
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

5-2009

SemSOS: Semantic Sensor Observation Service SemSOS: Semantic Sensor Observation Service

Cory Andrew Henson
Wright State University - Main Campus

Josh Pschorr
Wright State University - Main Campus

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Krishnaprasad Thirunarayan
Wright State University - Main Campus, t.k.prasad@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Henson, C. A., Pschorr, J., Sheth, A. P., & Thirunarayan, K. (2009). SemSOS: Semantic Sensor Observation
Service. 2009 International Symposium on Collaborative Technologies and Systems: May 18-22, 2009,
Baltimore, Maryland, USA, 44-53.
https://corescholar.libraries.wright.edu/knoesis/333

This Article is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

 1

Abstract

Sensor Observation Service (SOS) is a Web service
specification defined by the Open Geospatial Consortium
(OGC) Sensor Web Enablement (SWE) group in order to
standardize the way sensors and sensor data are
discovered and accessed on the Web. This standard goes a
long way in providing interoperability between
repositories of heterogeneous sensor data and applications
that use this data. Many of these applications, however,
are ill equipped at handling raw sensor data as provided
by SOS and require actionable knowledge of the
environment in order to be practically useful. There are
two approaches to deal with this obstacle, make the
applications smarter or make the data smarter. We
propose the latter option and accomplish this by
leveraging semantic technologies in order to provide and
apply more meaningful representation of sensor data.
More specifically, we are modeling the domain of sensors
and sensor observations in a suite of ontologies, adding
semantic annotations to the sensor data, using the ontology
models to reason over sensor observations, and extending
an open source SOS implementation with our semantic
knowledge base. This semantically enabled SOS, or
SemSOS, provides the ability to query high-level
knowledge of the environment as well as low-level raw
sensor data.

Index Terms� Semantic Sensor Web, Semantic Web, Sensor
Observation Service, Sensor Web

I. INTRODUCTION
hat are the possible benefits of integrating the Sensor
Web with the Semantic Web? Much can be said in

answer to this question, including a more expressive graph-
based representation that models relationships as first class
objects, the use of Uniform Resource Identifier�s that allows
all concepts to be independently accessible throughout the
Web, and a triple-pattern encoding scheme that provides for
simplified integration of heterogeneous datasets [1][2]. While
these are all important elements of the Semantic Web, in this
paper we will focus on the need for inference on sensor data

enabled by semantic modeling and what advantages this
provides to standard SOS.

Reasoning is a useful tool for providing meaning to sensor
data and presenting insight into an observed environment. The
quantified nature of sensor data, however, is not well suited
for logical inference. In order to reason over sensor
observations the data must first be annotated with meaningful
concepts that can be manipulated with an inference engine.
These concepts are defined in an ontology which provides the
logical framework for further inference. In the Semantic Web,
the Web Ontology Language (OWL) fulfills this role of a
meta-language for ontology development.

This collection of annotations and inferences within an
ontology make up a knowledge base. The knowledge in this
knowledge base can be accessed through a standard SOS
request, making the sensor data useful for a wide range of
applications that lack the facility to handle raw sensor data but
are able to deal with high-level knowledge. On the other hand,
supposing an application does have the capability to handle
raw sensor data, the lack of a service providing a shared
semantics of sensor observations, obligates the client to
independently translate the raw sensor data into useful high-
level knowledge. This approach may lead to interpretations of
data that are exclusive to a single client application and
incompatible with applications that may otherwise make use
of such knowledge. By committing to the interpretation
described within an ontology, applications may benefit from a
shared semantics of sensor data, thus leading to improved
interoperability.

This configuration of a Sensor Observation Service that
provides access to ontological knowledge of sensor
observations is termed Semantic SOS, or SemSOS. Figure 1
shows an implemented architecture of SemSOS.

The remainder of the paper is organized as follows. Section
2 presents background material on the Sensor Web, as defined
by the OGC Sensor Web Enablement, and the Semantic Web.
Sections 3 and 4 discuss ontology development and semantic
annotation, respectively. Rule-based reasoning over sensor
data is presented in section 5. Section 6 describes our
implementation. Finally, conclusions and future work are
discussed in section 8.

SemSOS: Semantic Sensor Observation Service
Cory A. Henson, Josh K. Pschorr, Amit P. Sheth, and Krishnaprasad Thirunarayan

Kno.e.sis Center, Department of Computer Science and Engineering

Wright State University, Dayton, OH 45435
cory@knoesis.org, pschorr.2@wright.edu, amit@knoesis.org, t.k.prasad@wright.edu

W

asheth
Text Box
in Proc. of the 2009 International Symposium on Collaborative Technologies and Systems (CTS 2009), Baltimore, MD, May 18-22, 2009.

 2

Figure 1. High-level view of SemSOS Architecture

II. BACKGROUND
SemSOS is reliant on two sets of standardizations, (1) the

Sensor Web Enablement languages and service interface
specifications defined by the Open Geospatial Consortium
(OGC), and (2) the Semantic Web languages defined by the
World Wide Web Consortium (W3C).

A. Sensor Web Enablement
The Open Geospatial Consortium recently established the

Sensor Web Enablement as a suite of specifications related to
sensors, sensor data models, and sensor Web services that will
enable sensors to be accessible and controllable via the Web
[1]. The core suite of language and service interface
specifications includes the following:
• Observations & Measurements (O&M) - Standard models

and XML Schema for encoding observations and
measurements from a sensor, both archived and real-time.

• Sensor Model Language (SensorML) - Standard models
and XML Schema for describing sensors systems and
processes; provides information needed for discovery of
sensors, location of sensor observations, processing of
low-level sensor observations, and listing of taskable
properties.

• Transducer Model Language (TransducerML) - Standard
models and XML Schema for describing transducers and
supporting real-time streaming of data to and from sensor
systems.

• Sensor Observations Service (SOS) - Standard web
service interface for requesting, filtering, and retrieving
observations and sensor system information. This is the
intermediary between a client and an observation
repository or near real-time sensor channel.

• Sensor Planning Service (SPS) - Standard web service
interface for requesting user-driven acquisitions and
observations. This is the intermediary between a client
and a sensor collection management environment.

• Sensor Alert Service (SAS) - Standard web service
interface for publishing and subscribing to alerts from
sensors.

• Web Notification Services (WNS) - Standard web service
interface for asynchronous delivery of messages or alerts

from SAS and SPS web services and other elements of
service workflows [1].

Figure 2. OGC Sensor Web Enablement Services

B. SWE Sensor Observation Service
The Sensor Observation Service (SOS) is an OGC-SWE

standard which defines a web service interface for providing
�access to observations from sensors and sensor systems in a
standard way that is consistent for all sensor systems including
remote, in-situ, fixed and mobile sensors [4].� SOS groups
observations made by related sensor systems into Observation
Offerings. An Observation Offering is a logical collection of
sensors and sensor systems that, generally, are located in
proximity to one another and sample their environment at
shared intervals. Observation Offerings are characterized by
the following parameters [4]:
• �Specific sensor systems that report the observations�
• �Time period(s) for which observations may be requested

(supports historical data)�
• �Phenomena that are being sensed�
• �Geographical region that contains the sensors�
• �Geographical region that contains the features that are the

subject of the sensor observations (may differ from the
sensor region for remote sensors)�

SOS defines four service profiles: core, transactional,
enhanced, and entire (which includes all functions from the
previous three). For a standards compliant SOS service, only
support for the core profile is mandatory, while all other
profiles are optional. The core and enhanced profiles provide
support for consumers of sensor data. A consumer client of
sensor data requires methods for obtaining information about
the service itself and requesting observations, sensor
descriptions, features, etc. over some spatial and temporal
context. This information is useful in applications such as
visualization, data fusion, and situation awareness. The
transactional profile supports publishers of sensor data. Such
publisher clients are responsible for acting as intermediaries
between sensor networks generating observations and the SOS
service where it inserts sensor descriptions and observations.

The core profile includes three operations: GetCapabilites,
DescribeSensor, and GetObservation. The GetCapabilites
function provides a means to request a description of the
service. This description includes information such as service
identification (service name, keywords, etc.), provider, and
most importantly, metadata that allows for the discovery of the

 3

capabilities of the service. The capability description includes
metadata about all supported functions of the service
(including valid values and ranges for query parameters),
filtering capabilities (logical operators that may be supplied
with query parameters), and a full list of all Observation
Offerings (including the aforementioned parameters: sensor
systems, time, phenomenon, location, etc.) defined within the
service. DescribeSensor allows the client to request
information about a sensor. DescribeSensor is parameterized
by the ID of the senor and returns a SensorML or
TransducerML document describing the sensor and its
capabilities. The GetObservation function is the heart of the
SOS, allowing the client to request observation data generated
by a sensor or sensor system contained in a specified
Observation Offering. GetObservation supports a multitude of
parameters and filters, which give the client the ability to
query over the sensor, time, location, phenomena, features,
and measurement values of the observations. The response
from GetObservation is encoded in O&M.

The transactional profile of SOS includes functions that
allow a client to insert new sensors and observations, and is
composed of two functions: RegisterSensor and
InsertObservation. RegisterSensor allows a client to insert a
new sensor into an SOS service, including the sensor�s
capabilities as described in a SensorML or TransducerML
document. InsertObservation allows a client to insert a new
observation into an SOS service. The new observation is
provided to the SOS encoded as an O&M document.

The enhanced profile provides an assortment of less-
frequently needed functions. GetObservationById returns an
O&M observation based on the ID of the observation.
GetResult provides a means for a client to obtain sensor data
on a frequent basis using less bandwidth, by using a template
O&M document from a previous call to GetObservation.
GetFeatureOfInterest returns a description of a feature of
interest whose ID was advertised by GetCapabilities.
GetFeatureOfInterestTime describes the valid time periods for
a feature. DescribeFeatureType yields an XML schema for a
feature. DescribeObservationType returns the XML schema
for an observation generated for a type of phenomenon.
DescribeResultModel yields an XML schema which can
further describe the format of results returned by the SOS and
referenced in GetCapabilities.

C. Semantic Web
The Semantic Web, as described by the W3C Semantic Web

Activity, is an evolving extension of the World Wide Web in
which the semantics, or meaning, of information on the Web
is formally defined [5]. Formal definitions are captured in
ontologies, making it possible for machines to interpret and
relate data content more effectively. The principal
technologies of the Semantic Web include the Resource
Description Framework (RDF) [6] data representation model,
and the ontology representation languages RDF Schema
(RDF-S) [7] and Web Ontology Language (OWL) [8]. In
addition to these representation languages, an RDF query
language called SPARQL [9] is now a W3C recommendation
and the common method of querying ontological data. Many
rule languages and rule engines are now capable of reasoning

with Semantic Web data, including SWRL (Semantic Web
Rule Language), RIF (Rule Interchange Format), and the
general purpose rule engine for the Jena Semantic Web
Framework [16].

III. ONTOLOGY MODELS
An ontology is a formal model that defines concepts and

their relations in a standard language, commonly described as
a �specification of a conceptualization [10].� In practice, the
Semantic Web defines several ontology languages, RDF,
RDF-S, and OWL. The Resource Description Format (RDF) is
a graph-based language that allows data within a domain to be
linked through named relationships. An RDF graph is encoded
as a set of subject-predicate-object triples which resemble the
subject, verb, and object of a sentence. The subject and object
are nodes in the graph and the predicate is a directional named
link between the subject and object. �This simple triple
structure turns out to be a natural way to describe a large
majority of the data processed by machines. The subjects,
verbs and objects are each identified by a Universal Resource
Identifier (URI)�an address just like that used for Web pages.
Thus, anyone can define a new concept, or a new verb, by
defining a URI for it on the Web [11].� RDF-S, or RDF
Schema, adds the ability to define hierarchies of concepts to
RDF. The Web Ontology Language (OWL) is built on top of
RDF and adds a logical formalism to the language. OWL is
based on a tractable subset of First Order Logic called
Description Logic. The logical formalism provided by OWL,
in combination with rule engines, is what allows inference
over semantically annotated sensor observations. The
ontologies dealt with in this paper are encoded in OWL.

A. Observations and Measurements Ontology
Observations and Measurements (O&M) is an OGC-SWE

standard which defines an XML Schema for describing
observations and features. Within this standard, an observation
(om:Observation) is defined as an �act of observing a property
or phenomenon, with the goal of producing an estimate of the
value of the property,� and a feature (om:Feature) is defined
as an �abstraction of real world phenomenon [12].� (Note: om
is used as a namespace for Observations and Measurements
and will be placed, with a colon, before concepts defined in
the O&M schema. All defined concepts are italicized). The
major properties of an observation include feature of interest
(om:featureOfInterest), observed property
(om:observedProperty), sampling time (om:samplingTime),
result (om:result), and procedure (om:procedure). Often these
properties can be complex entities that may be defined in an
external document. For example, om:FeatureOfInterest could
refer to any real-world entity such as a coverage region,
vehicle, or weather-storm, and om:Procedure often refers to a
sensor or system of sensors defined within a SensorML
document. Therefore, these properties are better described as
relationships of an observation.

In order to encode relationships in XML, the OGC-SWE
often make use of XLink, XML Linking Language, a markup
language that �allows elements to be inserted into XML

 4

documents in order to create and describe links between
resources. XLink provides a framework for creating both basic
unidirectional links and more complex linking structures. It
allows XML documents to:
• Assert linking relationships among more than two resources
• Associate metadata with a link
• Express links that reside in a location separate from the

linked resources� [13]
While XLink allows XML documents to break free of the
standard tree-model and define relationships between entities,
the triple-pattern approach of RDF provides a far more natural
and useful approach to encoding relationships. In RDF and
OWL, relationships are considered first-class objects which
have many benefits over XLink, such as the ability to assign a
URI to a relationship, to classify relationships into hierarchies
(RDF-S and OWL), and place constraints on relationships
(OWL).

 For these reasons, we have developed an encoding of the
Observations and Measurements language in OWL. In this
ontology, we have defined the previous relations, and more, in
a form that may be queried and reasoned over effectively in
order to derive actionable knowledge of the environment from
sensor observations. (Note that the ontology captures a subset
of concepts in O&M. A few notable exemptions currently
include concepts related to coverage and sampling feature).
The translation between O&M in OWL and O&M in XML is
straightforward and thus allows SemSOS to remain SOS
compliant. (From this point forward, we will refer to O&M in
OWL as O&M-OWL and refer to O&M in XML as O&M-
XML). Figure 3 shows a diagram of the major concepts and
relations in O&M-OWL.

Figure 3. Subset of major concepts and relations in O&M-OWL

The following descriptions of relationships in O&M-OWL

includes a running example of an observation from the domain
of weather (concepts from weather ontology contain
namespace �w�), encoded as a set of RDF triples. (Each line
represents a triple, with the first term representing the subject,
the second representing the predicate, the third representing
the object, and ending with a period).

om:obs_1 rdf:type om:Observation .

• om:featureOfInterest is a �representation of the observation
target, being the real-world object regarding which the
observation is made [12].� Example includes a blizzard
feature.

om:obs_1 om:featureOfInterest om:blizzard_1 .
om:blizzard_1 rdf:type w:Blizzard .
w:Blizzard rdfs:subClassOf om:Feature .

• om:observedProperty �identifies or describes the
phenomenon for which the observation result provides an
estimate of its value. It must be a property associated with
the type of the feature of interest [12].� Example includes a
temperature observed property.

om:obs_1 om:observedProperty w:temperature .
w:temperature rdf:type om:Property .

• om:samplingTime is the �time that the result applies to the

feature-of-interest [12],� or, in other words, it is the time
when the phenomenon was measured in the real-world.
Example includes a single instant sampling time at 5:00 am
on Jan. 26, 2009.

om:obs_1 om:samplingTime om:time_1 .
om:time_1 rdf:type owl-time:Instant .
om:time_1 owl-time:date-time �20090126T05:00:00� .

• om:observationLocation is the location of an observation

event; usually associated with the location of the sensor
when an observation occurred (i.e., om:samplingTime).
Example includes a single point observation location with
latitude, longitude, and elevation coordinates.

om:obs_1 om:observationLocation om:location_1 .
om:location_1 rdf:type gml:Point .
om:location_1 gml:latitude �41.1915� .
om:location_1 gml:longitude �-111.8351� .
om:location_1 gml:elevation �6562.0� .

• om:result is an �estimate of the value of some property

generated by a known procedure [12].� Example includes a
temperature measurement result of 37 degrees Fahrenheit.

om:obs_1 om:result om:result_1 .
om:result_1 rdf:type om:ResultData .
om:result_1 om:value �37� .
om:result_1 om:uom w:Fahrenheit .

• om:procedure is a �description of a process used to generate

the result. It must be suitable for the observed property
[12].� Note that in this schema a sensor is defined as a type
of process, along with other methods, algorithms,
instruments, or systems of these. Example includes a
temperature sensor as the procedure.

om:obs_1 om:procedure om:sensor_1 .
om:sensor_1 rdf:type w:TemperatureSensor .
w:TemperatureSensor rdfs:subClassOf om:Sensor .
om:Sensor rdfs:subClassOf om:Process .

 5

B. Spatial, Temporal, and Thematic Ontologies
From Figure 3, you will notice concepts related to

om:Observation such as om:Location, om:Time, and
om:Feature. While these concepts are defined in O&M-
OWL, they are also extended with more expressive
descriptions from existing schemas, in the case of
om:Location and om:Time, and from a domain specific
ontology, in the case of om:Feature. Locations within O&M-
OWL are described using concepts from GML, or Geography
Markup Language [14]. In particular, we re-use common
concepts such as gml:Point, gml:Polygon, and
gml:coordinates.

Time within O&M-OWL is described using concepts from
OWL-Time [15]. OWL-Time, a W3C recommended ontology
based on temporal calculus, provides descriptions of temporal
concepts such as owl-time:instant and owl-time:interval,
which supports defining interval queries such as �within�,
�contains�, and �overlaps�. The logical framework provided by
OWL-Time for reasoning over time intervals could be very
useful when dealing with observations that require complex
temporal models. For example, om:TimeSeriesObservation is
defined as a om:CompoundObservation �whose sampling time
is the period encompassing all the member times� such that all
�member observations have the same feature of interest, the
same observed property, and different sampling times [12].�

The concept of om:Feature within O&M encompasses all
real-world entities and thus can be best described through
domain-specific thematic ontologies. For example, for use in
the domain of weather, om:Feature is extended with a weather
ontology describing concepts such as w:SnowStorm,
w:Blizzard, and w:SnowFlurry.

IV. SEMANTIC ANNOTATION
While encoding sensor data in OWL is useful for advanced

analysis and reasoning, the SOS specification requires
observation data to be encoded in XML for several operations.
The InsertObservation operation takes an O&M-XML
document as input and adds the observations to the storage
facility. Similarly, the GetObservation operation returns an
O&M-XML document as response to the query. As previously
stated, translating from O&M-XML to O&M-OWL, and vice-
versa, is straightforward. However, it is often useful to also
embed semantic terminology defined in an ontology model
into an XML document. This technique is called semantic
annotation and is used for greater semantic interoperability of
data encoded in XML, which provides only syntactic
interoperability. Ontology terms are embedded in XML
documents through model references, or URIs of concepts
defined in an ontology. The OGC-SWE standards already
provide several mechanisms to reference concepts that are
external to the document. Such concepts are either defined in
another XML document and accessed through an XLink
element or defined in a registry and accessed through the
swe:definition attribute. Using either mechanism, we can
embed a model reference that will provide more meaningful
description and thus enhanced semantic interoperability.
Semantically annotated O&M and SML are called O&M-S
and SML-S, respectively. This technique is also applied within

the GetCapabilities operation in order to embed high-level
om:Feature concepts that may otherwise be unavailable in an
SOS GetCapabilities response. This is necessary to inform a
SemSOS client of the precise description of concepts that may
be used to query the knowledgebase.

V. RULE-BASED REASONING
To derive additional knowledge from semantically

annotated sensor observations, it�s necessary to define and use
rules. To demonstrate rule-based reasoning over sensor
observation data, we currently use the general purpose rule
engine from the Jena Semantic Web Framework [16]. Such
rules deduce new ontological assertions from known instances
and class descriptions. This section provides an example of
inference through rules in SemSOS.

In the weather domain, if a group of sensors provides
observations regarding wind speed, visibility, and
precipitation, then by using inference rules we can specify
existing weather events in the environment, such as a blizzard.
The following rule states that if wind speeds are high
(HighWinds), visibility is low (LowVisibility), and it is
snowing (Snowfall), then there is a blizzard event (Blizzard)
[17].

Blizzard ! HighWinds & LowVisibility & Snowfall

Each of these conditions described above is associated with a
single time and location, derived from the time and location of
the corresponding observations. Subsequently, the Blizzard
condition is associated with the same time and location as the
component weather conditions. The terms HighWinds and
LowVisibility are also derived through rules.

HighWinds ! WindSpeed >= 35 MPH
LowVisibility ! Visibility <= ¼ mile

Within O&M-OWL, we begin with a quantified observation

(om:Observation) and data result (om:ResultData) and
translate this into additional qualified knowledge that can also
be used within a reasoning engine. For example, the
following set of RDF triples represents data about a wind
speed observation.

om:windspeed_1 rdf:type w:WindSpeedObservation .
om:windspeed_1 om:samplingTime om:time_1 .
om:windspeed_1 om:observationLocation om:location_1 .
om:windspeed_1 om:result om:result_1 .
om:result_1 om:value �37� .
om:result_1 om:uom w:MPH .

From this set of RDF triples we can infer that observation
w:windspeed_1 can also be defined as an instance of class
w:HighWindSpeedObservation. This new assertion is added to
the original set of RDF triples (new triple in bold).

om:windspeed_1 rdf:type w:WindSpeedObservation .
om:windspeed_1 om:samplingTime om:time_1 .
om:windspeed_1 om:observationLocation om:location_1 .
om:windspeed_1 om:result om:result_1 .

 6

om:result_1 om:value �37� .
om:result_1 om:uom w:MPH .
om:windspeed_1 rdf:type w:HighWindSpeedObservation .

The rule used to generate this new knowledge, titled
HighWindSpeedObservationRule, is specified below (in the
Jena rule syntax [16]).

[HighWindSpeedObservationRule:
 (?w_obs rdf:type w:WindSpeedObservation)
 (?w_obs om:samplingTime ?time)
 (?w_obs om:observationLocation ?location)
 (?w_obs om:result ?result)
 (?result om:uom w:MPH)
 (?result om:value ?value)
 greaterThan(?value 35)
"(?w_obs rdf:type w:HighWindSpeedObservation)]

A low visibility observation (w:LowVisibilityObservation) is
deduced similarly, and together with a snowfall precipitation
observation (w:SnowfallObservation) we can infer a blizzard
event (w:Blizzard) at the same time and location. The rule
used to generate this new knowledge is titled
BlizzardObservationRule.

[BlizzardObservationRule:
 (?w_obs rdf:type w:HighWindSpeedObservation)
 (?w_obs om:samplingTime ?time)
 (?w_obs om:observationLocation ?location)
 (?v_obs rdf:type w:LowVisibilityObservation)
 (?v_obs om:samplingTime ?time)
 (?v_obs om:observationLocation ?location)
 (?p_obs rdf:type w:SnowfallObservation)
 (?p_obs om:samplingTime ?time)
 (?p_obs om:observationLocation ?location)
 makeTemp(?blizzard)
"(?blizzard rdf:type w:Blizzard)
 (?blizzard om:eventTime ?time)
 (?blizzard om:eventLocation ?location)
 (?w_obs om:featureOfInterest ?blizzard)
 (?v_obs om:featureOfInterest ?blizzard)
 (?p_obs om:featureOfInterest ?blizzard)]

Note that the makeTemp(?blizzard) function in the body of the
rule generates a new instance in the knowledge base.
Subsequently, we then supply this instance of om:Blizzard
with relations in the head of the rule. In this example, such
relations include rdf:type, om:eventTime, om:eventLocation,
and om:featureOfInterest. The final set of RDF triples is
shown below (ellipses used to truncate set of triples, and new
triples in bold).

om:windspeed_1 rdf:type w:WindSpeedObservation .
om:windspeed_1 om:samplingTime om:time_1 .
om:windspeed_1 om:observationLocation om:location_1 .
�
om:windspeed_1 rdf:type w:HighWindSpeedObservation .
om:visibility_1 rdf:type w:VisibilityObservation .
�
om:visibility_1 rdf:type w:LowVisibilityObservation .
om:precipitation_1 rdf:type w:SnowfallObservation .

�
om:blizzard_1 rdf:type w:Blizzard .
om:blizzard_1 om:samplingTime om:time_1 .
om:blizzard_1 om:observationLocation om:location_1 .
om:windspeed_1 om:featureOfInterest om:blizzard_1 .
om:visibility_1 om:featureOfInterest om:blizzard_1 .
om:precipitation_1 om:featureOfInterest om:blizzard_1.

 In this manner, we can infer features within the
environment, of a particular type, at a specific time and place,
and then generate om:featureOfInterest relations between the
original observations and the new features. These new
om:featureOfInterest relationships can be used to query for
high-level feature concepts in SemSOS.

VI. SEMSOS IMPLEMENTATION
In order to validate the framework discussed above, we

have constructed a prototype of SemSOS. Our SemSOS
extends the open source implementation of SOS from 52North
[18] with an ontological knowledge base in order to provide
inference over sensor data and queries of high-level features.
For this prototype, the sensor observation data used to
populate our ontologies was collected from MesoWest, a
repository of weather data at the University of Utah [19].
MesoWest continually collects data from over 20,000 sensor
systems within North America, and stores archives since 2002.

A. 52North SOS
52North�s SOS implementation is designed to be highly

modular, and adaptable to arbitrary suitable sensor data
sources, transport protocols, etc. The larger enclosed box in

Figure 4 shows the high-level architecture of the 52North
SOS.

Extensions for SemSOS

52North SOS

Visualization Layer

Thin Clients Thick ClientsOther Services (e.g. WPS)

Presentation Layer

Business Logic

SOS Query

SOS Servlet

SML-S/O&M-S

XYZListenerGetObservationListenerGetCapabilitiesListener

RequestOperator

HTTP Request HTTP Response

Data Layer

GetObservationDAO XYZDAOGetCapabilitiesDAO

Ontological Knowledge Base

Query Parameters Query Result

SPARQL Queries Data Graph

Figure 4. 52North SOS Architecture, extended with an

ontological knowledge base

 7

The Visualization Layer shown in
Figure 4 is not part of the SOS itself, but rather corresponds

to external clients that interact with the SOS. These can be
either publishers or consumers of sensor data, and may also be
other web services.

The Presentation Layer of 52North�s architecture defines
the SOS�s interface to the outside world. The default
implementation has a Servlet interface that accepts requests
and communicates responses via HTTP. If another transport
mechanism or protocol is required, this level can be replaced
without affecting the other layers of the SOS.

The next level is the Business Layer, which receives
requests from the Presentation Layer, handles them as
appropriate, and returns a response. The Business Layer
contains the logic for decoding requests and encoding
responses. The main entry-point from the Presentation Layer
is the RequestOperator object, which validates incoming
requests, determines the type of request, and dispatches
accordingly. Each operation supported by the SOS
(GetCapabilities, GetObservation, etc.) is embodied by a
Listener object which handles the corresponding incoming
request (resp. GetCapabilitiesListener,
GetObservationListener, etc.). The Listener objects may be
configured externally during deployment of the service. The
individual Listeners handle high-level translation of the
request into an internal format which is then used to query the
respective object in the Data Layer and compose the response.

The final layer of the 52North architecture is the Data
Layer. The Data Layer is an abstraction of a sensor data
source through Data Access Objects (DAO). Each DAO
represents a particular interface to the sensor data from the
point of view of one of the SOS�s operations. For each
Listener object in the Business Logic Layer, there is a
corresponding DAO object in the Data Layer. The DAO
objects are used by their respective Listener objects to obtain
the data pertaining to a query. The abstraction provided by the
DAOs and the Data Layer is what allows the 52North�s SOS
implementation to be so easily adapted to new sources of
sensor data. For each operation that must be supported, all that
is required is a new DAO that works with the data source. The
default implementation shipped with 52North uses a PostGIS
database with a custom database schema to store observation
data, while sensor descriptions are stored on the file system in
XML files (using SensorML or TransducerML).

B. SemSOS extensions to 52North
The box surrounding the bottom third of
Figure 4 denotes the extensions made to 52North�s SOS in

order to implement SemSOS. The modular nature of the
52North implementation allowed us to leave the request
routing, encoding/decoding, and similar details in place, while
replacing the data access implementation with our own. The
DAOs for all three operations specified in the SOS core
profile (GetCapabilities, GetObservation, and
DescribeSensor) were replaced with implementations that
support data access to an O&M-OWL knowledge base.

 Specifically, SemSOS uses the Jena Semantic Web
Framework [16] to store and access the O&M-OWL ontology.
The stored ontology is then accessed via SPARQL queries that
are generated from the incoming SOS query parameters [9]. In
producing the SPARQL queries, the syntactic form of the SOS
query parameters (such as date, time, magnitude, etc.) are
transformed into appropriate formats for semantic querying
over O&M-OWL. Likewise, query filters (such as location,
comparison operators, etc.) must be transformed into
SPARQL-style filters and relational operations.

Evaluating a SPARQL query results in a set of triples
representing an RDF graph, with data annotated in O&M-
OWL. This graph is then transformed into the internal
52North result structure and returned to the Business Logic
Layer. Here, the previous translation to convert SOS queries
into SPARQL must be performed in reverse. O&M-OWL
concepts instantiated within a set of RDF triples are translated
into O&M-XML.

The results of SemSOS client queries are thus valid SOS
results. SemSOS also provides richer semantic interoperability
for clients that are semantically-aware through semantic
annotation of the O&M-XML result document. This is
achieved by using model references, or URIs of concepts
defined in an ontology, as identifiers within O&M-XML.

C. Example SemSOS Query Processing
The first step the SemSOS DAOs must take in serving an

SOS request is to translate the incoming SOS query into a
SPARQL query which may be run against the knowledge
base. Figure 5 shows an example SOS query asking for all
observations that:
• are generated by procedures (sensors) that are part of

offering (sensor constellation) �BRAU1�
• fall within the time span of 2003-04-03T20:00:00-05 to

2003-04-04T02:00:00-05 (a six-hour interval)
• correspond to one of four specific observed properties:

• Air Temperature
• Precipitation
• Wind Speed
• Wind Gust

< Get Obser vat ion xm ln s= . .. service= "SOS" version= "1.0.0"

srsNam e= "urn:og c:def:crs:EPSG:43 26 ">
< offering > BRAU1< /offering>
< event Tim e>

< og c:TM _Dur ing>
< ogc:Prop ert yName> ur n:ogc:dat a:t ime:iso86 0 1< /ogc:Pr opert yNam e>
< gm l:Tim ePer iod>

< gm l:beginPosit ion> 2 00 3-0 4-0 3T2 0:0 0:0 0-0 5 < /gm l:beginPosit ion>
< gm l:endPosit ion> 2 0 03 -04 -04 T0 2:0 0:0 0-0 5 < /gm l:endPosit ion>

< /gm l:Tim ePer iod>
< /ogc:TM _During>

< /event Tim e>
< observedProper ty> htt p://... /w eather.ow l# _AirTemperature< /observedPropert y>
< observedProper ty> htt p://... /w eather.ow l# _Precipit at ion< /observedProper ty>
< observedProper ty> htt p://... /w eather.ow l# _W indSpeed< /observedProper ty>
< observedProper ty> htt p://... /w eather.ow l# _W indGust < /observedPropert y>
< resp onseForm at> t ext /xm l;subt ype= &q uot;om /1 .0 .0 " ;< /respon seForm at >
< /Get Obser vat ion>

Figure 5. Example SOS Query

The SOS query is then transformed into the SPARQL query
depicted in Figure 6, which expresses the same constraints as

 8

the original, but in the language of O&M-OWL. Note that the
event time specification in the SOS query becomes a SPARQL
filter, as do the observed property specifications. Other SOS
query relational operations and filters, such as location or
feature of interest, are handled similarly.

SELECT DISTINCT ?offering ?offeringID ?proc ?obs ?phen ?resultDataType ?floatValue
?intValue ?booleanValue ?date ?foi ?foiType ?loc ?locType ?lat ?long ?elevation

WHERE {
?offering rdf:type observation:System .
?offering observation:ID "BRAU1" .
?offering observation:ID ?offeringID .
?offering observation:systemComponentProcess ?proc .
?proc observation:generatedObservation ?obs .
?obs observation:instFeatureOfInterest ?foi .
?obs observation:featureOfInterest ?foiType .
?obs observation:samplingTime ?inst .
?inst xsd:datetime ?date .
?obs observation:observedProperty ?phen .
?obs observation:result ?result .
?result rdf:type ?resultDataType .
{

{?result observation:floatValue ?floatValue . }
UNION {?result observation:intValue ?intValue . }
UNION {?result observation:booleanValue ?booleanValue . }

}
?obs observation:observationLocation ?loc .
?loc rdf:type ?locType .
?loc observation:latitude ?lat .
?loc observation:longitude ?long .
?loc observation:elevation ?elevation .
FILTER(?phen=<http://.../weather.owl#_AirTemperature>

|| ?phen=<http://.../weather.owl#_Precipitation>
|| ?phen =<http://.../weather.owl#_WindSpeed>
|| ?phen=<http://.../weather.owl#_WindGust>) .

FILTER (?date > "2003-04-03T20:00:00"^^xsd:dateTime
&& ?date < "2003-04-04T02:00:00"^^xsd:dateTime) .

}
Figure 6. Example SPARQL Query

The table in Figure 7 displays one row of the result from the

query in Figure 6. The row contains information pertaining to
a single air temperature reading generated by a sensor that is a
member of the offering specified in the original SOS query.
The result value of the reading is present (?floatValue), along
with the location (?loc, ?locType, ?lat, ?long, ?elevation) and
a related feature of interest (?foi, ?foiType), in this case an
instance of freezing rain. The full result of the SPARQL query
contains many more rows including observations from the
same sensor at different times, and observations from other
sensors contained in the same offering, which may have
observed different phenomena and relate to different features.

?offering <http: //.../observation.owl#system_BRAU1>

?offeringID BRAU1

?proc <http: //.../observation.owl#TemperatureSensor_46>

?obs <http: //.../observation.owl#observation_BRAU1_2003_04_04_01_00_00_AIRTEMPERATURE>

?phen <http: //.../weather.ow l#_AirTemperature>

?resultDataT ype <http: //.../observation.owl#MeasureData>

?floatValue 2.0

?date 2003-04-04T01:00:00

?foi <http: //.../weather.ow l#FreezingRain_562>

?foiType <http: //.../weather.ow l#_FreezingRain>

?loc <http: //.../observation.owl#point_BRAU1>

?locType <http: //.../observation.owl#Point>

?lat 40.8844

?long -110.8292

?elevation 8536.0

Figure 7. Example SPARQL Query Results

The result of the SPARQL query is then used to construct
an SOS response document, as show in Figure 8.

<om:ObservationCollection �>
<gml:boundedBy>

<gml:Envelope>
<gml:lowerCorner>-110.8292007446289 40.8843994140625</gml:lowerCorner>
<gml:upperCorner>-110.8292007446289 40.8843994140625</gml:upperCorner>

</gml:Envelope>
</gml:boundedBy>
<om:member>

<om:Observation>
<om:samplingTime>

<gml:TimePeriod xsi:type="gml:TimePeriodType">
<gml:beginPosition>2003-04-03T20:00:00-05:00</gml:beginPosition>
<gml:endPosition>2003-04-03T20:00:00-05:00</gml:endPosition>

</gml:TimePeriod>
</om:samplingTime>
<om:procedure xlink:href="http://.../observation.owl#TemperatureSensor_46"/>
<om:observedProperty>

<swe:CompositePhenomenon gml:id="cpid0" dimension="2">
<gml:name>resultComponents</gml:name>
<swe:component xlink:href="urn:ogc:data:time:iso8601"/>
<swe:component xlink:href="http://.../weather.owl#_AirTemperature"/>

</swe:CompositePhenomenon>
</om:observedProperty>
<om:featureOfInterest>

<gml:FeatureCollection>
<gml:featureMember>
<sa:SamplingPoint gml:id="FreezingRain_562">

<gml:name>FreezingRain_562</gml:name>
<sa:position>
<gml:Point>

<gml:pos srsName="urn:ogc:def:crs:EPSG:4326">
-110.8292007446289 40.8843994140625</gml:pos>

</gml:Point>
</sa:position>

</sa:SamplingPoint>
</gml:featureMember>

</gml:FeatureCollection>
</om:featureOfInterest>
<om:result>

<swe:DataArray>
<swe:elementCount>
<swe:Count><swe:value>1</swe:value></swe:Count>

</swe:elementCount>
<swe:elementType name="Components">
<swe:SimpleDataRecord>

<swe:field name="Time">
<swe:Time definition="urn:ogc:data:time:iso8601"/>

</swe:field>
<swe:field name="feature">
<swe:Text definition="urn:ogc:data:feature"/>

</swe:field>
<swe:field name="weather.owl#_AirTemperature">
<swe:Quantity definition="http://.../weather.owl#_AirTemperature">

<swe:uom code="http://.../observation.owl#fahrenheit"/>
</swe:Quantity>

</swe:field>
</swe:SimpleDataRecord>

</swe:elementType>
<swe:encoding>
<swe:TextBlock decimalSeparator="." tokenSeparator="," blockSeparator="@@"/>

</swe:encoding>
<swe:values>2003-04-03T20:00:00-05,FreezingRain_562,2.0@@</swe:values>

</swe:DataArray>
</om:result>

</om:Observation>
</om:member>

</ Ob ti C ll ti

Figure 8. Example SOS Response

VII. CONCLUSION AND FUTURE WORK
A synthesis of the Sensor Web Enablement standards

defined by the OGC and the Semantic Web languages defined
by the W3C provides a platform for integration and reasoning
over sensor observations in order to attain shared knowledge
of an environment. This platform is broadly termed the
Semantic Sensor Web [1], of which SemSOS is a principal
component. In the preceding sections we have described how
this is accomplished by modeling the domain of sensors and
sensor observations in a suite of ontologies, adding semantic
annotations to the sensor data, using the ontology models to
reason over sensor observations, and extending an open source
SOS implementation with our semantic knowledge base.

In the future, we hope to incorporate an abductive reasoning
engine [20] as well as expand the Semantic Sensor Web
platform. Abductive reasoning is often described as inference
to the best explanation. In the sensors domain, a phenomenon
is an effect that could have been caused (or could be
explained) by many possible features, or real-world objects
and events. An abductive reasoning engine would provide the

 9

ability to reason from sensor observations of phenomena to
possible hypothesis, or possible features, of the environment.
Through an implementation of the SOS transactional profile
(RegisterSensor, InsertObservation), and translation from
O&M-XML to O&M-OWL, standard implementations of SOS
may take advantage of the abductive reasoning capabilities of
SemSOS in a modular, distributed, and standards-based
environment.

In addition, we are planning on extending the Semantic
Sensor Web platform beyond O&M-OWL and SemSOS. Such
plans include developing an OWL version of Sensor Model
Language (SML-OWL) and a semantically enabled Sensor
Planning Service (SemSPS) and Sensor Alert Service
(SemSAS). It is our belief that the addition of semantics to the
OGC Sensor Web Enablement standards provides an
improved platform for discovering, accessing, controlling, and
reasoning over sensors and sensor observation data on the
Web.

ACKNOWLEDGMENT
This research was supported in part by The Dayton Area

Graduate Studies Institute (DAGSI), AFRL/DAGSI Research
Topic SN08-8: "Architectures for Secure Semantic Sensor
Networks for Multi-Layered Sensing." We also thank Harshal
Patni and Hemant Purohit for their contribution towards the
development of this project.

REFERENCES
[1] Amit Sheth, Cory Henson, and Satya Sahoo, "Semantic Sensor Web,"

IEEE Internet Computing, July/August 2008, p. 78-83.
[2] K. Thirunarayan, and J. K. Pschorr, �Semantic Information and Sensor

Networks,� In: Proceedings of the 24th Annual ACM Symposium on
Applied Computing (ACM SAC 2009), March 2009.

[3] Mike Botts et al., �OGC Sensor Web Enablement: Overview and High
Level Architecture (OGC 07-165),� Open Geospatial Consortium white
paper, 28 Dec. 2007.

[4] Sensor Observation Service,
http://www.opengeospatial.org/standards/sos

[5] W3C Semantic Web Activity, http://www.w3.org/2001/sw/
[6] Resource Description Framework (RDF), http://www.w3.org/TR/rdf-

concepts/
[7] RDF Schema (RDF-S), http://www.w3.org/TR/rdf-schema/
[8] Web Ontology Language (OWL), http://www.w3.org/TR/owl-ref/
[9] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-

query/
[10] Tom Gruber, �A Translation Approach to Portable Ontology

Specifications.� Knowledge Acquisition, 5(2), p. 199-220, 1993.
[11] Nigel Shadbolt and Tim Berners-Lee, �Web Science: Studying the

Internet to Protect Our Future,� Scientific American, September, 2008,
http://www.sciam.com/article.cfm?id=web-science

[12] Observations and Measurements (O&M),
http://www.opengeospatial.org/standards/om

[13] XML Linking Language (XLink), http://www.w3.org/TR/xlink/
[14] Geography Markup Language (GML),

http://www.opengeospatial.org/standards/gml
[15] Time Ontology in OWL (OWL-Time), http://www.w3.org/TR/owl-time/
[16] Jena Semantic Web Framework, http://jena.sourceforge.net/
[17] National Oceanic and Atmospheric Administration�s (NOAA) National

Weather Service, Glossary, http://www.nws.noaa.gov/glossary/
[18] 52North Sensor Web Community, http://52north.org
[19] MesoWest, http://www.met.utah.edu/mesowest/
[20] K. Thirunarayan, C. Henson, and A. Sheth, �Situation Awareness via

Abductive Reasoning from Semantic Sensor Data: A Preliminary

Report,� International Symposium on Collaborative Technologies and
Systems (CTS2009), Workshop on Collaborative Trusted Sensing,
Baltimore, Maryland, 2009. (Submitted)

	SemSOS: Semantic Sensor Observation Service
	Repository Citation

	SemSOS: Semantic Sensor Observation Service

