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Introduction
Osteoarthritis (OA), the most common joint disease of late life, 

affects 80% of individuals over age 65 (1). Women and obese indi-

viduals are more susceptible to this chronic disease (2). Younger 

patients are also at risk of developing OA after joint trauma (post-

traumatic OA [PTOA]). OA manifests as joint pain, swelling, and, 

ultimately, mechanical failure. While OA affects joints through-

out the body, its current understanding comes largely from study 

of OA of the knee. Multiple tissues within the knee contribute to 

OA progression (Figure 1). Cartilage lining the surfaces of artic-

ulating joints provides a low-friction surface, enabling painless 

joint movement (3). The entire joint is enclosed by a membranous 

structure known as the synovial membrane, or synovium, which 

produces synovial fluid that bathes the joint and serves as both a 

source of nutrients and a mechanical lubricant. These tissue com-

ponents communicate and function together to create the joint 

“organ” and maintain joint function.

While OA is often characterized as gradual cartilage loss by 

wear and tear, the disease is more complex and includes dys-

function in all the joint components. Cartilage tissue fractures at 

sites of high mechanical stress, a process termed fibrillation. In 

these fibrillations, and in cartilage tissue throughout the joint, 

the extracellular matrix (ECM) loses proteoglycans and colla-

gen fibers. Beyond these changes, the subchondral bone forms 

osteophytes, fibrocartilage-capped bony outgrowths that are 

present on the joint margins, and dysfunctional synovial fluid 

compromises lubrication. Osteophytes are formed by endochon-

dral ossification — bone deposition and formation of bone mar-

row (BM) cavities. This process starts with fibroblast-like cells 

in the periosteum differentiating to chondrocytes that deposit 

cartilage matrix, which serves as the template for new bone (4). 

Finally, the synovium thickens and is frequently inflamed (5). 

The menisci are often damaged and can displace into the joint 

space (6). These changes in tissue structure and function are 

accompanied by pain and reduced joint mobility that contribute 

to OA’s clinical symptoms.

Participation in high-impact physical activities, including 

military service and athletics, places younger patients at higher 

risk of developing PTOA (7–9). Damage or loss of the anterior 

cruciate ligament (ACL) in the knee, with or without meniscus 

injury, frequently leads to PTOA (10). In addition to wear and 

tear on the joints, OA is associated with low-grade systemic and 

joint inflammation created by proinflammatory and matrix- 

degrading cytokines (11–13). The pathogenic mechanisms 

involved in OA progression remain under debate. For example, 

transcriptome analysis identified a link between inflammation 

and joint trauma (ACL rupture and surgical destabilization of 

the medial meniscus, abbreviated DMM) in animal models of 

PTOA (14). Differential expression of these inflammatory mol-

ecules and their related pathways, however, was not found in 

chondrocytes isolated from normal and human OA cartilage (15, 

16). Further, repairing a mechanical injury or instability does not 

appear to prevent PTOA development (17), suggesting that addi-

tional biological mechanisms beyond simple mechanical wear 

and tear or purely inflammatory factors contribute to the clinical 

disease. Understanding how trauma and aging contribute to OA 

development will provide insights into disease mechanisms as 

well as new therapeutic targets. Particularly in cases of younger 

patients who retain regenerative capacity, interventions may not 

only stop OA progression but also lead to the rebuilding of new 

tissue to restore healthy organ function.

Cellular senescence is potentially a common molecular mech-

anism that drives or promotes both age-associated OA and PTOA 

(18–22). Shared molecular features of aging and many forms of 

stress/trauma include genomic instability (including telomere 
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The senescence response induced by one or more of these 

stressors generally results from the activation of molecular 

stress-response pathways. The p53/p21 and/or p16INK4A/retino-

blastoma pathways are the primary drivers of permanent senes-

cence-associated proliferative arrest, although other pathways 

may also implement a senescence response (30–32). SnCs are 

transiently induced and play a beneficial role in embryonic devel-

opment (33, 34), wound healing (35), and insulin secretion by pan-

creatic β cells (36). However, as discussed below, chronic presence 

of SnCs, as observed in aged tissues, is associated with loss of tis-

sue function and age-related chronic diseases such as OA.

Although SnCs are nondividing, their persistence is far from 

harmless. They can negatively impact surrounding cells and tis-

sues, primarily through their SASP (24, 37–39). The SASP entails 

secretion of several extracellular proteases, proinflammatory 

cytokines, chemokines, and growth factors (39). The specific 

secretory profiles of SnCs are highly cell- and context-dependent 

and thus define the potential positive or negative impact of SnCs. 

SnCs may have distinct effects depending on the inducing stressor 

and the local tissue environment (29, 40–42).

Cell culture models provide some insights into the variabil-

ity of the SASP composition. For example, oncogene-induced 

senescent human fetal lung fibroblasts produce 103 distinct pro-

teins (43). Several of these SASP proteins overlap with radiation- 

induced senescence in the same cells, but the SASPs induced by 

oncogenic Ras versus genotoxic stress also have distinct features 

(39). SnCs induced by genotoxic stress and oncogenes elicit a 

SASP that includes IL-1– and NF-κB–dependent factors (40). SnCs 

attrition and epigenetic alterations), dysregulated nutrient sens-

ing, loss of proteostasis, mitochondrial dysfunction, stem cell 

exhaustion, and cellular senescence (23). Senescent cells (SnCs) 

are characterized by their inability to divide as well as resistance 

to apoptosis and a robust proinflammatory secretome known as 

the senescence-associated secretory phenotype (SASP) that can 

alter the structure and function of surrounding cells and tissues 

(24). Identifying and manipulating SnCs has remained a challenge 

until recently. Here, we review recent progress in defining the role 

of SnCs and the SASP in the development of age- and trauma-in-

duced OA. We discuss the presence and impact of SnCs in each 

joint tissue, the immunological relevance of SnCs, and the impact 

of the SASP on disease and regeneration. Finally, we will discuss 

future prospects for eliminating SnCs to treat disease.

Cellular senescence
Replicative senescence was historically thought to underlie the 

decline in tissue homeostasis, repair, and regeneration that accom-

panies aging. Later discoveries identified additional extrinsic and 

intrinsic stimuli causing cells to undergo senescence, including 

genomic damage (e.g., telomere attrition, DNA double-strand 

breaks or other lesions; ref. 25), derangements or damage to the 

epigenome (26), various oncogenic mutations (e.g., activated Ras) 

(27), extrinsic or intrinsic oxidative stress (28), and many meta-

bolic changes, particularly those that cause mitochondrial dys-

function (29). Most of these stressors put cells at risk of develop-

ing cancer; thus, senescence-associated growth arrest serves as a 

potent tumor-suppressive mechanism (24).

Figure 1. A schematic overview of the joint structure. Articular cartilage, subchondral bone, synovium, and infrapatellar fat pad (IPFP) are joint tissues 

that may harbor senescent cells and secrete a senescence-associated secretory phenotype (SASP) induced by aging or trauma. Loss or damage to the 

anterior cruciate ligament (ACL) or other joint structures is a primary cause of PTOA.
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imbalance between cartilage synthesis and removal, resulting in 

structural dysfunction. This process might be driven by oxidative 

stress, mitochondrial dysfunction, genomic or epigenomic dam-

age, or other senescence-inducing stressors (20, 56–58).

Oxidative stress induces chondrocyte senescence, primarily 

through upregulating p53 and p21 expression (48) and activating 

p38 MAPK and PI3K/Akt signaling pathways (59). This in turn 

stimulates a SASP (60). In addition, ROS can damage telomeres 

independent of replication (51), resulting in senescence and 

matrix loss, as well as chondrocyte apoptosis. This can produce 

senescence and a SASP that is independent of replication as well 

as chondrocyte apoptosis (61, 62). In chondrocytes, ROS-induced 

mitochondrial dysfunction can amplify chondrocyte inflammato-

ry and matrix catabolic responses to IL-1β and TNF, mediated by 

NF-κB activation (61, 62). Further, owing to the mechanorespon-

sive nature of chondrocytes, excessive loading of articular surfac-

es caused by acute joint trauma or posttraumatic joint instability 

can cause a release of ROS and increased oxidative stress in chon-

drocytes, which can also induce senescence (21). High shear stress 

alone can induce chondrocyte senescence (18, 21). In our murine 

studies, ACL transection (ACLT) induced senescence in the super-

ficial layer or chondrocytes in young animals, while SnCs were 

found throughout the cartilage in aged animals (22).

Subchondral bone. Cartilage and the adjacent subchondral 

bone are connected mechanically, physically, and biologically. 

Both have been implicated in disease initiation and progression 

(63). Subchondral bone sclerosis is a hallmark of OA progression. It 

is still controversial whether bone changes in OA joints are a cause 

or a consequence of articular cartilage dysfunction and destruction 

(64–66). Loss of subchondral bone volume (67) and thinning of the 

subchondral bone plate (68, 69), originating from increased bone 

remodeling (70, 71), are early signs of disease in both surgically 

induced and spontaneous OA models. In late-stage OA, subchon-

dral bone becomes sclerotic and stiffens, owing to decreased bone 

resorption. This biphasic change in subchondral bone properties is 

found in both preclinical animal models and human disease (72, 

73). TGF-β activity is present in the subchondral bone at the onset 

of ACLT-induced PTOA. This is followed by migration and for-

mation of osteoprogenitors, subchondral bone sclerosis, and pro-

teoglycan loss in articular cartilage tissue (74). Despite preclinical 

validation of the protective effects of bone-targeting drugs (e.g., 

bisphosphonate, strontium ranelate, cathepsin K inhibitor, and 

TGF-β type I receptor inhibitor [SB-505124] and TGF-β antibody 

[1D11]) on both subchondral bone and cartilage erosion, targeted 

bone in OA remains to be validated in the clinic (74–77).

In the ACLT-induced OA model, we found that p16INK4A-posi-

tive SnCs were present in the subchondral BM of aged mice (19–20 

months old) (22). The evolution and impact of SnC burden in sub-

chondral bone during OA progression in both human and experi-

mentally induced animal models are not yet defined. Studies on the 

central core of long bones and BM provide some insight into SnCs in 

this tissue (78–80). In old animals, senescence was found in osteo-

cytes and myeloid cells retrieved from both trabecular and cortical 

bone tissue. Moreover, these cells’ SASP was implicated in age- 

related bone loss (80). Thus, SnC burden in bone can have a signif-

icant physiological impact and may produce the subchondral bone 

changes and bone remodeling that are relevant to OA progression.

induced by mitochondrial dysfunction–associated senescence 

(MiDAS), which activates the NAD/AMPK/p53 pathway (29), 

express a SASP that differs from genotoxic- or oncogene-induced 

SASPs. The MiDAS SASP lacks IL-1– and NF-κB–dependent pro-

teins but includes the antiinflammatory cytokine IL-10, the proin-

flammatory chemokines CCL27 and TNF-α, and the growth factor 

amphiregulin (29). Several of the common SASP factors, including 

IL-1, IL-6, and matrix metalloproteinase 3 (MMP-3), overlap with 

mediators of OA inflammation. SnCs induced by either stimuli 

secrete the high-mobility group box 1 (HMGB1) protein, the found-

ing member of a growing class of proinflammatory factors termed 

alarmins or damage-associated molecular patterns (DAMPs) (42). 

Alarmins and DAMPs connect the presence of SnCs with tissue 

damage and repair responses such as those in joint trauma.

SnCs in the knee
Inflammation and tissue degradation are hallmarks of OA that can 

be mediated by SASP-associated factors. SnCs and their SASPs  

are not OA-specific but are needed to generate an inflammatory, 

degradative tissue microenvironment similar to that found in OA. 

Several SnC markers, including p16INK4A and p21 expression (44), 

are found in multiple tissues in arthritic joints, including cartilage, 

subchondral bone, synovium, and the infrapatellar fat pad (IPFP) 

(21, 22, 45, 46). However, their role, their tissue-specific SASP, 

their evolution over time, and ultimately their disease relevance 

are not yet fully elucidated. Here, we review our current under-

standing of SnCs in joint tissues.

Cartilage. Articular cartilage is an avascular and aneural tis-

sue composed of a rich ECM comprising primarily type II collagen 

and aggrecan. The tissue is populated primarily by chondrocytes 

that are responsible for cartilage maintenance through a balance 

of ECM synthesis and remodeling by MMPs. In the early phase of 

OA, chondrocytes near the superficial layer divide, form clusters, 

and exhibit increased anabolic activity in an attempt to repair the 

tissue. During disease progression, the chondrocyte phenotype 

that maintains tissue is lost. Instead the phenotype is skewed 

toward matrix destruction and inflammatory cytokine production, 

primarily through collagen-degrading MMP-13 and aggrecan- 

degrading ADAMTS-5 (11, 12). The proteoglycans become deplet-

ed, the collagen network is eroded, and chondrocytes become 

hypertrophy-like, leading to calcified cartilage (47).

For many years, senescent chondrocytes were noted in cartilage 

tissue discards from diseased joints after total knee arthroplasty 

surgery (22, 48–50). Senescent chondrocytes accumulate with age 

and are present at higher numbers in human OA cartilage compared 

with age-matched healthy cartilage (18, 21, 45, 46, 50–52). The 

localization of senescent chondrocytes near osteoarthritic lesions, 

but not in intact tissue, further suggests a disease connection (46). 

The positive correlation between the presence and degree of senes-

cence and disease severity (46, 49), however, remains controver-

sial. Ongoing clinical trials will address this important question (53).

Chondrocytes rarely replicate in cartilage homeostasis (54), 

suggesting that senescence responses other than replicative senes-

cence might be responsible for the presence of SnCs in OA joints. 

Whatever the case, SnCs nonetheless secrete SASP factors, includ-

ing several inflammatory mediators and enzymes capable of digest-

ing ECM (55). Thus, the senescent chondrocyte SASP can cause an 

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/4


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  C E L L U L A R  S E N E S C E N C E  I N  H U M A N  D I S E A S E

1 2 3 2 jci.org   Volume 128   Number 4   April 2018

their role in disease causation is unknown. To fill this gap in our 

knowledge, we used the p16-3MR transgenic mouse model, which 

enables both visualization and selective elimination (senolysis) of 

p16INK4A-expressing cells at any point in the lifespan, accomplished 

by p16 promoter–driven expression of the herpes simplex virus 

thymidine kinase and administration of an otherwise benign drug, 

ganciclovir (GCV) (22, 35, 94).

We found that SnCs increased in the joint over a 2-week peri-

od and then decreased to a steady-state level that remained above 

baseline after PTOA-inducing ACLT surgery. Expression of the 

SASP factors MMP-13, IL-6, and IL-1β evoked similar changes in 

the joint space. Intra-articular GCV injections selectively elimi-

nated SnCs in the cartilage and synovium (not IPFP), leading to 

reduced SASP expression and pain in the surgically treated limb 

and cartilage tissue growth in young animals. Ultimately, elim-

inating SnCs and their SASP enabled tissue recovery in young 

animals. Additional work that induced an OA-like phenotype by 

injection of SnCs from ear cartilage into the knee joint region of 

mice could partially explain this observation (95). However, new 

tissue development did not occur after senolysis in aged animals 

(22), possibly because of irreversible damage that occurs during 

aging or other systemic factors involved in tissue repair processes.

While OA occurs in younger patients who experience injury, 

age-associated OA is a prevalent condition with substantial clinical 

and economic burden. The impact of SnC clearance on age-related 

OA was tested in another transgenic mouse model (INK-ATTAC) 

that allows selective killing of SnCs using a drug that promotes 

caspase-dependent apoptosis (44). The articular cartilage of ani-

mals whose SnCs were systemically removed starting at 12 months 

of age until natural death had a structural and matrix appearance 

similar to that of young healthy animals. Because treatment started 

at 12 months of age, it is likely that some level of OA was present 

when treatment was initiated. The results, then, suggest that, like 

PTOA, SnC clearance not only prevented disease progression but 

restored tissue structure. This complete reduction in age-related 

cartilage loss was observed in females, whereas our PTOA studies 

were performed in male mice. Further studies are needed to deter-

mine the effect of sexual phenotype on the efficacy and impact of 

SnC clearance for OA treatment.

Relevance to human disease and drug development. Preclinical 

models, particularly transgenic mice, are useful tools to define 

disease pathogenesis and drug mechanisms of action but may 

not fully reflect human disease. OA presents a unique opportu-

nity to establish human relevance through access to tissue from 

patients undergoing total knee arthroplasty (TKA). Chondrocytes 

can be isolated and cultured from TKA cartilage tissue. While 

patient variability exists, in our experience and in the literature, 

a consistent percentage of senescent chondrocytes are present 

in OA patient–derived chondrocytes (21, 46, 49, 50). We found 

that treating these chondrocytes with a small-molecule senolytic 

reduced SnC burden and upregulated expression and deposition 

of type II collagen and aggrecan, the two primary ECM compo-

nents of cartilage (22). Upregulation of matrix synthesis was also 

observed in p16INK4A-silenced human OA chondrocytes, although 

this may not be relevant to the in vivo scenario (50). With so few 

options for isolating SnCs from tissues, the articular joint provides 

a unique source for obtaining human cells.

Infrapatellar fat pad. Adipose tissue is rich in inflammatory 

cells. The increased incidence of OA in obese individuals may be 

due to both increased mechanical load and biological factors asso-

ciated with metabolic disease. Accumulating evidence points to 

IPFPs, located inside and near the joint capsule, as another poten-

tial source of proinflammatory cytokines and chemokines in OA. 

Adipokines such as leptin and adiponectin are found in human dis-

eased synovial fluid and animal models of OA (81–83). Like other 

adipose depots, IPFPs contain immune cells such as macrophages 

and leukocytes that can respond to and/or secrete inflammatory 

cytokines, including SASP-associated TNF and IL-6 (84). IPFPs 

may contribute to inflammation in the joint, either in response to 

SnCs in other joint tissues or owing to their own harboring of SnCs  

(22). Considering the impact of obesity on OA development, fur-

ther investigation into SnCs in IPFPs is warranted.

Synovium. The synovium’s role in OA has long been postulat-

ed, but it remains unclear whether the changes in the synovium 

are primary or occur secondary to joint inflammation and carti-

lage breakdown (85–87). The synovium is infiltrated by immune 

cells during disease (86). During joint inflammation there are 

synovial hyperplasia and increased cell number, termed syno-

vitis. Macrophage infiltration and production of inflammatory 

mediators, including IL-1β, TNF, VEGF, and intercellular adhe-

sion molecules (e.g., VCAM1 and E-selectin), increase in patients 

in the early phases of OA compared with late-phase OA (85). 

Synovial macrophages also contribute to osteophyte formation 

and other OA-related pathology such as fibrosis via production of 

growth factors including BMPs and TGF-β after joint injury (88, 

89). T cell activation and production of Th1 cytokines (IFN-γ, 

IL-2, and -10) also occurs in the arthritic synovium, implicating 

the initiation or amplification of inflammation by immune cells 

within the synovium and involvement of the adaptive immune 

system during OA progression (90).

There are multiple possible connections between the synovi-

um, SnCs, and OA. SnCs in other joint tissues can impact the 

synovium through their SASPs, whose many chemokines and cyto-

kines can attract and modulate resident and migrating immune 

cells in the synovium. In addition, synovial fibroblasts secrete 

less synovial fluid, which is rich in hyaluronan and lubricin (also 

called superficial zone protein), leading to increased cartilage 

degradation (91). The fibroblasts also upregulate catabolic genes 

(e.g., MMP-1 and -13 and the aggrecanases ADAMTS-4 and -5) 

and proinflammatory cytokines (e.g., IL-1, IL-6, TNF-α, NO, and 

prostaglandin E
2
 [PGE

2
]) that contribute to joint destruction and 

OA pain (85, 92). As cells in the synovium become proliferative 

and activated (93), they may themselves become more susceptible 

to undergoing senescence. We found that p16INK4A-positive SnCs 

were present in the synovium in the ACLT-induced OA model (22).

Senescence and OA: is there causation?
SnCs are present in most, if not all, tissues of the arthritic joint. 

Until recently, it was not clear whether SnCs are responsible 

for disease development and, more importantly, whether their 

removal would provide a therapeutic benefit. Recent studies pro-

vide some insight into the role of SnCs in OA development.

Lessons from transgenic models. Senescent chondrocytes are 

associated with both posttraumatic and age-related OA, yet 
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immune system (98). The DAMPs released into the synovial flu-

id generate proinflammatory and catabolic mediators by signal-

ing through pattern recognition receptors on OA chondrocytes 

and synovial cells, including TLRs and receptor for advanced 

glycation end-products (RAGE). Specific to OA, TLR1–TLR7 and 

TLR9 are activated in the synovium of patients with OA. Through 

these receptors, MyD88-dependent signaling activates NF-κB, 

the proinflammatory stress-related transcription factor, followed 

by secretion of SASP-affiliated cytokines (IL-1, IL-6, IL-15, and 

TNF-α) and chemokines (IL-8, CCL5, and CCL19) (86, 99).

DAMPs activate the early innate complement proteolytic cas-

cade through the leakage of plasma complement proteins into the 

articular joint. Complement components and inhibitors (e.g., the 

central component effectors C3a and C5a) are increased in syno-

vial macrophages and chondrocytes in OA (100). Indeed, com-

plement component deficiency protects animals from surgically 

induced and spontaneous OA development (101).

Macrophages are the innate immune cells that initially migrate 

to a wound. Macrophages can acquire proinflammatory, proregen-

erative, or profibrotic phenotypes. Proinflammatory macrophage 

phenotypes promote phagocytosis and debris removal in dam-

aged tissue by producing TNF-α, IL-1, and IL-6. In normal wound 

healing, proinflammatory macrophages transition to proregener-

ative or profibrotic phenotypes to promote tissue replacement in 

response to IL-4, IL-10, and IL-13 or other immune complexes. 

Macrophages are a heterogeneous cell population, and the impact 

of their phenotype on OA development remains unknown.

The role of the adaptive immune system is recognized in 

inflammatory arthritis, but there is still limited evidence to date 

on the adaptive immune system’s role in OA. However, ongo-

ing studies on the changes in adaptive immune cells in trauma 

and aging-related OA will address this role. Generally, adaptive 

responses activate resident or infiltrating macrophages as well as 

T and B lymphocytes (91, 99), which orchestrate many aspects of 

tissue repair, including development of myeloid phenotypes. In 

Senescence, pain, and inflammation
Joint pain is the primary factor that brings patients into the clin-

ic. While pain does not always correlate with tissue degradation 

in the joint, it is a critical feature of OA. Biological mechanisms of 

joint pain remain unclear, but local inflammation is a likely cause 

(96). Elevated levels of TNF-α, a SASP factor, correlate with pain in 

OA joints. Supporting the relevance of SnCs to pain, we found that 

pain was relieved in the joints soon after SnC clearance, before 

any tissue structural changes were possible (22). The synovium 

is a likely contributor of pain-inducing cytokines, but other cell 

types may also be responsible. Immune cells, present in multiple 

tissues in the joint, also secrete cytokines that can induce pain. 

Understanding SASP factors that cause pain, whether secreted 

by synovial cells, immune cells, or other cells in joint tissues, will 

improve understanding of the clinical features of OA and potential 

therapeutic efficacy of senolytics (97).

Joint trauma and inflammation. The immune system is the 

guardian of tissue integrity (98). SnCs and their SASP are a link 

to the immune system and therefore the tissue damage response. 

Features of the immune response to tissue damage determine out-

comes of repair (Figure 2). After trauma, the immune system is a 

first responder to the injury site, clearing debris and actively partic-

ipating in tissue remodeling, which is critical to the repair process. 

Immune cells secrete cytokines that stimulate tissue rebuilding, 

including stem cell differentiation, vascular development, res-

ident tissue activation, and ECM synthesis. Whether initiated by 

trauma or infection, the local tissue environment dictates immune 

responses (98). Thus, both the tissue-specific SASPs and the result-

ing tissue-specific immune response likely work together to define 

subsequent tissue repair, fibrosis, or chronic disease pathogenesis.

Joint trauma initiates an immune response by sending danger 

signals, including DAMPs. In OA, DAMPs that increase include 

alarmins such as HMGB1 and products of cartilage breakdown 

such as hyaluronan, keratan sulfate, and cartilage oligomer-

ic matrix protein. These signals are first received by the innate 

Figure 2. Senescent cells develop a SASP. The nature of the SASP depends on the local microenvironment and will itself alter the local environment. 

The innate and adaptive immune system can respond to joint trauma and tissue injury. The SASP includes cytokines that attract and modulate immune 

cells, which remove debris and secrete cytokines that influence the tissue response toward repair or fibrosis. Elements of the immune system are also 

responsible for clearing SnCs that form after injury. When persistent, the molecules secreted by both SnCs and immune cells cause chronic inflammation 

and ultimately chronic disease. Three strategies (green text) potentially prevent or attenuate OA diseases by selectively eliminating SnCs: augmentation 

of immune-mediated SnC clearance (e.g., chimeric antigen receptor [CAR] T cells, which are engineered to express immunoglobulin variable fragments to 

SnC surface markers), SASP neutralization, and direct killing of SnCs by senolytics.
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muscle repair, IL-4 production by Th2 cells was required for the 

myeloid cell transition to a proregenerative phenotype, needed for 

efficient muscle repair (102). In the joint, IL-4 production correlat-

ed with tissue repair after ACLT, suggesting that similar mecha-

nisms of type 2 immune responses impact OA (103). Without 

treatment, OA signatures reflect a profibrotic and proinflammato-

ry immune response that is potentially mediated by SnCs, which 

may only recruit and modulate the phenotypes of immune cells.

SnCs and the immune system. SnCs develop early in the joint 

after ACLT injury and secrete cytokines that can attract and mod-

ulate immune cells. Thus, SnCs can serve as sentinels, activating 

and calling immune cells to the injury site to initiate repair. During 

normal healing, the immune system clears SnCs. In skin wounds, 

for example, clearing SnCs too early in the repair process delays 

wound healing (35). The tissue environment’s impact on SnCs and 

the SASP likely influences a tissue-specific immune response to 

injury. Matzinger pioneered the concept of tissue-based immune 

cell effector class control (98). She postulated that the local tissue 

environment determined the immune response to foreign invad-

ers, directing the type and degree of immune cell stimulation (98). 

This idea can explain why tissues like skin and liver have a strong 

capacity for repair after damage, whereas articular cartilage has 

limited repair capacity. The concept of tissue-specific immune cell 

class control likely also applies to immune responses to joint trau-

ma and resulting wound healing responses, including the immune 

clearance of SnCs.

Understanding of how the immune system interacts with and 

ultimately clears SnCs is in its infancy. SnCs appear to attract an 

innate immune response that, in part, results in their elimination 

(104). NK cells recognize stressed or damaged cells via cell surface 

receptors and ligands. Specifically, some SnCs express ligands 

for NK cells, including those that bind NK cell receptors (e.g., 

NK group 2D [NKG2D] and nonclassical MHC I molecules such 

as HLA-E) (105–109). In liver, NK cells target senescent stellate 

cells using perforin granule exocytosis (110). Senescent stellate 

cells secrete factors that favor macrophage polarization toward 

a proinflammatory M1 state, which also promotes SnC clearance 

(111). Age-related senescence in BM may influence immune sys-

tem homeostasis and the ability to clear SnCs. Systemic senolytic 

treatment in aged animals restores BM populations (94). While 

BM stem cells were a primary focus of this study, results suggest 

the possibility of improving age-related immune declines that can 

impact SnC clearance and tissue repair.

Macrophages can be critical players in clearing and are also 

required for tissue repair and regeneration (112, 113). Senescent 

stromal cells can attract or induce a subset of macrophages that 

reversibly express certain senescence markers, suggesting that 

some cells positive for p16INK4A and senescence-associated β-ga-

lactosidase (SA β-gal) in aging and diseased tissues may be macro-

phages (114). These macrophage phenotypes, which appear to be 

part of the non–cell-autonomous effects of SnCs, are stimulated 

by IL-4 and thus may be proregenerative.

Certain SnC-secreted SASP molecules and immune cell–

secreted cytokines are known to cause pain and may be implicat-

ed in OA clinical symptoms. Examples include proinflammatory 

mediators from the interleukin family (IL-1 and IL-6), TNF-α, and 

arachidonate-derived PGE
2
/COX-2. Among these, PGE

2
 is con-

sidered the major contributor to exaggerated pain sensations via 

E prostanoid receptors (EP1–4), present in peripheral sensory neu-

rons that process potentially damaging stimuli and send signals 

through the spinal cord to the brain, usually causing the percep-

tion of pain (115). In human OA explants, PGE
2
 and COX-2 were 

elevated in the synovium, bone, and meniscus (116, 117). In our 

murine PTOA model, senolytic treatment reduced pain in a short 

time, before any tissue structural changes could have occurred (on 

day 14 after intra-articular injection of GCV, starting 8 days after 

ACLT surgery) (22). Thus, SnCs and their related immune stimu-

lation may be responsible for both clinical symptoms and underly-

ing pathogenesis of OA.

Implications of SnCs for OA treatment strategies
The causative role of SnCs and the SASP in OA opens the door to 

new strategies for treatment. Current pharmacological OA treat-

ment options are limited to symptomatic relief, but none of them 

in fact can halt or even reverse the disease in the patients. Analge-

sics, NSAIDs, and intra-articular viscosupplementation (e.g., hyal-

uronic acid) achieve short-term symptomatic pain relief and care 

of joint function (3). Other therapeutic strategies for OA include 

intra-articular platelet-rich plasma injections, and an autologous 

undefined mixture of bioactive molecules purported to improve 

wound healing (118). Lubricin, hyaluronic acid, and biomimetic 

aggrecan are biophysical strategies designed to reduce cartilage 

deterioration (119), but their efficacy varies, demonstrating either 

no marked difference in effect, or only small, short-term benefits 

(120). With advances in the understanding of OA pathogenesis, 

treatment strategies are moving beyond symptomatic relief to dis-

ease-modifying OA drugs, for example, by targeting specific cata-

bolic signaling pathways (55, 121).

SASP inhibition. Even before a causative role for SnCs in OA 

was suggested, treatment strategies were moving toward target-

ing molecules that are also SASP factors. These targets include 

proinflammatory cytokines, chemokines, growth factors, MMP-

13, and ADAMTS, implicated in cartilage degradation. They also 

include signaling cascades upstream of the SASP, such as NF-κB 

or p38 MAPK. Targeting of inflammatory pathways is a growing 

area of development, particularly for inflammatory arthritis. 

Inhibitors of IL-1β, TNF-α, and IL-6 are approved for treating 

inflammatory arthritis but have not been applied to OA. The clin-

ical studies of an MMP-13 inhibitor (PG-116800) (122) and IL-1 

receptor antagonists (kineret, orthokin, and AMG 108) (123–125) 

for OA treatment were terminated without clear benefit. Impor-

tantly, p16INK4A-positive cells that secrete DAMPs may not always 

express a SASP (35, 41). While targeting SASP factors may reduce 

clinical symptoms of inflammation and pain, it does not address 

the underlying source of inflammation and tissue degradation. 

Continual treatment to combat SASP factors would be required if 

the underlying source is not eliminated.

Directly targeting SnCs to treat OA. Direct targeting and killing 

of SnCs provides a potential opportunity to eliminate the source 

of OA disease. Several senolytics have been identified, and cur-

rent research continues to develop new and/or more selective 

drugs. Senolysis has been achieved by inhibition of antiapoptot-

ic proteins in SnCs, including the BCL-2 family members BCL-2, 

BCL-XL, and BCL-W (94, 126). For example, the senolytic mol-

https://www.jci.org
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ecule ABT-263 occupies the inhibitory binding grooves of these 

proteins, counteracting their antiapoptotic functions and permit-

ting SnCs to initiate apoptosis. Treatment of sublethally irradiated 

mice with ABT-263 reduced the SnC burden in BM and partially 

restored hematopoietic function (94).

Small molecules that inhibit antiapoptotic pathways elimi-

nated SnCs that developed after joint trauma and those present 

in cultured human OA chondrocytes (22). Other approaches to 

eliminate SnCs may also be efficacious for arthritis treatment. For 

example, SnCs increase expression of the transcriptional regula-

tor FOXO4, which binds p53 and prevents p53-mediated apopto-

sis; a peptide that interferes with the FOXO4-p53 interaction was 

recently shown to induce apoptosis in SnCs (127, 128). Another 

example of a selective SnC killing strategy is inhibition of HSP90, 

a ubiquitously expressed molecular chaperone that is upregulat-

ed in cancer cells, where it stabilizes antiapoptotic factors (129). 

HSP90 inhibitors (e.g., geldanamycin and tanespimycin) induced 

apoptosis of SnCs by multiple mechanisms (129).

Directly targeting mechanisms that induce SnCs in OA, and 

cartilage in particular, may also lead to new therapeutic targets, 

although there is always a danger of promoting cancer in such strat-

egies. SIRT6 depletion induced senescence in human chondrocytes, 

suggesting that upregulation of this protein deacetylase might sup-

press senescence and the SASP (130). Further studies on SIRT6’s 

role in the human chondrocyte may help elucidate the pathogenesis 

of OA and confirm the potential of SIRT6 as a therapeutic target.

Challenges and conclusions
Although the targeting and removal of SnCs may provide opportu-

nities for disease modification rather than symptomatic treatment, 

it is still difficult to make conclusions about the causative role of 

SnCs in arthritic disease. Almost all previous publications were not 

carefully controlled in terms of the number of markers of senes-

cence (SA β-gal staining was solely used) or selection of patients, 

who mostly had clinically advanced disease. Future research needs 

to define biomarkers of senescence in patients with mild, moder-

ate, and severe OA. The presence of SnCs and impact of senolytic 

treatment should also be tested in other trauma-induced arthritis 

models such as the DMM mouse or the medial meniscus transec-

tion (MMT) rat. Moreover, there are likely significant SASP differ-

ences between trauma-induced and aging-induced SnCs. These 

differences in SnC phenotypes and local environmental cues may 

impact which drugs are required for SnC clearance. Thus, tissue- 

specific SASP profiles should be studied to elucidate detailed 

mechanistic roles of SnCs in the various joint structures. Finally, 

understanding the link between SnCs, the immune response to 

trauma, and its known deficiency in aging will likely uncover dis-

ease mechanisms and additional therapeutic targets.
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