
Senate: A Maliciously-Secure MPC Platform for Collaborative Analytics

Rishabh Poddar Sukrit Kalra Avishay Yanai∗ Ryan Deng

Raluca Ada Popa Joseph M. Hellerstein

UC Berkeley ∗VMware Research

Abstract

Many organizations stand to benefit from pooling their

data together in order to draw mutually beneficial insights—

e.g., for fraud detection across banks, better medical studies

across hospitals, etc. However, such organizations are often

prevented from sharing their data with each other by privacy

concerns, regulatory hurdles, or business competition.

We present Senate, a system that allows multiple parties

to collaboratively run analytical SQL queries without reveal-

ing their individual data to each other. Unlike prior works

on secure multi-party computation (MPC) that assume that

all parties are semi-honest, Senate protects the data even in

the presence of malicious adversaries. At the heart of Senate

lies a new MPC decomposition protocol that decomposes the

cryptographic MPC computation into smaller units, some of

which can be executed by subsets of parties and in parallel,

while preserving its security guarantees. Senate then provides

a new query planning algorithm that decomposes and plans

the cryptographic computation effectively, achieving a perfor-

mance of up to 145× faster than the state-of-the-art.

1 Introduction

A large number of services today collect valuable sensitive

user data. These services could benefit from pooling their data

together and jointly performing query analytics on the aggre-

gate data. For instance, such collaboration can enable better

medical studies [4, 47]; identification of criminal activities

(e.g., fraud) [73]; more robust financial services [1,10,67,73];

and more relevant online advertising [44]. However, many of

these institutions cannot share their data with each other due

to privacy concerns, regulations, or business competition.

Secure multi-party computation [9,39,81] (MPC) promises

to enable such scenarios by allowing m parties, each hav-

ing secret data di, to compute a function f on their aggregate

data, and to share the result f (d1, . . . ,dm) amongst themselves,

without learning each other’s data beyond what the function’s

result reveals. At a high level, MPC protocols work by having

each party encrypt its data, and then perform joint computa-

tions on encrypted data leading to the desired result.

Despite the pervasiveness of data analytics workloads, there

are very few works that consider secure collaborative analyt-

ics. While closely related works such as SMCQL [4] and

Conclave [77] make useful first steps in the direction of se-

cure collaborative analytics, their main limitation is their weak

security guarantee: semi-honest security. Namely, these works

Query agreement

Query compilation and

planning

Query execution

P1 PmP2

Senate’s compiler

Planner

Senate’s
 MPC

protocol

P1 Senate’s
execution

engine
Database

P2

SQL query

Secure computation
plan

Query result

Pm

1

2

3

Fig. 1: Overview of Senate’s workflow.

assume that each party, even if compromised, follows the pro-

tocol faithfully. If any party deviates from the protocol, it can,

in principle, extract information about the sensitive data of

other parties. This is an unrealistic assumption in many scenar-

ios for two reasons. First, each party running the protocol at

their site has full control over what they are actually running.

For example, it requires a bank to place the confidentiality of

its sensitive business data in the hands of its competitors. If

the competitors secretly deviate from the protocol, they could

learn information about the bank’s data without its knowledge.

Second, in many real-world attacks [68], attackers are able to

install software on the server or obtain control of a server [26],

thus allowing them to alter the server’s behavior.

1.1 Senate overview

We present Senate, a platform for secure collaborative analyt-

ics with the strong guarantee of malicious security. In Senate,

even if m−1 out of m parties fully misbehave and collude, an

honest party is guaranteed that nothing leaks about their data

other than the result of the agreed upon query. Our techniques

come from a synergy of new cryptographic design and in-

sights in query rewriting and planning. A high level overview

of Senate’s workflow (as shown in Figure 1) is as follows:

Agreement stage. The m parties agree on a shared schema

for their data, and on a query for which they are willing to

share the computation result. This happens before invoking

Senate and may involve humans.

Compilation and planning stage. Senate’s compiler takes

the query and certain size information (described in §2) as in-

put and outputs a cryptographic execution plan. It runs at each

party, deterministically producing the same plan. In particu-

⨝

⨝ ⨝

P
1

P
2

P
3

P
4

P
1

P
2

P
3

P
4

"P
1

P
1

P
2

P
3

P
4

⨝ ⨝

⨝

"

Monolithic MPC Senate’s decomposed MPC

✔

✔ ✔

Fig. 2: Query execution in the baseline (monolithic MPC) vs. Senate

(decomposed MPC). σ represent a filtering operation, and ⋊⋉ is a

join. Green boxes with locks denote MPC operations; white boxes

denote plaintext computation. X represents additional verification

operations added by Senate.

lar, the compiler employs our consistent and verifiable query

splitting technique in order to minimize the amount of joint

computation performed by the parties. Then, the compiler

plans the execution of the joint computation using our circuit

decomposition technique, which can produce a significantly

more efficient execution plan.

Execution stage. An execution engine at each party runs the

cryptographic execution plan by coordinating with the other

parties and routing encrypted intermediate outputs based on

the plan. This is done using our efficient MPC decomposition

protocol, which outputs the query result to all the parties.

1.2 Senate’s techniques

Designing a maliciously-secure collaborative analytics sys-

tem is challenging due to the significant overheads of such

strong security. Consider simply using a state-of-the-art m-

party maliciously-secure MPC tool such as AGMPC [30]

which implements the protocol of Wang et al. [80]; we refer

to this as the baseline. When executing a SQL query with

this baseline, the query gets transformed into a single, large

Boolean circuit (i.e., a circuit of AND, OR, XOR gates) tak-

ing as input the data of the m parties. The challenge then is

that the m parties need to execute a monolithic cryptographic

computation together to evaluate this circuit.

Minimizing joint computation. Prior work [4, 77] in the

semi-honest setting shows that one can significantly improve

performance by splitting a query into local computation (the

part of the query that touches only one party’s data) and the

rest of the computation. The former can be executed locally

at the party on plaintext, and the latter in MPC; e.g., if a query

filters by “disease = flu”, the parties need to input only

the records matching the filter into MPC as opposed to the en-

tire dataset. In the semi-honest setting, the parties are trusted

to perform such local computation faithfully. Unfortunately,

this technique no longer works with malicious parties because

a malicious party M can perform the local computation:

• incorrectly. For example, M can input records with

“disease = HIV” into MPC. This can reveal information

about another party’s “HIV” records, e.g., via a later join

operation, when this party might have expected the join to

occur only over rows with the value “flu”.

• inconsistently. For example, if one part of a query selects pa-

tients with “age = 25” and another with “age ∈ [20,30]”,

the first filter’s outputs should be included within the

second’s. However, M might provide inconsistent sets of

records as the outputs of the two filters.

Senate’s verifiable and consistent query splitting technique

allows Senate to take advantage of local computation via a

different criteria than in the semi-honest case. Given a query,

Senate’s compiler splits the query into a special type of local

computation—one that does not introduce inconsistencies—

and a joint computation, which it annotates with verification

of the local computation, in such a way that the verification

is faster to execute than the actual computation. For example,

Figure 2 shows a 4-party query in which party P1’s inputs

are first filtered (denoted σ). Unlike the baseline execution,

Senate enables P1 to evaluate the filter locally on plaintext, and

the secure computation proceeds from there on the smaller

filtered results; these results are then jointly verified.

Decomposing MPC. In order to decompose the joint com-

putation (instead of evaluating a single, large circuit using

MPC) one needs to open up the cryptographic black box. Con-

sider a 4-way join operation (⋊⋉) among tables of 4 parties, as

shown in Figure 2. With the baseline, all 4 parties have to exe-

cute the whole circuit. However, if privacy were not a concern,

P1 and P2 could join their tables without involving the other

parties, P3 and P4 do the same in parallel, and then everyone

performs the final join on the smaller intermediate results.

This is not possible with existing state-of-the-art protocols for

MPC, which execute the computation in a monolithic fashion.

To enable such decomposition, we design a new crypto-

graphic protocol we call secure MPC decomposition (§4),

which may be of broader interest beyond Senate. In the exam-

ple above, our protocol enables parties P1 and P2 to evaluate

their join obtaining an encrypted intermediate output, and then

to securely reshare this output with parties P3 and P4 as they

all complete the final join. The decomposed circuits include

verifications of prior steps needed for malicious security. We

also develop more efficient Boolean circuits for expressing

common SQL operators such as joins, aggregates and sorting

(§6), using a small set of Boolean circuit primitives which we

call m-SI, m-SU and m-Sort (§5).

Efficiently planning query execution. Finally, we develop

a new query planner, which leverages Senate’s MPC decom-

position protocol (§7.1). Unsurprisingly, the circuit representa-

tion of a complex query can be decomposed in many different

ways. However, the rules governing the cost of each execution

plan differ significantly from regular computation. Hence, we

develop a cost model for our protocol which estimates the cost

given a circuit configuration (§7.2). Senate’s query planner

selects the most efficient plan based on the cost model.

1.3 Evaluation summary

We implemented Senate and evaluate it in §8. Our decom-

position and planning mechanisms result in a performance

improvement of up to 10× compared to the monolithic circuit

baseline, with up to 11× less resource consumption (memory

/ network communication), on a set of representative queries.

Senate’s query splitting technique for local computation can

further increase performance by as much as 10×, bringing the

net improvement to up to 100×. Furthermore, to stress test

Senate on more complex query structures, we also evaluate

its performance on the TPC-H analytics benchmark [76]; we

find that Senate’s improvements range from 3× to 145×.

Though MPC protocols have improved steadily, they still

have notable overhead. Given that such collaborative analytics

do not have to run in real time, we believe that Senate can

already be used for simpler workloads and / or relatively small

databases, but is not yet ready for big data analytics. However,

we expect faster MPC protocols to continue to appear. The

systems techniques in Senate will apply independently of

the protocol, and the cryptographic decomposition will likely

have a similar counterpart.

2 Senate’s API and example queries

Senate exposes a SQL interface to the parties. To reason about

which party supplies which table in a collaborative setting, we

augment the query language with the simple notation R|P to

indicate that table R comes from party P. Hence, R|P1 ∪ R|P2

indicates that each party holds a horizontal partition of table R.

One can obtain a vertical partitioning, for example, by joining

two tables from different parties R1|P1 and R2|P2. Here, we

use the ∪ operator to denote a simple concatenation of the

tables, instead of a set union (which removes duplicates).

In principle, Senate can support arbitrary queries because it

builds on a generic MPC tool. The performance improvement

of our techniques, though, is more relevant to joins, aggregates,

and filters. We now give three use cases and queries, each

from a different domain, which we use as running examples.

Query 1. Medical study [4]. Clostridium difficile (cdiff) is

an infection that is often antibiotic-resistant. As part of a

clinical research study, medical institutions P1 . . .Pm wish to

collectively compute the most common diseases contracted by

patients with cdiff. However, they cannot share their databases

with each other to run this query due to privacy regulations.

SELECT diag, COUNT(*) AS cnt

FROM diagnoses|P1 ∪ . . .∪ diagnoses|Pm

WHERE has_cdiff = ‘True’

GROUP BY diag ORDER BY cnt LIMIT 10;

Query 2. Prevent password reuse [78]. Many users unfor-

tunately reuse passwords across different sites. If one of these

sites is hacked, the attacker could compromise the account

of these users at other sites. As studied in [78], sites wish to

identify which users reuse passwords across the sites, and can

arrange for the salted hashes of the passwords to match if the

underlying passwords are the same (and thus be compared to

identify reuse using the query below). However, these sites

do not wish to share what other users they have or the hashed

passwords of these other users (because they can be reversed).

SELECT user_id

FROM passwords|P1 ∪ . . .∪ passwords|Pm

GROUP BY CONCAT(user_id, password)

HAVING COUNT(*) > 1;

Query 3. Credit scoring agencies do not want to share their

databases with each other [77] due to business competition,

yet they want to identify records where they have a significant

discrepancy in a particular financial year. For example, an

individual could have a low score with one agency, but a

higher score with another; the individual could take advantage

of the higher score to obtain a loan they are not entitled to.

SELECT c1.ssn

FROM credit_scores|P1 AS c1

. . .

JOIN credit_scores|Pm AS cm ON c1.ssn = cm.ssn

WHERE GREATEST(c1.credit, . . ., cm.credit) -

LEAST(c1.credit, . . ., cm.credit) > threshold

AND c1.year = 2019 . . . AND cm.year = 2019;

2.1 Sizing information

Given a query, Senate’s compiler first splits the query into

local and joint computation. Each party then specifies to the

compiler an upper bound on the number of records it will

provide as input to the joint computation, following which the

compiler maps the joint computation to circuits. These upper

bounds are useful because we do not want to leak the size of

the parties’ inputs, but also want to improve performance by

not defaulting to the worst case, e.g., the maximum number

of rows in each table. For example, for Query 1, Senate trans-

forms the query so that the parties group their records locally

by the column diag and compute local counts per group. In

this case, Senate asks for the upper bound on the number

of diagnoses per party. In many cases, deducing such upper

bounds is not necessarily hard: e.g., it is simple for Query 1 be-

cause there is a fixed number of known diseases [17]. Further,

meaningful upper bounds significantly improve performance.

3 Threat model and security guarantees

Senate adopts a strong threat model in which a malicious

adversary can corrupt m−1 out of m parties. The corrupted

parties may arbitrarily deviate from the protocol and collude

with each other. As long as one party is honest, the only

information the compromised parties learn about the honest

party is the final global query result (in addition to the upper

bounds on data size provided to the compiler by the parties,

and the query itself).

More formally, we define an ideal functionality FMPC·tree

(Functionality 2, §4.3) for securely executing functions repre-

sented as a tree of circuits, while placing some restrictions on

the structure of the tree. We then develop a protocol that real-

izes this functionality and prove the security of our protocol

(per Theorem 2, §4.3) according to the definition of security

for (standalone) maliciously secure MPC [38], as captured

formally by the following definition:

Definition 1. Let F be an m-party functionality, and let Π

be an m-party protocol that computes F . Protocol Π is said

to securely compute F in the presence of static malicious

adversaries if for every non-uniform PPT adversary A for the

real model, there exists a non-uniform PPT adversary S for

the ideal model, such that for every I ⊂ [m]

{IDEALF ,I,S(z)(x̄)}x̄,z
c
≡ {REALΠ,I,A(z)(x̄)}x̄,z

where x̄ = (x1, . . . ,xm) and xi ∈ {0,1}∗.

Here, IDEALF ,I,S(z)(x̄) denotes the joint output of the hon-

est parties and S from the ideal world execution of F ; and

REALΠ,I,A(z)(x̄) denotes the joint output of the honest parties

and A from the real world execution of Π [38].

As with malicious MPC, we cannot control what data a

party chooses to input. The parties can, if they wish, augment

the query to run tests on the input data (e.g., interval checks).

Senate also does not intend to maintain consistency of the

datasets input by a party across different queries as the dataset

could have changed in the meantime. If this is desired, Senate

could in principle support this by writing multiple queries as

part of a single bigger query, at the expense of performance.

Note that the query result might leak information about the

underlying datasets, and the parties should choose carefully

what query results they are willing to share with each other.

Alternatively, it may be possible to integrate techniques such

as differential privacy [28, 45] with Senate’s MPC computa-

tion, to avoid leaking information about any underlying data

sample; we discuss this aspect in more detail in §9.

4 Senate’s MPC decomposition protocol

In this section we present Senate’s secure MPC decomposition

protocol, the key enabler of our compiler’s planning algorithm.

Our protocol may be of independent interest, and we present

the cryptography in a self-contained way.

Suppose that m parties, P1, . . . ,Pm, wish to securely com-

pute a function f , represented by a circuit C, on their private

inputs xi. This can be done easily given a state-of-the-art

MPC protocol by having all the parties collectively evaluate

the entire circuit using the protocol. However, the key idea in

Senate is that if f can be “nicely” decomposed into multiple

sub-circuits, we can achieve a protocol with a significantly bet-

ter concrete efficiency, by having only a subset of the parties

participate in the secure evaluation of each sub-circuit.

For example, consider a function f (x1, . . . ,xm) that can be

evaluated by separately computing y1 = h1(x1, . . . ,xi) on the

inputs of parties P1 . . .Pi, and y2 = h2(xi+1, . . . ,xm) on the

inputs of parties Pi+1 . . .Pm, followed by f̃ (y1,y2). That is,

f (x1, . . . ,xm) = f̃
(

h1(x1, . . . ,xi),h2(xi+1, . . . ,xm)
)

.

Such a decomposition of f allows parties P1, . . . ,Pi to se-

curely evaluate h1 on their inputs (using an MPC protocol)

and obtain output y1. In parallel, parties Pi+1, . . . ,Pm securely

evaluate h2 to get y2. Finally, all parties securely evaluate f̃

on y1,y2 and obtain the final output y. We observe that such

a decomposition may lead to a more efficient protocol for

computing f , since the overall communication and computa-

tion complexity of state-of-the-art concretely efficient MPC

protocols (e.g., [49, 80]) is at least quadratic in the number of

involved parties. Furthermore, sub-circuits involving disjoint

sets of parties can be evaluated in parallel.

Although appealing, this idea has some caveats:

1. In a usual (“monolithic”) secure evaluation of f , the inter-

mediate values y1,y2 remain secret, whereas the decom-

position above reveals them to the parties as a result of an

intermediate MPC protocol.

2. Suppose that h1 is a non-easily-invertible function (e.g.,

pre-image resistant hash function). If all of P1, . . . ,Pi col-

lude, they can pick an arbitrary “output” y1, even without

evaluating h1, and input it to f̃ . Since h1 is non-invertible,

it is infeasible to find a pre-image of y1; thus, such behav-

ior is not equivalent to the adversary’s ability to provide an

input of its choice (as allowed in the malicious setting). In

addition, such functions introduce problems in the proof’s

simulation as a PPT simulator cannot extract the corrupted

parties’ inputs with high probability. This attack, however,

would not have been possible if f had been computed

entirely by all of P1, . . . ,Pm in a monolithic MPC.

3. If one party is involved in multiple sub-circuits and is

required to provide the same input to all of them, then we

have to make sure that its inputs are consistent.

In this section we show how to deal with the above problems,

by building upon the MPC protocol of Wang et al. [80].

First, we show how to securely transfer the output of one

garbled circuit as input to a subsequent garbled circuit, an

action called soldering (§4.2). Our soldering is inspired by

previous soldering techniques proposed in the MPC litera-

ture [2, 13, 33–36, 42, 50, 53, 56, 65, 70]. Here, we make the

following contributions. To the best of our knowledge, Senate

is the first work to design a soldering technique for the state-

of-the-art protocol of Wang et al. [80]. More importantly,

whereas previous uses of soldering were limited to cases in

which the same set of parties participate in both circuits, we

show how to solder circuits when the first set of parties is a

subset of the set of parties involved in the second circuit. This

property is crucial for the performance of the individual sub-

circuits in our overall protocol, as most of them can now be

evaluated by non-overlapping subsets of parties, in parallel.

Second, as observed above, the decomposition of a func-

tion for MPC cannot be arbitrary. We therefore formalize the

class of decompositions that are admissible for MPC (§4.3).

Informally, we require that every sub-computation evaluated

by less than m parties must be efficiently invertible. This fits

the ability of a malicious party to choose its input before

providing it to the computation.

Furthermore, we define the admissible circuit structures

to be trees rather than directed acyclic graphs. That is, the

function’s decomposition may only take the form of a tree of

sub-computations, and not an arbitrary graph. This is because

if a node provides input to more than one parent node and

all the parties at the node are corrupted, they may collude to

provide inconsistent inputs to the different parents. We there-

fore circumvent this input consistency problem by restricting

valid decompositions to trees alone. Even so, as we show in

later sections, this model fits SQL queries particularly well,

since many SQL queries can be naturally expressed as a tree

of operations.

4.1 Background

We start by briefly introducing the cryptographic tools that

our MPC protocol builds upon. In particular, we build upon

the maliciously-secure garbled circuit protocol of Wang et

al. [80] (hereafter referred to as the WRK protocol).

Information-theoretic MACs (IT-MACs). IT-MACs [64]

enable a party Pj to authenticate a bit held by another party

Pi. Suppose Pi holds a bit x ∈ {0,1}, and Pj holds a key

∆ j ∈ {0,1}κ (where κ is the security parameter). ∆ j is called

a global key and Pj can use it to authenticate multiple bits

across parties. Now, for Pj to be able to authenticate x, Pj is

given a random local key K j[x] ∈ {0,1}κ and Pi is given the

corresponding MAC tag M j[x] such that:

M j[x] = K j[x]⊕ x∆ j.

Pj does not know the bit x or the MAC, and Pi does not know

the keys; thus, Pi can later reveal x and its MAC to Pj to

prove it did not tamper with x. In this manner, Pi’s bit x can be

authenticated to more than one party—each party j holds a

global key ∆ j and local key for x, K j[x]. Pi holds all the corre-

sponding MAC tags {M j[x]} j 6=i. We write [x]i to denote such

a bit where x is known to Pi, and is authenticated to all other

parties. Concretely, [x]i means that Pi holds (x,{M j[x]} j 6=i),
and every other party Pj 6= Pi holds K j[x] and ∆ j.

Note that [x]i is XOR-homomorphic: given two authenti-

cated bits [x]i and [y]i, it is possible to compute the authen-

ticated bit [z]i where z = x⊕ y by simply having each party

compute the XOR of the MAC / keys locally.

Authenticated secret shares. In the above construction, x

is known to a single party and authenticated to the rest. Now

suppose that x is shared amongst all parties such that no

subset of parties knows x. In this case, each Pi holds xi such

that x =⊕ix
i. To authenticate x, we can use IT-MACs on each

share xi and distribute the authenticated shares [xi]i. We write

〈x〉∆ to denote the collection of authenticated shares {[xi]i}i

under the global keys ∆= {∆i}i. We omit the subscript in 〈x〉∆

if the global keys are clear from context. One can show that

〈x〉 is XOR-homomorphic, i.e., given 〈x〉 and 〈y〉 the parties

can locally compute 〈z〉 where z = x⊕ y.

Garbled circuits and the WRK protocol. Garbled cir-

cuits [6, 7, 82] are a commonly used cryptographic primitive

in MPC constructions. Formally, an m-party garbling scheme

is a pair of algorithms (Garble,Eval) that allows a secure eval-

uation of a (typically Boolean) circuit C. To do so, the parties

first invoke Garble with C, and obtain a garbled circuit G(C)
and some extra information (each party may obtain its own

secret extra information). Then, given the input xi to party Pi,

the parties invoke Eval with {xi}i and obtain the evaluation

output y. (This is a simplification of a garbling scheme in

many ways, but this abstraction suffices to understand the

WRK protocol below.) Typically, constructions utilizing a

garbling scheme are in the offline-online model, in which they

may invoke Garble offline when they agree on the circuit C,

and only later they learn their inputs {xi}i to the computation.

The WRK protocol [80] is the state-of-the-art garbled cir-

cuit protocol that is maliciously-secure even when m−1 out

of m parties are corrupted. WRK follows the same abstrac-

tion described above, with its own format for a garbled cir-

cuit; thus, we denote its garbling scheme by (WRK ·Garble,
WRK ·Eval). Our construction does not modify the inner

workings of the protocol; therefore, we describe only its input

and output layers, but elide internal details for simplicity.

WRK ·Garble: Given a Boolean circuit C, the protocol out-

puts a garbled circuit G(C). The garbling scheme au-

thenticates the circuit by maintaining IT-MACs on all

input/output wires,1 as follows. Each party Pi obtains a

global key ∆i for the circuit. In addition, each wire w in

the circuit is associated with a random “masking” bit λw

which is output to the parties as 〈λw〉∆.

WRK ·Eval: The protocol is given a garbled circuit G(C).
Then, for a party Pi who wishes to input bw to input wire

w, we have the parties input b̂w = bw ⊕λw instead; in ad-

dition, instead of receiving the real output bit bv the par-

ties receive a masked bit b̂v = bv ⊕λv. Note that λw and

λv should be kept secret from the parties (except from

the party who inputs bw or receives bv, respectively). The

procedures by which parties privately translate masked

values to real values and vice versa are simple and not

part of the core functionality, as we describe below.

Using the above abstractions, the overall WRK protocol is

simple and can be described as follows:

1. Offline. The parties invoke WRK ·Garble on C and obtain

G(C) and 〈λw〉 for every input/output wire w.

2. Online.

(a) Input. If an input wire w is associated with party Pi,

who has the input bit bw, then the parties reconstruct

λw to Pi. Then, Pi broadcasts the bit b̂w = bw ⊕λw.

(b) Evaluation. The parties invoke WRK ·Eval on G(C)
and the bit b̂w for every input wire w. They obtain a

bit b̂v = bv ⊕λv for every output wire v.

(c) Output. To reveal bit bv of an output wire v, the parties

publicly reconstruct λv and compute bv = b̂v ⊕λv.

1In fact, it does so for all the wires in the circuit; we omit this detail as

we focus on the input / output interface.

4.2 Soldering wires of WRK garbled circuits

The primary technique in Senate is to securely transfer the

actual value that passes through an output wire of one cir-

cuit, without revealing that value, to the input wire of another

circuit. This action is called soldering [65]. We observe that

the WRK protocol enjoys the right properties that enable sol-

dering of its wires almost for free. In addition, we show how

to extend the soldering notion even to cases where the set of

parties who are engaged in the ‘next’ circuit is a superset of

the set of parties engaged in the current one. This was not

known until now. We believe this extension is of independent

interest and may have more applications beyond Senate.

Specifically, we wish to securely transfer the (hidden) out-

put bv = b̂v ⊕λv on output wire v of G(C1) to the input wire

u of G(C2). ‘Securely’ means that bv = bu should hold while

keeping both bu and bv secret from the parties. To achieve this,

the parties need to securely compute the masked value of the

input to the next circuit, as expected by the WRK protocol:

b̂u = λu ⊕bu = λu ⊕bv = λu ⊕λv ⊕ b̂v

and input it to WRK ·Eval for the next circuit.

Note that the parties already hold the three terms on the

right hand side of the above equation—WRK ·Eval outputs b̂v

to the parties as a masked output when evaluating G(C1), and

the parties hold 〈λv〉 and 〈λu〉 as output from WRK ·Garble on

C1 and C2 respectively. Thus, one attempt to obtain b̂u might

be to have the parties compute the shares of 〈λu ⊕λv ⊕ b̂v〉
using XOR-homomorphism, and then publicly reconstruct

it. However, this operation is not defined unless the global

key that each party uses in the constituent terms is the same.

Since we do not modify the construction of WRK ·Garble and

WRK ·Eval, the global keys in the two circuits (and hence in

〈λv〉 and 〈λu〉) are different with high probability.

We overcome this limitation using the functionality FSolder:

FUNCTIONALITY 1. FSolder(v,u) – Soldering

Inputs. Parties in set P1 agree on b̂v and have 〈λv〉∆ authen-

ticated under global keys {∆i}i∈P1
. Parties in set P2 (where

P1 ⊆P2) have 〈λu〉∆̃ authenticated under global keys {∆̃i}i∈P2
.

Outputs. Compute b̂u = λu ⊕λv ⊕ b̂v. Then,

• Output δi = ∆i ⊕ ∆̃i for all Pi ∈ P1 to parties in P1.

• Output λi
v ⊕λi

u for all Pi ∈ P1 to parties in P1.

• Output λi
u for all Pi ∈ P2 \P1 to everyone.

• If 〈λv〉∆ and 〈λu〉∆̃ are valid then output b̂u to parties in P2.

• Otherwise, output b̂u to the adversary and ⊥ to the honest

parties.

Before proceeding, note that FSolder satisfies our needs: P1

and P2 are engaged in evaluating garbled circuits G(C1) and

G(C2) respectively. v is an output wire of G(C1), and u is an

input wire of G(C2). The parties in P2 want to transfer the

actual value that passes through v, namely bv, to G(C2). That

is, they want the actual value that would pass through u to be

bv as well. However, they do not know bv, but only the masked

value b̂v. Thus, by using FSolder, they can obtain exactly what

they need in order to begin evaluating G(C2) with bu = bv.

Along with the soldered result b̂u, functionality FSolder also

reveals additional information to the parties—specifically, the

values of δi (for all Pi ∈ P1); λi
v ⊕λi

u (for all Pi ∈ P1); and

λi
u (for all Pi ∈ P2 \P1). We model this extra leakage in the

functionality as this information is revealed by our protocol

that instantiates FSolder. However, we will show that this does

not affect the security of our overall MPC protocol.

Instantiating FSolder. We start by defining a procedure for

XOR-ing authenticated shares under different global keys,

which we denote ⊞. That is, 〈x〉∆ ⊞ 〈y〉∆̃ outputs 〈x⊕ y〉∆̃.

We observe that it is possible to implement ⊞ in a very

simple manner: every party Pi only needs to broadcast the

difference of the two global keys: δi = ∆i⊕ ∆̃i. Using this, the

parties can switch the underlying global keys of 〈x〉 from ∆i

to ∆̃i by having each party Pi compute new authentications of

xi, denoted M′
j[x

i], as follows. For every j 6= i, Pi computes

M′
j[x

i] = M j[x
i]⊕ xiδ j

= K j[x
i]⊕ xi∆ j ⊕ xiδ j = K j[x

i]⊕ xi∆̃ j

So now, x is shared and authenticated under the new global

keys {∆̃i}i. Given this procedure, we can realize FSolder as

follows: the parties first compute 〈bv〉∆ = 〈λv〉∆ ⊕ b̂v; 2 the

parties then compute 〈b̂u〉∆̃ = 〈bv〉∆ ⊞ 〈λu〉∆̃, and reconstruct

b̂u by combining their shares.

Note that the description above (implicitly) assumes that

P1 = P2; however, if P1 ⊂ P2 then the ⊞ protocol does not

make sense because parties in P2 that are not in P1 do not

have a global key ∆i corresponding to 〈x〉∆. Forcing them to

participate in the ⊞ protocol with ∆i = 0 would result in a

complete breach of security as it would reveal δi = ∆i ⊕ ∆̃i =
∆̃i, which must remain secret! We resolve this problem in

the protocol ΠSolder (Protocol 1) which extends ⊞ to the case

where P1 ⊂ P2.

Theorem 1. Protocol ΠSolder securely computes functionality

FSolder (per Definition 1) in the presence of a static adversary

that corrupts an arbitrary number of parties.

We defer the proof to an extended version of our paper.

4.3 Secure computation of circuit trees

Given a SQL query, Senate decomposes the query into a tree

of circuits, where each non-root node (circuit) in the tree in-

volves only a subset of the parties. We now describe how the

soldering technique can be used to evaluate trees of circuits,

while preserving the security of the overall computation. To

this end, we first formalize the class of circuit trees that repre-

sent valid decompositions with respect to our protocol; then,

we concretely describe our protocol for executing such trees.

We start with some preliminary definitions and notation.

A circuit tree T is a tree whose internal nodes are circuits,

2XOR homomorphism works also when one literal is a constant, rather

than an authenticated sharing.

PROTOCOL 1. ΠSolder – Soldering

Denote by 〈λP1
u 〉∆̃ the authenticated secret shares of λu held by parties in P1 only. That is λP1

u =
⊕

i:Pi∈P1
λi

u.

1. The parties in P1 reconstruct 〈b̂P1
u 〉∆̃ = (b̂v ⊕〈λv〉∆)⊞ 〈λP1

u 〉∆̃.

Specifically, each party Pi ∈ P1 broadcasts: (a) the bit b̂i
u = λi

v ⊕λi
u, and (b) the difference δi = ∆i ⊕ ∆̃i . After receiving b̂

j
u and δ j

from every Pj ∈ P1, it computes

b̂P1
u = b̂v ⊕

⊕
i:Pi∈P1

b̂i
u,

M j[b̂
i
u] = M j[λ

i
v ⊕λi

u] = M j[λ
i
v]⊕M j[λ

i
u]⊕λi

v ·δ j = (K j[λ
i
v]⊕λi

v ·∆ j)⊕ (K j[λ
i
u]⊕λi

u · ∆̃ j)⊕ (λi
v ·δ j)

= K j[λ
i
v]⊕K j[λ

i
u]⊕λi

v · (∆ j ⊕δ j)⊕λi
u · ∆̃ j = K j[λ

i
v]⊕K j[λ

i
u]⊕ (λi

v ⊕λi
u) · ∆̃ j and

Ki[b̂
j
u] = Ki[λ

j
v]⊕Ki[λ

j
u]

for every j ∈ P1 and broadcasts M j[b̂
i
u].

2. Parties Pi ∈ P2 \P1 broadcast λi
u and M j[λ

i
u] for all j ∈ P2.

3. Parties Pi ∈ P1 verify that Ki[b̂
j
u]⊕ b̂

j
u · ∆̃i = Mi[b̂

j
u] for all j ∈ P1.

4. Parties Pi ∈ P2 verify that Ki[λ
j
u]⊕λ

j
u · ∆̃i = Mi[λ

j
u] for all j ∈ P2 \P1.

5. If verification fails, output ⊥ and abort. Otherwise, output

b̂u =

(

⊕

Pi∈P2

λi
u

)

⊕bu =

(

⊕

Pi∈P1

λi
u

)

⊕

⊕

Pi∈P2\P1

λi
u

⊕bu = b̂P1
u ⊕

⊕

Pi∈P2\P1

λi
u

and the leaves are the tree’s input wires (which are also input

wires to some circuit in the tree). Each node that provides

input to an internal node C in the tree is a child of C. Since

T is a tree, this implies that all of a child’s output wires may

only be fed as input to a single parent node in the tree.

We denote a circuit C’s and a tree T ’s input wires by

I(C) and I(T) respectively. Each wire w ∈ I(T) is asso-

ciated with one party Pi, in which case we write parties(w) =
Pi. Let G1, . . . ,Gk be C’s children, we define parties(C) =
∪k

i=1parties(Gi). Note that we assume, without loss of gener-

ality, that the root circuit C ∈ T has parties(C) = {P1, . . . ,Pm}
(i.e., it involves inputs from all parties). Our goal is to achieve

secure computation for circuit trees; however, as discussed

earlier, our construction does not support arbitrary trees. We

now describe formally what can be achieved.

Definition 2. A circuit C : D→R (where D ⊆ {0,1}k is C’s

domain and R⊆ {0,1}ℓ is the range) is invertible if there is

a polynomial time algorithm A (in the size of the circuit |C|)
such that given y ∈ {0,1}ℓ:

A(y) =

{

x such that x ∈ D and C(x) = y if y ∈R

⊥ if y 6∈ R

Note that in the definition above, the circuit C need not

be “full range”, i.e., its range may be a subset of {0,1}ℓ. In

such cases, we require that it is “easy” to verify that a given

value y ∈ {0,1}ℓ is also in R. By easy we mean that it can

be verified by a polynomial-size circuit. We also denote by

verC(y) the circuit that checks whether a value y ∈ {0,1}ℓ is

in R and returns 0 or 1 accordingly. Note that given a tree

of circuits, the range of an intermediate circuit depends not

only on the circuit’s computation, but also on the ranges of its

children because they limit the circuit’s domain. Thus, these

ranges need to be deduced topologically for the tree, using

which the verC circuit is manually crafted.

Definition 3. For t < m, the class of t-admissible circuit

trees, denoted T (t), contains all circuit trees T , such that

C is invertible for all C ∈ T where |parties(C)| ≤ t. In ad-

dition, each circuit C that is parent to circuits G1, . . . ,Gk

has verG1
, . . . ,verGk

embedded within it as sub-circuits, and

parties(C) = ∪k
i=1parties(Gi).

The above suggests that there may indeed be non-invertible

circuits (e.g., a preimage resistant hash) in the tree; the only

restriction is that such a circuit should be evaluated by more

than t parties. The definition of MPC for circuit trees follows

the general definition of MPC [38], as presented below.

FUNCTIONALITY 2. FMPC·tree – MPC for circuit trees

Parameters. A circuit tree T and parties P1, . . . ,Pm.

Inputs. For each w ∈ I(T) where Pi = parties(w), wait for an

input bit bw from Pi.

Outputs. The bit bw for every w in T ’s output wires, given by

evaluating T in a topological order from leaves to root.

We realize FMPC·tree using the protocol ΠMPC·tree (Proto-

col 2), which is our overall protocol for securely executing cir-

cuit trees. The protocol works as follows. In the offline phase

the parties simply garble all circuits using WRK ·Garble; each

circuit is garbled independently from the others. Then, be-

ginning from the tree’s leaf nodes, the parties evaluate the

PROTOCOL 2. ΠMPC·tree - MPC for circuit trees

Parameters. The circuit tree T . Parties P1, . . . ,Pm.

Inputs. For w ∈ I(T), Pi = parties(w) has bw ∈ {0,1}.

Protocol.

1. Offline. For every circuit C ∈ T , parties(C) run

WRK ·Garble(C) to obtain G(C) along with 〈λw〉 for

all input and output wires w.

2. Online. For each circuit C in T (topologically) do:

(a) Input. For every u ∈ I(C): If u ∈ I(T) and Pi =
parties(u) then parties(C) reconstruct λu to Pi. Else,

if u is connected to an output wire v of a child circuit C′

then run FSolder(v,u), by which parties(C) obtain b̂u.

(b) Evaluate. Run WRK ·Eval on G(C) and b̂u for every

u ∈ I(C), by which parties(C) obtain b̂v for every C’s

output wire v. If G1, . . . ,Gc are C’s children then abort

if an intermediate value ver(Gi) = 0 for some i ∈ [c].

(c) Output. If C is the root of T , reconstruct 〈λw〉 for every

w ∈O(C), by which all parties obtain bw = ŵ⊕λw.

circuits using WRK ·Eval, such that each circuit C is evalu-

ated only by parties(C) (not all the parties). When a value on

an output wire of some circuit C′ should travel privately to

the input wire of the next circuit C then parties(C) run the

soldering protocol. As discussed above, parties(C′) may be a

subset of parties(C). Once all the nodes have been evaluated,

the parties operate exactly as in the WRK protocol in order to

reveal the actual value on the output wire.

We prove the security of protocol ΠMPC·tree per the follow-

ing theorem in an extended version of our paper. We remark

that our protocol inherits the random oracle assumption from

its use of the WRK protocol.

Theorem 2. Let t < m be the number of parties corrupted

by a static adversary. Then, protocol ΠMPC·tree securely com-

putes FMPC·tree (per Definition 1) for any T ∈ T (t), in the

random oracle model and the FSolder-hybrid model.

We stress that intermediate values (output wires of inter-

nal nodes) are authenticated secret shares, each using fresh

randomness, and thus kept secret from the adversary. In par-

ticular, the adversary’s input is independent of these values.

Note that by our construction, if there is a sub-tree rooted

at a circuit C such that parties(C) are all corrupted, then the

adversary may skip the ‘secure computation’ of that sub-

tree and simply provide inputs directly to C’s parent. This,

however, does not form a security issue because a malicious

adversary may change its input anyway, and the sub-tree is

invertible—hence, whatever input is given to C’s parent, it

can be used to extract some possible adversary’s input to the

tree’s input wires (and hence to the functionality) that leads

to the target output from the functionality.

In the following sections, we describe how Senate executes

SQL queries by transforming them into circuit trees that can

be securely executed using our protocol.

5 Senate’s circuit primitives

Senate executes a query by first representing it as a tree of

Boolean circuits, and then processing the circuit tree using its

efficient MPC protocol. To construct the circuits, Senate uses

a small set of circuit primitives which we describe in turn.

In later sections, we describe how Senate composes these

primitives to represent SQL operations and queries.

5.1 Filtering

Our first building block is a simple circuit (Filter) that takes a

list of elements as input, and passes each element through a

sub-circuit that compares it with a specified constant. If the

check passes, it outputs the element, else it outputs a zero.

5.2 Multi-way set intersection

Next, we describe a circuit for computing a multi-way set

intersection. Prior work has mainly focused on designing

Boolean circuits for two-way set intersections [12, 43]; here

we design optimized circuits for intersecting multiple sets.

Our circuit extends the two-way SCS circuit of Huang et

al. [43]. We start by providing a brief overview of the SCS

circuit, and then describe how we extend it to multiple sets.

The two-way set intersection circuit (2-SI). The sort-

compare-shuffle circuit of Huang et al. [43] takes as input two

sorted lists of size n each with unique elements, and outputs

a list of size n containing the intersection of the lists inter-

leaved with zeros (for elements that are not in the intersection).

(1) The circuit first merges the sorted lists. (2) Next, it filters

intersecting elements by comparing adjacent elements in the

list, producing a list of size n that contains all filtered elements

interleaved with zeros. (3) Finally, it shuffles the filtered ele-

ments to hide positional information about the matches.

In Senate’s use cases, set intersection results are often not

the final output of an MPC computation, and are instead inter-

mediate results upon which further computation is performed.

In such cases, the shuffle operation is not performed.

A multi-way set intersection circuit (m-SI). Suppose we

wish to compute the intersection over three sets A,B and C. A

straightforward approach is to compose two 2-SI circuits to-

gether into a larger circuit (e.g., as 2-SI(2-SI(A,B),C)). How-

ever, such an approach doesn’t work out-of-the-box because

the intermediate output O = 2-SI(A,B) needs to be sorted

before it can be intersected with C, as expected by the next

2-SI circuit. While one can accomplish this by sorting the

output, it comes at the cost of an extra O(n log2 n) gates.

Instead of performing a full-fledged sort, we exploit the

observation that, essentially, the output O of 2-SI is the sorted

result of A∩B interleaved with zeros. So, we transform O

into a sorted multiset via an intermediate monotonizer circuit

Mono that replaces each zero in O with the nearest preceding

non-zero value. Concretely, given O = (a1 . . .an) as input,

Mono outputs M = (b1 . . .bn), such that bi = ai if ai 6= 0, else

bi = bi−1. For example, if O = (1,0,2,3,0,4), then Mono

converts it to M = (1,1,2,3,3,4).

Since M now also contains duplicates, for correctness of

the overall computation, the next 2-SI that intersects M with

C needs to be able to discard these duplicates. We therefore

modify the next 2-SI circuit: (i) the circuit tags a bit to each

element in the input lists that identifies which list the element

belongs to, i.e., it appends 0 to every element in the first list,

and 1 to every element in the second; (ii) the comparison

phase of the circuit additionally verifies that elements with

equal values have different tags. These modifications ensure

that duplicates in the same intermediate list aren’t added to

the output. We refer to this modified 2-SI circuit as 2-SI∗.

The described approach generalizes to multiple input sets

in an identical manner. Note that in general, there can be many

ways of constructing the binary tree of 2-SI circuits (e.g., a

left-deep vs. balanced tree). In §7 we describe how Senate’s

compiler picks the optimal design when executing queries.

5.3 Multi-way sort

Given m sorted input lists of size n each, a multi-way sort

circuit m-Sort merges the lists into a single sorted list of

size m× n, using a binary tree of bitonic merge operations

(implemented as the Merge circuit).

5.4 Multi-way set union

Our next building block is a circuit for multi-way set unions.

In designing the circuit, we extend the two-way set union

circuit of Blanton and Aguiar [12].

The two-way set union circuit (2-SU). Given two sorted in-

put lists of size n each with unique elements, the 2-SU circuit

produces a list of size 2n containing the set union of the inputs.

Blanton and Aguiar [12] proposed a 2-SU circuit similar to

2-SI: (1) It first merges the input lists into a single sorted list.

(2) Next, it removes duplicate elements from the list: for every

two consecutive elements ei and ei+1, if ei 6= ei+1 it outputs

ei, else it outputs 0. (3) Finally, the circuit randomly shuffles

the filtered elements to hide positional information.

A multi-way set union circuit (m-SU). It might be tempt-

ing to construct a multi-way set union circuit by composing

multiple 2-SU circuits together, similar to m-SI. However,

such an approach is sub-optimal: unlike the intersection case

where intermediate lists remain size n, in unions the inter-

mediate result size grows as more input lists are added. This

leads to an unnecessary duplication of work in subsequent cir-

cuits. Instead, we construct a multi-way analogue of the 2-SU

circuit, as follows: (1) We first merge all m input lists together

into a single sorted list using an m-Sort circuit. (2) We then

remove duplicate elements from the sorted list, in a manner

identical to 2-SU. We refer to the de-duplication sub-circuit

in m-SU as Dedup. The m-SU circuit may thus alternately be

expressed as a composition of circuits: Dedup◦m-Sort.

5.5 Input verification

Our description of the circuits thus far (m-SI, m-SU, and

m-Sort) assumes that their inputs are sorted. While this as-

sumption is safe in the case of semi-honest adversaries, it fails

in the presence of malicious adversaries who may arbitrarily

deviate from the MPC protocol. For malicious security, we

need to additionally verify within the circuits that the inputs

to the circuit are indeed sorted sets. To this end, we augment

the circuits with input verifiers Ver, that scan each input set

comparing adjacent elements ei and ei+1 in pairs to check if

ei+1 > ei for all i; if so, it outputs a 1, else 0. When a given cir-

cuit is augmented with input verifiers, it additionally outputs

a logical AND over the outputs of all constituent Ver circuits.

This enables all parties involved in the computation to verify

that the other parties did not cheat during the MPC protocol.

6 Decomposable circuits for SQL operators

Given a SQL query, Senate decomposes it into a tree of SQL

operations and maps individual operations to Boolean circuits.

For some operations—namely, joins, group-by, and order-by

operations—the Boolean circuits can be further decomposed

into a tree of sub-circuits, which results in greater efficiency.

In this section, we show how Senate expresses individual

SQL operations as circuits using the primitives described in

§5, decomposing the circuits further when possible. Later in

§7, we describe the overall algorithm for transforming queries

into circuit trees and executing them using our MPC protocol.

Notation. We express Senate’s transformation rules using

traditional relational algebra [20], augmented with the notion

of parties to capture the collaborative setting. Let {P1, . . . ,Pm}
be the set of parties in the collaboration. Recall that we write

R|Pi to denote a relation R (i.e., a set of rows) held by Pi.

We also repurpose ∪ to denote a simple concatenation of the

inputs, as opposed to the set union operation. The notation for

the remaining relational operators are as follows: σ filters the

input; τ performs a sort; ⋊⋉ is an equijoin; and γ is group-by.

6.1 Joins

Consider a collaboration of m parties, where each party Pi

holds a relation Ri and wishes to compute an m-way join:

⋊⋉(R1|P1, . . . ,Rm|Pm)

Senate converts equijoin operations—joins conditioned on an

equality relation between two columns—to set intersection

circuits. Specifically, Senate maps an m-way equijoin opera-

tion to an m-SI circuit. For all other types of join operations,

such as joins based on column comparisons or compound

logical expressions, Senate expresses the join using a simple

Boolean circuit that performs a series of operations per pair-

wise combination of the inputs. However, a recent study [45]

notes that the vast majority of joins in real-world queries

(76%) are equijoins. Thus, a majority of join queries can

benefit from our optimized design of set intersection circuits.

Decomposing joins across parties. If parties don’t care

about privacy, the simplest way to execute the join would

be to perform a series of 2-way joins in the form of a tree.

For example, one way to evaluate a 4-way join is to order

the constituent joins as ((R1⋊⋉R2)⋊⋉(R3⋊⋉R4)). To mimic this

decomposition, Senate starts by designing an m-SI Boolean

circuit to compute the operation (with m = 4). Senate then

evaluates the m-SI circuit by decomposing it into its con-

stituent sub-circuits as follows:

1. First, each party locally sorts its input sets (as required by

the m-SI circuit).

2. Next, parties P1 and P2 jointly compute a 2-SI operation

over R1 and R2, followed by the monotonizer Mono. In

parallel, parties P3 and P4 compute a similar circuit over

R3 and R4. The 2-SI circuits are augmented with Ver sub-

circuits that verify that the input sets are sorted.

3. Finally, all four parties evaluate a 2-SI∗ circuit over the

outputs of the previous step; as before, the circuit includes

a Ver sub-circuit to check that the inputs are sorted. Note

that though the evaluated circuit takes two sets as input,

the circuit computation involves all four parties.

In general, multiple tree structures are possible for decompos-

ing an m-way join. Senate’s compiler (which we describe in

§7) derives the best plan for the query using a cost model.

Joins over multisets. Senate’s m-SI circuit can be extended

to support joins over multisets in a straightforward manner.

We defer the details to an extended version of our paper.

6.2 Order-by limit

In the collaborative setting, the m parties may wish to perform

an order-by operation (by some column c) on the union of

their results, optionally including a limit l:

τc,l(∪iRi|Pi)

Senate maps order-by operations directly to the m-Sort circuit.

If the operation includes a limit l, then the circuit only outputs

the wires corresponding to the first l results.

Recall from §5.3 that m-Sort is a composition of Merge

sub-circuits (that perform bitonic merge operations). If the

operation includes a limit l, then we make an optimization that

reduces the size of the overall circuit. We note that since the

circuit’s output only contains wires corresponding to the first

l elements of the sorted result, any gates that do not impact

the first l elements can be discarded from the circuit. Hence,

if an element is outside the top l choices for any intermediate

Merge, then we discard the corresponding gates.

Decomposing order-by across parties. Since the m-Sort

circuit is composed of a tree of Merge sub-circuits, it can be

straightforwardly decomposed across parties by distributing

the constituent Merge sub-circuits. For example, one way

to construct a 4-party sort circuit is: Merge(Merge(R1,R2),
Merge(R3,R4)). To decompose this:

1. Each party first sorts their input locally (as expected by

the m-Sort circuit).

2. Parties P1 and P2 compute a Merge sub-circuit; P3 and P4

do the same in parallel.

3. All 4 parties finally Merge the previous outputs.

Once again, multiple tree structures are possible for distribut-

ing the Merge circuits, and the Senate compiler’s planning

algorithm picks the best structure based on a cost model.

6.3 Group-by with aggregates

Suppose the parties wish to compute a group-by operation

over the union of their relations (on some column c), followed

by an aggregate Σ per group:

γc,Σ(∪iRi|Pi)

Senate starts by mapping the operator to a Σ◦m-SU circuit

that computes the aggregate function Σ = SUM. To do so,

we extend the m-SU circuit with support for aggregates. Re-

call from §5.4 that the m-SU circuit is a composition of sub-

circuits Dedup◦m-Sort.

Let the input to the group-by operation be a list of tuples

of the form ti = (ai,bi), such that the ai values represent the

columns over which groups are made, and the bi values are

then aggregated per group.

1. In the m-Sort phase, Senate evaluates the m-Sort sub-

circuit over the ai values per tuple, while ignoring bi.

2. In the Dedup phase, for every two consecutive tuples

(ai,bi) and (ai+1,bi+1), the circuit outputs (ai,bi) if ai 6=
ai+1, else it outputs (0,bi)

3. In addition, we augment the Dedup phase to compute ag-

gregates over the bi values. The circuit makes another pass

over the tuples (a′i,bi) output by Dedup while maintaining

a running aggregate agg: if a′i = 0 then it updates agg with

bi and outputs (0,0); otherwise, it outputs (a′i,agg).

Decomposing group-by across parties. Senate decom-

poses group-by operations in two ways. First, group-by op-

erations with aggregates can typically be split into two parts:

local aggregates per party, followed by a joint group-by aggre-

gate over the union of the results. This is a standard technique

in database theory. For example, suppose Σ = COUNT. In this

case, the parties can first compute local counts per group,

and then evaluate a joint sum per group over the local results.

Rewriting the operation in this manner helps Senate reduce

the amount of joint computation performed using a circuit,

and is thus beneficial for performance.

Second, we note that the joint group-by computation can

be further decomposed across parties. Specifically, the m-Sort

phase of the overall m-SU circuit (as described above) can

also be distributed across the parties in a manner identical to

order-by (as described in §6.2).

6.4 Filters and Projections

Filtering is a common operation in queries (i.e., the WHERE

clause in SQL), and parties in a collaboration may wish to

compute a filter on the union of their input relations:

σ f (∪iRi|Pi)

where f is the condition for filtering. Senate maps the oper-

ation to a Filter circuit. Filtering operations at the start of a

query can be straightforwardly distributed by evaluating the

filter locally at each party, before performing the union.

As regards projections, typically, these operations simply

exclude some columns from the relation. Given a relation,

Senate performs a projection by simply discarding the wires

corresponding to the non-projected columns.

7 Query execution

We now describe how Senate executes a query by decompos-

ing it into a tree of circuits. In doing so, Senate’s compiler

ensures that the resulting tree satisfies the requirements of our

MPC protocol (per Definition 3)—namely, that each circuit

in the tree is invertible.

7.1 Query decomposition and planning

We start by describing the Senate compiler’s query decompo-

sition algorithm. Given a query, the compiler transforms the

query into a circuit tree in four steps, as illustrated in Figure 3.

We use the medical query from §1.1 as a running example.

Step 1 : Construction of tree of operators. Senate first

represents the query as a tree of relational operations. The

leaves of the tree are the input relations of individual parties,

and the root outputs the final query result. Each non-leaf node

represents an operation that will be jointly evaluated only by

the parties whose data the node takes as input. Thus, the set of

parties evaluating a node is always a superset of its children.

While a query can naturally be represented as a directed

acyclic graph (DAG) of relational operators, Senate recasts the

DAG into a tree to satisfy the input consistency requirements

of our MPC protocol. Specifically, Senate ensures that the out-

puts of no intermediate node (or the input tables at the leaves)

are fed to more than one parent node. This is because in such

cases, if any two parents are evaluated by disjoint sets of par-

ties, then this leads to a potential input inconsistency—that is,

if all the parties at the current node collude, then there is no

guarantee that they provide the same input to both parents. A

tree representation resolves this problem.

Figure 3 illustrates the query tree for the medical query

and comprises the following sequence of operator nodes—the

input tables of the parties (in the leaves) are first concatenated

into a single relation which is then processed jointly using a

filter, a group-by aggregate, and an order-by limit operator.

Step 2 : Query splitting. Next, Senate logically rewrites

the query tree, splitting it such that the parties perform as

much computation as possible locally over their plaintext data,

(i.e., filters and aggregates), thereby reducing the amount of

computation that need to be performed jointly using MPC. To

do so, it applies traditional relational equivalence rules that

(i) push down selections past joins and unions, and (ii) de-

composes group-by aggregates into local aggregates followed

by a joint aggregate.

For example, as shown in Figure 3, Senate rewrites the

medical query in both these ways. Instead of performing the

filtering jointly (after concatenating the parties’ inputs), Sen-

ate pushes down the filter past the union and parties apply it

locally. In addition, it further splits the group-by aggregate—

parties first compute local counts per group, and the local

counts are jointly summed up to get the overall counts.

Though such an approach has also been explored in prior

work [4, 77], an important difference in Senate is that while

prior approaches assume a semi-honest threat model, Senate

targets security against malicious adversaries who may arbi-

trarily deviate from the specified protocol. To protect against

malicious behavior, Senate’s split is different than the semi-

honest split; Senate performs two actions: (i) additionally

verifies that all local computations are valid; and (ii) ensures

that the splitting does not introduce input consistency prob-

lems. We describe how Senate tackles these issues next.

Step 3 : Verifying intermediate operations. We need to

take a couple of additional steps before we can execute the

tree of operations securely using our MPC protocol. As §4.3

points out, to be maliciously secure, the tree of circuits needs

to be “admissible” (per Definition 3), i.e., each intermediate

operation in the tree must be invertible, and each intermediate

node must also be able to verify that the output produced by

its children is possible given the query.

Thus, in transforming a query to a circuit tree, Senate’s

compiler deduces the set of outputs each intermediate opera-

tion can produce, while ensuring the operation is invertible.

For example, a filter of the type “WHERE 5 < age < 10” re-

quires that in all output records, each value in column age

must be between 5 and 10. Note that the values of intermedi-

ate outputs also vary based on the set of preceding operations.

For more complex queries, the constraints imposed by indi-

vidual operators accumulate as the query tree is executed.

Senate’s compiler traverses the query tree upwards from

the leaves to the root, and identifies the constraints at every

level of the tree. For simplicity, we limit ourselves to the

following types of constraints induced by relational operators:

(i) each column in a relation can have range constraints of

the type n1 ≤ a ≤ n2, where n1 and n2 are constants; (ii) the

records are ordered by a single column; or (iii) the values

in a column are distinct. If the cumulative constraints at an

intermediate node in the tree are limited to the above, then

Senate’s compiler marks the node as verifiable. If a node

produces outputs with different constraints, then the compiler

marks it as unverifiable—for such nodes, Senate merges the

node with its parent into a single node and proceeds as before.

If a node / leaf feeds input to more than one parent (perhaps

as a result of the query rewriting in the previous step), then the

compiler once again merges the node and all its parents into

a single node, in order to avoid input consistency problems.

At the end of the traversal, the root node is the only poten-

tially unverifiable node in the tree, but this does not impact

security. Since all parties compute the root node jointly, the

correctness of its output is guaranteed.

As an example, in Figure 3, the local nodes at every party

locally evaluate the filter σhas_cdiff=True, which constrains

the column has_cdiff to the value ‘True’, and satisfies

condition (i) above. The subsequent group-by aggregate op-

eration γdiag,count does not impose any constraint on either

diag or count (since parties are free to provide inputs of

their choice, assuming there are no constraints on the input

m-Sort

! o m-SU

P
2

P
1

"
count, limit

P
3

diagnoses

#
has_cdiff = ‘True’

$
diag, count

diagnoses diagnoses

⋃

result

P
1

$
diag, sum

diagnoses

⋃

"
count, limit

$
diag, count

#
has_cdiff = ‘True’

$
diag, count

#
has_cdiff = ‘True’

$
diag, count

#
has_cdiff = ‘True’

P
2

P
3

diagnoses diagnoses

result

✔

P
1

diagnoses

P
2

P
3

diagnoses diagnoses

result

$
diag, count

#
has_cdiff = ‘True’

"
diag

$
diag, count

#
has_cdiff = ‘True’

"
diag

$
diag, count

#
has_cdiff = ‘True’

"
diag

P
1

diagnoses

P
2

P
3

diagnoses diagnoses

$
diag, count

#
has_cdiff = ‘True’

"
diag

$
diag, count

#
has_cdiff = ‘True’

"
diag

$
diag, count

#
has_cdiff = ‘True’

"
diag

Merge

Merge

soldering

! o Dedup

m-Sort

result

verifiable

✔ ✔

1
2

4a
4b

Construct operator

tree for query

Split query to minimize joint computation Map operators to circuits

(including verification checks)
Further decompose circuits based

on cost model

SELECT	diag,	COUNT(*)	cnt	

FROM	diagnoses|P1	∪ diagnoses|P2	∪ diagnoses|P3	
WHERE	has_cdiff	=	‘True’
GROUP	BY	diag	ORDER	BY	cnt	LIMIT	10;

✔ ✔ ✔

✔ ✔

✔ ✔

✔
3 Ensure verifiability of each sub-query

Fig. 3: Query execution in Senate. Colored keys and locks indicate which parties are involved in which MPC circuits.

columns). The local nodes are thus marked verifiable. All re-

maining operations are performed jointly by all parties at the

root node, and thus do not need to be checked for verifiability.

In our extended paper, we work out in detail how Senate’s

compiler deduces the range constraints imposed by various

relational operations (i.e., what needs to be verified). Then,

we show the invertibility of relational operations given these

constraints. This ensures that the resulting tree is admissible,

and satisfies the requirements of Senate’s MPC protocol.

Step 4 : Mapping operators to circuits. The final step

is to map each jointly evaluated node in the query tree to

a circuit (per §6): σ maps to the Filter circuit, ⋊⋉ maps to

m-SI, group-by aggregate maps to Σ ◦m-SU, and order-by-

limit maps to m-Sort. In doing so, Senate’s compiler uses a

planning algorithm that further decomposes each circuit into

a tree of circuits based on a cost model (described shortly).

For example, for the medical query in Figure 3, Senate maps

the group-by aggregate operation γdiag,sum to a Σ◦m-SU cir-

cuit. Note that m-SU requires its inputs to be sorted; therefore,

the compiler augments the children nodes with sort operations

τdiag. It then further decomposes the m-Sort phase of m-SU

into a tree of Merge sub-circuits, per §6.3

This tree of circuits is finally evaluated securely using our

MPC protocol. Note that at each node, only the parties that

provide the node input are involved in the MPC computation.

7.2 Cost model for circuit decomposition

The planning algorithm models the latency cost of evaluat-

ing a circuit tree in terms of the constituent cryptographic

operations. It then enumerates possible decomposition plans,

assigns a cost to each plan, and picks the optimal plan for

decomposing the circuit.

Recall from §4 that the cost of executing a circuit via MPC

can be divided into an offline phase (for generating the cir-

cuits), and an online phase (for evaluating the circuits). Given

a circuit tree T , let the root circuit be C with children C0 and

C1. Let T0 and T1 refer to the subtrees rooted at nodes C0

and C1 respectively. Then, Senate’s compiler models the total

latency cost C of evaluating T as:

C(T) = max(C(T0),C(T1))+ max(Csolder(T0),Csolder(T1))

+ Coffline(C)+Conline(C)

Essentially, since subtrees can be computed in parallel, the

cost model counts the maximum of these two costs, followed

by the cost of soldering the subtrees with the root node. It

adds this to the cost of the offline and online phases for T ’s

root circuit C, Coffline and Conline respectively.

We break down each cost component in terms of two unit

costs by examining the MPC protocol: the unit computation

cost Ls of performing a single symmetric key operation, and

the unit communication cost Li, j (pairwise) between parties

Pi and Pj. Senate profiles these unit costs during system setup.

In addition, the costs also depend on the size of the circuit

being computed |C| (i.e., the number of gates in the circuit),

the size of each party’s input set |I|, and the number of parties

m computing the circuit. For simplicity, the analysis below

assumes that each party has identical input set size; however,

the model can be extended in a straightforward manner to

accommodate varying input set sizes as well.

The soldering cost Csolder can be expressed as (m−1)|I| ·
maxi, j(Li, j) (since it involves a single round of communica-

tion between all parties). Next, we analyze the WRK protocol

to obtain the following equations:

Coffline(C) = (m−1)|C| ·max(Li, j)+4|C| ·Ls+ |C| ·max(L1,i)

In more detail, in the offline phase, each party (in parallel

with the others) communicates with the m−1 other parties to

create a garbled version of each gate in the circuit; each gate

requires 4 symmetric key operations (one per row in the truth

table representing the gate); they then send their individual

garbled gates (in parallel) to the evaluator. Our analysis here

is a simplification in that we ignore the cost of some function-

independent preprocessing steps from the offline phase. This

(a) m-SI of 1K inputs/party. (b) m-SI with 16 parties.

Fig. 4: Performance of m-SI in LAN.

(a) m-Sort of 600 inputs/party. (b) m-Sort with 16 parties.

Fig. 5: Performance of m-Sort in LAN.

is because these steps are independent of the input query, and

thus do not lie in the critical path of query execution.

Similarly, the cost of the online phase can be expressed as

Conline(C) = (m−1)|I| ·max(Li, j)

+(m−1)|I| ·max(L1,i)+(m−1)|C| ·Ls

In this phase, the garblers communicate with all other parties

to compute and send their encrypted inputs to the evaluator;

in addition, the evaluator communicates with each garbler to

obtain encrypted versions of its own inputs. The evaluator

then evaluates the gates per party. The size of the circuit |C|
depends on the function that the circuit evaluates (per §5), the

number of inputs, and the bit length of each input.

8 Evaluation

In this section, we demonstrate Senate’s improvements over

running queries as monolithic cryptographic computations.

We use vanilla AGMPC (with monolithic circuit execution)

as the baseline. The highlights are as follows. On the set

of representative queries from §2, we observe runtime im-

provements of up to 10× of Senate’s building blocks, with

a reduction in resource consumption of up to 11×. These

results translate into runtime improvements of up to 10× for

the joint computation in the benchmarked queries. Senate’s

query splitting technique provides a further improvement of

up to 10×, bringing the net improvement to over 100×. Fur-

thermore, on the TPC-H analytics benchmark [76], Senate’s

improvements range from 3× to 145×.

Implementation. We implemented Senate on top of the

AGMPC framework [30], a state-of-the-art implementation

of the WRK protocol [80] for m-party garbled circuits with

malicious security. Our compiler works with arbitrary bit

lengths for inputs; in our evaluation, we set the data field size

to be integers of 32 bits, unless otherwise specified.

(a) m-SU of 600 inputs/party. (b) m-SU with 16 parties.

Fig. 6: Performance of m-SU in LAN.

(a) Peak memory usage (b) Network usage

Fig. 7: Resource consumption of building blocks (16 parties).

Experimental Setup. We perform our experiments using

r5.12xlarge Amazon EC2 instances in the Northern California

region. Each instance offers 48 vCPUs and 384 GB of RAM,

and was additionally provisioned with 20 GB of swap space,

to account for transient spikes in memory requirements. We

allocated similar instances in the Ohio, Northern Virginia and

Oregon regions for wide-area network experiments.

8.1 Senate’s building blocks

We evaluate Senate’s building blocks described in §5—m-SI,

m-Sort, and m-SU. For each building block, we compare the

runtimes of each phase of the computation of Senate’s effi-

cient primitives to a similar implementation of the operator

as a single circuit in both LAN and WAN settings (Figures 4

to 6, and Figure 8). We observe substantial improvements for

our operators owing to reduced number of parties evaluating

each sub-circuit and the evaluation of various such circuits

in parallel (per §6). We also measure the improvement in

resource consumption due to Senate in Figure 7.

Multi-way set intersection circuit (m-SI). We compare the

evaluation time of an m-SI circuit across 16 parties with

varying input sizes in Figure 4b and observe runtime im-

provements ranging from 5.2×–6.2×. This is because our

decomposition enables the input size to stay constant for each

sub-computation, allowing us to reduce the input set size to

the final 16-party computation. Note that, while Senate can

compute a set intersection of 10K integers, AGMPC is un-

able to compute it for 2K integers, and runs out of memory

during the offline phase. Figures 4a and 8 plot the runtime of

a circuit with varying number of parties in LAN and WAN

settings respectively, and observe an improvement of up to

10×. This can be similarly attributed to our decomposable cir-

cuits, which reduce the data transferred across all the parties,

leading to significant improvements in the WAN setting.

Figures 7a and 7b plot the trend of the peak memory and

Fig. 8: Building blocks in WAN. Fig. 9: Query 1 with 16 parties. Fig. 10: Query 2 with 16 parties. Fig. 11: Query 3 with 16 parties.

(a) Query 1 with 100 inputs/party. (b) Query 3 with 600 inputs/party.

Fig. 12: Effect of query splitting on runtime.

Fig. 13: Network usage. Fig. 14: Queries in WAN.

total network consumption of Senate compared to AGMPC

with 1K integers across varying number of parties.

Multi-way Sort circuit (m-Sort). Figures 5a and 5b illus-

trate the runtimes of a sorting circuit with varying number

of parties and varying input sizes respectively. We observe

that Senate’s implementation is up to 4.3× faster for 16 par-

ties, and can scale to twice as many inputs as AGMPC. This

is also corroborated by the 3.3× reduction in peak memory

requirement for 600 integers and ∼780 GB reduction in the

amount of data transferred, as shown in Figures 7a and 7b.

Multi-way set union circuit (m-SU). Figure 6b plots the

runtime of a set union circuit with varying input sizes and 16

parties. As discussed in §5, an m-SU circuit can be expressed

as Dedup ◦ m-Sort. Hence, we expect to trends similar to

the m-Sort circuit. However, we observed a stark increase in

runtime for the single circuit evaluation of 600 integers across

16 parties due to the exhaustion of the available memory in

the system and subsequent use of swap space (see Figure 7a).

We observe a similar trend in Figures 6a and 8.

8.2 End-to-end performance

8.2.1 Representative queries

We now evaluate the performance of Senate on the three rep-

resentative queries discussed in §2 with a varying number of

parties (Figures 9 to 11). In addition, we quantify the benefit

of Senate’s query splitting for different filter factors, i.e., the

fraction of inputs filtered as a result of any local computation

(Figure 12). We also measure the total network usage of the

queries in Figure 13; and Figure 14 plots the performance of

the queries in a WAN setting.

Query 1 (Medical study). Figure 9 plots the runtime of Sen-

ate and AGMPC on the medical example query with varying

input sizes. Note that, the input to the circuit for a query con-

sists of all the values in the row required to compute the final

result. We observe a performance improvement of 1.3× for

an input size of 100 rows, and are also able to scale to higher

input sizes. Figure 12a illustrates the benefit of Senate’s con-

sistent and verified query splitting for different filter factors.

We compare the single circuit implementation of the query

for 100 inputs per party, and are able to achieve a runtime im-

provement of 22× for a filter factor of 0.1. The improvement

in network consumption follows a similar trend, reducing

usage by ∼23× with a filter factor of 0.1 (Figure 13).

Query 2 (Prevent password reuse). Figure 10 plots the

runtime of Senate and AGMPC with varying input sizes. Each

row in this query consists of a 32 bit user identifier, and a 256

bit password hash. Since the query involves a group-by with

aggregates, which is mapped to an extended m-SU (per §5),

we observe a trend similar to Figure 6b. We remark that this

query does not benefit from Senate’s query splitting.

Query 3 (Credit scoring). We evaluate the third query with

16 parties and varying input sizes in Figure 11, and observe

that Senate is 10× faster than AGMPC for 600 input rows,

and is able to scale to almost 10 times the input size. The

introduction of a local filter into the query, with a filter factor

of 0.1 reduces the runtime by 100×. We attribute this to our

efficient m-SI implementation which optimally splits the set

intersection and parallelizes its execution across parties. The

reduction in network usage (Figure 13) is also similar.

In the WAN setting, the improvement in query performance

with Senate largely mimics the LAN setting; Figure 14 plots

the results in the absence of query splitting (i.e., filter factor of

1). Overall, we find that Senate MPC decomposition protocol

alone improves performance by up to an order of magnitude

over the baseline. In addition, Senate’s query splitting tech-

nique can further improve performance by another order of

magnitude, depending on the filter factor.

8.2.2 TPC-H benchmark

To stress test Senate on more complex query structures, we

repeat the performance experiment by evaluating Senate on

the TPC-H benchmark [76], an industry-standard analytics

Fig. 15: Senate’s performance on TPC-H queries.

Fig. 16: Accuracy of cost model. Fig. 17: Semi-honest baselines

benchmark. The benchmark comprises a rich set of 22 queries

on data split across 8 tables. The query structures are com-

plex: for example, query 5 involves 5 joins across 6 tables,

several filters, cross-column multiplications, aggregates over

groups, and a sort. Existing benchmarks for analytical queries

(including TPC-H) have no notion of collaborations of parties,

so we created a multi-party version of TPC-H by assuming

that each table is held by a different party.

We measure Senate’s performance on 13 out of these 22

queries; the other queries are either single-table queries, or

perform operations that Senate currently does not support

(namely, substring matching, regular expressions, and UDFs).

For parity, we assume 1K inputs per party across all queries,

and a filter factor of 0.1 for local computation that results

from Senate’s query splitting. Figure 15 plots the results.

Overall, Senate improves performance by 3× to 145× over

the AGMPC baseline across 12 of the 13 queries; query 8

runs out of memory in the baseline.

8.3 Accuracy of Senate’s cost model

We evaluate our cost model (from §7.2) using Senate’s circuit

primitives. We compute the costs predicted by the cost model

for the primitives, and compare them with the measured cost

of an actual execution. As detailed in §7.2, the cost model

does not consider the function independent computation in

the offline phase of the MPC protocol as it does not lie in

the critical path of query evaluation; we therefore ignore the

function independent components from the measured cost.

Figure 16 shows that our theoretical cost model approximates

the actual costs well, with an average error of ∼20%.

8.4 Senate versus other protocols

Custom PSI protocols. There is a rich literature on custom

protocols for PSI operations. While custom protocols are

faster than general-purpose systems like Senate, their func-

tionality naturally remains limited. We quantify the tradeoff

between generality and performance by comparing Senate’s

PSI cost to that of custom PSI protocols. We compare Sen-

ate with the protocol of Zhang et al. [83], a state-of-the-art

protocol for multiparty PSI with malicious security.3 The pro-

tocol implementation is not available, so we compare it with

Senate based on the performance numbers reported by the au-

thors, and replicate Senate’s experiments on similar capacity

servers. Overall, we find that a 4-party PSI of 212 elements

per party takes ∼3 s using the custom protocol in the online

phase, versus ∼30 s in Senate, representing a 10× overhead.

Arithmetic MPC. Senate builds upon a Boolean MPC

framework instead of arithmetic MPC. We validate our de-

sign choice by comparing the performance of Senate with that

of SCALE-MAMBA [74], a state-of-the-art arithmetic MPC

framework. We find that though arithmetic MPC is 3× faster

than Senate for aggregation operations alone (as expected),

this benefit doesn’t generalize. In Senate’s target workloads,

aggregations are typically performed on top of operations

such as joins and group by, as exemplified by our represen-

tative queries and the TPC-H query mix. For these queries

(which also represent the general case), Senate is over two

orders of magnitude faster. More specifically, we measure the

latency of (i) a join with sum operation, and (ii) a group by

with sum operation, across 4 parties with 256 inputs per party;

we find that Senate is faster by 550× and 350× for the two

operations, respectively. The reason for this disparity is that

joins and group by operations rely almost entirely on logical

operations such as comparisons, for which Boolean MPC is

much more suitable than arithmetic MPC.

Semi-honest systems. We quantify the overhead of mali-

cious security by comparing the performance of Senate with

semi-honest baselines. To the best of our knowledge, we do

not know of any modern m-party semi-honest garbled circuit

frameworks faster than AGMPC (even though it’s maliciously

secure). Therefore, we implement and evaluate a semi-honest

version of AGMPC ourselves, and compare Senate against

it in Figure 17. AGMPC-SH refers to the semi-honest base-

line with monolithic circuit execution. We additionally note

that Senate’s techniques for decomposing circuits translate

naturally to the semi-honest setting, without the need for veri-

fying intermediate outputs. Hence, we also implement a semi-

honest version of Senate atop AGMPC-SH that decomposes

queries across parties. We do not compare Senate to prior

semi-honest multi-party systems SMCQL and Conclave, as

their current implementations only support 2 to 3 parties.

Figure 17 plots the runtime of m-SI, m-SU and m-Sort

across 16 parties, with 1K, 600 and 600 inputs per party re-

spectively. We observe that Senate-SH yields performance

benefits ranging from 2.7–8.7× when compared to AGMPC-

3We note that the protocol of Zhang et al. provides malicious security

only against adversaries that do not simultaneously corrupt two parties, while

Senate is secure against arbitrary corruptions. However, the only custom

protocols we’re aware of that tolerate arbitrary corruptions (for more than

two parties) either rely on expensive public-key cryptography (and are slower

than general-purpose MPC, which have improved tremendously since these

proposals) [18, 24], or do not provide an implementation [41].

SH. Senate’s malicious security, however, comes with an over-

head of 4.4× compared to Senate-SH. We also measure the

end-to-end performance of the three sample queries, and find

that Senate-SH yields performance benefits similar to Fig-

ures 9 to 11 when compared to AGMPC-SH. At the same

time, we observe a maximum overhead of 3.6× when running

the queries in a maliciously-secure setting.

9 Limitations and Discussion

Applicability of Senate’s techniques. Senate works best

for operations that can be naturally decomposed into a tree.

While many SQL queries fit this structure, not all of them do.

A general case is one where the same relation is fed as input

to two different operations (or nodes in the query tree). For

example, consider a collaboration of 3 parties, where each

party Pi holds a relation Ri, who wish to compute the join

(R1∪R2)⋊⋉R3. In the unencrypted setting, we can decompose

the operation by computing pairwise joins R1⋊⋉R3 and R2⋊⋉R3,

and then take the union of the results. Unfortunately, this de-

composition doesn’t work in Senate because it produces a

DAG (a node with two parents) and not a tree. Hence, a mali-

cious P3 may use different values for R3 across the pairwise

joins, leading to an input consistency issue. In such cases,

Senate falls back to monolithic MPC for the operation.

Overall, Senate’s techniques do not universally benefit all

classes of computations, yet they encompass important and

common analytics queries, as our sample queries exemplify.

Verifiability of SQL operators. As described in §7, for

simplicity, Senate’s compiler requires that each node in the

query tree outputs values that adhere to a well-defined set

of constraints. If a node constrains its outputs in any other

way, the compiler marks it as unverifiable. The reason is that

additional constraints restrict the space of possible inputs for

future nodes in the tree (and thereby, their outputs), making it

harder to deduce what needs to be verified.

For example, consider a group by operation over column a,

with a sum over column b per group. If the values in b also

have a range constraint, then deducing the possible values for

the sums per group is non-trivial (though technically possible).

Generalizing Senate’s compiler to accept a richer (or possibly,

arbitrary) set of constraints is interesting future work.

Additional SQL functionality. Senate does not support

SQL operations such as UDFs, substring matching, or regular

expressions, as we discuss in our analysis of the TPC-H bench-

mark §8.2.2. Adding support for missing operations requires

augmenting Senate’s compiler to (i) translate the operation

into a Boolean circuit; and (ii) verify the invertibility of the

operation as required by the MPC decomposition protocol.

While this is potentially straightforward for operations such

as substring matching and (some limited types of) regular

expressions, verifying the invertibility of arbitrary UDFs is

computationally a hard problem. Overall, extending Senate

to support wider SQL functionality (including a well-defined

class of UDFs) is an interesting direction for future work.

Differential privacy. Senate reveals the query results to all

the parties, which may leak information about the underlying

data samples. This leakage can potentially be mitigated by

extending Senate to support techniques such as differential

privacy (DP) [28] (which prevents leakage by adding noise to

the query results), similar to prior work [5, 62].

In principle, one can use a general-purpose MPC protocol

to implement a given DP mechanism for computing noised

queries in the standard model [27,29]—each party contributes

a share of the randomness, which is combined within MPC

to generate noise and perturb the query results, depending on

the mechanism. However, an open question is how the MPC

decomposition protocol of Senate interacts with a given DP

mechanism. The mechanism governs where and how the noise

is added to the computation, e.g., Chorus [46] rewrites SQL

queries to transform them into intrinsically private versions.

On the other hand, Senate decomposes the computation across

parties, which suggests that existing mechanisms may not be

directly transferable to Senate in the presence of malicious

adversaries while maintaining DP guarantees. As a result,

designing DP mechanisms that are compatible with Senate is

a potentially interesting direction for future work.

10 Related work

Secure multi-party computation (MPC) [9, 39, 81]. A va-

riety of MPC protocols have been proposed for malicious

adversaries and dishonest majority, with SPDZ [25, 48, 49]

and WRK [80] being the state-of-the-art for arithmetic and

Boolean (and for multi/constant rounds) settings, respectively.

WRK is more suited to our setting than SPDZ because rela-

tional queries map to Boolean circuits more efficiently. These

protocols execute a given computation as a monolithic cir-

cuit. In contrast, Senate decomposes a circuit into a tree, and

executes each sub-circuit only with a subset of parties.

MPC frameworks. There are several frameworks for com-

piling and executing programs using MPC, in malicious [30,

61, 74] as well as semi-honest [8, 14, 55, 57, 63, 72, 84] set-

tings. Senate builds upon the AGMPC framework [30] that

implements the maliciously secure WRK protocol.

Private set operations. A rich body of work exists on cus-

tom protocols for set operations (e.g., [22,23,32,51,52,54,69]).

Senate’s circuit primitives build upon protocols that express

the set operation as a Boolean circuit [12,43] in order to allow

further MPC computation over the results, rather than using

other primitives like oblivious transfer, oblivious PRFs, etc.

Secure collaborative systems. Similar to Senate, recent sys-

tems such as SMCQL [4] and Conclave [77] also target pri-

vacy for collaborative query execution using MPC. Other

proposals [3, 19] support such computation by outsourcing

it to two non-colluding servers. However, all these systems

assume the adversaries are semi-honest and optimize for this

use case, while Senate provides security against malicious

adversaries. Prio [21], Melis et al. [59], and Prochlo [11]

collect aggregate statistics across many users, as opposed to

general-purpose SQL. Further, the first two target semi-honest

security, while Prochlo uses hardware enclaves [58].

Similar objectives have been explored for machine learning

(e.g., [15,37,40,60,66,75,86]). Most of these proposals target

semi-honest adversaries. Others are limited to specific tasks

such as linear regression, and are not applicable to Senate.

Trusted hardware. An alternate to cryptography is to use

systems based on trusted hardware enclaves (e.g., [31,71,85]).

Such approaches can be generalized to multi-party scenarios

as well. However, enclaves require additional trust assump-

tions, and suffer from many side-channel attacks [16, 79].

Systems with differential privacy. DJoin [62] and DStress

[67] use black-box MPC protocols to compute operations

over multi-party databases, and use differential privacy [28]

to mask the results. Shrinkwrap [5] improves the efficiency of

SMCQL by using differential privacy to hide the sizes of inter-

mediate results (instead of padding them to an upper bound,

as in Senate). Flex [45] enforces differential privacy on the

results of SQL queries, though not in the collaborative case.

In general, differential privacy solutions are complementary

to Senate and can possibly be added atop Senate’s processing

by encoding them into Senate’s circuits (as discussed in §9).

11 Conclusion

We presented Senate, a system for securely computing an-

alytical SQL queries in a collaborative setup. Unlike prior

work, Senate targets a powerful adversary who may arbitrarily

deviate from the specified protocol. Compared to traditional

cryptographic solutions, Senate improves performance by se-

curely decomposing a big cryptographic computation into

smaller and parallel computations, planning an efficient de-

composition, and verifiably delegating a part of the query to

local computation. Our techniques can improve query runtime

by up to 145× when compared to the state-of-the-art.

Acknowledgments

We thank the reviewers for their insightful feedback. We also

thank members of the RISELab at UC Berkeley for their help-

ful comments on earlier versions of this paper; Charles Lin for

his assistance in the early phases of this project; and Carmit

Hazay for valuable discussions. This work was supported in

part by the NSF CISE Expeditions Award CCF-1730628, and

gifts from the Sloan Foundation, Bakar Program, Alibaba,

Amazon Web Services, Ant Group, Capital One, Ericsson,

Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Sco-

tiabank, Splunk, and VMware.

References

[1] E. A. Abbe, A. E. Khandani, and A. W. Lo. Privacy-Preserving

Methods for Sharing Financial Risk Exposures. American Economic

Review, 2012.

[2] A. Afshar, Z. Hu, P. Mohassel, and M. Rosulek. How to efficiently

evaluate RAM programs with malicious security. In EUROCRYPT,

2015.

[3] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,

R. Motwani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep A

secret: A distributed architecture for secure database services. In

CIDR, 2005.

[4] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers.

SMCQL: Secure Querying for Federated Databases. In VLDB, 2017.

[5] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers.

Shrinkwrap: Differentially-Private Query Processing in Private Data

Federations. In VLDB, 2018.

[6] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure

protocols (extended abstract). In STOC, 1990.

[7] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled

circuits. In CCS, 2012.

[8] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A System for

Secure Multi-party Computation. In CCS, 2008.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness

theorems for non-cryptographic fault-tolerant distributed computation

(extended abstract). In STOC, 1988.

[10] D. Bisias, M. Flood, A. W. Lo, and S. Valavanis. A Survey of Systemic

Risk Analytics. Annual Review of Financial Economics, 2012.

[11] A. Bittau et al. Prochlo: Strong Privacy for Analytics in the Crowd. In

SOSP, 2017.

[12] M. Blanton and E. Aguiar. Private and oblivious set and multiset

operations. In AsiaCCS, 2012.

[13] T. Boelter, R. Poddar, and R. A. Popa. A Secure One-Roundtrip Index

for Range Queries. Cryptology ePrint Archive, Report 2016/568, 2016.

https://eprint.iacr.org/2016/568.

[14] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for

fast privacy-preserving computations. In ESORICS, 2008.

[15] K. Bonawitz et al. Practical Secure Aggregation for

Privacy-Preserving Machine Learning. In CCS, 2017.

[16] J. V. Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX

Kingdom with Transient Out-of-Order Execution. In USENIX Security,

2018.

[17] Center for Disease Control and Prevention (CDC): Diseases and

Conditions A-Z Index, 2017.

https://www.cdc.gov/DiseasesConditions.

[18] J. H. Cheon, S. Jarecki, and J. H. Seo. Multi-party privacy-preserving

set intersection with quasi-linear complexity. IEICE Transactions,

95-A(8):1366–1378, 2012.

[19] S. S. M. Chow, J. Lee, and L. Subramanian. Two-party computation

model for privacy-preserving queries over distributed databases. In

NDSS, 2009.

[20] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.

Commun. ACM, 1970.

[21] H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In NSDI, 2017.

[22] E. D. Cristofaro, P. Gasti, and G. Tsudik. Fast and Private Computation

of Cardinality of Set Intersection and Union. In CANS, 2012.

[23] E. D. Cristofaro, J. Kim, and G. Tsudik. Linear-Complexity Private

Set Intersection Protocols Secure in Malicious Model. In ASIACRYPT,

2010.

[24] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Secure

Efficient Multiparty Computing of Multivariate Polynomials and

Applications. In ACNS, 2011.

[25] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.

Practical covertly secure MPC for dishonest majority - or: Breaking

the SPDZ limits. In ESORICS, 2013.

[26] Privilege Escalation in Ubuntu Linux, 2019. https:

//shenaniganslabs.io/2019/02/13/Dirty-Sock.html.

[27] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our

Data, Ourselves: Privacy via Distributed Noise Generation. In

EUROCRYPT, 2006.

[28] C. Dwork and A. Roth. The Algorithmic Foundations of Differential

Privacy. Found. Trends Theor. Comput. Sci., 2014.

[29] F. Eigner, A. Kate, M. Maffei, F. Pampaloni, and I. Pryvalov.

Differentially private data aggregation with optimal utility. In ACSAC,

2014.

https://eprint.iacr.org/2016/568
https://www.cdc.gov/DiseasesConditions
https://shenaniganslabs.io/2019/02/13/Dirty-Sock.html
https://shenaniganslabs.io/2019/02/13/Dirty-Sock.html

[30] AGMPC Framework.

https://github.com/emp-toolkit/emp-agmpc.

[31] S. Eskandarian and M. Zaharia. ObliDB: Oblivious Query Processing

using Hardware Enclaves. 2020.

[32] B. H. Falk, D. Noble, and R. Ostrovsky. Private Set Intersection with

Linear Communication from General Assumptions. In WPES, 2019.

[33] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and

C. Orlandi. MiniLEGO: Efficient Secure Two-Party Computation from

General Assumptions. In EUROCRYPT, 2013.

[34] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti.

TinyLEGO: An Interactive Garbling Scheme for Maliciously Secure

Two-party Computation. Cryptology ePrint Archive, Report 2015/309,

2015. https://eprint.iacr.org/2015/309.

[35] S. Garg, D. Gupta, P. Miao, and O. Pandey. Secure multiparty RAM

computation in constant rounds. In TCC, 2016.

[36] S. Garg, S. Lu, R. Ostrovsky, and A. Scafuro. Garbled RAM from

one-way functions. In STOC, 2015.

[37] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner,

S. Zahur, and D. Evans. Privacy-Preserving Distributed Linear

Regression on High-Dimensional Data. In PETS, 2017.

[38] O. Goldreich. The Foundations of Cryptography - Volume 2: Basic

Applications. Cambridge University Press, 2004.

[39] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental

Game. In STOC, 1987.

[40] Google AI. Federated Learning: Collaborative Machine Learning

without Centralized Training Data.

https://ai.googleblog.com/2017/04/federated-

learning-collaborative.html.

[41] C. Hazay and M. Venkitasubramaniam. Scalable Multi-Party Private

Set-Intersection. In PKC, 2017.

[42] C. Hazay and A. Yanai. Constant-round maliciously secure two-party

computation in the RAM model. In TCC, 2016.

[43] Y. Huang, D. Evans, and J. Katz. Private Set Intersection: Are Garbled

Circuits Better than Custom Protocols? In NDSS, 2012.

[44] M. Ion et al. Private Intersection-Sum Protocol with Applications to

Attributing Aggregate Ad Conversions. Cryptology ePrint Archive,

Report 2017/738, 2017. https://eprint.iacr.org/2017/738.

[45] N. Johnson, J. P. Near, and D. Song. Towards Practical Differential

Privacy for SQL Queries. In VLDB, 2018.

[46] N. M. Johnson, J. P. Near, J. M. Hellerstein, and D. Song. Chorus:

Differential Privacy via Query Rewriting. arXiv:1809.07750, 2018.

[47] L. Kamm, D. Bogdanov, and J. Vilo. A new way to protect privacy in

large-scale genome-wide association studies. Bioinformatics, 2013.

[48] M. Keller, E. Orsini, and P. Scholl. MASCOT: faster malicious

arithmetic secure computation with oblivious transfer. In CCS, 2016.

[49] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ Great

Again. In EUROCRYPT, 2018.

[50] M. Keller and A. Yanai. Efficient maliciously secure multiparty

computation for RAM. In EUROCRYPT, 2018.

[51] L. Kissner and D. Song. Privacy-Preserving Set Operations. In

CRYPTO, 2005.

[52] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu.

Practical Multi-party Private Set Intersection from Symmetric-Key

Techniques. In CCS, 2017.

[53] V. Kolesnikov, J. B. Nielsen, M. Rosulek, N. Trieu, and R. Trifiletti.

DUPLO: unifying cut-and-choose for garbled circuits. In CCS, 2017.

[54] V. Kolesnikov, M. Rosulek, N. Trieu, and X. Wang. Scalable Private

Set Union from Symmetric-Key Techniques. In ASIACRYPT, 2019.

[55] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A

Programming Framework for Secure Computation. In IEEE S&P,

2015.

[56] S. Lu and R. Ostrovsky. Black-box parallel garbled RAM. In

CRYPTO, 2017.

[57] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – A Secure

Two-party Computation System. In USENIX Security, 2004.

[58] F. McKeen et al. Innovative Instructions and Software Model for

Isolated Execution. In HASP, 2013.

[59] L. Melis, G. Danezis, and E. D. Cristofaro. Efficient Private Statistics

with Succinct Sketches. In NDSS, 2016.

[60] P. Mohassel and Y. Zhang. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In IEEE S&P, 2019.

[61] B. Mood, D. Gupta, H. Carter, K. R. B. Butler, and P. Traynor. Frigate:

A Validated, Extensible, and Efficient Compiler and Interpreter. In

EuroS&P, 2016.

[62] A. Narayan and A. Haeberlen. DJoin: Differentially Private Join

Queries over Distributed Databases. In OSDI, 2012.

[63] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi.

GraphSC: Parallel Secure Computation Made Easy. In IEEE S&P,

2015.

[64] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A New

Approach to Practical Active-Secure Two-Party Computation. In

CRYPTO, 2012.

[65] J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation.

In TCC, 2009.

[66] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and

N. Taft. Privacy-Preserving Ridge Regression on Hundreds of Millions

of Records. In IEEE S&P, 2013.

[67] A. Papadimitriou, A. Narayan, and A. Haeberlen. DStress: Efficient

Differentially Private Computations on Distributed Data. In EuroSys,

2017.

[68] N. Perlroth. Security Experts Expect ‘Shellshock’ Software Bug in

Bash to Be Significant, 2014. https://www.nytimes.com/2014/

09/26/technology/security-experts-expect-shellshock-

software-bug-to-be-significant.html.

[69] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient

Circuit-Based PSI with Linear Communication. In EUROCRYPT,

2019.

[70] R. Poddar, T. Boelter, and R. A. Popa. Arx: An Encrypted Database

using Semantically Secure Encryption. In VLDB, 2019.

[71] C. Priebe, K. Vasawani, and M. Costa. EnclaveDB: A Secure Database

Using SGX. In IEEE S&P, 2018.

[72] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A Programming

Language for Generic, Mixed-Mode Multiparty Computations. In

IEEE S&P, 2014.

[73] A. Sangers, M. van Heesch, T. Attema, T. Veugen, M. Wiggerman,

J. Veldsink, O. Bloemen, and D. Worm. Secure multiparty PageRank

algorithm for collaborative fraud detection. In FC, 2019.

[74] SCALE-MAMBA Framework.

https://homes.esat.kuleuven.be/~nsmart/SCALE/.

[75] R. Shokri and V. Shmatikov. Privacy-Preserving Deep Learning. In

CCS, 2015.

[76] TPC-H Benchmark. http://www.tpc.org/tpch/.

[77] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and

A. Bestavros. Conclave: Secure Multi-Party Computation on Big Data.

In EuroSys, 2019.

[78] K. C. Wang and M. K. Reiter. How to end password reuse on the web.

In NDSS, 2019.

[79] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,

H. Tang, and C. A. Gunter. Leaky Cauldron on the Dark Land:

Understanding Memory Side-Channel Hazards in SGX. In CCS, 2017.

[80] X. Wang, S. Ranellucci, and J. Katz. Global-Scale Secure Multiparty

Computation. In CCS, 2017.

[81] A. C. Yao. Protocols for secure computations. In Symposium on

Foundations of Computer Science (SFCS), 1982.

[82] A. C. Yao. How to generate and exchange secrets (extended abstract).

In FOCS, 1986.

[83] E. Zhang, F.-H. Liu, Q. Lai, G. Jin, and Y. Li. Efficient Multi-Party

Private Set Intersection Against Malicious Adversaries. In CCSW,

2019.

[84] Y. Zhang, A. Steele, and M. Blanton. PICCO: A General-purpose

Compiler for Private Distributed Computation. In CCS, 2013.

[85] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and

I. Stoica. Opaque: An Oblivious and Encrypted Distributed Analytics

Platform. In NSDI, 2017.

[86] W. Zheng, R. A. Popa, J. Gonzalez, and I. Stoica. Helen: Maliciously

Secure Coopetitive Learning for Linear Models. In IEEE S&P, 2019.

https://github.com/emp-toolkit/emp-agmpc
https://eprint.iacr.org/2015/309
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://eprint.iacr.org/2017/738
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://homes.esat.kuleuven.be/~nsmart/SCALE/
http://www.tpc.org/tpch/

	Introduction
	Senate overview
	Senate's techniques
	Evaluation summary

	Senate's API and example queries
	Sizing information

	Threat model and security guarantees
	Senate's MPC decomposition protocol
	Background
	Soldering wires of WRK garbled circuits
	Secure computation of circuit trees

	Senate's circuit primitives
	Filtering
	Multi-way set intersection
	Multi-way sort
	Multi-way set union
	Input verification

	Decomposable circuits for SQL operators
	Joins
	Order-by limit
	Group-by with aggregates
	Filters and Projections

	Query execution
	Query decomposition and planning
	Cost model for circuit decomposition

	Evaluation
	Senate's building blocks
	End-to-end performance
	Representative queries
	TPC-H benchmark

	Accuracy of Senate's cost model
	Senate versus other protocols

	Limitations and Discussion
	Related work
	Conclusion

