that a resource must belong to all the domain/range classes even
if that membership is not explicitly stated. We introduce the
concept of a Representative Ontology Class (ROC)
as a concise summary of related classes by virtue of the
equivalence of their interpretations. For example, in Figure 2
the classes Book and Ticket belong to an ROC which
represents the set of things that can be purchased. We now
make this notion more precise.
Definition 1 Representative Ontology Classes. For an
ontology O with the set of classes C and properties P and |C| = n,
let S be a n × n matrix with the following entries:

)(^)(^,ijS prangejcpdomainicp ∈∧∈= U

where domain^/range^ refer to classes in the proper
domain/range of a property (i.e., excluding their subclasses).
We can define an equivalence relation ~ such that:

~(i, j) iff Sik = Sjk and Ski = Skj for all k.
~ partitions the elements of S into the set L of equivalence
classes of ~, where each equivalence class represents the set of
classes that are equivalent with respect to their outgoing and
incoming properties. It corresponds to the set of classes that
should have the same interpretations. Each l ∈ L is called a
Representative Ontology Class (ROC). The set of
all possible properties semLinks that can directly connect two
ROCs X and Y is given by semLinks(X, Y) Si(X),i(Y)
where i(l)∈ {i:Ci∈l}. i(l) is called a
representative for the ROC l and Ci is called a member
of l. Since the members of each equivalence class are
equivalent with respect to their outgoing and incoming
properties, then it suffices to pick a representative class for X
and Y, say Ci(X) and Ci(Y) respectively.
Now, given any two resources r1 and r2, we can measure the
probability distribution of the types of properties that can
connect them in the instance base. If we let π be the set of all
possible properties that may connect r1 and r2, then π clearly
depends on the types of r1 and r2. If C1, C2, .., Cm and D1, …,
Dn are the classes of r1 and r2 respectively and if X1, X2.. Xk,
and Y1, Y2, ..Yp are ROCs that Ci and Dj belong to respectively,
then

),(ji YXsemLinksU=π and θ = { }U p p]][[π∈+ .

120

θ represents the interpretation of all the valid properties that may
connect r1 and r2. Thus, the probability that χ ∈ θ is given by:

()
^P]][[

 θ
θχPr =∈

For a given valid property p in the description base, if χ ∈ θ, the
probability that χ = p is given by:

() ()
() θ

 [[p]]

θχPr
θ χp,χPrθχ | pχ Pr

^

=
∈

∈==∈=

We refer to this probability as the θ-Specificity SPθ of
property p. The θ-specificity of a property is a measure of its
uniqueness relative to all other properties in the description base
whose domain and range belong to the same ROC’s,
respectively. The information content of the occurrence of a
valid property p I(χ=p | χ∈θ) in the description base due to its
θ-Specificity can then be defined as

Iθ-S(p) = I(χ=p | χ∈θ) = ()θχ | pχ Prlog ∈=− .

To illustrate these concepts, for the property “purchased”
connecting &r1 and &r2 in Figure 2 above, ROC1 = {Student,
Passenger}, ROC2 = {Book, Ticket} with θ =
{[[purchased]]+, [[bidsFor]]+}, so that the size of θ = | [[
purchased]]^ | + | [[acquired]]^ | + | [[bidsFor]]^ |. If
there are 20, 40, 80 instances of the properties purchased,
acquired and bidsFor respectively, with a total of 1000
property instances in the description base, then the specificity of
purchased is 0.02 while its θ-specificity is 0.143.
We can extend these ideas to capture the information content of
a ρ-path association. Let PS = p1, p2, …, pn, be a property
sequence and ps ∈ [[PS]] a path. It is clear that ps occurs as
frequently as the least frequently occurring property pi in PS. We
define the information content of ps due to its specificity as

() })(pI {maxpsI iS
i

S
∀

= . Intuitively, this means that a path is as

informative as its most informative edge with respect to the
entire description base.

For the information content of ps due its θ-specificities we must
somehow combine the different θ-specificities of the various
properties on the path. However, since the θ-specificities of the
edges are based on different probability distributions, we cannot
meaningfully compared them with one another, so we must first
normalize the values by taking the ratio of the observed
information content to the maximum possible information
content (as described earlier). This results in normalized θ-
specificity values, NIθ-S. It is important that our combination
function doesn’t bias towards longer paths, therefore a sum
function is not a good combination function. Also, we must
ensure that the combination function distinguishes between
paths with more uniform θ-specificity distributions than those
with non-uniform θ-specificity distributions. To see why this is
so, take for example two paths ps1 and ps2 that have the same
average NIθ-S, but ps1 has θ-specificity values for all its edges
about equal while ps2 has a range of θ-specificity values for its
edges from low to high. Then it seems that ps2 that has some
edges with low information content (i.e., some weak links)
which should be easier to predict than ps1 which has all its edges

with an equal level of predictability. Therefore, to measure the
information content of ps with respect to the θ-specificity of the
properties p1, p2, …, pn, we modify the value gotten from the
average of the θ-specificities to:

Iθ-S(ps) =
1n

)}p(NI{min)p(NI

)}p(NI{min

i-Sθi-Sθ

i-Sθ

i
i

i −

−

+
∀

∀

∀

∑

This implies that information content due to θ-specificity is a
combination of the information gained from the weakest point
along the path and an average of the rest.
Finally, to the get the total information gained by knowing a
path occurred we combine the values of information content due
to both specificity and θ-specificity:

I(ps) = IS(ps) + Iθ-S(ps).

3.2 Refraction
As mentioned earlier, the multiple classification of resources
allowed in the Semantic Web data models like RDF can create
paths at the description layer the do not occur at the schema
layer, especially when multiple schemas are used to describe a
set of resources. We use the term Refraction to refer to a
deviation from a path’s representation at the schema layer. In
other words, a description layer path starts and proceeds along
exactly as described at the schema layer and then changes
direction or refracts at some point.
In order to make this notion of refraction more precise, we need
a representation of all the paths that are possible based on what
is explicitly defined in or inferable from a schema. Then for a
given path in the description base, any sequence of edges not
represented would be considered a refraction due to a multiple
classification of a node. We propose the notion of a Semantic
Summary as such a representation. It is analogous to the
concept of DataGuides [10] and other structural summaries [17]
used to optimize the evaluation of path expression queries in
semi-structured data models. A semantic summary is a graph in
which the vertices are ROCs.
Definition 2 Semantic Summaries. A Semantic Summary
for an ontology O with sets C/P of classes/properties is a graph
GS = (VS, ES, λ, <)
1. VS is the set of ROCs of O as defined in definition 1.
2. ES = { }Sii Vyxandyx ∈∅≠ , S|),((Y) (X),

3. λ : ES 2P
i. (x, y)∈ ES, λ(x, y) = semLinks(x, y)

4. < is a subsumption relation on nodes in VS such that for
two ROCs x and y, x is rdfs:subclassOf y if for ci ∈ x, ∃cj
∈ y such that ci rdfs:subClassOf cj.

Two edges (u, v) and (w, x) of a semantic summary are said to
be adjacent if v = w. Given a semantic summary GS = (VS,
ES, λ, <) and a property sequence PS = p1, p2, …, pn, if ei, ej
∈ES and ei and ej are not adjacent in GS and pi ∈ λ(ei) and pi+1 ∈
λ(ej), then we say that there is a refraction from pi to pi+1.
Formally, for a path sequence PS = p1, p2, …, pn,
refraction(pi, pi+1) =

121

() ()

 ∈∧∈∧∃/ +

otherwise
, if

0
1 1 jiiijiji epepetoadjacentisethatsuchee λλ

We use the term refraction count RC to refer to the
number of refractions on a path, given by

2 n for
) p ,p raction(ref

RC(PS)
1ii

1-n

1i ≥=
+

=
∑

, 0 otherwise.

For example, in Figure 2, the path pr1,r6 =
&r6&r9&r8r1& derelectedLeaderaccountHoltodepositsIn → → →

with the property sequence PS =
depositsInto•accountholder•electedLeader,
refracts from accountholder to electedLeader because the
resource &r9 is multiply classified as an instance of both
Organization and Customer and RC(PS) = 1.

3.3 S-Match
In order to integrate IR style search with ρ-queries, we allow
users to augment their queries with keywords. A Semantic
Match (match of property or super/subproperty) of a keyword
and a property occurring in Semantic Association) increases the
rank value for that Semantic Association. The degree of the
match and hence its S-Match value is determined by the
proximity of the properties in the property hierarchy. This
approach is very similar to that used in determining the
similarity of concepts in an ontology [16] [21]. Given a property
sequence PS = p1, p2, p3 … pn and a set of keywords K = {k1, k2,
k3 … km}, the degree of a match between ki and pj is given by
SemMatch(ki, pj) = 0 < (2d)-1 ≤ 1, where d is the minimum
distance between the properties in a property hierarchy. If two
keywords match on the same property we take the maximum of
their SemMatch values. Then for a path ps ∈ [[PS]], its S-
Match value is given by

})k ,p{SemMatch(maxMatch(ps)-S
n

1i
ji

k

1j∑
=

=
=

For example, in Figure 2 above, the minimum distance between
“audits” and “enrolls” is 1, so that SemMatch(audits,
enrolls) = ½. Given K = {audits, taughtBy} and a property
sequence PS = enrolls•taughtBy, S-Match(ps) = ½ + 1 =
1½.

3.4 SemRank
All the factors discussed above when combined together give
the SemRank value of a Semantic Association. However, the
exact nature in which they are combined is dependent on the
search mode µ which varies from 0 to 1, with 0 indicating purely
Conventional and 1 indicating purely Discovery modes,
respectively. Based on this, we build a modulative model for
SemRank in which the mode µ specifies how each of the factors
contribute to the rank of an association. The query mode µ
modulates the contribution of the information content of an
association to its rank as shown below:

Iµ (ps) = (1-µ)(I(ps)) -1 + µI(ps)
This leads to higher rank values being assigned to the most
unpredictable paths at the purely discovery mode, and lower
rank values being assigned at the purely conventional mode. The

query mode µ modulates the refractive count of an association as
shown below RCµ (ps) = µRC(ps).
Since predictable paths are desired at the purely conventional
mode, paths ranked highest at this mode do not have refractions,
as the formula above shows. Both the purely discovery and
purely conventional modes seek to retrieve paths whose
component properties have high S-Match values with the
keywords provided by the user. Therefore, S-Match is not
modulated by µ. The SemRank formula combines these three
factors to assign a rank to any Semantic Association, adapting
itself as the mode changes. It is defined for a ρ-path association
ps as:

SEMRANK(SA) = Iµ (ps) × (1+RCµ (ps)) × (1+S-Match(ps))
Using this model, we can provide a flexible ranking approach
for ranking complex relationships.

4 ORDERING SEARCH RESULTS
USING SEMRANK VALUES
The approach for obtaining an ordering on Semantic
Associations resulting from a search will depend largely on the
strategy for computing SemRank values. Possible strategies
include integrating query processing, SemRank computation and
result ordering into a single phase or performing the last two
steps in a separate phase after query evaluation. The choice of
the strategy to be adopted is dependent on whether exact
orderings are required or whether approximately correct
orderings are acceptable. In the case of approximately correct
orderings, we trade correctness for efficiency. This happens
because in the case of exact orderings it may be necessary to
completely compute the SemRank values of all Semantic
Associations and then sort them in order. When there is a large
number in the result set, this may prove to be inefficient.
In this section, we will discuss an approach for computing
SemRank values for Semantic Associations and an approximate
Top-K ordering algorithm used in our SSARK system.

4.1 Overview of the SSARK System
The approach used in the SSARK prototype system
implementation consists of three phases supported by the
architecture shown in Figure 3.

Ranking
Engine

FDIX
PHIX
ROIX

Pipelined
top-k
results

Intermediate representation
Keywords

Preprocessor

Query
Processor

RDF
Documents

Query & Result
Interface

User SubSystem

X ?? ?? ?? Y

LAC
Look
Ahead
Cache

RC

Result
Cache

Index ManagerStorage Manager

LtStore
UtStore

Loader

Figure 3: Architecture of the SSARK system

122

In the preprocessing phase, RDF documents are loaded
and preprocessed into an intermediate representation by the
Loader and Preprocessor. The intermediate
representation of an RDF graph produced by the preprocessor is
called a path sequence. A path sequence is a sequence of
subgraph representations that is amenable to efficient query
evaluation. The persistence of a path sequence is managed by
the Storage Manager which allows for its storage in a
database. When a query with a pair of resources is given, the
Query Processor selects relevant subsequences of a path
sequence and composes them to generate an annotated summary
of the Semantic Associations called an Annotated Path
Expression Tree (APET). The discussion of query
evaluation is outside the scope of this paper. For the sake of
brevity, the rest of the discussion will focus on ranking only ρ-
pathAssociations, even though the other types of associations
have also been investigated and are being prototyped.
The APET generated by the query processor is a tree
representation of the regular expression that represents all paths
found between the resources specified in the query. It is a K-
ary and-or tree where leaves are the labeled edges of the
paths and internal nodes are operator (union, concatenation)
nodes with K children. Figure 4 shows an example APET. A
semantic transformation process is performed during query
evaluation to ensure that cycles are not represented in an APET.
A discussion of the semantic transformation process is outside
the scope of this paper but can be summarized thusly: For any
cycle c with paths (a) from vertex v1 to vertex v2 and (b) from
v2 back to v1, c is be broken up into two paths from v1 to v2.
The first path is equivalent to (a) and the second is equivalent to
((b)-1)R i.e.,, the reverse of the path (b) back to v1 with the
properties in (b) substituted with their inverse properties. Also
during query evaluation the leaves of an APET (i.e., path edges)
are annotated with their SemRank values. Then during the
ranking phase, the Ranking Engine uses a pipelined Top-K
algorithm to extract approximately the Top-K paths represented
in the summary. The sequel elaborates on the structures used to
support the SemRank computation as well as the Top-K
algorithm.

4.2 Annotating Path Expression Trees
During query evaluation, the leaves of an APET are annotated
with a set of values that contribute to their SemRank values.
These values are either retrieved directly or computed from
indexes in the Index subsystem. We will now summarize
the roles of the indexes used in the computation of SemRank
values:

• Frequency Distribution IndeX (FDIX): FDIX
maps each property p to a tuple (| [[p]]^ |, | [[p]]+ |) where |
[[p]]^ | is the size of p’s proper extent and | [[p]]+ | includes
the size of the proper extent of p’s superproperties. These
values are used for calculating Specificity and θ-Specificity.
• Representative Ontology IndeX (ROIX): The
Representative Ontology Index is a hierarchical index that
maps resources to classes and then classes to ROCs. It also
stores the semLinks that link the ROCs, i.e., the labels on the
edges linking the ROCs in the semantic summaries. This
information is used to determine the refraction count of a path.

• Property Hierarchy IndeX (PHIX): Each property
in the RDF data model may participate in a number of
subsumption hierarchies. The idea is to index these properties
in such a way that the distance between two entities in the
hierarchy can be measured in constant time. To this effect, we
index the properties in each hierarchy in a manner similar to
the Dewey Decimal Coding (DDC) where each node is
assigned an id that preserves its relative position amongst its
siblings, prefixed by the id of its parent. For all the ids of all
properties to be unique, each hierarchy is assigned a hierarchy
id. Determining the distance between two properties then
amounts to summing up the number of strings in the two ids
beyond their Least Common Ancestor. For example given the
ids 0.1.3.4.5.6 and 0.1.3.4.8, their LCA is 0.1.3.4. Beyond
this, the first id has two strings (5.6) and the second has one
(8), so the distance between them is three. Because a property
may have more than one id, (since it may participate in more
than one subsumption hierarchy), PHIX maps every property
p to a set of ids. Using this index we can efficiently measure
the distance between a keyword given a query and the
properties on the resulting path which determines the
SemMatch value of the path.

4.3 Retrieving Top-K results
After the query evaluation has returned an APET, the ranking
engine extracts the top-K paths represented in the APET. An
exact SemRank ordering may require an exponential time
algorithm since all paths must be assigned a value first before
the paths are ordered. Here, we use a practical approach that
finds an approximately correct ordering thereby
sacrificing total correctness for efficiency. The algorithm
proceeds in two phases. In the first phase, the top-K paths are
computed based on all values except the refraction count values.
Then the second phase reranks the paths from the first phase
based on their refraction count. It is clear that this will not
always results in the totally correct SemRank ordering, but we
expect that what we get is an approximation that is suitable for
most applications. The reason for this is that during the top-K
computation as will be discussed shortly, paths are composed
iteratively into subpaths in a bottom up manner from the leaves
so that the entire path is composed when the iteration is at the
root of the APET. This means that properties of a path that are
used in SemRank computation such as the refraction count can
only be computed at the end of a path building phase as opposed
to the other factors (e.g. specificity) that are properties of the
edges themselves and are known once an edge is encountered.

The algorithm proceeds bottom-up computing top-k paths for
nodes based on the top-K paths computed for its children. Each
non-leaf node maintains a list for storing its Top-K paths, as
well as a max-priority queue implemented using the heap data
structure with which it orders its Top-K paths. The idea is to
obtain the Top-K paths for each node by accessing only a
minimal prefix of the Top-K paths of its children nodes, which
are ordered in non-increasing order of SemRank values. At an
‘or’ node, during the first iteration of the algorithm, the first
path from each child’s Top-K paths are first enqueued into the
max-priority q, then k paths are extracted from the queue. For
any path extracted from the queue, the next path from its list is
enqueued. For subsequent iterations, we update the queue with
the first new entry of a list if it was updated after its previously

123

last entry had been enqueued. As such, not more than k paths are
accessed from each child’s list during each iteration of the
algorithm. On the other hand, at an ‘and’ node, during the first
iteration of the algorithm, the first path from each list is
concatenated (preserving the order of the lists) to obtain the first
of the k paths. To obtain the remaining k-1 paths, we first
initialize the queue by obtaining and enqueueing a
concatenation of the second path from each list with the first
path from all other lists, then we extract k-1 paths from the
queue. For each path pi extracted from the queue, if pi is a
concatenation of paths kc,b,2a,1 l,...,l,l from lists l1, l2, … lk

respectively (where kj,l refers to the jth path from list k), we

create a new path pi+1 by concatenating paths

k,c,2b,1a mmm
l,...,l,l (where k,jm

l is equal to k1,jl + if k

equals m, and kj,l if k is not equal to m). Having created the

path pi+1, we only insert it into the queue if
• there does not exist any path pj = pi+1 with k,jm

l equal to

k1,-jl when k equals m that is still in the queue and

• pi+1 is not already in the queue.

For other iterations, the queue may need to be re-initialized if it
is empty. This algorithm is analogous to the ranked join
algorithms described in [19] except that we have taken some
measures to optimize queue operations. All possible paths have
been extracted from the queue of both the ‘and’ and ‘or’ nodes
when these queues become empty. In general, this technique can
be applied to retrieve ranked paths from any tree representation
of path expressions, irrespective of the relevance model used for
ordering, as long as a monotone combining function is used in
the join step. In the second phase, the rank of the Top-K paths
retrieved from the first phase are re-computed this time
including the refractive index of the paths, then the paths are re-
ordered based on the new rank values.
To illustrate this, suppose we want to retrieve the top-2 paths
from the APET shown in Figure 4(a) using the approximate
retrieval technique.

∪

∪ ·

·

a, 3 b, 2 ∪ ∪

·

c, 4 d, 1 e, 2 f, 5

∪

h, 1 i, 6

g, 3

(a) (b) ∪

∪ ·
·

a, 3 b, 2
∪ ∪

·

c, 4 d, 1 e, 2 f, 5

∪

h, 1 i, 6
g, 3

h, 1
i, 6,

e, 2
f, 5,d, 1

c, 4,

a.b, 5

(e)

(c) ·
∪

∪
·

a, 3 b, 2
∪ ∪

·

c, 4 d, 1 e, 2 f, 5

∪

h, 1 i, 6
g, 3

g.h, 4
g.i, 9,

d, 1

a.b, 5
c.f , 9,
c.e, 6

e, 2
f, 5,

h, 1
i, 6,

c, 4,
(d)

·
∪

∪
·

a, 3 b, 2
∪ ∪

·

c, 4 d, 1 e, 2 f, 5

∪

h, 1 i, 6

g, 3

g.h, 4
g.i, 9,

d, 1

a.b, 5

c.e, 6
c.f , 9,

e, 2
f, 5,

h, 1
i, 6,

c, 4,

c.f, 9,
c.e, 6

·
∪

∪
·

a, 3 b, 2
∪ ∪

·

c, 4 d, 1 e, 2 f, 5

∪

h, 1 i, 6

g, 3

g.h, 4

g.i, 9

d, 1

a.b, 5
c.e, 6

c.f, 9,

e, 2
f, 5,

h, 1
i, 6,

c, 4,

g.i, 9,c.f, 9,
c.f, 9,
c.e, 6

Figure 4: APET showing Top-K evaluation

For this example, we obtain the rank of a path by summing the
ranks of its sub-paths. Figure 4(b) shows the state of the APET
after all sub-trees of height 1 have been processed. Processing
continues in a similar manner until the list of the root node of
the APET gets updated with the Top-K paths. Figure 4(e) shows
the state of the APET after the first ranking phase. The top-2
paths c.f and g.i both have the same ranks (9). If we assume that
there is refraction from g to i and none from c.f, then during the
second ranking phase, the ranks of these paths would be re-
computed to incorporate refraction. The new rank of g.i would
then be 18 (9 × 2), so that after they are re-ordered, g.i precedes
c.f.

Given an APET, let R = þ1, þ2, …, þn be all paths in the APET in
non-increasing order of SemRank and let R′ = þ1′, þ2′, …, þk′ be
the Top-K paths obtained from the APET using the approximate
retrieval technique. We define the approximation error or cost of
approximation as the average distance between the index of a
path in R′ and its occurrence in R. This is given by

|ij|
k
1

þþ j

∑
=′

−′
i

.

5 EMPIRICAL EVALUATION
There are an increasing number of publicly available RDF data
sets ranging from those that are narrowly focused (e.g. DBLP
[30], ODP [31]) to those with broader scope covering multiple
domains (e.g. TAP [29], SWETO [28]). However, most of these
presented limitations that made them unsuitable as evaluation
testbeds for SemRank. Because the SemRank is property-centric
it was important that the testbeds have a wide variety of
relationships. This was not the case in the narrowly focused
ontologies, where most relationships tend to be of the same
kind. In such a situation, there are little or no distinguishing
features between the relationships. This was also present to
some extent in the broader ontologies because they tended to be
fragmented into smaller focused ontologies with limited
connections between them. Also most of the ontologies were
organized as hierarchies so that most of the relationships
represented were inheritance relationships. Another important
issue is that evaluation testbed(s) must have data distributions
that model reality. This is because if a testbed’s data
distributions are skewed merely because the data collection
process was not comprehensive then a SemRank value for a
result may be meaningless (e.g. a property may be treated
incorrectly as being rare even though the low frequency was due
to the incompleteness of data). These problems are merely a
reflection of the early developmental stages of testbeds for the
Semantic Web. We expect that some of these ontologies will
evolve into rich collections that may be very useful for future
evaluations.

Consequently, the evaluation of SemRank discussed here was
done on synthetically generated data. The data generation was
guided by rules to ensure that data distributions mirror the real
world. For example, in generating data relating to Students and
Courses, it is often the case that the total number of students
merely auditing the class, are less than 10% of the enrolled
students. Our sample data builds on the schemas used in the
example in Figure 2 involving the University, Banking, Flight

124

and Organization domains. An example query for the Semantic
Associations between the resources r1 (Sarah White) and r6
(Zachary Black) is shown in Figure 5. It shows the simple query
interface (sliding bar) that can be used easily to adjust search
modes without users having to manipulate different criteria
values. The same results are shown in using different search
modes Figure 6 (purely conventional µ = 0), Figure 8 (purely
discovery µ = 1.0) and Figure 7 (in between i.e., µ = 0.5). A
close examination of the results provide a justification for a
modulative relevance model.

Figure 5: Query Interface

In addition, we can see that different orderings map closely to
our intuition. The conventional search mode shown in Figure 6
returns as the first two results the paths of length = 1, both of
which have the same number of possible valid properties in the
schema (2 in this case. adviseeOf and TAOf for the first
result, worksFor and ownsStockIn for the second).

Figure 6:Results of Search at µµµµ = 0 (Conventional Mode)

These results (advisee-adviser relationship between a
student and a professor than an employee-employer
relationship) map to our intuition as the most predictable
relationships.
As earlier mentioned, SemRank orderings are independent of
path lengths. For example the longest path which comprises
both very common edges and very rare ones, with more of the
former than the latter, is ranked third. This path which lies in
between very rare and very common, is ranked first at µ = 0.5, as
shown in Figure 7 below.

Figure 7: Results of Search at µµµµ = 0.5

Ordinarily, one might expect that the orderings of results at the
purely conventional (µ = 0) and purely discovery (µ = 1) modes
would be exact inverses of each other. However, this is not
always the case since refraction only plays a role at the
discovery end of the search spectrum.

Figure 8: Results of Search at µµµµ = 1 (Discovery Mode)

125

For example, the ordering of path 1 and 2 at the purely
discovery mode (ninth and eighth, respectively) is the exact
inverse of their ordering at the purely conventional mode (first
and second, respectively) because there is no refraction along
both these paths. However the orderings of paths 7 and 4
(ranked third and fourth respectively at the purely conventional
mode and fourth and third respectively at the purely discovery
mode) conform to this intuition locally but not globally, since
refraction occurs along both paths.
As mentioned earlier, users are allowed to augment their queries
with keywords. To illustrate the effect any the use of keywords
may have, Figure 9 below shows the same query at the purely
conventional mode but now with the keywords {enrolls,
depositsInto} supplied.

Figure 9: Results of Search at µµµµ = 0 with keywords “enrolls”
and “depositsInto”

Note that the keyword depositsInto has a higher S-Match
value than enrolls since audits, a sub-property of
enrolls appears along a path in the result, instead of
enrolls.

With the S-Match value for these keywords, paths 4, 3, 9 and 5
ranked fourth, fifth, sixth and eighth respectively in Figure 6 are
ranked second, fourth, fifth and seventh respectively in Figure 9.
These examples show that as long as the distribution of data
reflects real world situations, the ordering of the results should
be fairly close to user expectations.

6 RELATED WORK
[11] presents the idea of semantic search aimed at improving
searches of documents on the Semantic Web by augmenting the
results of traditional searches with relevant data obtained from
multiple sources on the Semantic Web. [9] seeks to find
important related nodes to a given set of keywords using a
spread activation mechanism that is guided by information or
knowledge provided by a domain expert/knowledge engineer.
As we have discussed, discovering and ranking relationships

presents other challenges. In [26], the authors introduced the
idea of ranking resources on the Semantic Web based on a set of
semantic links that are used to describe the semantic
relationships amongst the resources. Our idea of using the
similarity of keywords provided by the user to enhance the
importance of a Semantic Association is in a way similar to this.
[25] presents an interesting ontology-based ranking scheme for
ranking entities on the Semantic Web. This scheme determines
the relevance of the entities based on their specificity. In our
scheme we have also used the notion of specificity as a measure
of the relevance of Semantic Associations. However our
measurement of specificity of an association is different from
that used in this work. Furthermore, our work differs from the
above two in two significant ways. First, we focus on ranking
Semantic Associations that exist between entities and not the
entities themselves. Second, we focus on providing a flexible
approach as opposed to a fixed approach to ranking these
associations. In this way, the associations can be ranked to meet
the needs of the user. To the best of our knowledge, the issue of
ranking Semantic Associations on the Semantic Web has only
been addressed by our colleagues in [1]. This work describes
several criteria upon which relevance of Semantic Associations
between entities are determined. Although the approach taken is
flexible, it involves a user having to specify parameters for each
of the criteria which can be an overwhelming task. Furthermore,
our work significantly advances the understanding of the nature
of the results.

7 CONCLUSION AND FUTURE WORK
We have presented an approach and framework for ranking
complex relationships resulting from a “relationship search”.
Although an empirical evaluation was done using synthetically
generated data due to the limitations of existing RDF data
collections, it sufficed to show the justification for a flexible
ranking approach that provides a variety of result orderings that
a user may choose from, as opposed to locking users into a
particular ranking scheme that may be unsuitable for the needs.
In the next phase of our work, we will focus on performing
evaluations on real world data.

8 ACKNOWLEDGMENTS
Our thanks to Drs. Rodney Canfield, Robert Robinson, Paul
Schliekelman, Matt Perry and all members of the SemDis and
SAI teams of the LSDIS lab. This work is funded by NSF-ITR-
IDM Award#0325464 titled ‘SemDIS: Discovering Complex
Relationships in the Semantic Web’ and NSF-ITR-IDM
Award#0219649 titled ‘Semantic Association Identification and
Knowledge Discovery for National Security Applications.’

9 REFERENCES
[1] Aleman-Meza, B., Halaschek, C., Arpinar, I., and Sheth, A.

Context-Aware Semantic Association Ranking. In
Proceedings of SWDB'03: 33-50, Berlin, Germany, 2003

[2] Anyanwu, K., Sheth, A. The ρ operator: Discovering and
Ranking Semantic Associations on the Semantic Web,
ACM SIGMOD Record, v.31 n.4, December 2002

[3] Anyanwu, K., Sheth, A. ρ-Queries: enabling querying for
Semantic Associations on the Semantic Web. WWW 2003.
pages 690 – 699.

126

[4] Barton, S. Designing Indexing Structure for Discovering
Relationships in RDF Graphs. DATESO 2004: 7-17.

[5] Booch, G. Object Oriented Design with Applications,
Benjamin-Cummings Publishing Co., Inc. Redwood City,
CA USA. 1990.

[6] Brickley, D., Guha, R.V. RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Working Draft, 2002.

[7] Brin, S., Page, L. The anatomy of a large-scale hypertextual
Web search engine. WWW1998 pages 107--117. Brisbane,
Australia.

[8] Cohen. S., Mamou, J., Kanza, Y., Sagiv, Y. XSEarch: A
Semantic Search Engine for XML, VLDB 2003.

[9] Rocha, C., Schwabe, D., Poggi de Aragao, M. A Hybrid
Approach for Searching in the Semantic Web. WWW2004.

[10] Goldman, R., Widom, J. Dataguides: Enabling query
formulation and optimization in semistructured databases,
VLDB, 1997.

[11] Guha, R. V., McCool, R., Eric Miller: Semantic search.
WWW 2003: 700-709.

[12] Halaschek, C., Aleman-Meza, B., Arpinar, B., Sheth, A.
Discovering and Ranking Semantic Associations over a
Large RDF Metabase. VLDB 2004 demo paper.

[13] Hristidis, V., Papakonstantinou, Y., Balmin, A. Keyword
Proximity Search on XML Graphs. IEEE ICDE, 2003.

[14] Kleinberg, J. Authorative sources in a hyperlinked
environment. J. ACM, 48:604-632, 1999.

[15] Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.
XRANK: Ranked keyword search over XML documents.
In ACM SIGMOD 2003, Pages: 16–27, San Diego,
California.

[16] Lin, D. An Information-Theoretic Definition of Similarity,
Proceedings of the Fifteenth International Conference on
Machine Learning, p.296-304, 1998.

[17] Milo, T., Suciu, D. "Index structures for Path Expressions
". In Proc. of the 7th Intl. Conf. on Database Theory,
January 1999.

[18] Mukherjea, S., Bamba, B: BioPatentMiner: An Information
Retrieval System for BioMedical Patents. VLDB 2004:
1066-1077.

[19] Natsev, A., Chang, Y. C., Smith, J. R., Li, C. S., Vitter, J.
S. Supporting incremental join queries on ranked inputs. In
Proc. of VLDB 2001.

[20] Stojanovic, N., Mädche, A., Staab, S., Studer, R., Sure, Y.
SEAL -- A Framework for Developing SEmantic PortALs.
In: K-CAP 2001 – In Proc. of ACM Conference on
Knowledge Capture, October 21-23, 2001.

[21] Rodriguez, M. and Egenhofer, M. Determining Semantic
Similarity Among Entity Classes from Different
Ontologies, IEEE TKDE , 15 (2): 442-456, 2003.

[22] Shannon, C.E. (1948), A Mathematical Theory of
Communication, Bell Syst. Tech. J., 27, 379-423, 623-656.

[23] Sheth, A., Aleman-Meza, B., Arpinar, I. B., Halaschek, C.,
Ramakrishnan, C., Bertram, C., Warke, Y., Avant, D.,
Arpinar, F. S., Anyanwu, K., Kochut, K. Semantic
Association Identification and Knowledge Discovery for
National Security Applications Journal of Database
Management, 16 (1), Jan-Mar 2005, pp. 33-53.

[24] Sheth, A., Arpinar, B., Kayshap, V. Relationships at the
heart of Semantic Web: Modeling, Discovering and
Exploiting Complex Relationships. Enhancing the Power
of Internet Studies in Fuzziness and Soft Computing. M.
Nikravesh, B. Azvin, R. Yager and L. Zadeh, Springer-
Verlag, 2003.

[25] Stojanovic, N., Studer, R., Stojanovic, L. An Approach for
the Ranking of Query Results in the Semantic Web. ISWC
2003, Pages 500 – 516.

[26] Zhuge, H., Zheng, P. Ranking Semantic-linked Network,
WWW2003, Budapest, May, 2003.

[27] Customer Identification and Risk Assessment (CIRAS),
Semagix Inc.http://www.semagix.com/solutions_ciras.html

[28] SWETO: Semantic Web Technology Evaluation Ontology:
http:/lsdis.cs.uga.edu/projects/SemDis/Sweto.

[29] TAP: http://tap.stanford.edu/.
[30] DBLP: An RDF ontology for DBLP.

http://www.semanticweb.org/library/.
[31] ODP RDF dump http://rdf.dmoz.org/.

127

