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Coupled cluster theory with single and double excitations accurately describes weak electron corre-

lation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled

cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve

the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field

computational cost and is an excellent approximation to the full configuration interaction (FCI) of

the paired space provided that the orbital basis defining the pairing scheme is adequately optimized.

In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI

leads to a very accurate description of static correlation. The same conclusion extends to p-CCD

if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these re-

sults with numerous examples. We also explore the contributions of different seniority sectors to the

coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both

Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair

the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level.

Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems. ©

2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880819]

I. INTRODUCTION

The electronic correlation energy is usually divided into

two parts. Dynamic correlation accounts for the mutual move-

ments of the electrons and is dominant in cases where a sin-

gle Slater determinant serves as a good approximation to the

wave function. In such cases, modern methods in quantum

chemistry, such as coupled cluster with single and double

excitations (CCSD)1 and CCSD with perturbative triple ex-

citations [CCSD(T)],2 can very accurately describe dynamic

electron correlation,3, 4 particularly when using explicitly cor-

related methods.5 Static or non-dynamic electron correlation

is important in cases with a near-degenerate ground state,

where more than a single determinant is needed for the qual-

itative description of the system. Such situations arise, for

example, in bond-breaking processes, the description of radi-

cals, transition metal complexes, superconductivity, and other

properties of materials. For such cases, a single Slater deter-

minant gives qualitatively wrong results, and methods such

as CCSD and CCSD(T) break down. In order to obtain the

correct description, one needs to take into account higher

excitations, which of course are much more computation-

ally demanding.6–8 Static correlation can be described us-

ing methods such as CASSCF9 and full optimized reaction

space.10 The scaling of the above methods is exponential

and, thus, they are only applicable to small molecules. Pro-

jected Hartree-Fock can capture strong or static correlation

effects with Hartree-Fock (HF) scaling and serves as an im-

portant step forward, but unfortunately, this method is not size

extensive.11–13

We should mention that there are many attempts in the

literature to describe static correlation using some variant

of CC.14, 15 Some examples are multireference CC which

includes several different approaches,16–23 variational CC

methods which, however, are only applicable to small

systems,24, 25 or the CC valence bond (CCVB) method, and

its variant CCVB-SD, that improve upon the restricted CCSD

description for strongly correlated systems.26, 27

Bytautas et al. have shown that the low seniority sec-

tors of Hilbert space are most important for the description

of static correlation.28 The seniority number is the number of

unpaired electrons in a determinant. A seniority zero wave

function describes a system in which all electrons are paired;

in seniority two, one electron pair is broken and we have two

unpaired electrons; in seniority four, two pairs are broken and

we have four unpaired electrons, etc. The correct behavior at

dissociation can often be taken into account with a seniority

zero wave function alone.28 The concept of seniority has a

long history in nuclear physics.29

In this work we use a closed-shell reference determi-

nant, i.e., we pair each α electron with a β electron in

a spatial orbital. One must specify the identity of the un-

derlying spatial orbitals which constitute this determinant.

For example, in a diatomic molecule one could use delo-

calized molecular orbitals or localized atomic-like orbitals;

low-seniority excitations out of these two orbital sets will

yield different results even though the underlying refer-

ence determinant is not changed. One should, therefore, op-

timize the pairing scheme (that is, the identity of these

paired molecular orbitals) in order to produce a well-defined

method.28, 30

At the coupled cluster level, the simplest seniority zero

wave function is given by pair coupled cluster doubles (p-

CCD), i.e., coupled cluster doubles (CCD) with only the

pair excitations taken into account, or, in other words, CCD
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restricted to preserve the seniority of the reference determi-

nant. In a series of recent papers, Ayers and co-workers30–35

have shown that this wave function belongs to a general fam-

ily of approximate antisymmetrized product of interacting

geminals wave functions (APIG).36 They refer to this wave

function as the antisymmetrized product of one-reference-

orbital geminals (AP1roG), to indicate that each geminal

contains one distinct orbital pair with respect to the refer-

ence determinant. One can show that the amplitude equa-

tions for AP1roG, which are obtained by solving projected

Schrodinger equations,26, 37 and the amplitude equations for

p-CCD, which are obtained by solving the CC equations

with the similarity transformed Hamiltonian, are in fact iden-

tical, and thus AP1roG and p-CCD are exactly the same

method. Limacher et al.34 have shown that if an optimal pair-

ing scheme is used, p-CCD can very accurately reproduce

results obtained using the seniority zero full configuration in-

teraction (FCI), which they call doubly occupied CI (DOCI).

This is quite remarkable, since the scaling of seniority zero

FCI is exponential, but one can get essentially the same re-

sults using p-CCD, which scales as N3, though with an N5

integral transformation from the atomic to molecular orbital

basis, where N is proportional to the number of basis func-

tions. In the work of Limacher et al.,34 the optimal pairing

scheme was obtained by optimizing the orbitals at the DOCI

level. The optimal pairing scheme can more efficiently be

found at the p-CCD level by making the CC energy station-

ary with respect to orbital rotation parameters,38 using the

p-CCD-� functional defined below in analogy with CCD-

�.39, 40 This gives us a well-defined orbital set, and thus

p-CCD is itself well defined, in principle, although multiple

stationary points are possible in practice. In addition to the

fact that p-CCD can capture an important part of the static cor-

relation at low computational cost, the method is size consis-

tent with the optimal pairing scheme provided that one allows

for broken symmetry orbitals,28 which makes it very appeal-

ing for many applications studying large strongly correlated

systems.35

In this study, we focus on the Hubbard model, which is

dominated by strong correlation for large values of U/t as will

be discussed below. We start by demonstrating that p-CCD

with orbital optimization gives results which are similar to se-

niority zero FCI in Sec. III. We then study the performance

of p-CCD in different orbital sets, and study the contributions

of different seniorities at the CCD level in these sets. By ob-

taining insight into the role of different orbital sets, we show

that in analogy to CCD, where the use of Brueckner orbitals

gives results which are similar to orbital optimization, one can

get similar results to orbital-optimized p-CCD (oo-p-CCD)

by using Brueckner orbitals together with orbital localization.

Moreover, as p-CCD captures the important static correlation

effects, we will try to achieve a better balance between static

and dynamic correlation at the CCD and CCSD level by first

solving for the seniority zero sector (that is, solving the p-

CCD equations) and subsequently solving the additional se-

niority sectors in CCD with seniority zero amplitudes fixed.

Using this approach, we are able to extend the range of U/t

for which CCD can still describe the Hubbard Hamiltonian

without breaking down.

II. HUBBARD HAMILTONIAN

In this study, we focus on the Hubbard model

Hamiltonian.41 This model is widely studied in condensed

matter physics and known to contain strong correlation effects

for large values of U/t. The Hamiltonian is given by

H = −t
∑

j,σ

(

c
†
j+1,σ cj,σ + c

†
j,σ cj+1,σ

)

+ U
∑

j

nj↑nj↓,

(1)

where c
†
j,σ and cj, σ are fermionic creation and annihilation

operators with spin σ on site j, and nj,σ = c
†
j,σ cjσ . The first

term is the hopping term, and represents the kinetic energy

of electrons hopping between two adjacent sites. The second

term represents the on-site repulsion (U > 0) between elec-

trons. The ratio between U and t dictates the strength of the

correlation of the system. For large values of U/t, the domi-

nant part is the repulsion between the electrons and the model

becomes strongly correlated. The Hubbard model, crudely,

is analogous to a minimum basis chain of hydrogen atoms,

with increasing U/t tantamount to increasing the separation

between the atoms. The model is well studied, and in one di-

mension exact results are available; for the 1D Hubbard model

with periodic boundary conditions, exact results are known

from the Bethe ansatz solution,42, 43 and for the 1D Hubbard

model with open boundary conditions, one can use results

from Density Matrix Renormalization Group (DMRG),44, 45

as DMRG is essentially exact for 1D systems. The Hubbard

model is, thus, a natural choice for studying the performance

of p-CCD; on the one hand, we can model a scenario of high

relevance to chemistry such as bond breaking but on the other

hand, we do not need to deal with large dynamic correlation

blurring the important effects. Throughout this paper, we will

work on 1D Hubbard chains with open boundary conditions,

and compare our results to DMRG results obtained with the

open-source ALPS software.46, 47

III. ORBITAL OPTIMIZED p-CCD

A well-defined set of orbitals can be obtained by making

the functional

Ep−CCD = 〈0|(1 + �P )e−TP HeTP |0〉 (2)

stationary with respect to orbital rotations. Here, TP is the

pair excitation operator and �P is the pair de-excitation op-

erator. We follow the procedure introduced by Bozkaya et al.

for CCD,40 which is equivalent to the coupled cluster orbital

optimization previously formulated.38 The p-CCD amplitude

equations are obtained from the demand that Ep−CCD is sta-

tionary with respect to the λ amplitudes, and an equation for

the λ amplitudes is obtained by demanding that Ep−CCD is sta-

tionary with respect to the t amplitudes. Variations in the or-

bitals are expressed via the unitary exponential operator eK,

where K is

K =
∑

p,q
κpq

(

c†pcq − c†qcp

)

. (3)

The Lagrangian as a function of κ is

Ẽp−CCD (κ) = 〈0| (1 + �P ) e−TP e−KHeKeTP |0〉 . (4)
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TABLE I. Comparison between oo-p-CCD and optimally paired DOCI for 6-, 8-, 10-, and 14-site Hubbard

chains at half filling.

6 sites (%) 8 sites (%) 10 sites (%) 14 sites (%)

U oo-p-CCD DOCI oo-p-CCD DOCI oo-p-CCD DOCI oo-p-CCD DOCI

2 85.46 85.48 83.41 83.42 81.99 82.00 80.09 80.10

5 92.02 92.02 90.74 90.75 89.91 89.92 88.89 88.90

9 96.97 96.97 96.51 96.51 96.23 96.23 95.88 95.88

The first and second derivatives of the energy with respect to

κ at κ = 0 are

wpq =
∂Ẽ

∂κpq

∣

∣

∣

∣

κ=0

, (5)

Apq,rs =
∂2Ẽ

∂κpq∂κrs

∣

∣

∣

∣

κ=0

. (6)

After expanding the energy up to second order, minimization

of the energy with respect to κ yields

κ = −A−1w. (7)

The exponential operator eK is expanded up to second or-

der, and the resulting rotation matrix is orthogonalized via a

modified Gram-Schmidt procedure. For more details we refer

the reader to Ref. 40. We have used the equations given in

Refs. 40, 48, and 49, and eliminated all t and λ amplitudes

with non-zero seniority.

We compare the percentage of correlation energies ob-

tained using DOCI and oo-p-CCD for 6-, 8-, 10-, and 14-site

Hubbard chains at half filling in Table I. For the remainder of

this paper, DOCI refers to DOCI with DOCI optimal orbitals;

i.e., the DOCI orbitals were optimized to obtain the lowest

DOCI energy. Furthermore, we refer to the parameter U as

the correlation strength (instead of U/t), as we set t = 1. One

can see that oo-p-CCD very accurately reproduces the results

obtained from DOCI.

As U gets larger, the system is more strongly correlated,

and the performance of DOCI and oo-p-CCD improves, so

that at U = 9, around 96% of the correlation energy is recov-

ered. We note again the resemblance between the two meth-

ods; Limacher et al.34 have shown that p-CCD with orbitals

optimized for DOCI gives results that are similar to DOCI.34

Here, we see that we can achieve the same result with orbitals

optimized at the p-CCD level without the need for the DOCI

orbitals. We further demonstrate the ability of oo-p-CCD to

describe strongly correlated systems by considering chains of

up to 20 sites and by doping the system with holes, as shown

in Table II.

TABLE II. Percentage of correlation energy recovered by oo-p-CCD for

20-site chains with different fillings.

U 20 sites/20 e (%) 20 sites/16 e (%) 20 sites/12 e (%)

2 78.38 72.42 73.74

5 88.07 82.18 82.65

9 95.6 91.61

Again, we see that for more strongly correlated systems

(i.e., larger U), we recover a larger portion of the correlation

energy. The percentage of the correlation energy recovered

for the doped systems is smaller than the percentage of cor-

relation energy recovered at half filling. We note that for the

20-site case, the system at half filling is more strongly cor-

related than the doped systems. This is evident from the fact

that while RHF diverges from exact solution in all cases, this

divergence is moderated for the doped systems. This demon-

strates again that oo-p-CCD performs better for more strongly

correlated systems.

We conclude from these results that, remarkably, static

correlation can be captured by a simplified theory that uses

only the lowest seniority sector in CCD, even though it is

well known that CCD cannot generally describe strongly cor-

related systems. As a model system to demonstrate this, we

choose a 6-site Hubbard chain at half filling. Figure 1 shows

the performance of different methods in describing this sys-

tem. It is clear from the figure that RHF is not a suitable

starting point in this case, and thus the failure of CCSD and

CCD is not surprising. Both CCD and CCSD start to overcor-

relate near U = 5 and catastrophically fail as U gets larger.

DOCI, however, captures a significant amount of the corre-

lation and gives a qualitatively correct description provided

that the optimal orbitals are used. Using oo-p-CCD, we obtain

results which are indistinguishable from DOCI.

It is important to note that although p-CCD is not in-

variant to orbital rotations, we can find a transformation that

will give us the optimal pairing. Within this pairing scheme,

the method is completely well defined (although one cannot

disregard the potential existence of multiple solutions).

FIG. 1. Performance of different methods for the description of the 6-site

Hubbard chain at half filling.
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IV. SENIORITY CONTRIBUTIONS TO THE CCD
ENERGY WITHIN DIFFERENT ORBITAL BASES – THE
ROLE OF ORBITAL LOCALIZATION

We have demonstrated that orbital-optimized p-CCD

gives a well-defined method which, like DOCI, can capture a

significant amount of the static correlation energy. It is inter-

esting at this point to study the performance of p-CCD when

we do not optimize the orbital basis. Figure 2 shows the per-

formance of p-CCD with different orbital bases.

As one can see from the plot, the results are quite

poor when pairing canonical RHF orbitals. However, the

results improve dramatically when we introduce Edmiston-

Ruedenberg localization50 after which each of the occupied

orbitals is localized on two sites. The optimal results are ob-

tained using DOCI or oo-p-CCD orbitals, which give essen-

tially the same results. It is important to note that the optimal

DOCI and oo-p-CCD orbitals are localized in nature.

We next wish to explore the contributions of different

seniority sectors to the CCD correlation energy in different

orbital bases. As a case study, we again use the 6-site Hub-

bard model at half filling. We plot the correlation energy of

p-CCD, which is the seniority zero part of CCD not coupled

to the other seniority sectors. In addition, we plot the contri-

butions of the different seniority sectors to the standard CCD

correlation energy, which generally includes seniorities zero,

two, and four; their sum gives the total CCD correlation. We

will start by examining the seniority profile of DOCI orbitals,

shown in Figure 3.

With the DOCI optimized orbitals, the main contribution

to the CCD correlation energy is from the seniority zero sec-

tor. The seniority two sector does not contribute energetically

and seniority four contributions are small; they give 6% of

the total energy at U = 1 and 0.2% at U = 9. Interestingly,

even for large values of U, where the CCD correlation energy

is solely due to seniority zero, it still differs from the p-CCD

correlation energy. In other words, coupling between the dif-

ferent seniority sectors plays an important role in the ampli-

tude equations. This coupling is apparently responsible for the

breakdown of CCD at large values of U, since p-CCD (i.e.,

seniority zero not coupled to the other seniority sectors) does

not overcorrelate. Results with oo-p-CCD orbitals are essen-

tially the same and yield the same picture (data not shown).

FIG. 2. Performance of p-CCD with different orbital basis sets, compared to

the exact result for the 6-site Hubbard chain at half filling.

FIG. 3. Contributions from different seniority sectors to the CCD correlation

energy for the 6-site Hubbard chain at half-filling with DOCI optimal orbitals.

The upper panel of Figure 4 shows results from the

canonical HF basis. There are several prominent differences

compared to the DOCI/oo-p-CCD results. First we see that we

get contributions from all seniority sectors. While the senior-

ity two contributions are small, seniority four is quite signifi-

cant. Moreover, one can see that as U gets larger, the p-CCD

recovers a smaller fraction of the CCD correlation energy; the

ratio between the p-CCD and CCD correlation energies starts

at 40% for U = 1 and is slightly above 20% for U = 9. The

seniority zero part of the CCD correlation energy is a little

less than 50% of the total correlation energy at U = 1 and

is still 43% at U = 9. For small values of U, the contribu-

tions from seniority zero and seniority four are comparable,

but as U gets larger, so does the seniority four contribution.

FIG. 4. Contributions from different seniority sectors to the CCD correlation

energy for the 6-site Hubbard chain at half filling. Upper panel: Canonical HF

orbitals. Lower panel: orbital localization on top of the canonical HF basis.
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Contributions from seniority two are small in this system, and

get even smaller as U gets larger.

As discussed above, orbital localization plays an essen-

tial role, so we next analyze the localized orbital basis. It is

important to bear in mind that CCD is invariant to rotations

among the occupied orbitals and among the virtual orbitals,

so the CCD correlation energies are the same in the canonical

and the localized bases. However, p-CCD is strongly affected

by mixing within the occupied or virtual orbitals, as one can

see from the lower panel of Figure 4; the effect of mixing oc-

cupied and virtual orbitals will be discussed later. At U = 1, p-

CCD captures over 80% of the correlation energy (this should

be compared to 40% in the canonical basis). This goes down

to 59% at U = 9. A prominent difference is that when using

localized orbitals, the dominant contribution to CCD arises

from the seniority zero sector. Another difference between the

two orbital sets is that in the canonical HF basis, the different

amplitudes have the same sign, while in the localized basis

we get seniority two and four with both positive and nega-

tive signs. Seniority two contributions are individually small

with localized orbitals and tend to cancel against each other

so that the total contribution of the seniority two sector to the

CCD correlation energy is insignificant. As with the canoni-

cal HF orbitals, the contributions from seniority four increase

as U increases; however, they are significantly smaller (7% at

U = 1 and 13% at U = 9). Although we have cancelation

effects within the seniority four sector as well, the effect is

smaller than in the seniority two sector.

V. AN ALTERNATIVE PAIRING SCHEME – p-BCCD
WITH LOCALIZATION

Orbital optimization has been well studied for the cou-

pled cluster wave function.1, 38, 40, 51, 52 As already mentioned

the CCD method is invariant to mixing the occupied or-

bitals or the virtual orbitals; however, it is not invariant to

the choice of the reference determinant (mixing between oc-

cupied and virtual orbitals). From the Thouless theorem, we

know that different reference determinants are related by53

|0〉 = exp T1|	〉. In other words, the singles amplitudes of

CCSD are responsible for orbital relaxation effects. Single

excitations can be excluded by orbital optimization at the

CCD level, as done by Scuseria et al. who showed that with

CCD optimal orbitals the contributions from T1 are generally

small.38

Alternatively, one can choose a reference determinant

in which all the single excitation amplitudes are zero. As

Brueckner orbitals are the set of orbitals in which at FCI all

the contributions from single excitations are zero, one obtains

approximate Brueckner orbitals at the CCD level by adjust-

ing the reference determinant iteratively such that the solu-

tion of the T1 equations is T1 = 0.54 This method is known

as Brueckner CCD (BCCD).55, 56 Studies have shown that the

energies and properties obtained from BCCD and CCSD are

similar,57, 58 even though the Brueckner orbitals are shown to

perform better than Hartree-Fock when dealing with broken

symmetry solutions.52, 59

We define a one-body Brueckner effective Hamiltonian

F̃ , whose occupied-occupied and virtual-virtual blocks are,

FIG. 5. Performance of p-CCD with canonical Brueckner and localized

Brueckner orbitals compared to other methods discussed in the text for the

6-site Hubbard chain at half filling.

respectively,

F̃ k
i = F k

i +
∑

c,d,l

1

2
v̄kl

cd t
cd
il , (8)

F̃ a
c = F a

c −
∑

k,l,d

1

2
v̄kl

cd t
ad
kl , (9)

while the occupied-virtual and virtual-occupied blocks are the

T1 equations. Here, F is the Fock operator and v̄kl
cd = 〈kl||cd〉

is an antisymmetrized two-electron integral in Dirac’s nota-

tion. Orbitals i, k, and l are occupied, while a, c, and d are

virtual. The occupied-virtual and virtual-occupied blocks of

this Hamiltonian vanish at self-consistency, as it is set to the

T1 equation. When we refer to the Brueckner orbitals we re-

fer to the canonical Brueckner orbitals which diagonalize the

Hermitian part of the Brueckner effective Hamiltonian.

Figure 5 shows the performance of p-CCD with the dif-

ferent orbital bases discussed in the text and with the canon-

ical and localized Brueckner orbitals. The canonical Brueck-

ner orbitals give results with quality similar to HF canonical

orbitals, however, the localized Brueckner orbitals improve

over the localized HF orbitals.

These considerations suggest the possibility of an alter-

native way to obtain a well-defined and nearly optimal pairing

scheme for p-CCD. If one simply diagonalizes the Brueck-

ner effective Hamiltonian formed from the seniority zero T2

amplitudes in what we call pair-BCCD (p-BCCD), one ob-

tains quite poor results. This is simply because the canoni-

cal Brueckner orbitals do not give a useful pairing scheme.

As we and others have observed,28, 60 orbital localization is

important in p-CCD, and should be incorporated also in any

Brueckner-based approach. One can do a single shot local-

ization after the convergence of the p-BCCD scheme, but we

find that the best results are achieved if the localization is

done self-consistently. Thus, at each cycle, after diagonaliza-

tion of the Brueckner effective Hamiltonian, we localize the

occupied and virtual orbitals. We refer to this approach as lo-

calized p-BCCD. We note that convergence of the Brueck-

ner determinant is easier to achieve than convergence of the

pairing scheme. Even when the Brueckner determinant is con-

verged, the energy is very sensitive to mixing within the occu-

pied or virtual blocks. In other words, although the Brueckner
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TABLE III. Comparison between correlation energies recovered by DOCI and the localized p-BCCD optimization.

6 sites (%) 8 sites (%) 10 sites (%)

U Ec(DOCI) Ec(localized p-BCCD) Ec(DOCI) Ec(localized p-BCCD) Ec(DOCI) Ec(localized p-BCCD)

2 85.48 85.32 83.42 83.25 82.00 81.84

5 92.02 91.86 90.75 90.57 89.92 89.73

9 96.97 96.74 96.51 96.25 96.23 95.94

determinant itself is invariant to mixing occupied orbitals with

each other, p-CCD is very sensitive to such mixing (and to

virtual-virtual mixing), so that while the Brueckner determi-

nant is converged, the p-CCD energy may not be. We have,

therefore, converged the Brueckner determinant (by insisting

that T1 = 0 self-consistently) and also insisted that the en-

ergy be converged to a value of 10−7 in units of the Hubbard

parameter t.

Table III shows the amount of correlation energy recov-

ered by DOCI and localized p-BCCD for 6-, 8-, and 10-site

Hubbard chains at half filling. The localized p-BCCD ap-

proach yields results comparable to DOCI and, thus, to oo-

p-CCD.

This approach also works for larger chains. Table IV

shows the correlation energy recovered for 14 and 20 sites at

half filling. For those systems, we again see the same trends

as discussed for the smaller chains and the results are com-

parable to oo-p-CCD. For 20 sites with only 12 electrons the

results are inferior to oo-p-CCD, but still, a significant amount

of correlation energy can be recovered.

The important message here is the role of the different

components: the Brueckner orbitals rotate the reference de-

terminant and exclude the need for T1 amplitudes. For any

pair wave function we additionally need to define the rotation

of the occupied and virtual orbitals. The fact that the com-

bination of p-BCCD and orbital localization recovers DOCI

results demonstrates again the important role of localization;

the energetically significant contributions to the correlation

energy need to arise from the seniority zero sector to obtain

optimal performance. The localized p-BCCD approach will

work well when the optimal pairing is indeed dominated by

orbital localization, as is the case for Hubbard chains at half

filling.

VI. ACHIEVING BETTER BALANCE WITHIN THE
DIFFERENT SENIORITY SECTORS – FREEZING THE
PAIR AMPLITUDES

As the seniority zero sector plays an essential role in

the description of static correlation, it seems natural to solve

TABLE IV. Performance of the localized p-BCCD optimization for 14- and

20-site Hubbard chains at half filling, and 20 sites away from half-filling.

U 14 sites 14 e (%) 20 sites 20 e (%) 20 sites 12 e (%)

2 79.97 69.11

5 88.69 87.86 76.26

9 95.58 95.30 84.15

first the seniority zero sector, and then account for residual

dynamic correlation with the other seniority sectors without

changing the seniority zero wave function amplitudes. In our

attempts to achieve an improved description at the CCD level,

we have tried freezing the pair amplitudes. In other words,

we first solve the p-CCD equations for the seniority zero

amplitudes, then with these amplitudes frozen, we solve the

usual CCD or CCSD equations only for the seniority two and

four amplitudes. We refer to this approach as fp-CCD and fp-

CCSD (fp for “frozen pair”).

Figure 6 shows results for 6- and 8-site Hubbard chains

at half filling, with canonical HF orbitals. For the 6-site chain,

CCD and CCSD start to overcorrelate at U = 3-4. As shown

earlier, p-CCD gives qualitatively wrong results in this orbital

basis, and significantly undercorrelates. This effect is signif-

icantly moderated in fp-CCD and fp-CCSD. For comparison

purposes, we have added DOCI results. Surprisingly, freezing

the pair amplitudes obtained in the canonical Hartree-Fock

basis, one achieves a much more balanced description. fp-

CCD and fp-CCSD follow DOCI up to U = 4, and for larger

U they are above DOCI (in other words, they do not over-

correlate and while results are only of moderate quality, the

FIG. 6. Upper panel: results for the 6-site Hubbard chain at half-filling.

Lower panel: results for the 8-site Hubbard chain at half-filling.
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FIG. 7. 10-site Hubbard chain at half-filling with different methods.

method does not break down catastrophically). In this basis,

the description with the frozen pairs is much more balanced

than p-CCD, CCD, or CCSD. Results for the 8-site chain are

shown at the lower panel of Figure 6. Here, again CCD and

CCSD start to overcorrelate near U = 4, although their de-

terioration seems more severe than in the 6-site case. Again,

p-CCD gives a straight line in the canonical HF basis, while

fp-CCD and fp-CCSD follow the DOCI curve and are above

it after U = 5.

Figure 7 shows the results for the 10-site chain at half-

filling. We were unable to converge CCD or CCSD for

U > 4. We again see the same trend for fp-CCD and fp-CCSD;

they follow the DOCI curve for some time, and then diverge

from it. Unlike for smaller systems, they eventually begin to

overcorrelate, but where CCD and CCSD start to overcorre-

late near U = 4, the frozen pair methods do not begin to break

down until U ≈ 8.

These results are intriguing, since p-CCD in the canoni-

cal Hartree-Fock basis does not correctly describe static cor-

relation. The coupling between the different seniority sectors

is apparently unbalanced for strongly correlated systems, and

simply by constraining the pair amplitudes we can get a bet-

ter description. In Figure 8, we show the different seniority

contributions to the correlation energy of fp-CCD for our test

case of the 6-site chain at half filling. We see here, that un-

like the canonical HF basis without frozen pairs, the seniority

two contributions are fairly constant, and that the differences

FIG. 8. Different seniority contributions for the 6-site Hubbard chain at half

filling calculated with fp-CCD.

between contributions from seniority zero and four become

more pronounced as U gets larger.

VII. CONCLUSIONS

We have focused on the seniority zero pair CCD theory.

While CCD and CCSD are essentially limited to the descrip-

tion of weak correlation, one can describe strong correlation

effects using only the seniority zero sector of CCD. Even

though the method is not invariant with respect to orbital ro-

tations, it is perfectly well-defined by the basis that makes

the CC energy stationary with respect to all orbital rotations.

The optimal orbitals turn out to be localized, and the result-

ing seniority zero sector is the dominant contribution to the

correlation energy.

Understanding the role of different seniority sectors with

different orbitals gives a clearer insight regarding the opti-

mal pairing scheme. A nearly optimal pairing scheme can

be obtained using the Brueckner orbitals for p-CCD with lo-

calization. The fact that CCD is known to capture dynamic

correlation, while its seniority zero part can capture the static

correlation, is intriguing, and suggests an imbalance between

the different seniority sectors at the CCD level. One can ob-

tain a better description by solving p-CCD equations and

freezing the seniority zero amplitudes in the CCD equations.

We have demonstrated that this postpones the breakdown of

CCD as the system gets strongly correlated.
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