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Cellular senescence is a stress-responsive cell-cycle arrest program that terminates the further 

expansion of (pre-)malignant cells
1,2

. Key signalling components of the senescence machinery, such 

as p16INK4a, p21CIP1 and p53, as well as trimethylation of lysine 9 at histone H3 (H3K9me3), also 

operate as critical regulators of stem-cell functions (which are collectively termed ‘stemness’)3
. In 

cancer cells, a gain of stemness may have profound implications for tumour aggressiveness and 

clinical outcome. Here we investigated whether chemotherapy-induced senescence could change 

stem cell- related properties of malignant cells. Gene expression and functional analyses comparing 
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senescent and non-senescent B-cell lymphomas from Eμ-Myc transgenic mice revealed substantial 

upregulation of an adult tissue stem-cell signature, activated Wnt signalling, and distinct stem-cell 

markers in senescence. Using genetically switchable models of senescence targeting H3K9me3 or 

p53 to mimic spontaneous escape from the arrested condition, we found that cells released from 

senescence re-entered the cell cycle with strongly enhanced and Wnt-dependent clonogenic growth 

potential compared to virtually identical populations that had been equally exposed to  

chemotherapy but had never been senescent. In vivo, these previously senescent cells presented with 

a much higher tumour initiation potential. Notably, the temporary enforcement of senescence in 

p53-regulatable models of acute lymphoblastic leukaemia and acute myeloid leukaemia was found 

to reprogram non-stem bulk leukaemia cells into self-renewing, leukaemia-initiating stem cells. Our 

data, which are further supported by consistent results in human cancer cell lines and primary 

samples of human haematological malignancies, reveal that senescence-associated stemness is an 

unexpected, cell autonomous feature that exerts its detrimental, highly aggressive growth potential 

upon escape from cell-cycle blockade, and is enriched in relapse tumours. These findings have 

profound implications for cancer therapy, and provide new mechanistic insights into the plasticity 

of cancer cells. 

 

Cellular senescence, which is implemented in response to severe cellular insults such as oncogenic 

activation or chemotherapeutic DNA damage, is a failsafe program that protects organismic integrity by 

excluding potentially harmful cells from further expansion
2,4

, and also has a physiological function in 

tissue homeostasis during organ development
1
. Senescence has been shown to cancel the pro-tumorigenic 

potential of Ras-/Raf-driven (pre-)cancerous lesions
5–7

, and to contribute to the outcome of anticancer 

chemotherapy in vivo
8,9

. 

 

Notably, stem-cell functions, collectively referred to as ‘stemness’3
, and senescence seem to be co-

regulated by overlapping signalling networks. Key senescence-relevant signalling molecules (for example, 

Bmi-1, p16Ink4a, p21Cip1 or p53) have critical roles in stem-cell maintenance by preventing premature 

exhaustion (reviewed in ref. 3). Senescence-enforcing p53 (also known as Trp53)-, Cdkn2a (also known 

as Ink4a or Arf)- or Suv39h1-encoded gene products raise an initial barrier to the efficient conversion of 

normal cells into induced pluripotent stem cells (see refs 10, 11, and references therein), suggesting an 

underexplored interplay between senescence- and stemness-controlling signalling networks. 

Trimethylation of H3K9, as mediated by the H3K9 methyltransferase Suv39h1 (ref. 12), confers 

senescence by establishing a transcriptionally repressive heterochromatin mark in the vicinity of S-phase-

relevant E2F target genes
6,9,13

, and reflects an epigenetic principle linked to induced pluripotent stem cell 

reprogramming
14

. Using a cancer-unrelated, inducible reprogramming mouse model in which many cells 

primarily senesced, previous studies have shown that factors secreted from these senescent cells facilitated 

the reprogramming of their neighbours
15,16

. Whether the senescence condition promotes cancer stemness, 

especially in a cell-autonomous manner, is not known. Although a permanent senescent cell-cycle block is 

per se incompatible with self-renewal, we report here the senescence-evoked cell-intrinsic reprogramming 

of cancer cells into a stem-like state, and the acquisition of tumour-initiating potential after their forced 

release or spontaneous escape from a chemotherapy-induced senescent cell-cycle arrest.  
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As indicated by their strong senescence-associated β –galactosidase (SA-β-gal) activity and other 

previously demonstrated markers of senescence, primary Eμ -Myc transgenic Bcl2-overexpressing 

lymphomas (hereafter referred to as control;Bcl2 lymphomas) serve as a well-established model for 

therapy-induced senescence (TIS)
8,9

. First, we analysed stem-cell-related transcripts in the gene expression 

profiles of 12 matched pairs of primary control;Bcl2 lymphomas that either entered TIS after in vitro 

exposure to the chemotherapeutic agent Adriamycin (ADR) or remained untreated. Using gene set 

enrichment analysis (GSEA), a previously established adult tissue stem-cell (ATSC) signature17 was 

strongly skewed towards the TIS group, but was not found to be enriched in the equally ADR-treated but  

senescence incapable group of Suv39h1-deficient Eμ -Myc;Bcl2 (that is, Suv39h1−;Bcl2)  ymphomas
9
 

(Fig. 1a and Extended Data Fig. 1a, b). Almost the entire population turned double-positive for the stem-

cell antigen Sca1 and the senescence marker H3K9me3 upon senescence  induction (Fig. 1b, top). 

Furthermore, TIS cells, unlike non-senescent cells, presented with  increased aldehyde dehydrogenase 

(ALDH) and ATP-binding cassette (ABC) transporter activities (Fig. 1b, bottom, and Extended Data Fig. 

1d), both typical properties of stem cells. When assessing human malignancies of various origins, we 

found a notable upregulation of  stem-cell-related transcripts selectively in TIS-capable cell lines as well 

as samples from patients with primary B-cell chronic leukaemia (B-CLL) (Fig. 1c and Extended Data Fig. 

1c, e, f). Moreover, the acquisition of stemness-related properties can also be found in the process of 

oncogene-induced and replicative senescence in cells of various tissue types, including melanocytes, colon 

mucosa and breast epithelial cells (Fig. 1d and Extended Data Fig. 1g). Hence, cancer cells of mouse and 

human origin acquire novel stem-cell features upon entering cellular senescence.  

 

To test whether senescence-associated stemness (SAS) translates into different tumour behaviour upon 

release from the division block, we generated switchable model systems (using 4-hydroxytamoxifen (4-

OHT)-inducible essential senescence mediators Suv39h1 or p53) that can enter full-featured senescence 

with increased levels of stem cell- related transcripts and proteins only when exposed to both 4-OHT and 

ADR (Fig. 2a and Extended Data Fig. 2a–c). After changing to ADR- and 4-OHT-free medium to switch 

Suv39h1 or p53 off again, single-cell analyses revealed that senescent cells resumed sustainable 

proliferation within a few days; that is, they became first double positive for the retained fluorescence-

based senescence marker (a vital stain) and 5-ethynyl-2′ -deoxyuridine (EdU) incorporation, indicating 

restarted DNA synthesis (with the proliferation-repressive H3K9me3 mark gradually vanishing), before 

SA-β -gal activity was eventually lost and S-phase activity fully regained (Fig. 2a and Extended Data Fig. 

2d–g). Therefore senescence is, in principle, a reversible condition, which becomes evident when essential 

senescence maintenance genes are no longer expressed. Importantly, serial replatings in colony formation 

experiments of such previously senescent cells led to significantly more colonies compared to the aliquot 

of never senescent cells of the same lymphoma treated with the same dose of chemotherapy, reflecting the 

now unleashed stemness properties acquired as a latent program during senescence (Fig. 2a, b). The 

enhanced colony-founding potential of previously senescent cells was stable over an extended observation 

period of up to 100 days (reflecting 14 serial replatings; Fig. 2b). Similar results were obtained with p53-

ERTAM as another inducible senescence gatekeeper; with γ -irradiation as an alternative senescence 

trigger; with ADR-exposed human lymphoma cell lines; and with colon cancer cells representing a solid, 
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epithelial cancer type (Extended Data Fig. 3a–f). It is noteworthy that previously senescent cells typically 

retained the ability to re-enter TIS when re-exposed to 4-OHT and ADR, indicating that no selection for 

senescence compromising mutations occurred in previously senescent cells (Extended Data Fig. 3g). 

Previously, an instructive, non-cell-autonomous role has been attributed to the senescence-associated 

secretory phenotype (SASP; reviewed in ref. 2) in models of inducible reprogramming and tissue 

regeneration
15,16

; however, our observations, made in pure, homotypic tumour cell populations, even under 

drastic reduction of SASP factor expression, favour a largely cell-intrinsic mechanism of senescence-

associated reprogramming (Extended Data Fig. 4). Although we cannot completely exclude alternative 

explanations, these and the subsequent data strongly favour senescence-associated stemness as the most 

compelling and consistent interpretation of the observations presented.  

 

Enrichment assays between matched pairs of never senescent versus previously senescent lymphomas 

confirmed the higher growth competitiveness of previously senescent lymphomas both in vitro and in vivo 

(Extended Data Fig. 2h). Importantly, in vivo tumour initiation experiments found previously senescent 

lymphomas produced malignancies at much lower transplanted cell numbers in immune-competent 

recipient mice when compared to never senescent lymphomas (Fig. 2c). Taken together, the SAS program 

exerts its detrimental effect on tumour initiation upon release from TIS, thereby unmasking an unexpected 

tumour-promoting capability of the senescence program.  

 

To test which key stemness pathways drive SAS, we used GSEA in ADR-exposed control;Bcl2 versus 

Suv39h1−;Bcl2 lymphomas for numerous gene sets related to Notch, Hedgehog, and canonical and non-

canonical Wnt signalling. Canonical Wnt and, to some extent, Notch signalling, appeared to be 

significantly enriched in TIS (Extended Data Fig. 5a, b). Because Wnt signalling plays a central role in 

stem-cell renewal in many tissues including the haematopoietic compartment, induces Notch signalling, 

and is required for cancer stem cell development in haematological malignancies
18,19

, we considered 

activation of the Wnt cascade as the putative driver behind the newly acquired stemness features in TIS 

lymphomas. Indeed, we detected enhanced, predominantly nuclear expression and transcriptional 

activation of β-catenin in control;Bcl2 but not in Suv39h1−;Bcl2 lymphomas, as well as in TIS-capable 

human cancer cell lines after ADR treatment (Fig. 3a, Extended Data Fig. 2b and Extended Data Fig. 5c, 

d). Independent of Wnt ligand–receptor stimulation, we identified inhibition of the β-catenin degradation-

promoting glycogen synthase kinase 3β (GSK3β) via activated MEK–MAPK and PI3K–Akt signalling—
which is typically upregulated in senescence20—as the cell-autonomous driver of the Wnt program 

(Extended Data Fig. 6). The implementation of the Wnt program was further promoted by epigenetically 

permissive remodelling at promoters of stem-cell- and Wnt signalling-related genes in previously 

senescent as compared to never senescent cells (Fig. 3b). Accordingly, we found that the increased 

colony-forming potential of previously senescent lymphoma or colon cancer cells was dependent on Wnt 

signalling, as genetic or pharmacological disruption of the Wnt–β-catenin cascade—without preventing 

TIS or profoundly affecting cell viability—neutralized the higher clonogenicity of previously senescent 

cells (Fig. 3c and Extended Data Fig. 7a–d). In contrast to the never senescent cell population, a rarely 

dividing and strongly β-catenin-expressing subpopulation was detectable in the previously senescent cells 

only, and maintained at a stable steady state, explaining the lastingly enhanced colony-forming potential 
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of previously senescent compared to never senescent cells (Extended Data Fig. 8). Consistently, the 

biology of the previously senescent state translated into shortened survival when previously senescent and 

never senescent cells were propagated in mice, whereas exposure to Wnt inhibitors in vivo or stable 

lymphoma cell transduction with a construct expressing short hairpin RNA (shRNA) against Ctnnb1 

(which encodes β-catenin) improved the poor long-term outcome of mice harbouring previously senescent 

lymphomas (Fig. 3d and Extended Data Fig. 7b, e, f).  

 

Importantly, cell cycle re-entry out of TIS—as a prerequisite to exert stem-cell potential—is not limited to 

conditional, switchable systems, but may, as a rare event, spontaneously occur in control;Bcl2 

lymphomas, as demonstrated by the emergence of EdU-co-positive cells out of a solely SA-β-gal-positive 

senescent cell population (Extended Data Fig. 9). Given their stem-cell potential, we postulated that β–
catenin positive previously senescent cells might be enriched in lymphomas that progressed after 

chemotherapy. Hence, when comparing primary control;Bcl2 lymphomas before therapy with the same 

individual lymphomas that had relapsed after exposure to senescence-inducing cyclophosphamide 

chemotherapy in vivo
8
, we found a much higher fraction of cells positive for nuclear β-catenin in relapse 

lymphomas that also presented with higher expression levels of Wnt target genes (Fig. 3e, f, left). 

Moreover, longitudinally matched biopsy pairs from the same individual patients diagnosed with diffuse 

large B-cell lymphoma (DLBCL) before chemotherapy and at disease recurrence revealed significantly 

more nuclear β-catenin-positive tumour cells in the previously chemotherapy-exposed, re-emerging 

samples (Fig. 3f, right), further supporting a link between activated Wnt signalling in relapsed tumours 

and senescence-related tumour cell reprogramming. Taken together, TIS-associated stemness reflects a 

Wnt-governed capability that is stably maintained in a reprogrammed, hierarchically organized 

subpopulation of post-senescent tumour cells and critically associated with tumour progression and 

treatment failure.  

 

As presumably applying to various human tumours including aggressive lymphomas, Eμ -Myc transgenic 

mouse lymphomas do not originate from a distinct fraction of cancer stem cells, because almost all 

lymphoma cells possess tumour-initiating potential in this model
21

. Consequently, next we asked whether 

cellular senescence might account for the reprogramming of non-stem tumour cells into cancer stem 

cells
22

, in tumour types in which the tumour-initiating capacity is confined to a rare subpopulation. We 

isolated a non-self-renewing population of leukaemia cells from a mouse model of T-cell acute 

lymphoblastic leukaemia (T-ALL) driven by oncogenic KrasG12D and conditional inactivation of p53 via 

a doxycycline-controlled shRNA (shp53)23 (Extended Data Fig. 10a). ADR exposure induced senescence 

in the majority of non-stem leukaemia cells only if p53 expression was not cancelled (Fig. 4a, top). This 

group exhibited a significant conversion to Kit+Sca1+ cells, indicative of putative leukaemia stem cells (P 

= 0.02, compared to ADR-exposed but p53-deficient cells; Fig. 4a, middle), and higher expression of 

stem-cell-related transcripts (Fig. 4a, bottom). Upon release from TIS by knockdown of p53, these 

leukaemia cells resumed proliferation (thereby becoming previously senescent cells), and formed 

significantly more colonies as compared to their equally ADR-treated never senescent leukaemia 

counterparts that remained p53-inactive throughout the experiment (Extended Data Fig. 10b). As reported 

for TIS lymphomas, cells with nuclear β–catenin expression were almost exclusively detectable in the 
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senescent leukaemia cell population, and Wnt inhibitors completely neutralized the increased colony 

formation potential of their previously senescent progeny (Extended Data Fig. 10c, d). Most importantly, 

almost all samples of previously senescent cells—and nearly none of the samples of never senescent 

cells—initiated leukaemias in recipient mice (P = 0.0275, comparing previously senescent and never 

senescent groups); as expected, all Lin− transplants gave rise to leukaemias (P < 0.001, comparing Lin− 

and never senescent groups; Fig. 4b, c). Notably, and further adding to SAS in oncogene-induced 

senescent colon mucosa cells or melanocytes (compare with Fig. 1d), TIS reprogramming is not restricted 

to cells of lymphoid origin, as demonstrated for an acute myeloid leukaemia (AML) mouse model
24

, 

culture established human AML cells, and primary human leukaemic blast samples obtained at diagnosis 

from patients with AML (Extended Data Fig. 10e–l). Thus, cellular senescence is not only associated with 

additional stem-cell features in tumour cells with pre-existing self-renewal capability, but also catalyses 

the cell-autonomous reprogramming of non-stem bulk tumour cells of lymphoid and non-lymphoid origin 

into de novo cancer stem cells.  

 

We present here an unexpected cell-intrinsic link between the senescence program and the acquisition of 

self-renewing properties, which we postulate serves as a physiological rescue mechanism in development 

and tissue homeostasis. We and others have observed that senescence not only occurs in critically stressed 

cells, but also may spread to adjacent cells via SASP components in a paracrine fashion (ref. 25; J.R.D. 

and C.A.S., unpublished observations). We propose that nature equipped normal cells with a latent SAS 

capacity (compare with Extended Data Fig. 1g) to counter the imminent loss of an entire tissue 

compartment due to pro-apoptotic and pro-senescent stresses: in rare cells spontaneously re-entering the 

cell cycle when threatening stresses no longer apply, SAS may become a tissue-replenishing principle. In 

a neoplastic context, cellular senescence—particularly in tumour cells with apoptotic defects—appears to 

be primarily a beneficial response by keeping tumour growth in check. However, post-senescent cells with 

‘hijacked’ SAS exert their detrimental potential at relapse by driving a much more aggressive growth 

phenotype. Therefore, pharmacological strategies to specifically eliminate senescent cells before a fraction 

of them may implement their acquired stemness capacity become, as previously reported by us regarding 

cancer
9
 and by others regarding ageing-related pathologies

26,27
, a critical therapeutic need. 
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MAIN FIGURES: 
 

 

Figure 1 | Therapy-induced senescent cancer cells acquire phenotypic and functional stemness 

features. a, GSEA of an adult tissue stem cell profile
17

 (ATSC; top) in matched pairs of ADR-exposed 

versus untreated control;bcl2 lymphomas (n = 12; left) and Suv39h1
−
;bcl2 lymphomas (n = 5; right). TIS 

lymphomas display more than 80% SA-β-gal-positive blue cells
9
 (representative photomicrographs from 

four independent experiments). b, Co-expression of the stem cell marker Sca1 and the TIS marker 

H3K9me3 (top) in lymphoma cells as in a, and aldehyde dehydrogenase (ALDH) activity with and 

without the ALDH inhibitor diethylaminobenzaldehyde (bottom) by flow cytometry. Mean percentage of 

positive cells ± s.d.; n = 5 biologically independent samples each. c, Expression of the indicated stem-cell-

related genes in various human cancer cell lines or primary B-CLL samples by quantitative real-time PCR 

(qRT–PCR), related to their ability to enter TIS (ADR-senescent, blue; non-senescent despite ADR 

exposure, white (see Extended Data Fig. 1c for details)). Colours reflect fold induction (between ADR-

treated and untreated samples) from one representative out of three independent experiments (cell lines) or 

four individual samples from patients with B-CLL. Transcripts below the detection level are shown in 

light grey. d, GSEA of the adult tissue stem cell profile in the publicly available transcriptome of 

BRAF
V600E

-infected melanocytes, which senesce in response to Braf activation
7, 28

 (left; seven matched 

pairs), and colon adenomas, which are known to contain a large proportion of senescent cells
29

 (right; five 

APC
Min/+

 mouse adenoma biopsies and six healthy colon tissue samples). 
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Figure 2 | Senescence-released (previously senescent) lymphomas display higher tumour-initiating 

capacity than their never senescent counterparts. a, Growth properties of conditionally senescent 

Suv39h1
−
;bcl2;Suv39h1·ER

T2
 lymphoma cells after five days of ADR ± 4-OHT treatment (Treatment), 

and subsequent passages in 4-OHT/ADR-free medium (Post-treatment, p1–p2; each passage reflecting 

seven days in culture) presented as proliferation (left, mean BrdU/PI-marked S-phase fraction ± s.d., n = 5 

biologically independent samples; BrdU, 5-bromo-2′-deoxyuridine; PI, propidium iodide), SA-β-gal 

staining (middle, mean positive cells ± s.d., n = 5 biologically independent samples), and colony 

formation (right, quantified in b). Flow microscopy images (bottom) of the fluorescent SA-β-gal mark 

together with the proliferation marker EdU (passage 1 shown, see Extended Data Fig. 2g for details) 

demonstrates the outgrowth of senescent (SA-β-gal
+
) cells. Representative photomicrographs from four 

independent experiments. b, Colony counts of lymphoma cells (treated as in a) in extended serial 

passaging (p1–p14). Graphs show mean colony numbers ± s.d., n = 3 individual lymphomas. Two-tailed 

unpaired t-test with Welch’s correction, comparing ADR- and 4-OHT+ADR pretreated cells at p14. *P < 

0.05. c, Tumour initiation after transplantation of different numbers of Suv39h1
−
;bcl2;Suv39h1·ER

T2
 

lymphoma cells pre-exposed to the indicated treatments in vitro. Bars reflect numbers of lymphoma-

bearing mice out of 10 animals per group transplanted, within an observation period of up to 100 days. P < 

0.001 for comparing never senescent and previously senescent groups (χ2
). 
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Figure 3 | Canonical Wnt signalling, activated in TIS, is an essential driver of the enhanced tumour 

initiation capacity exhibited by senescence-released tumour cells. a, Co-expression of the fluorescent 

SA-β-gal marker and β-catenin in ADR-exposed control;bcl2 or TIS-incapable Suv39h1
−
;bcl2 lymphoma 

cells (left), and corresponding β-catenin transcriptional activities measured as relative TOPflash T-cell 

factor (TCF) reporter signals with FOPflash as a TCF-binding site mutant control (right). Mean percentage 

of double-positive cells or mean relative light units fold change (between ADR-treated and untreated 

samples) ± s.d., respectively (n = 4 biologically independent samples each). The inset shows a 

representative photomicrograph from four independent experiments. b, Colour-coded heat map reflecting 

fold change (between previously senescent and never senescent cells) of permissive H3K4me3 and 

repressive H3K27me3 histone marks at the promoters of indicated ATSC- or Wnt-related (asterisk) genes 

by chromatin immunoprecipitation (n = 3 biologically independent samples). c, Colony formation of never 

senescent versus previously senescent Suv39h1
−
;bcl2;Suv39h1·ER

T2
 lymphomas (passage 2, compare 

with Fig. 2), exposed to the pharmacological Wnt inhibitors (ICG-001, salinomycin) or shRNA against β-

catenin for 7 days. Results reflect mean colony numbers ± s.d. (n = 3 biologically independent samples). 

Two-tailed unpaired t-test with Welch’s correction, *P < 0.05. d, Survival of mice transplanted with 

matched previously senescent or never senescent cells and treated with indicated Wnt inhibitors upon 

palpable lymphoma formation. Cells with shRNA against β-catenin were shRNA-infected before 

transplantation. Boxes frame the 25th to 75th percentile range, with median, minimal and maximal values 

(n = 6 mice per treatment group). Two-tailed, paired t-test, *P < 0.05. e, Expression of Wnt target genes 

(by qRT–PCR) in matched cases of control;bcl2 lymphomas before and after relapse from senescence-

inducing cyclophosphamide treatment in vivo (mean fold change ± s.d., n = 4 biologically independent 
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samples). f, Nuclear β-catenin expression by immunostaining of lymph nodes from control;bcl2 

lymphoma-bearing mice as in e (left; n = 4 biologically independent samples), and human DLBCL 

biopsies from the same individual patients at diagnosis and at relapse after first-line induction 

chemotherapy (right; n = 5 independent patients). Mean percentage of positive cells ± s.d.; two-tailed, 

paired t-test, *P < 0.05. Representative photomicrographs; scale bar, 100 µm (magnifying inserts 10 µm). 

 

 

 

Figure 4 | Cellular senescence catalyses de novo reprogramming of non-stem bulk leukaemia cells 

into leukaemia-initiating cells. a, Stemness-related features in conditionally senescent mouse 

Kras
G12D

;DOX-shp53-GFP;bcl2 bulk leukaemia cells (lin
−
/Kit

+
/Sca1

+
-depleted) treated for five days with 

ADR ± doxycycline (DOX)). Senescence induction is demonstrated by SA-β-gal staining (top), stem cell 

marker Kit and Sca1 expression analysed by flow cytometry (middle), and relative expression of the 

indicated transcripts by qRT–PCR (bottom). Numbers reflect mean percentages of positive cells (top) or 

average fold induction (middle), ± s.d. (n = 3 biologically independent samples). b, Tumour initiation 

capacity of bulk leukaemia cells pretreated in vitro as in a, cultivated in ADR-free/DOX-supplemented 

medium for an additional two passages and transplanted at indicated cell numbers. Lin
−
 cells were 

propagated without ADR. Numbers indicate leukaemia-bearing mice out of six animals per group 

transplanted, within an observation period of up to 100 days (n = 3 independent primary leukaemia 

samples, each transplanted in two recipient mice). c, Flow cytometry plots showing peripheral blood 

phenotyping of mice transplanted as in b. The GFP
+
 leukaemia cells are depicted in green. The insets 

show photomicrographs of peripheral blood smears stained with haematoxylin and eosin, showing 

leukaemic blasts (typically not detectable in never senescent recipients). One representative out of three 

independent experiments shown. 
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METHODS  

Generation of primary murine lymphomas and leukemias, and utilization of primary human B-cell 

lymphoma, B-CLL and AML samples. All animal protocols used in this study were approved by the 

governmental review board (Landesamt Berlin), and conform to the respective regulatory standards. 

Lymphomas with defined genetic defects were generated by intercrossing Eµ-myc transgenic mice to mice 

carrying loss-of-function alleles at the Suv39h1 locus
30,31

 or to mice harboring a 4-Hydroxytamoxifen (4-

OHT)-inducible p53•ERTAM
 knock-in allele, encoding a p53-estrogen receptor fusion protein that is 

inactive in the absence of 4-OHT
32

, all in a C57BL/6 background. Eµ-myc transgenic lymphomas that 

formed in Eµ-myc;p53•ERTam/+
 mice with an allelic loss of the remaining p53 wild-type allele were 

designated p53•ERTam
 lymphomas. Suv39h1

-
 lymphomas reflect Eµ-myc lymphomas that arose in 

Suv39h1
-/-

 females, or, due to the X-linkage of the Suv39h1 locus, in Suv39h1
y/-

 males
33

. Genotyping of the 

offspring by allele-specific genomic PCR, monitoring of lymphoma onset and isolation of viable 

lymphoma cells were carried out as described
8,34

. K-Ras-G12D;shp53-GFP-induced T-cell acute 

lymphoblastic leukemias (T-ALL) with tetracycline (i.e. Doxycycline)-dependent shp53 expression 

(“DOX-off”) were generated and isolated following a previously published protocol with minor 

modifications
23,35

. The N-Ras-G12D/MLL-AF9-driven mouse model of acute myeloid leukemia (AML), 

co-expressing a reverse tetracycline transactivator (“Tet-on competent”), was generated as previously 
published

24
. 6–8-week-old C57BL/6 (“wild type”) female mice were used as recipients for in vivo 

lymphoma or leukemia propagation. No randomization or blinding was used to allocate experimental 

groups.  

The use of tumor biopsies (i.e. bone marrow aspirates, lymph-node biopsies, or peripheral blood samples 

obtained for the initial diagnosis or follow-up analyses of B-cell leukemia [B-CLL], diffuse large B-cell 

lymphoma [DLBCL] or acute myeloid leukemia [AML] patients) as anonymous samples after informed 

patient consent was approved by the local ethics commission of the Charité - Universitätsmedizin Berlin 

(reference EA4/085/07 and EA4/061/11).  

Cell culture, plasmids and retroviral gene transfer. Isolated mouse lymphoma cells and primary human 

AML samples (tumor cell-purified by Ficoll density-gradient centrifugation and red cell lysis) were short-

term cultured in standard medium on irradiated NIH3T3 fibroblast feeders
36

. Primary human B-cell 

malignancies were cultivated in a “CD40 system”37
, i.e. in the same medium further supplemented with 

100 IU/ml of recombinant human interleukin-4 (Peprotech) on irradiated NIH3T3 cells stably expressing 

the human CD40 ligand. Human cancer cell lines were obtained from DSMZ (Leibniz-Institut Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH), ATCC or Biomol: RCK8 (DSMZ-No. ACC-

561), Eheb (DSMZ-No. ACC-67), K562 (DSMZ-No. ACC-10), Mec1 (DSMZ-No. ACC-497), Molm13 

(DSMZ-No. ACC-554), SW480 (DSMZ-No. ACC-313), LS174T (DSMZ-No. ACC-759), DLD-1 

(DSMZ-No. ACC-278), Caco-2 (DSMZ-No. ACC-169), SKMel28 (ATCC No. HTB-72), MeWo (ATCC 

No. HTB-65), WM266.4 (Biomol No. WM266-4-01). Omm2.3 cells were kindly provided by Martina J. 

Jager. The cells were cultivated according to supplier’s recommendations and regularly tested for 
mycoplasma contamination. The cell lines bought within last 4 years were not additionally authenticated 
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(RCK8, Eheb, Mec-1). All other cell lines were authenticated by DSMZ using SNP-based multiplex 

approach in October 2017. SNP profiles matched known profiles or were unique (Omm2.3). Retroviral 

supernatants, generated by transient transfection of Phoenix-Eco packaging cells with murine stem cell 

retrovirus (MSCV)-based constructs, were used to stably infect Eµ-myc transgenic lymphomas, K-Ras-

G12D;shp53-GFP T-ALL cells, N-Ras-G12D/MLL-AF9 AML cells or human cancer cell lines 

(engineered to express the ecotropic virus receptor as described
38

). Freshly isolated cells were first 

infected with an MSCV retrovirus encoding murine or human Bcl2 and a blasticidin antibiotic resistance 

gene. Bcl2-overexpressing Eµ-myc;Suv39h1
-
 lymphoma were subsequently infected with Suv39h1•ERT2

 

cDNA, encoding murine full-length Suv39h1, fused in frame with the coding sequence of an 4-OHT-

inducible estrogen receptor mutant (ER
T2

; see [
39

]), subcloned into MSCV-IRES-GFP or MSCV-IRES-

DsRed vectors. GFP- or DsRed-positive cells were purified in a fluorescence-activated cell sorter (FACS 

Aria II, BD Biosciences, FACS core unit of BCRT, Berlin). TOPflash and FOPflash reporter constructs 

(reflecting the wild-type or mutant TCF-binding promoter region followed by a Firefly luciferase-

encoding cDNA) were subcloned from the original pGL3 vector into a self-inactivating MSCVSIN-DsRed 

plasmid, stably transferred into mouse lymphoma cells or human cell lines (expressing the ecotropic virus 

receptor), and flow-sorted for DsRed-positive cells. NF-κB inactivation was achieved by stable 

overexpression of an IκBαΔN construct (NF-κB super-repressor [NF-κB-SR]) in control;bcl2 cells as 

reported before
40

. Wnt pathway activation was achieved by transducing ctrl;bcl2 lymphomas with a 

stabilized murine β-catenin (encompassing an N-terminal 90-amino acid deletion, 
ΔNβ-catenin)-encoding 

MSCV-IRES-GFP retrovirus. To stably knock-down β-catenin expression, a previously published shRNA 

sequence
41

 was subcloned into the pSuperRetro plasmid to infect Suv39h1
-;bcl2;Suv39h1•ERT2

 cells. An 

MSCVSIN-based construct containing a miR30-shRNA against murine p53 under a tetracycline-dependent 

promoter
42

 was used to transfect N-Ras-G12D/MLL-AF9;bcl2 cells. Stable TP53 knock-down in human 

cell lines RCK8, Molm-13 and LT174T was achieved by lentiviral transduction with a previously 

published shp53 construct
43

 in the pLKO.1-puro vector (Addgene plasmid number 19119). 

In vitro- and in vivo-treatments. For induction of cellular senescence in vitro, Adriamycin (ADR; 

Sigma), a topoisomerase II inhibitor widely used in the clinic to treat lymphomas and other malignancies, 

was added once at a concentration of 0.05 µg/ml in all experiments, except for Eheb, Mec1, Molm13 and 

RCK8 cell lines, which were treated with 0.01 µg/ml ADR, and the K562 cell line that received 

0.025 µg/ml ADR. For conditional activation of ER
Tam

- or ER
T2

-fused constructs, the cells were 

additionally exposed over five days to 1 µM of 4-OHT (Sigma) or the equivalent volume of the ethanol-

based solvent. Cellular senescence was assessed after five days of treatment. Pharmacological inhibition 

of the Wnt pathway or kinases involved in modulating Wnt signaling was performed by adding small 

molecule inhibitors to cells for the last 48 hours of the senescence-inducing ADR ± 4-OHT treatment: 

Wnt inhibitors ICG-001 (10 µM; Enzo Life Sciences) and Salinomycin (1 µM; Sigma), MAPK inhibitor 

PD325901 (10 nM; Selleckchem), MEK inhibitor PD98059 (25 µM; Selleckchem), PI3K inhibitor 

LY294002 (10 µM, Sigma-Aldrich), Akt inhibitor MK-2206 (200 nM, Selleckchem) or GSK3β inhibitor 

CHIR99021 (1 µM; Sigma-Aldrich). For Wnt-modulating treatments upon senescence-release, passage-2 

NS and PS cells were used (i.e. ADR ± 4-OHT-pretreated Eµ-myc;Suv39h1
-;bcl2;Suv39h1•ERT2

 cells, 

further propagated in 4-OHT/ADR-free medium for 14 days). Matched pairs of PS and NS cells were 
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exposed to Wnt inhibitors as described above or to recombinant mouse Wnt3a (10 ng/ml, R&D Systems), 

recombinant mouse R-Spondin 2 (Rspo2; 20 ng/ml, R&D Systems), combination of the two ligands (same 

concentration as for single treatments) or to the GSK3β inhibitor CHIR99021 (1 µM, Sigma-Aldrich) for 

48 hours regarding the gene expression analysis or for seven days (in methylcellulose medium) regarding 

colony formation assessment. The Doxycycline (DOX)-dependent repression of an shRNA against p53 in 

murine K-Ras-G12D;shp53-GFP T-ALL samples (DOX-off) or shRNA activation in murine N-Ras-

G12D/MLL-AF9 AML samples (DOX-on) was achieved by supplementing the culture medium with 

1 µg/ml of Doxycycline (Sigma). 

For in vivo-experiments, 1 x 10
6
 Eµ-myc;Suv39h1

-;bcl2;Suv39h1•ERT2
 lymphoma or 5 x 10

6
 K-Ras-

G12D;shp53-GFP T-ALL leukemia cells (or 1 x 10
6
 lineage

-
 [lin

-
] cells as a positive control), if not 

otherwise indicated, were transplanted by tail vein injection into immunocompetent recipient mice. In case 

of K-Ras-G12D;shp53-GFP T-ALL leukemia samples, recipient mice were irradiated with 6 Gy 24 hours 

prior to transplantation. Lymphoma formation was diagnosed when palpable lymph-node enlargements 

had formed. Tumor size of 16 mm (corresponding to approximatelly 4 lymph nodes of 4 mm in diameter) 

was approved by Landesamt Berlin as experiment end-point criteria. This limit was not exceeded in any of 

the performed experiments. Leukemia manifestation was diagnosed by flow cytometry-based detection of 

GFP-positive cells in the peripheral blood at the time mice presented with general signs of pre-terminal 

sickness (> 20% weight loss or other symptoms of severe sickness). If no signs of sickness were noted, the 

experiments were ended by 70% tumor burden in peripheral blood. ICG-001 and salinomycin were 

applied i.p. daily (both at a dose of 10 mg/kg body weight), starting from palpable lymphoma formation 

until a pre-terminal disease stage was reached. Time-to-death was defined as the latency between 

transplantation and a pre-terminal disease stage. Upon CO2 euthanasia, single-cell suspensions were 

isolated from enlarged organs as described before
8,36

.  

Analysis of growth parameters, viability, stem cell and senescence markers. Cell-cycle analysis by 5-

bromo-2-deoxyuridine/propidium iodide (BrdU/PI)-based flow cytometric measurement was performed as 

described before
33

. Cytospin preparations of suspension cultures for subsequent SA-β-gal analyses or 

immunostainings were carried out as previously described
6,44,45

. Carboxyfluorescein succinimidyl ester 

(CFSE) labeling was performed on day 3 after starting ADR ± 4-OHT treatment, using the CellTrace™ 
Far Red Cell Proliferation Kit for flow cytometry (Molecular Probes, cat. no. C34564) according to 

manufacturer’s recommendations. CFSEhigh
 cells were sorted on treatment day 5 on an S3e™ Cell Sorter 

(Bio-Rad). For β-catenin co-staining, CFSE-labeled cells were fixed in 4% paraformaldehyde, 

permeabilized by Saponin in 1% BSA (LifeTechnologies, cat. no. 10635), stained with Alexa Fluor
®
 488 

mouse anti-β-catenin antibody according to manufacturer’s recommendations (BD Pharmingen, cat. no. 
562505), and acquired on an ImageStream

®
X Mark II Imaging Flow Cytometer (Amnis, MerckMillipore). 

EdU labeling was performed on treatment day 5 by the Click-iT
®
 EdU Pacific Blue™ Flow Cytometry 

Assay Kit according to manufacturer’s recommendations (Molecular Probes, cat. no. C10418). For the 
fluorescent SA-β-gal labeling, cells were incubated in 75 µM chloroquine solution for 1 hour followed by 

exposure to the C12FDG substrate (5-Dodecanoyilaminofluorescein-di-β-D-galactopyranoside; ImaGene 

Green™ C12FDG lacZ Gene Expression Kit, Molecular Probes, cat. no. I2904) for 20 minutes at 37°C in 

PBS (pH 5.5, with 1 mM MgCl2) and analyzed on ImageStream
®
X Mark II Imaging Flow Cytometer. 
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Cell viability was evaluated by Annexin V (BD Pharmingen, cat. no. 556419) and PI (5 µg/ml, Sigma-

Aldrich) staining, analyzed in a FACSCalibur flow cytometer (BD Biosciences). Viable cells were 

detected as Annexin V/PI-double-negative. ABC transporter activity was analyzed using the eFluxx-

ID
®
 Gold multidrug resistance kit (Enzo Life Sciences), and aldehyde dehydrogenase (ALDH) activity 

using the ALDEFLUOR™ kit (Stemcell Technologies)46, according to the manufacturer’s instructions. 
Colony-forming unit (CFU) assays were performed by plating 10

2
 or 10

3
 cells in 1 ml of methylcellulose 

medium (MethoCult M3134 for mouse cells, or H4100 for human cells, Stem Cell Technologies). For 

mouse cells, the medium was supplemented with recombinant murine interleukin (IL)-3 (1 ng/ml, 

Miltenyi), recombinant murine IL-6 (10 ng/ml, Miltenyi), recombinant murine IL-7 (0.1 ng/ml, 

Peprotech), and recombinant murine stem cell factor (SCF, 50 ng/ml, Peprotech). For indicated assays, the 

medium was further supplemented with ADR (0.05 µg/ml), 4-OHT (1 µM), DOX (1 µg/ml), ICG-001 

(10 µM), salinomycin (1 µM)
47,48

. Wnt3a (10 ng/ml), Rspo2 (20 ng/ml) or GSK3β inhibitor CHIR99021 

(1 µM). Clusters of > 50 cells were scored as colonies, using bright-field or fluorescent microscopy. For 

serial passaging, cells were washed out of methylcellulose with warm PBS after seven days (mouse B-cell 

lymphoma cells) or ten days (mouse T-ALL cells), counted and plated in fresh methylcellulose medium 

(1,000 cells/ml). Regarding luciferase-based Wnt reporter assays, cells stably transfected with TOPflash-

MSCVSIN or FOPflash-MSCVSIN were ADR-exposed in a senescence-inducing schedule as described 

above. The luminescence signals were measured with the ONE-Glo™ kit (Promega) according to 
manufacturer’s instructions and normalized to viable cell counts. For depletion of lin

-
 cells from K-Ras-

G12D;shp53-GFP T-ALL samples or N-Ras-G12D/MLL-AF9 AML samples, cells were labeled with a 

cocktail of biotinylated lineage marker antibodies (BD Biosciences, cat. no. 559971) followed by 

Streptavidin-PE (BD Biosciences, cat. no. 554061). GFP
+
/PE

+
 cells were flow-sorted in a FACS Aria II 

(BD Biosciences). For depletion of CD34
+
 cells from Bcl2-transfected Molm-13 cell line, cells were 

stained with a directly conjugated anti-CD34-APC antibody (1:200, BD Biosciences, cat. no. 560940), and 

CD34
- 
cells were sorted in a FACS Aria II (BD Biosciences). 

RNA-based expression analysis. For microarray-based gene expression profiling of untreated or 5 day-

ADR-exposed control;bcl2 or Suv39h1
-
;bcl2 lymphomas, RNA was isolated and processed as previously 

reported
40

.   

The list of 5,401 probe sets differentially expressed between untreated and ADR-treated control;bcl2 

lymphomas was determined by analysis of variance (ANOVA, cut-off at q < 0.05). The list of filtered 

genes was ranked according to expression fold-changes, and the genes belonging to the ATSC
17

 or core 

ESC signature
49

 were marked in orange and blue, respectively.  

Gene Set Enrichment Analysis (GSEA) was performed with the GSEA v2.0 software (Broad Institute 

of the MIT [Massachusetts Institute of Technology] and Harvard, http://www.broad.mit.edu/gsea)
50

 on 

transcriptome data produced in our laboratory (GSE31099 and GSE44355) or on publicly available 

transcriptome data sets downloaded from the Gene Expression Omnibus (GEO; 

https://www.ncbi.nlm.nih.gov/geo/): normal colon epithelium and colon adenomas from APC
Min/+

 mice 

(GSE422, samples GSM6191-GSM6201), Braf-V600E-infected human melanocytes (GSE46801), human 

mammary epithelial cells in p16
INK4a

-dependent stasis or telomere shortening-induced agonescence 
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(GSE16058), normal human foreskin BJ fibroblasts in replicative senescence (GSE13330, samples 

GSM336385-GSM336628) and normal human mesenchymal stem cells in replicative senescence 

(GSE9593, samples GSM242185, GSM242668-9 and GSM242672-4). Probed gene sets were taken 

without further change from the indicated publications, downloaded from the Molecular Signature 

Database (MsigDB) of the Broad Institute (http://software.broadinstitute.org/gsea/msigdb/collections.jsp) 

or from the Gene Ontology (GO) browser AmiGO (“GO Cell cycle process” [GO:0022402], GO “Wnt 
signaling pathway” [GO0016055], GO “Canonical Wnt receptor signaling” [GO:0060070], GO 
“Noncanonical Wnt signaling” [GO0035567], GO “Notch signaling pathway” [GO0007219], GO 

“Smoothened signaling pathway” [GO0007224]), or generated from the gene list reflecting the Mouse 
Wnt Signaling Pathway PCR Array (SA Biosciences; genes from this list annotated to have a role in cell 

growth and proliferation were used as a separate gene set, 

http://www.sabiosciences.com/rt_pcr_product/HTML/PAMM-043A.html#function). Normalized 

enrichment scores (NES) with P values < 0.05 and false discovery rate (FDR) < 0.25 were considered 

statistically significant.  

For quantitative reverse-transcriptase PCR (qRT-PCR) analyses of stem cell-related genes in 

lymphoma cells, RNA extracted with Trizol (Invitrogen) was transcribed into cDNA using SuperScript™ 
II reverse transcriptase (Invitrogen). A panel of established stem cell-related markers consisting of murine 

Abcg2, Cebpb, c-kit, Cd34, Cd44, Cd133, Cd150, Klf4, Sca1 or human ABCG2, CD34, CD44, CD133, 

CD150, LGR5, a panel of Wnt signaling targets: Ccnd1, Fosl1, Fzd3, Id2, Met, as well as a panel of 

established murine SASP factors: Igfbp6, Ccl2, Ccl20, Cxcl1, Ctgf, Il6, Kitl and Tnfa were analyzed by 

qRT-PCR using commercially available Taqman assays (Applied Biosystems). Transcript quantification 

was calculated as 2
(-ΔCt)

 based on ΔCt = ΔCttreated - ΔCtuntreated, with GAPDH transcript levels as an 

internal control.  

Protein-based expression analyses. Immunophenotyping by flow cytometry was carried out as 

described
8,45

, using the primary antibodies directed against human CD34 (BD Biosciences, cat. 

no. 560940, 1:200), or against mouse antigens: H3K9me3 (Abcam, ab8898, 1:2000), β-catenin (BD 

Biosciences, cat. no. 50-2567, 1:20), Thy1.2 (BD Biosciences, cat. no. 553005, 1:200), c-Kit (BD 

Biosciences, cat. no. 553355, 1:200), Sca1 (BD Biosciences, cat. no. 557404, 1:200), followed by 

secondary antibodies: anti-rabbit AlexaFluor
®
 594 (Invitrogen A21207, 1:200) and Streptavidin-APC (BD 

Biosciences, cat. no. 554067, 1:2000).  

For immunoblotting analyses whole-cell pellets were lysed in Laemmli sample buffer (60 mM Tris-

HCl at pH 6.8, 10% glycerol, 2% SDS, 5% 2-mercaptoethanol) supplemented with protease and 

phosphatase inhibitors, resolved by electrophoresis on a 12% SDS polyacrylamide gel (SDS-PAGE), 

transferred onto an Immobilon-P membrane (Millipore) and probed using antibodies against total β-

catenin (BD Biosciences, cat. no. 610153, 1:200), active β-catenin (dephosphorylated at serine 37 [Ser37] 

and threonine 41 [Thr41]; Millipore, cat. no. 05-665, 1:1000), H3K9me3 (Abcam, ab8898, 1:2,000), total 

Erk (Cell Signaling Technology [CST], cat. no. 9102, 1:1000), phospho-Erk1/2 (i.e. Erk1/2-P-

Thr202/Tyr204; CST, cat. no. 4376, 1:1000), total Akt (CST, cat. no. 9272, 1:1000), phospho-Akt (i.e. 

Akt-P-Ser473; CST, cat. no. 4060, 1:2000), total GSK3β (CST, cat. no. 12456, 1:1000), phospho-GSK3β 
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(i.e. GSK3β-P-Ser9; CST, cat. no. 5558, 1:1000) and α-Tubulin (Sigma, T5168, 1:500) as a loading 

control.  

For immunofluorescence, cells were fixed in 4% paraformaldehyde, permeabilized with 0.1% TritonX-

100/PBS, blocked in 1% bovine serum albumin supplemented with the anti-mouse Cd32/Cd16 antibody 

(BD Biosciences, cat. no. 53142, 1:50) and incubated with a primary antibody against total β-catenin 

(1:200), followed by 0.01% Tween 20 as detergent buffer and AlexaFluor
®
 594 (Invitrogen A11008, 

1:5,000) as a secondary anti-mouse IgG antibody. The slides were stained with 4,6-diamidino-2-

phenylindole (DAPI, Biolegend, cat. no. 422801, 1:1,000 in PBS) as a nuclear counterstain, and mounted 

with Mowiol 4-88 (Calbiochem). Immunohistochemistry was performed on formalin-fixed, paraffin-

embedded lymph-node sections as described
33

. Cryo-sections of murine lymph-nodes were stained with an 

FITC-conjugated antibody against total β-catenin (BD Biosciences, cat. no. 562505, 1:200), and human 

DLBCL sections were stained with a primary antibody against total β-catenin (BD Biosciences, cat. no. 

610153, 1:200), followed by a secondary anti-mouse IgG antibody (1:1000, Dako REAL™ Detection 

System [labeled streptavidin-biotin], Dako, cat. no. K5005). 

Global proteome analysis. Suv39h1
-;bcl2;Suv39h1•ERT2

 cells were sampled in ice-cold methanol after 

five days of ADR ± 4-OHT treatment. 50 µg of the protein extracts were digested using an xt-PAL (CTC 

Analytics) pipetting robot with the Chronos software package (Axel Semrau), reduced with 1 mM tris(2-

carboxyethyl) phosphine (TCEP). Free sulfhydryl groups were carbamidomethylated using 5.5 mM 

choloroacetamide. The proteins were digested using 0.5 µg sequencing-grade endopeptidase LysC (Wako) 

for 3 hours at room temperature, and subsequently diluted with four volumes of 50 mM ammonium 

bicarbonate. Tryptic digestion occurred during 10 hours at room temperature using 1 µg of sequencing-

grade trypsin (Promega). The reaction was stopped by adding trifluoroacetic acid (TFA) to a final pH of 2. 

The peptides were purified by using C18-stage tips (3M)
51

. By applying the dimethyl labeling technique, 

the untreated lymphoma samples, serving as the reference, were “light”-labeled, while others (ADR ± 4-

OHT-treated) were “heavy”-labeled,  on the xt-PAL machine by automatically adding 4 µl light (+28 Da) 

or heavy formaldehyde (+32 Da) and 4 µl cyanoborohydride to a final concentration of 0.8%
52

. The 

reaction was carried out overnight, quenched by 16 µl of 50 mM Ammoniumbicarbonate buffer and 

acidified by 8 µl 50% TFA. The “heavy”- and “light”-labeled samples were mixed at a 1:1 ratio and 

measured as technical duplicates on a Q-Exactive mass spectrometer (Thermo-Fisher) coupled to a 

Proxeon nano-LC system (Thermo-Fisher) in data-dependent acquisition mode, selecting the top-10 peaks 

for higher-energy collisional dissociation fragmentation. A three-hour gradient (solvent A: 5% 

acetonitrile, 0.1% formic acid; solvent B: 80% acetonitrile, 0.1% formic acid) was applied to the samples 

using a custom-made nano-LC column (0.075 mm x 250 mm, 3 µm Reprosil C18, Dr. Maisch GmbH). 

The peptides were eluted in gradients of 4 to 76% acetonitrile and 0.1% formic acid in water at flow rates 

of 0.25 μl/min. Mass spectrometric (MS) acquisition was performed at a resolution of 70,000 in the scan 
range from 300 to 1,700 m/z. Dynamic exclusion was set to 30 s and the normalized collision energy to 

26eV. For the automatic interpretation of the recorded spectral data, the MaxQuant software version 

1.2.2.5 (Max Planck Institute) was employed, using a multiplicity of 2 for dimethyl labeling
53

. An FDR of 

0.01 was applied on peptide and protein level, and an Andromeda-based search was performed using a 

mouse International Protein Index database (ipi.MOUSE.v3.84.fasta). MS measurement data were log-
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transformed regarding the heavy/light ratios using the R-statistical software (R Foundation for Statistical 

Computing, Vienna, Austria). Three replicates were used to calculate mean values and significance levels 

using the Wilcoxon test. All identifications with a -log10-transformed P value > 1 were considered 

significant.  

Chromatin immunoprecipitation. Chromatin immunoprecipitation was performed according to Young 

and colleagues
54

 with minor modifications. 1 x 10
7
 cells were fixed for 20 minutes in a 1% formaldehyde 

solution. The fixation was stopped with 0.1 M glycine, the cell pellet was lysed and sonicated in 300 µl 

buffer LB3
54

 (Bioruptor
®
 Sonicator, two cycles of 15 minutes each at high power in pulsed mode 

[30 seconds on, 30 seconds off]). 30 µl of 10% Triton X-100 was added and the sample was centrifuged at 

13,000 rpm for 10 min at 4°C. The supernatant was removed and an aliquot was saved as input DNA 

sample. For immunoprecipitation, 140 µl of the supernatant was mixed with 50 µl of Dynabeads
®
 

Protein G (Life Technologies/Invitrogen), pre-coated with 5 µg of an H3K4me3 antibody (A5051-001P, 

Diagenode) or an H3K27me3 antibody (#39155, Active Motif) and incubated at 4°C overnight. After 

incubation, the beads were magnetically separated from the supernatant, washed and eluted. Following 

reverse-crosslinking, RNaseA and Proteinase K digestion
54

, the DNA was phenol/chloroform-extracted, 

and used as a template for quantitative PCR. Sequence information of the specific primers used is available 

upon request. Enrichments were calculated according to the ΔΔCt method, with Prame as endogenous 

control, and the input as calibrator. The values of the relative enrichments for the 4-OHT/ADR-treated 

samples were divided by the corresponding ADR sample values. 

Statistical evaluation. Based on previous experience with the Eµ-myc transgenic mouse lymphoma 

model, sample sizes typically reflect three to five individual primary tumors as independent biological 

replicates. For assessing long-term outcome after in vivo-treatments, six or more tumor-bearing animals 

per arm were used. No statistical method was used to predetermine sample size. No data were excluded, 

all probes/animals that met proper experimental conditions were included in the analysis. For purposes of 

tumor-initiation assays, a transplanted mouse scored positive if a palpable lymphadenopathy developed at 

any time-point during the observation period of 100 days. The survival data were analyzed using the 

ELDA (Extreme Limiting Dilution Analysis) software package at 

http://bioinf.wehi.edu.au/software/elda/
55

 with confidence interval of 95%. All quantifications from 

staining reactions (e.g. immunostainings or SA-β-gal assays) reflect at least three samples with at least 

100 events counted (typically in three different areas) each. If not stated otherwise, data are presented as 

arithmetic means ± standard deviation (s.d.) and statistical analyses were based on paired or unpaired two-

sided t-tests. The data not following normal distribution (by Kolmogorov-Smirnov test) was analyzed by 

unpaired t-test with Welch’s correction. Similar variance between groups was not assumed. The whisker 
plot boxes indicate the first and third quartiles, and the upper and lower bars minimum and maximum 

values within 1.5 × interquartile range. For GSEA, the non-parametric Kolmogorov-Smirnov test was 

applied. Unless stated otherwise, a P value < 0.05 was considered statistically significant. 

Data availability. Microarray data sets were deposited at the Gene Expression Omnibus repository (GEO) 

of the National Center for Biotechnology Information (at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nxijbauwaomekhw&acc=GSE31099 and 
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44355) under the accession numbers GSE31099 

and GSE44355 (for control;bcl2 and Suv39h1
-
;bcl2 lymphomas, respectively). All other datasets generated 

during this study are available from the corresponding author on reasonable request. 
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EXTENDED DATA  

 

Extended Data Figure 1 | Senescent cells of mouse and human origin present with enhanced 

stem cell markers and functionalities. a, 5,401 probe sets (corresponding to 3,867 genes) 

differentially expressed in TIS were determined from the transcriptome data comparing untreated 

and ADR-senescent primary control;bcl2 lymphomas by two-way ANOVA adjusted for multiple 

testing (cut-off q < 0.05, n = 12 biologically independent samples). 181 out of 737 genes 

belonging to an ATSC
17

 or 43 out of 337 genes of core embryonic stem cell (ESC) signature
49

 

were detected and marked orange and blue, respectively, in the fold-change-ranked gene list. 

Whereas the expression of core ESC genes was not correlated with senescence, ATSC transcripts 

exhibit a strong association with TIS. b, Senescence-selective gene set enrichment pattern of 

proliferation- and stem-cell-related gene modules (including haematopoietic stem cell (HSC) and 

long-term HSC (LT-HSC) signatures)
56,58-60

 in control;bcl2 and Suv39h
−
;bcl2 lymphoma cells as 

in Fig. 1a. GSEA based on the Kolmogorov–Smirnov test, with negative NES indicating 

enrichment in untreated lymphomas, and positive NES reflecting enrichment in TIS. n = 12 
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biologically independent control;bcl2 samples and n = 5 Suv39h
−
;bcl2 samples. NES of P < 0.05 

are considered statistically significant and are shown in red. c, Senescence induction by ADR 

treatment in various human cell lines consisting of haematological malignancies, colorectal 

cancers, melanomas, or in primary samples from patients with B-CLL as determined by SA--gal 

staining (mean percentage of positive cells ± s.d., n = 3 independent experiments for cell lines; 

n = 4 individual B-CLL samples). TIS-competent cells are defined by a greater than fourfold 

induction of SA--gal-positive cells (with the exception of B-CLL samples, in which SA--gal-

positive cells were at least threefold induced), and depicted as a blue box symbol in Fig. 1c. d, 

ABC transporter activity in cells as in Fig. 1a, measured by the efflux of a fluorescent substrate 

with and without the ABC transporter inhibitor verapamil. Representative plots of four 

independent lymphomas tested per genotype. e, Enhanced expression of the stem cell marker 

CD34 in the RCK8 cell line or primary human B-cell leukaemia samples exposed to ADR 

treatment in vitro. Mean fluorescence intensity ± s.d. from three independent experiments (RCK8 

cells) and five individual leukaemia cases determined by flow cytometry. Two-tailed, unpaired t-

test with Welch’s correction, *P < 0.05. f, TIS-mediated increase and verapamil-dependent 

blockage of ABC transporter activity in ADR-senescent RCK8 cells and primary human B-cell 

leukaemia samples as in e. One representative out of three independent experiments shown. g, 

SAS occurring in non-malignant senescence scenarios: GSEA of proliferation- or stem-cell-

related gene sets (as in b) in publicly available transcriptome data representing different models 

of replicative senescence: primary human mammary epithelial cells in stasis or agonescence 

(GSE16058, 12 prestasis, 9 stasis and 4 agonescence individual biological samples), high-passage 

BJ human skin fibroblasts (GSE13330, n = 6 pairs of proliferating/senescent cells from 

individual donors) or high-passage primary human mesenchymal stem cells (GSE9593, n = 3 

pairs of proliferating/senescent cells from individual donors). 
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Extended Data Figure 2 | Genetic, biochemical and functional properties of regulatable 

senescence models. a, Graphic illustration of the model system engineered to stably express a 

regulable senescence-essential gene moiety, such as Suv39h1
− 

proficient and -deficient Eµ-Myc 

transgenic and bcl2-infected lymphoma variants of which only Suv39h1
−
;bcl2;Suv39h1·ER

T2
 

cells regain conditional TIS capability if exposed to 4-OHT. b, Relative transcript levels of the 

indicated stem-cell-related and Wnt target (asterisk) genes by qRT–PCR in 

Suv39h1
−
;bcl2;Suv39h1·ER

T2
 lymphoma cells exposed to the indicated treatments for five days. 

Results represent mean fold induction relative to the untreated condition ± s.d. (n = 3 biologically 

independent samples). c, Global proteome analysis of total Suv39h1
−
;bcl2;Suv39h1·ER

T2
 cell 

lysates after five days of ADR ± 4-OHT treatment, showing mean protein expression changes 

relative to untreated condition (x axis) and their statistical significance (y axis), n = 3 biologically 

independent samples analysed by Wilcoxon test. All identifications with a −log10 transformed P 

value >1 were considered significant. Dots representing ATSC factors are highlighted in orange. 

d, Immunoblot of H3K9me3 expression in Suv39h1
−
;bcl2;Suv39h1·ER

T2
 lymphoma cells treated 
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as in b (‘Treatment’), and monitored at the indicated passages in 4-OHT/ADR-free medium 

(‘Post-treatment’; p1–3, each passage reflects 7 days in culture). Never senescent, ADR-only- 

and previously senescent ADR+4-OHT-pretreated lymphoma cells are analysed, -tubulin is 

used as a loading control. One out of two independent experiments shown. For gel source data, 

see Supplementary Fig. 1. e, f, Growth curve analysis (e) and SA--gal reactivity time course (f) 

of cells treated as in d. Results represent mean cell numbers or percentages of positive cells, 

respectively ± s.d., from three biologically independent samples. g, Kinetics of the proliferation 

marker EdU and the fluorescent SA--gal marker in Suv39h1
−
;bcl2;Suv39h1·ER

T2
 lymphoma 

cells after five days of ADR ± 4-OHT treatment (‘Treatment’), and subsequent passages in 4-

OHT/ADR-free medium (‘Post-treatment’, p1–3, each passage reflecting seven days in culture), 

demonstrating outgrowth of senescent (SA--gal
+
) cells after terminating the 4-OHT/ADR 

treatment. Mean percentages of EdU
+
/SA--gal

+
 and EdU

+
/SA--gal

−
 cells ± s.d., n = 4 

biologically independent samples. Representative photomicrographs from cell popoulations 

marked by red circles are shown in Fig. 2a. h, Competition assays of matched passage 2 

previously senescent (GFP-labelled) and never senescent (DsRed-labelled) lymphomas plated at 

an equal ratio (top) and evaluated by fluorescence microscopy-scored colony formation in vitro 

(bottom left), and by flow cytometric analysis of lymphoma cells isolated from manifest tumours 

after transplantation (bottom right). Numbers reflect the ratio of red- to green-fluorescent 

colonies or cells, respectively. One representative out of four independent experiments shown, 

including colour reversal. 
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Extended Data Figure 3 | Senescence-released (previously senescent) cancer cells display 

higher tumour-initiating capacity than their never-senescent counterparts. a–d, Growth 

properties of conditionally senescent lymphoma cells analysed as in Fig. 2a, b, but using 

p53·ER
Tam

;bcl2 lymphoma cells with ADR ± 4-OHT treatment (a, b), or 

Suv39h1
−
;bcl2;Suv39h1·ER

T2
 lymphoma cells exposed to a single dose of -irradiation (8 Gy) 

instead of ADR, followed by five days of 4-OHT treatment and subsequent passaging in 4-OHT-

free medium (c, d). Results presented as mean positive cells or mean colony numbers ± s.d.; 

n = 4 (a, c, d) or n = 3 (b) biologically independent samples. Representative photomicrographs 

from one out of three independent experiments (a, c). Two-tailed, unpaired t-test with Welch’s 

correction, comparing ADR- and 4-OHT+ADR pretreated lymphomas at p6, or 8 Gy- and 4-

OHT+8 Gy at p5. *P < 0.05 (b, d). It is noteworthy that the superior growth and clonogenicity of 

post-senescent cells can be explained neither by rare cells that may simply have bypassed 

senescence, because the matching never senescent (i.e. senescence bypasser) group presented 
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with inferior clonogenicity, nor by an enhanced death rate of non-stem cells in the Suv39h1-

proficient aliquot, because no significant differences in viability were observed between never 

senescent and previously senescent groups throughout these experiments. Viability determined by 

flow cytometry as the percentage of AnnexinV/PI double-negative cells was typically greater 

than 80% and comparable between never senescent and previously senescent cells (not shown; 

the same applies for Fig. 2a and Fig. 4a). Growth-promoting mutations are also unlikely, as 

senescent cells stopped replicating their DNA. e, f, Colony formation assay of untreated versus 

five-day-ADR-senescent human RCK8 lymphoma cells (e) or LT174T colon carcinoma cells (f) 

that were exposed to a shp53-lentivirus or mock infection on day five of ADR treatment, with 

p53 knock-down enabling outgrowth out of fully established senescence. As observed for mouse 

lymphoma cells, post-senescent RCK8 and LT174T cells, after just three passages, outperformed 

the clonogenic potential of tumor cells that were equally exposed to shRNA against p53 but never 

experienced senescence. Results represent mean colony numbers at indicated passages (each 

reflecting seven days in ADR-free methylcellulose medium) ± s.d., n = 3 independent 

experiments. Two-tailed, unpaired t-test with Welch’s correction, comparing untreated shp53 

versus ADR + shp53 at p5 (e) or p4 (f). *P < 0.05. g, TIS re-inducibility in 

Suv39h1
−
;bcl2;Suv39h1·ER

T2
 previously senescent cells (at passage 2, compare with Fig. 2a) re-

exposed to 4-OHT and ADR for five days, as detected by SA--gal staining (up) and BrdU/PI 

incorporation (down). Results represent mean percentages of positive cells ± s.d. (n = 4 

independent lymphomas). 
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Extended Data Figure 4 | The senescence-associated secretory phenotype (SASP) is 

dispensable for senescence-associated stemness (SAS) induction. a, Expression of a panel of 

SASP transcripts
40,57

 by qRT–PCR in Suv39h1-regulable lymphoma cells after five days of 

ADR ± 4-OHT exposure, and after two passages in 4-OHT/ADR-free medium (that is, in never 

senescent and previously senescent cells), showing SASP upregulation in TIS and its 

downregulation back to baseline levels in senescence-released previously senescent cells. Results 

represent mean fold induction relative to untreated lymphomas ± s.d. (n = 3 biologically 

independent samples). b, Blunting SASP production (top) by NF-B super-repressor IBN 

(NF-B-SR)-mediated genetic inhibition of NF-B as the major SASP driver in TIS cells 

(without compromising their ability to enter TIS)
9,40

 did not prevent acquisition of stemness 

markers (bottom) by qRT–PCR. Results represent mean fold induction relative to mock-

transduced untreated cells ± s.d. (n = 4 biologically independent samples). c, Co-expression of 

the stem-cell marker Sca1 and the TIS marker H3K9me3 by flow cytometry in NF-B-SR-

expressing control;bcl2 cells exposed to ADR for five days, indicating uncompromised SAS 

induction. Percentages indicate mean Sca1/H3K9me3 double-positive cells ± s.d. (n = 4 

biologically independent samples). d, ABC transporter activity by flow cytometry in 

control;bcl2;NF-B-SR cells as in c, again demonstrating strong induction of stem cell-

reminiscent ABC transporter activity in TIS cells (compare with Extended Data Fig. 1d) 

irrespective of their blunted SASP response. Representative plots out of four independent 

lymphomas shown. 
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Extended Data Figure 5 | Wnt signalling is upregulated in senescence. a, GSEA of gene sets 

probing stem cell-relevant signalling pathways in ADR-senescent control;bcl2 or TIS-

incompetent Suv39h1
−
;bcl2 cells (as in Fig. 1a). Positive NES indicate enrichment in TIS 

lymphomas. NES of P < 0.05 are considered statistically significant and are presented in red. 

n = 12 pairs of independent lymphomas b, GSEA enrichment plots of selected gene sets 

presented in a; GO term ‘Canonical Wnt receptor signaling’ (top) or subset of proliferation-

relevant Wnt target genes (bottom), showing significant enrichment in ADR-senescent 

control;bcl2 but not in TIS-incompetent Suv39h1
−
;bcl2 cells. c, Immunoblot analysis of Serine 

37- and Threonine 41-dephosphorylated (that is, stabilized and nucleus translocation-capable 

‘Active -catenin’) and total -catenin in three independent pairs of control;bcl2 and Suv39h1
−
; 

bcl2 lymphoma cells, exposed to ADR for 5 days (+) or left untreated (−). -Tubulin is used as a 

loading control. One out of two independent experiments shown. For gel source data, see 

Supplementary Fig. 1. d, Wnt activity measured by the TOPflash TCF reporter system (with 

FOPflash as negative control) in human cell lines in correlation with their senescence inducibility 

by ADR, as indicated by blue box symbols for senescence-competent cell lines (referring to 

Extended Data Fig. 1c). Results reflect mean relative light units fold change (between untreated 

and ADR-treated samples) of three independent experiments ± s.d. 
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Extended Data Figure 6 | Cell-intrinsic activation of Wnt signalling cascade in TIS. a, b, 

Expression of indicated stem-cell-related transcripts by qRT–PCR (a) and colony formation (b) 

in control;bcl2 lymphomas infected with a constitutively active -catenin mutant (
N-catenin) or 

a mock retrovirus. Data represent mean expression fold change normalized to mock-infected cells 

and mean colony numbers, respectively ± s.d. (n = 3 biologically independent samples). Two-

tailed, unpaired t-test with Welch’s correction. *P < 0.05. c, Immunoblot analysis of Serine 9-

phosphorylated (i.e. inactivated) or total GSK3, active or total -catenin (as in Extended Data 

Fig. 5c), Threonine 202- and Tyrosine 204-phosphorylated or total Erk1/2, and Serine 473-

phosphorylated or total Akt in control;bcl2 lymphoma cells treated with ADR for five days, 

together with pharmacological inhibitors targeting MAPK and PI3K kinase pathways. -Tubulin 

was used as a loading control. One out of two independent experiments shown. For gel source 

data, see Supplementary Figure 1. d, Expression of the indicated stem-cell-related transcripts by 

qRT–PCR in never senescent and previously senescent Suv39h1
−
;bcl2;Suv39h1·ER

T2
 cells 

(passage 2) exposed to Wnt signaling agonists (Wnt3a, Rspo2, or GSK3 inhibitor) for two days. 

Color scale represents mean fold change normalized to never senescent cells not exposed to Wnt 

agonists ± s.d. (n = 3 individual lymphomas). e, Colony formation of never senescent and 

previously senescent cells (as in d), after seven days in methylcellulose medium supplemented 

with the indicated Wnt agonists (mean colony numbers ± s.d., n = 3 individual lymphomas). 

Two-tailed, unpaired t-test with Welch’s correction. *P < 0.05. 
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Extended Data Figure 7 | Wnt signalling is dispensable for senescence induction, but 

required for senescence-associated stemness. a, Senescence induction by ADR in control;bcl2 

lymphoma cells with and without parallel application of the indicated pharmacological or genetic 

Wnt inhibitors (ICG-001, salinomycin or -catenin knock-down by shRNA (sh-catenin)). 

Results reflect mean percentages of SA--gal-positive cells ± s.d. (n = 4 independent 

lymphomas). b, Expression of stemness-related transcripts by qRT–PCR in ADR-treated 

control;bcl2 lymphoma cells exposed to -catenin knock-down by shRNA retroviral infection 

(sh-catenin). The colour scale represents mean fold induction normalized to ADR-untreated (ut) 

and vector-infected controls ± s.d. (n = 3 biologically independent samples). c, Relative viability 

of Suv39h1
−
;bcl2;Suv39h1·ER

T2
 cells exposed to the indicated Wnt inhibitors either 

simultaneously with ADR ± 4-OHT treatment (for the last 48 h of treatment), or at passage 2 

after terminating ADR ± 4-OHT (never senescent and previously senescent; treated over 48 h 

with inhibitors). Results show relative viability normalized to sample with no Wnt inhibitor 

treatment ± s.d. (n = 3 biologically independent samples). d, Colony formation of human LT174T 
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colon carcinoma cells exposed to mock or shp53-lentivirus upon ADR-induced senescence, and 

further propagated in ADR-free medium (corresponding to passage 3 in Extended Data Fig. 3f). 

Results show mean colony counts after seven-day exposure to indicated Wnt inhibitors ± s.d. 

(n = 3 independent experiments per group). Two-tailed, unpaired t-test with Welch’s correction, 

*P < 0.05. e, Individual survival times of the six matched never senescent and previously 

senescent lymphoma pairs (shown collectively in Fig. 3d). f, Individual survival times of mice 

bearing never senescent (left) and previously senescent lymphomas (right) after exposure to Wnt 

signaling inhibition by -catenin knock-down (sh-catenin) or left uninhibited (ut). The line plots 

represent the same matched never senescent and previously senescent lymphomas as in e. 
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Extended Data Figure 8 | The previously senescent cell population maintains a stable 

fraction of Wnt-active stem cells over time. a, Detection of a slowly dividing subpopulation in 

previously senescent but not in never senescent lymphoma cells (arrow) by the CFSE membrane 

dye 1, 4 or 8 days after stopping the ADR ± 4-OHT treatment. Experiment performed in 

triplicates. b, CFSE
high

 previously senescent cells exhibited more profound nuclear -catenin 

expression, indicating acquired stemness (passage 3 after 4-OHT/ADR removal; compare with c). 

One out of three independent experiments, each performed in triplicate. c, Co-staining with -

catenin and CFSE as in b in Suv39h1
−
;bcl2;Suv39h1·ER

T2
 cells, untreated or exposed to 

ADR ± 4-OHT for five days (‘Treatment’) and subsequently passaged in 4-OHT/ADR-free 

medium (p1–2; each passage reflects seven days in culture). The slowly cycling (CFSE
high

) 

population was positive for -catenin and persisted over time, although their relative percentage 

drops owing to outgrowth of their (CFSE
low

) progeny. Numbers reflect mean percentages from 

three independent lymphomas ± s.d. d, e, Higher expression of ATSC- or Wnt-related (asterisk) 
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transcripts by qRT–PCR (d) and higher clonogenic capacity, which can be neutralized by 

indicated pharmacological or genetic Wnt inhibitors (e) in flow-sorted, -catenin high versus -

catenin low previously senescent cells (passage 3 after 4-OHT/ADR removal). Mean expression 

levels normalized to untreated cells and mean colony numbers respectively ± s.d., n = 4 

biologically independent samples. Two-tailed, unpaired t-test with Welch’s correction, *P < 0.05. 

f, Immunoblot analysis of -catenin and H3K9me3 levels in human RCK8 lymphoma cells 

exposed to ADR for 5 days to induce senescence (‘Treatment’), then stably transduced with an 

shp53- or mock lentivirus, and further propagated in ADR-free medium (‘Post-treatment’, p1–5, 

each reflecting seven days in culture). The senescence-associated high levels of active and total 

-catenin achieve a low but stable level at later passages. It is noteworthy that stably senescent 

ADR-pretreated, mock-infected cells were only blotted in p1. One representative out of three 

independent experiments shown, with -tubulin as a loading control. For gel source data, see 

Supplementary Fig. 1. g, Co-expression of -catenin and the stem cell marker CD34 detected by 

flow cytometry in ADR-pretreated, shp53-infected RCK8 cells as in f, demonstrating a small but 

stable steady-state fraction of double-positive cells at later passages, explaining the lastingly 

enhanced colony-forming potential of previously senescent versus never senescent cells. 

Representative flow cytometry plots from three independent experiments (top) and mean 

percentages of double-positive cells ± s.d. (bottom) at the indicated passages (n = 3 independent 

experiments). Two-tailed, unpaired t-test with Welch’s correction. *P < 0.05. 
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Extended Data Figure 9 | Spontaneous escape out of senescence detected in cancer cells 

without genetic manipulations of senescence-relevant genes. Flow cytometric analysis of the 

proliferation marker EdU and a fluorescent SA--gal marker in control;bcl2 cells treated with 

ADR or left untreated (top), and further cultivated in ADR-free medium (bottom). Co-expression 

of EdU in a small population of still SA--gal-positive cells demonstrates the ability of some 

ADR-senescent cells to escape the senescence arrest. Numbers represent mean percentages ± s.d. 

from four independent lymphomas. Photomicrographs depict representative cells from 

populations marked with red circles (n = 4 independent experiments). 
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Extended Data Figure 10 | Senescence-associated de novo generation of leukaemia stem cells 

upon depletion of the stem cell-containing fraction in mouse and human leukaemia samples. 

a, Flow cytometry plots of mouse Kras
G12D

;DOX-on-shp53-GFP-induced T-cell acute 

lymphoblastic leukaemias (total splenocytes after short-term culture and retroviral bcl2 

infection), stained with a panel of mouse lineage antibodies before and after flow-based sorting of 

the lin
+
/GFP

+
 population. The lin

−
/GFP

+
 population (including Kit

+
/Sca1

+
 leukaemia stem cells) 

was used as a positive control. Shown are representative plots (n = 3). b, Colony formation of 

mouse lin
+
/GFP

+
 leukaemia cells as in a, pretreated with ADR ± doxycycline (DOX) for 

five days and subsequently seeded in ADR-free/DOX-supplemented medium, thus producing 

never senescent and previously senescent cells, respectively. Results represent mean colony 

counts at passage 2 (each passage reflecting 10 days in culture) ± s.d. (n = 3 biologically 

independent samples). Two-tailed, unpaired t-test with Welch’s correction. *P < 0.05. c, Nuclear 

-catenin expression by immunofluorescence (in red) in equally five-day-ADR-exposed 

senescent versus non-senescent settings (i.e., DOX
−
 versus DOX

+
). DAPI was used as a nuclear 

counterstain (in blue). Numbers represent mean percentages of -catenin-positive cells ± s.d. (n 

= 3 biologically independent samples). d, Colony formation of never senescent and previously 

senescent leukaemia cells pretreated as in b (passage 3) with the addition of the indicated 

pharmacological Wnt inhibitors (mean colony numbers ± s.d., n = 3 biologically independent 
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samples per group). *P < 0.05, two-tailed, paired t-test. e, Senescence induction by SA--gal 

staining in mouse Nras
G12D

;MLL-AF9;DOX-on-shp53;bcl2 bulk AML cells (lin
−
/Kit

+
/Sca1

+
-

depleted) after five days of the ADR ± DOX treatment. Numbers reflect mean percentages of SA-

-gal-positive cells ± s.d (experiment performed in triplicate). Notably, viability determined as 

the percentage of AnnexinV/PI double-negative cells was typically greater than 80% and 

comparable between treatment groups. f, Stemness-related transcripts by qRT–PCR in 

conditionally senescent mouse AML cells as in e. Graphs represent mean fold induction ± s.d. (n 

= 3 independent experiments). g, Colony formation of mouse bulk leukaemia cells pretreated as 

in e, further propagated in ADR-free DOX-containing medium for 14 days, and plated in 

methylcellulose medium supplemented with the Wnt inhibitors ICG-001 or salinomycin. 

Colonies were counted after seven days. Previously senescent AML cells, emerging via DOX-

mediated p53 knockdown, presented with the highest, Wnt-dependent clonogenicity, which could 

be attenuated by pharmacological Wnt inhibition. Results represent mean colonies ± s.d. (n = 3 

independent experiments). Two-tailed, unpaired t-test with Welch’s correction. *P < 0.05. h, 

Colony formation of the CD34
+
 cell-depleted human AML cell line Molm13 (with constitutive 

retroviral Bcl2-expression) exposed to senescence-inducing ADR treatment for five days 

(‘Treatment’) and subsequently transduced with the lentiviral shp53 or mock construct (p53-

knock-down enabling outgrowth from fully established senescence). Results reflect mean colony 

numbers ± s.d. (n = 3 independent experiments). Two-tailed, unpaired t-test with Welch’s 

correction. *P < 0.05. i, Flow cytometric detection of the CD33 myeloid differentiation marker 

and CD34 stem cell marker surface expression in samples from patients with AML obtained at 

diagnosis, before any cell cultivation and after six days of cultivation in vitro. Representative 

plots are shown (n = 5 individual patient samples). j, Expression of stemness-related transcripts 

in five-day-ADR-senescent versus untreated, ex vivo CD34
+
-depleted primary human AML cells 

as in i (qRT–PCR; average fold induction ± s.d., n = 5 individual patient samples, left). 

Photomicrographs (right) confirm ADR-inducible senescence by SA--gal staining (mean 

percentages of SA--gal positive cells ± s.d., representative photomicrographs from five 

independent samples). k, Regained CD34 surface expression upon ADR-induced senescence in 

CD34
+
-depleted primary human AML cells as presented in j. Numbers reflect mean fluorescence 

intensity detected by flow cytometry ± s.d. (n = 5 individual patient samples). Two-tailed, paired 

t-test, *P < 0.05. l, ABC transporter activity in ADR-senescent versus untreated cells as in k. 

Representative plots are shown (n = 5 individual samples). 
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