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Doubly occupied configuration interaction (DOCI) with optimized orbitals often accurately describes

strong correlations while working in a Hilbert space much smaller than that needed for full configu-

ration interaction. However, the scaling of such calculations remains combinatorial with system size.

Pair coupled cluster doubles (pCCD) is very successful in reproducing DOCI energetically, but can

do so with low polynomial scaling (N3, disregarding the two-electron integral transformation from

atomic to molecular orbitals). We show here several examples illustrating the success of pCCD in

reproducing both the DOCI energy and wave function and show how this success frequently comes

about. What DOCI and pCCD lack are an effective treatment of dynamic correlations, which we here

add by including higher-seniority cluster amplitudes which are excluded from pCCD. This frozen pair

coupled cluster approach is comparable in cost to traditional closed-shell coupled cluster methods

with results that are competitive for weakly correlated systems and often superior for the description

of strongly correlated systems. C 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4904384]

I. INTRODUCTION

The coupled cluster (CC) family of methods1–3 offers a

powerful wave function approach to the description of weakly

correlated systems, to the point that the accurate treatment of

such systems is essentially routine: provided that the system is

not too large, one can simply apply coupled cluster with single

and double excitations4 (CCSD) or CCSD plus perturbative

triple excitations,5 which we refer to as CCSD(T). The same,

unfortunately, cannot be said for the coupled cluster treatment

of strongly correlated systems, for which traditional single-

reference methods such as CCSD or CCSD(T) may fail badly.

Much progress has been made in multi-reference coupled clus-

ter theory,2 to be sure, but the techniques are by no means black

box or computationally inexpensive. Continued developments

of coupled cluster techniques for strongly correlated systems

are essential.

In 2013, Ayers and coworkers made a surprising discovery

along these lines: a method which they refer to as the antisym-

metric product of 1-reference orbital geminals6–9 (AP1roG)

and which we will refer to as pair coupled cluster doubles10

(pCCD) provides a remarkably reasonable description of the

strong correlations for a wide variety of systems. What makes

this so surprising is that pCCD looks like coupled cluster dou-

bles (CCD) restricted to include only those excitations which

preserve electron pairs, but pCCD, unlike CCD, seems to be

able to describe strong correlations. Why should a simplifi-

cation of a fundamentally single-reference method be able to

describe multi-reference problems?

In this manuscript, we seek to do three things. First, we

want to provide a self-contained description of pCCD, with all

the equations one needs to implement the approach. Second,

we wish to offer some perspective on the method’s successes.

Third, we wish to go beyond pCCD and include some of

the dynamic correlations which pCCD does not provide. To

accomplish this, however, we first must discuss doubly occu-

pied configuration interaction and orbital seniority.

II. SENIORITY AND DOUBLY OCCUPIED
CONFIGURATION INTERACTION

Pair coupled cluster theory is based on the concept of

the seniority of a determinant. The seniority is the number

of unpaired electrons. The idea is simple: every spinorbital

φp is paired with one and only one other spinorbital, φ p̄, and

the seniority of a determinant is the number of spinorbital

pairs which between them contain only one electron. Loosely

speaking, seniority is related to the number of broken electron

pairs.

In this work, as in our previous work on the subject,10 we

restrict ourselves to singlet pairing, in which the orbitals that

are paired are the two spinorbitals corresponding to the same

spatial orbital. In that case, the seniority operator is just

Ω= N −2 D, (1)

where N is the number operator

N =


p

(

c†p↑ cp↑+c†p↓ cp↓

)

=


p

(

np↑
+np↓

)

(2)

and D is a double-occupancy operator

D =


p

c†p↑ c†p↓ cp↓ cp↑=


p

np↑
np↓

. (3)

Throughout this work, we will use indices i, j, k, l for occupied

spatial orbitals, a, b, c, d for virtual spatial orbitals, and p, q,

r , s for general spatial orbitals.

It is important to notice that seniority depends on which

orbitals we use to define the double-occupancy operator D,
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because a unitary transformation which mixes the orbitals

leaves N invariant but changes the form of D. If we define

seniority with respect to the molecular orbitals of the restricted

Hartree-Fock (RHF) determinant |RHF⟩, then we see that the

RHF determinant is a seniority eigenfunction and has seniority

zero. If we define seniority with respect to a different basis,

this need not be true. It is also important to note that seniority

is not a symmetry of the molecular Hamiltonian – [H,Ω] ,

0 – which means that the exact wave function is not an eigen-

function of Ω.

The utility of the seniority concept comes from using it as

an alternative to organize Hilbert space.11 Conventionally, we

describe determinants in terms of their excitation level, which

we can extract from the particle-hole number operator

2 Nph =


a

(

na↑
+na↓

)

+


i

(

2−ni↑
−ni↓

)

. (4)

As with seniority, the excitation level is neither orbitally

invariant (because defining particles and holes with respect

to a different Fermi vacuum changes the excitation level) nor

a symmetry of the Hamiltonian, but it nevertheless provides

a valuable framework within which we can organize Hilbert

space and solve the Schrödinger equation in a subspace. The

exact wave function is generally a linear combination of

determinants of all possible excitation levels, and similarly,

it is generally a linear combination of determinants of all

possible seniorities. The success of single-reference coupled

cluster theory for weakly correlated systems is grounded on

the fact that the coupled cluster expansion in terms of particle-

hole excitations out of the Hartree-Fock determinant converges

rapidly toward full configuration interaction (FCI). The ground

state of weakly correlated systems, then, is characterized by

having a low number of particle-holes.

We posit that the ground state of strongly correlated sys-

tems is characterized by having a low seniority number in

a suitable one-electron basis. One can test this by defining

configuration interaction (CI) restricted to the zero seniority

sector of Hilbert space, which we refer to as doubly occupied

configuration interaction (DOCI).11–16 Because DOCI is not

invariant to the orbitals with respect to which seniority is

defined, we optimize this choice energetically. This is analo-

gous to optimizing the identity of the reference determinant in

an excitation-truncated CI calculation, or to optimizing the or-

bitals in CAS-SCF, though DOCI is generally size consistent.

As we and others have shown, DOCI with orbital optimization

provides a valuable tool for the description of strong correla-

tions. This can be shown in Fig. 1, which shows that DOCI

gives the correct limit in the dissociation of the equally spaced

H8 chain and gives most of the strong correlation in N2 as

well. Note that these plots are generated using a minimal active

space to remove, to the degree possible, dynamic correlation at

dissociation.

The chief drawback of DOCI is that of computational cost:

the number of determinants withΩ= 0 is just the square root of

the number of all determinants with a given particle number,

so the cost of DOCI is the square root of the cost of full CI.

Worse yet, it is more difficult to use symmetry to eliminate

determinants from DOCI than it is to eliminate determinants

from FCI. For example, every DOCI determinant is a spin

FIG. 1. Top panel: Dissociation of the equally spaced H8 chain. Bottom

panel: Dissociation of N2. Both calculations are done in the cc-pVDZ basis

set and restrict the CI problem to a minimal active space. We emphasize that

curves are obtained with an RHF wave function. Results taken from Ref. 11.

singlet with our singlet pairing scheme, so we cannot use spin

symmetry to reduce the number of determinants to be included.

In practice, DOCI calculations on systems with more than a

few dozen electrons are prohibitively expensive.

This is where pCCD enters the picture: pCCD gener-

ally provides results which for the molecular Hamiltonian are

nearly indistinguishable from those of DOCI, but whereas

the computational cost of DOCI scales combinatorially with

system size, the cost of pCCD scales as O(N3).

III. PAIR COUPLED CLUSTER DOUBLES

In pCCD, we write the wave function as

|Ψ⟩= eT |0⟩, (5)

where |0⟩ is a closed-shell reference determinant and

T =


ia

tai P†a Pi (6)

in terms of the pair operators P
†
a and Pi, where generically,

P†q = c†q↑ c†q↓ (7)

with the singlet pairing we are using. As usual, one can insert

this ansatz into the Schrödinger equation to get

E = ⟨0|H̄ |0⟩, (8a)

0 = ⟨0|P†
i

Pa H̄ |0⟩, (8b)
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where the similarity transformed Hamiltonian H̄ is given by

H̄ = e−T H eT . (9)

In AP1roG, one instead writes

E = ⟨0|H eT |0⟩, (10a)

E ⟨0|P†
i

Pa eT |0⟩ = ⟨0|P†
i

Pa H eT |0⟩, (10b)

but because

⟨0|e−T = ⟨0|, (11a)

⟨0|P†
i

Pa e−T = ⟨0|P†
i

Pa− tai ⟨0|

= ⟨0|P†
i

Pa− ⟨0|P
†

i
Pa eT |0⟩ ⟨0|, (11b)

one can see that Eqs. (8a) and (10a) are identical, and conse-

quently so too are Eqs. (8b) and (10b).

Explicitly, the pCCD energy and amplitudes are given by

E = ⟨0|H |0⟩+


ia

tai v
ii
aa, (12a)

0 = vaaii +2
(

f aa − f ii −


j

v
j j
aa taj −



b

v iibb tbi

)

tai

−2
(

2 v iaia − v
ia
ai − v

ii
aa tai

)

tai

+


b

vaabb tbi +


j

v
j j

ii
taj +


jb

v
j j

bb
taj tbi , (12b)

where f
p
q is an element of the Fock operator and v

pq
r s

= ⟨φp φq |Vee|φr φs⟩ is a two-electron integral in Dirac notation.

As promised, these equations can be solved in O(N3) compu-

tational cost with the aid of the intermediate y
j

i
=


bv
j j

bb
tb
i
.

As with traditional CC methods, we can define a left-hand

eigenvector ⟨L | of H̄ in CI-like fashion,

⟨L | = ⟨0|(1+ Z), (13)

where

Z =


ia

zia P
†

i
Pa. (14)

Then, the expectation value of H̄ is

E = ⟨0|(1+ Z) H̄ |0⟩= ⟨0|(1+ Z) e−T H eT |0⟩. (15)

The equations for the amplitudes ta
i

are just

0=
∂E

∂za
i

(16)

and guarantee by their satisfaction that

E = ⟨0|H̄ |0⟩ (17)

for any value of Z; similarly, we obtain the amplitudes za
i

from

0=
∂E

∂ta
i

. (18)

We find that the z equations are

0 = v iiaa+2
(

f aa − f ii −


j

v
j j
aa taj −



b

v iibb tbi

)

zia

−2
(

2 v iaia − v
ia
ai −2 v iiaa tai

)

zia

−2 v iiaa

(


j

z
j
a taj +



b

zib tbi

)

+


b

vbbaa zib+


j

v iij j z
j
a+


jb

tbj

(

v iibb z
j
a+ v

j j
aa zib

)

. (19)

Again, these can be solved in O(N3) time. We should empha-

size that the pCCD energy and amplitude equations for both T

and Z can be extracted from the usual RHF-based CCD17,18 by

simply retaining only the pair amplitudes taa
ii

and zaa
ii

which

we have here written as simply ta
i

and za
i

for compactness of

notation and to emphasize that the pCCD t and z amplitudes

are two-index quantities. In practice, one usually finds that

Z ∼T†, as we might expect. We note in passing that one can

readily identify the various channels19,20 of the CCD amplitude

equations in Eq. (12b), where the ladder terms are found on

the third line, the ring and crossed-ring terms appear on the

second line, and what we have termed the Brueckner or mosaic

terms appear on the first line. For pCCD, the various ring terms

decouple, though our limited numerical experience suggests

that a pair ring CCD model is not useful.

Like DOCI, pCCD is not invariant to the choice of which

orbitals are used to define the pair operators P
†
p. Additionally,

pCCD depends on the choice of reference determinant |0⟩. In

order to have a well-defined method, we must provide a way

of fixing these choices. This can be accomplished by orbital

optimization21,22 for which purpose we introduce the one-body

antihermitian operator

κ =


p>q



σ

κpq
(

c†pσ cqσ−c†qσ cpσ

)

(20)

which, when exponentiated, creates unitary orbital rotations;

here, σ indexes spins (i.e., σ =↑,↓). Note that in contrast to

the typical coupled-cluster orbital optimization which requires

only occupied-virtual mixing, we must allow all orbitals to

mix. We have taken κ to be real.

Given the rotation operator, we can simply generalize the

energy to

E(κ)= ⟨0|(1+ Z) e−T e−κ H eκ eT |0⟩ (21)

and make it stationary with respect to κ, which gives us

0 =
∂E(κ)

∂κpq

�����κ=0

=


σ

⟨0|(1+ Z) e−T [H,c†pσ cqσ−c†qσ cpσ] eT |0⟩, (22)

where we work at κ = 0 by transforming the basis in which

we express the Hamiltonian (i.e., by transforming the one-

and two-electron integrals). The commutator can be evaluated

readily,

[H,c†pσ cqσ] =


r

hr
p c†rσ cqσ−



r

h
q
r c†pσ crσ

+


r st



σ′

vr spt c†rσ c†sσ′
ctσ′ cqσ

−


r st



σ′

v
qt
r s c†pσ c

†
tσ′

csσ′ crσ, (23)

where the Hamiltonian is

H =


pq



σ

h
p
q c†pσ cqσ+

1

2



pqr s



σσ′

v
pq
r s c†pσ c†qσ′

csσ′ crσ (24)
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in terms of one-electron integrals h
p
q and the two-electron

integrals v
pq
r s previously defined. The energy gradient is then

∂E(κ)

∂κpq

�����κ=0

=





r

(

hr
p γ

q
r −h

q
r γ

r
p

)

+


r st

(

vr spt Γ
qt
r s − v

qt
r s Γ

r s
pt

)


− (p↔ q), (25)

where γ
p
q and Γ

pq
r s are one-body and two-body density matrices,

given by

γ
p
q =


σ

⟨0|(1+ Z) e−T c†qσ cpσ eT |0⟩, (26a)

Γ
pq
r s =



σσ′

⟨0|(1+ Z) e−T c†rσ c†sσ′
cqσ′ cpσ eT |0⟩. (26b)

We use a Newton-Raphson scheme to minimize the norm of the

orbital gradient, which finds an orbital stationary point. Having

found such a point, we check the eigenvalues of the coupled

cluster orbital Hessian and, if there is a negative eigenvalue,

follow the instability until we find a local energy minimum or

saddle point (i.e., we look for points with zero gradient and

non-negative Hessian). The analytic formulae for the density

matrices and the orbital Hessian are presented in the Appen-

dix. As has been previously pointed out, there are multiple

solutions to the orbital optimization equations, and because

the optimized orbitals are generally local in character if the

system is strongly correlated,7,10,11 it proves convenient to start

from the RHF determinant with localized molecular orbitals.

We should also point out that convergence of the pair ampli-

tude and response equations is greatly aided by using direct

inversion in the iterative subspace.23 Our Newton-Raphson

procedure typically uses the diagonal Hessian and turns on the

full analytic Hessian only near convergence; this avoids getting

trapped in high energy local minima.

It should be noted here that the one-body density matrix

γ is diagonal in the basis in which we define the pairing. In

other words, the molecular orbitals defining the pCCD T and

Z operators are also the natural orbitals of pCCD. The two-

body density matrix Γ is also very sparse and has a kind of

semi-diagonal form where only Γ
qq
pp, Γ

pq
pq , and Γ

qp
pq are non-

zero. These properties are true both for pCCD and for DOCI

(and indeed for any zero-seniority wave function method).

Detailed expressions for the density matrices can be found in

the Appendix.

IV. PAIR COUPLED CLUSTER AND DOUBLY
OCCUPIED CONFIGURATION INTERACTION

Now that we have given ample detail about pCCD and

have introduced DOCI, it will prove useful to compare results

from the two methods for a variety of small systems for which

the DOCI calculations are feasible. We will compare the ener-

gies from the two approaches and also look at overlaps of the

pCCD and DOCI wave functions; explicitly, we will compute

∆E = EpCCD−EDOCI (27)

to assess the quality of the pCCD energy and

S = ⟨0|(1+ Z) e−T |DOCI⟩ ⟨DOCI|eT |0⟩ (28)

to assess the quality of the pCCD wave functions. Note that

S ≈ 1 when pCCD is close to DOCI; more explicitly, we have

⟨0|(1+ Z) e−T eT |0⟩= 1, (29)

and inserting the projector |DOCI⟩ ⟨DOCI| should not substan-

tially change this value when pCCD and DOCI roughly coin-

cide. Because pCCD is biorthogonal, we need not have S < 1;

indeed, we will frequently see that S is slightly larger than

one. We emphasize here that both pCCD and DOCI can be

symmetry adapted despite having individual orbitals which

are not symmetry eigenfunctions due to the orbital optimiza-

tion; indeed, for the examples discussed below, pCCD with

optimized orbitals appears to respect point-group symmetry,

though we have found model Hamiltonians for which this is not

the case. We will always compare DOCI and pCCD with the

same orbital set (usually orbitals optimized for pCCD). Spot

checks show that typically orbitals optimized for DOCI are

virtually indistinguishable from orbitals optimized for pCCD.

All DOCI and pCCD calculations in this section and

indeed throughout the manuscript use in-house programs, as

do the frozen-pair coupled cluster calculations discussed in

Sec. V; other calculations used the Gaussian program pack-

age.24 Throughout, we will use Dunning’s cc-pVDZ basis set,25

because we need a sufficiently small basis that the DOCI is

computationally tractable, though we will use Cartesian rather

than spherical d-functions.

We start by noting that for H2, as for any two-electron

singlet, pCCD with orbital optimization is exact (and is equiv-

alent to DOCI). This is just because one can use occupied-

virtual rotations to make single excitations in CCSD vanish (in

other words, one can do Brueckner coupled cluster doubles)

and then pick a virtual-virtual rotation to eliminate the seniority

two excitation amplitudes. One can see this by noting that for

a two-electron singlet, we have

T =
1

2



ab

tab1,1c†a↑ c
†

b↓
c1↓ c1↑; (30)

the combination of fermionic antisymmetry and spin symme-

try means that tab
1,1
= tba

1,1
, so we can define a real symmetric

matrix Mab = tab
1,1

which can be diagonalized by a virtual-

virtual rotation so that T takes the pCCD form. Numerically,

we find that with optimized orbitals, EpCCD= EDOCI= EFCI and

S = 1, as we should.

In Fig. 2, we show results for the dissociation of LiH.

Because LiH is a quasi-two–electron problem, we would

expect DOCI and pCCD to be very accurate in this case.

Indeed, Fig. 2 shows that pCCD and DOCI are energetically

indistinguishable and both are essentially superimposable with

FCI (errors are on the order of 0.4 mEH throughout the disso-

ciation). Moreover, the DOCI and pCCD wave functions have

near unit overlap throughout the dissociation. This is exactly

what we would expect for such a problem.

We next turn our attention to the dissociation of equally

spaced hydrogen chains. These serve as important prototypes

of strongly correlated systems and map in a loose sense to

the Hubbard Hamiltonian.26 The top panel of Fig. 3 shows the

difference between the DOCI and pCCD energies per electron

pair, while the bottom panel shows the deviation of the overlap

S from unity, again per electron pair. These results appear to
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FIG. 2. Dissociation of LiH. Top panel: Dissociation energies from FCI,

DOCI, and pCCD. Bottom panel: Difference between DOCI and pCCD

energies (∆E , defined in Eq. (27) and measured on the left axis) and in the

overlap (1 − S, measured on the right axis with S defined in Eq. (28)).

be saturating, though unfortunately, the DOCI calculations on

H10 are impracticably expensive with our code.

We should note that while the equivalence between DOCI

and pCCD has been established for energetically optimized

orbitals, we see the same general behavior when DOCI and

pCCD pair canonical RHF orbitals instead, though not to the

same degree. That is, even pairing canonical RHF orbitals

rather than optimized orbitals, pCCD and DOCI give energies

that agree to within a few milliHartree, with the agreement

predictably degrading as the systems become more strongly

correlated. We can see this in hydrogen chains in Fig. 4.

Strangely, the agreement between DOCI and pCCD appears to

improve as we move from H4 to H6 to H8 when using canonical

RHF orbitals, while in the optimized orbital case, we see the

opposite behavior. We should emphasize that the deviations in

the energy and overlap in Fig. 4 are not shown per electron pair.

Our next example is the symmetric double dissociation

of H2O, as shown in Fig. 5. Again, pCCD and DOCI provide

nearly identical energies throughout the dissociation process,

and the overlaps of the pCCD and DOCI wave functions are

large. The coincidence of DOCI and pCCD, in other words, is

true not just for one pair of strongly correlated electrons, but

for two pairs as well. At dissociation, DOCI and pCCD give

essentially the unrestricted Hartree-Fock (UHF) result, despite

being closed-shell wave functions, though as we shall see later,

this is somewhat fortuitous. These methods miss a significant

FIG. 3. Dissociation of equally spaced hydrogen chains. Top panel: Dif-

ferences between DOCI and pCCD energies (∆E , defined in Eq. (27)) per

electron pair. Bottom panel: Deviations in the overlap (1 − S, with S defined

in Eq. (28)) per electron pair.

amount of the correlation compared to UHF-based CCSD and

CCSD(T); the dynamic correlation, then, is clearly not well

described.

Similar conclusions can be reached from examining the

dissociation of N2. As Fig. 1 reveals, DOCI does not give

all the strong correlation needed to dissociate the triple bond

in N2 correctly but does offer substantial improvements over

RHF. We see similar results in Fig. 6. In these calculations,

we froze the nitrogen 1s core orbitals after the orbital optimi-

zation and compare the frozen-core DOCI to the frozen-core

pCCD. We also note that our procedure of repeatedly following

instabilities in the pCCD orbital Hessian led to an unphysical

reference determinant for which the pCCD broke down; we

have thus used a stationary point rather than a minimum of the

pCCD energy functional to define the reference. Our results

reiterate that pCCD and DOCI get most but not all of the strong

correlation in N2 and fail to account for the dynamic correlation

effectively. Nonetheless, even for this triple bond, we see that

DOCI and pCCD have close agreement.

One can see that DOCI and pCCD do not describe

dynamic correlation particularly well by considering the neon

atom, as seen in Table I. While DOCI and pCCD are in

excellent agreement with one another, they only retrieve about

36% of the correlation energy even after orbital optimization,

with optimized orbitals very close to the canonical RHF

molecular orbitals. The bulk of the correlations must then

involve determinants of higher seniority. In order to remedy



244104-6 Henderson et al. J. Chem. Phys. 141, 244104 (2014)

FIG. 4. Dissociation of equally spaced hydrogen chains in the canonical

RHF basis rather than the pCCD-optimized basis used elsewhere. Top panel:

Differences between DOCI and pCCD energies (∆E , defined in Eq. (27)).

Bottom panel: Deviations in the overlap (1 − S, with S defined in Eq. (28)).

this deficiency, we turn to what we call frozen-pair coupled

cluster,10 as we will describe shortly.

First, however, it may be instructive to take a closer look

at the T-amplitudes of pCCD and the CI coefficients of DOCI

to understand why the two methods coincide so neatly. Often,

what we find, as in the examples above, is that the pCCD

T-amplitudes are such that each occupied orbital is strongly

correlated with at most one virtual orbital, so that each row

of the matrix ta
i

has at most one large entry, while most of

the amplitudes are small. The DOCI vector follows this same

basic structure, which is unsurprising since the DOCI and

pCCD wave functions are essentially the same. In these cases,

pCCD and DOCI are similar to a kind of perfect pairing wave

function.27–29 For example, for the stretched H2O case, the

pCCD and DOCI wave functions are qualitatively

|Ψ⟩≈ |O2
1s O4

lp

�
OH2

σ−α OH2
σ⋆

�2
⟩, (31)

where α approaches 1 at dissociation and where O1s, Olp,

OHσ, and OHσ⋆, respectively, denote the oxygen 1s orbital,

oxygen lone-pair orbitals, OH bonding orbitals, and OH

antibonding orbitals. In the case of stretched H2O, it is the

small deviations from this perfect pairing structure which

cause the energy to be close to the UHF limit. That is, the

only wave function amplitudes larger than ∼ 0.05 correspond

to excitations from an OH bonding orbital into its antibonding

orbital, but correlating the bonding orbitals alone yields an

energy somewhat above the sum of restricted open-shell

FIG. 5. Symmetric double dissociation of H2O. Top panel: Dissociation en-

ergies from DOCI and pCCD, as well as from UHF and CCSD and CCSD(T)

based thereon. Bottom panel: Errors in the energy (∆E , defined in Eq. (27)

and measured on the left axis) and in the overlap (1−S, measured on the right

axis with S defined in Eq. (28)).

Hartree-Fock atomic energies. Thus, we might not expect

pCCD to describe strong correlations beyond those accessible

with the perfect pairing structure, even though we must

emphasize that the pCCD wave function is not inherently

limited to this form.

Indeed, it is important to note that we have found cases

in the repulsive Hubbard Hamiltonian26 for which neither

pCCD nor DOCI adopt a perfect pairing structure, yet the two

methods still agree closely. We also note that for the attractive

pairing Hamiltonian30 or the attractive Hubbard Hamiltonian

(results not shown), one can find instances in which pCCD

does not resemble DOCI. In these cases, the DOCI coefficients

and the pCCD amplitudes are dense and neither DOCI nor

pCCD displays a perfect pairing structure. While pCCD and

DOCI include a perfect pairing wave function as a special case,

they are more general methods. The fact that pCCD closely

resembles DOCI seems a key feature of fermionic repulsive

Hamiltonians like the molecular one.

V. FROZEN PAIR COUPLED CLUSTER

The basic idea of frozen pair coupled cluster is very

simple. One could imagine decomposing the T2 double-

excitation operator into a pair part T
(0)

2
and a non-pair part

T̃2; one would then solve the pCCD equations for the pair
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FIG. 6. Dissociation of N2. Top panel: Dissociation energies from DOCI and

pCCD, as well as from RHF, UHF, and RHF- and UHF-based CCSD. Bottom

panel: Errors in the energy (∆E , defined in Eq. (27) and measured on the left

axis) and in the overlap (1 − S, measured on the right axis with S defined in

Eq. (28)).

amplitudes and then solve the usual CCD equations without

allowing the pair amplitudes to change. Note that the non-pair

operator T̃2 creates seniority non-zero determinants, which we

rely upon to provide the dynamic correlation which pCCD

lacks; T̃2 on a seniority zero determinant returns a linear

combination of determinants with seniorities two and four.

Note also that the Fock operator for orbital-optimized pCCD

is in general neither diagonal nor in the semicanonical form

which diagonalizes the occupied-occupied and virtual-virtual

blocks, so the full non-canonical form of the amplitude equa-

tions must be used. This is not a concern for pCCD, where

only the diagonal elements of the (generally non-diagonal)

Fock operator contribute to the amplitude equations.

What we have described above we would call frozen pair

CCD (fpCCD). One could of course extend this basic idea

TABLE I. Energies and overlaps in the neon atom. Here, ERef denotes the

energy of the reference determinant. We show results for both the optimized

determinant for pCCD and for the canonical RHF determinant as a reference.

Optimized Canonical

ERef −128.488 823 −128.488 866

EDOCI −128.559 677 −128.546 705

EpCCD −128.559 674 −128.546 701

ECCSD −128.683 931 −128.683 958

1 − S 1.43 × 10−7 1.16 × 10−7

FIG. 7. Frozen pair symmetric double dissociation of H2O.

to include single excitations and triple or higher excitations

in the cluster operator. What we wish to do here is to briefly

consider frozen pair coupled cluster with single-, double-, and

triple-excitation amplitudes (fpCCSDT).31,32

In Fig. 7, we show the symmetric double dissociation

of H2O, this time with the frozen pair approximation. The

effect of single excitations is in this case small (fpCCD

and fpCCSD give similar results) and fpCCSD gives results

fairly similar to the UHF-based CCSD and CCSD(T) curves.

Adding full triple excitations in fpCCSDT gives larger corre-

lation at dissociation and probably overcorrelates somewhat.

For comparison purposes, we show results from FCI and

RHF-based CCSD and CCSDT in Fig. 8. These calculations

fix the H-O-H bond angle at 110◦ rather than at the 104.474◦

used in our other calculations, and use spherical d functions;

the CCSD, CCSDT, and FCI data are taken from Ref. 33.

We see that as one stretches the bond, CCSD and CCSDT go

through a maximum and turn over; for larger bond lengths,

we would expect CCSD and CCSDT to overcorrelate more.

In contrast, fpCCD is coincidentally very close to FCI, and

while fpCCSD and fpCCSDT overcorrelate somewhat more,

they provide sensibly shaped dissociation curves without

requiring symmetry breaking.

Table II shows fpCCD and fpCCSD results for the neon

atom. While pCCD undercorrelates significantly compared to

FIG. 8. Symmetric double dissociation of H2O at 110◦ bond angle with

frozen pair coupled cluster and traditional coupled cluster methods. FCI and

CCSD data taken from Ref. 33. All results use closed-shell (restricted) wave

functions.
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TABLE II. Energies in the neon atom. Here, ERef denotes the energy of the

reference determinant.

Method Energy

ERef −128.488 823

EpCCD −128.559 674

EfpCCD −128.687 585

ECCD −128.683 851

EfpCCSD −128.687 619

ECCSD −128.683 931

EfpCCSDT −128.688 497

ECCSDT −128.685 089

CCSD, making the frozen pair approximation yields results

that differ from those without freezing T
(0)

2
by about 4

milliHartree. As with the double dissociation of H2O, frozen

pair coupled cluster overcorrelates slightly.

As a final example, we consider fpCCSD for the

dissociation of N2, as seen in Fig. 9. As should by now be

familiar, fpCCSD gives a reasonable accounting for dynamic

correlation but overcorrelates somewhat. Both fpCCSD and

RHF-based CCSD break down for large bond lengths, and

have an artificial bump in the dissociation curve; while

fpCCSD does not eliminate this unphysical effect, it at least

mitigates it somewhat.

Our results show that frozen pair coupled cluster should

be understood as an easy way to incorporate the reasonable

pCCD description of strong correlation while retaining much

of the ability of traditional coupled cluster to also describe

dynamic correlation. However, while easy to implement and

conceptually simple, it is also important to note that a

frozen pair full coupled cluster approach would give the

wrong answer. In other words, in the exact theory, one must

clearly allow the zero-seniority T2 amplitudes to relax from

their pCCD values. In practice, fpCCSD should allow for a

reasonable description of both strongly and weakly correlated

systems at essentially the cost of a CCSD calculation,

without breaking spin symmetry, although fpCCSD would be

expected to break down somewhat for cases where pCCD is

unable to capture all the strong correlations, as is the case

with N2. For two-electron singlets, fpCCD and fpCCSD are

FIG. 9. Dissociation of N2 with various coupled cluster methods.

both exact, because as we have previously noted, pCCD is

already FCI, which implies that T1 and the non-zero seniority

parts of T2 vanish.

VI. CONCLUSIONS

While traditional coupled cluster theory is highly success-

ful for the description of weakly correlated systems, it

generally fails to describe strong correlation. Paradoxically,

by simply eliminating the vast bulk of the cluster operator,

one can form pair coupled cluster doubles, which accurately

reproduces DOCI, and to the extent that DOCI can describe

strong correlations, so too can pCCD. Moreover, pCCD

accomplishes this task with mean-field computational scaling

for the coupled cluster part. Not only does pCCD reproduce

the DOCI energy but it also reproduces the DOCI wave

function. The DOCI wave function, in other words, is

essentially factorizable into the pCCD form. Loosely, this

can be accomplished because, upon orbital optimization, the

pCCD and DOCI wave functions studied in this work adopt a

perfect–pairing-like structure.

While pCCD can describe strong correlations, it is

much less successful at modeling dynamic correlation, which

apparently requires the breaking of electron pairs to obtain

higher seniority determinants when we define pairs in terms

of the spatial orbitals in a particle-hole representation. Using

pCCD to obtain the zero-seniority part of the cluster operator

and then solving the traditional coupled cluster equations

for the rest of the amplitudes yields frozen-pair coupled

cluster, which seems to be able to describe both weakly

and strongly correlated systems with reasonable accuracy and

with a computational cost not much different from that of

standard coupled cluster methods.

Of course, pCCD is not a panacea and there are occa-

sions when pCCD fails to account for the strong correlation

present in the DOCI wave function, although we have not

seen such a case for the molecular Hamiltonian. Likewise, it

is possible that the DOCI form is too restricted to allow for

a complete description of the strong correlations present, as

appears to happen in the dissociation of N2, for example. In

such cases, the frozen-pair coupled-cluster approach would

be of less utility. We speculate that it may be possible to

include these strong correlations by generalizing the pairing

structure to non-singlet pairing, so that the pairs included in

pCCD and DOCI are not just the two electrons in the same

spatial orbital. Regardless, we hope that pCCD and its frozen

pair extensions will be useful tools for the description of both

weakly and strongly correlated systems without the need for

symmetry breaking or higher excitation operators.
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APPENDIX: DENSITY MATRICES
AND ORBITAL HESSIAN

For completeness, we include here expressions for the

pCCD density matrices and orbital rotation Hessian; together

with the orbital rotation gradient of Eq. (25), these provide

everything needed for the Newton-Raphson algorithm we use

for orbital optimization.

Recall that the energy is written as

E(κ)= ⟨0|(1+ Z) e−T e−κ H eκ eT |0⟩ (A1)

with

κ =


p>q



σ

κpq
(

c†pσ cqσ−c†qσ cpσ

)

, (A2)

where the orbital rotation is given by the unitary transforma-

tion exp(κ). At every step of the Newton-Raphson scheme,

we solve for κ, build exp(κ) which rotates to a new orbital

basis, transform the integrals, and begin a new iteration.

We have already seen that the gradient is simply

∂E(κ)

∂κpq

�����κ=0

=Ppq



σ

⟨[H, c†pσ cqσ]⟩, (A3)

where Ppq is a permutation operator Ppq = 1− (p↔ q) and

the notation for the expectation value means

⟨O⟩= ⟨0|(1+ Z) e−T O eT |0⟩. (A4)

Similarly, the Hessian is

Hpq,r s =
∂2E(κ)

∂κpq ∂κr s

�����κ=0

=
1

2
Ppq Pr s



σ,η

⟨[[H, c†pσ cqσ], c
†
rη

csη]⟩

+
1

2
Ppq Pr s



σ,η

⟨[[H, c†rη csη], c
†
pσ

cqσ]⟩, (A5)

where η is another spin index. We obtain

Hpq,r s = Ppq Pr s


1

2



u


δqr
(
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u γ
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)

+δps
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r γ
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u +h
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u γ
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−
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p γ
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)

+
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tuv


δqr
(
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qt
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uv
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qt
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�

+


uv
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qu
tr Γ

t s
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)
. (A6)

The one-particle density matrix we have defined as

γ
p
q =


σ

⟨0|(1+ Z) e−T c†qσ cpσ eT |0⟩. (A7)

Because T and Z both preserve the seniority of the wave

function, and the reference |0⟩ has seniority zero, it is

immediately clear that the one-particle density matrix is

diagonal in the basis in which we have defined the pairing;

the optimized orbital basis for pCCD, in other words, is also

its natural orbital basis. We then have

γ
j

i
= 2
(

1− x
j

i

)

δi j, (A8a)

γb
a = 2 xb

a δab, (A8b)

γi
a = γ

a
i = 0, (A8c)

where δpq is the Kronecker delta and where we have defined

x
j

i
=


a

tai z
j
a, (A9a)

xb
a =


i

tbi zia. (A9b)

Recall that i and a are, respectively, occupied and virtual

orbital indices.

Similar considerations show that the two-particle density

matrix is also sparse in the natural orbital basis. The non-zero

elements of the two-particle density matrix are

Γ
j j

ii
= 2


x
j

i
+δi j

�
1−2 xi

i

�
, (A10a)

Γ
aa
ii = 2

�
tai + xa

i −2 tai
�
xa
a+ xi

i− tai zia
��
, (A10b)

Γ
ii
aa = 2 zia, (A10c)

Γ
bb
aa = 2 xb

a, (A10d)

Γ
i j

i j
= 4
(

1− xi
i− x

j

j

)

+2 δi j
�
3 xi

i−1
�
, (A10e)

Γ
ia
ia = Γ

ai
ai = 4

�
xa
a− tai zia

�
, (A10f)

Γ
ab
ab = 2 δab xa

a, (A10g)

Γ
qp
pq =

q,p
−

1

2
Γ
pq
pq . (A10h)

We have defined the additional intermediate

xa
i =


jb

tbi taj z
j

b
. (A11)

Note that the sparsity of the one- and two-particle

density matrices allows one to considerably reduce the cost

of evaluating the Hessian.
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